Applying Theoretical Advances in Privacy to Computational Social Science Practice: Publications

Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O'Neill. 10/2016. “Generic Attacks on Secure Outsourced Databases.” 23rd ACM Conference on Computer and Communications Security.Abstract

Recently, various protocols have been proposed for securely outsourcing database storage to a third party server, ranging from systems with “full-fledged” security based on strong cryptographic primitives such as fully homomorphic encryption or oblivious RAM, to more practical implementations based on searchable symmetric encryption or even on deterministic and order-preserving encryption. On the flip side, various attacks have emerged that show that for some of these protocols confidentiality of the data can be compromised, usually given certain auxiliary information. We take a step back and identify a need for a formal understanding of the inherent efficiency/privacy trade-off in outsourced database systems, independent of the details of the system. We propose abstract models that capture secure outsourced storage systems in sufficient generality, and identify two basic sources of leakage, namely access pattern and communication volume. We use our models to distinguish certain classes of outsourced database systems that have been proposed, and deduce that all of them exhibit at least one of these leakage sources. We then develop generic reconstruction attacks on any system supporting range queries where either access pattern or communication volume is leaked. These attacks are in a rather weak passive adversarial model, where the untrusted server knows only the underlying query distribution. In particular, to perform our attack the server need not have any prior knowledge about the data, and need not know any of the issued queries nor their results. Yet, the server can reconstruct the secret attribute of every record in the database after about N 4 queries, where N is the domain size. We provide a matching lower bound showing that our attacks are essentially optimal. Our reconstruction attacks using communication volume apply even to systems based on homomorphic encryption or oblivious RAM in the natural way. Finally, we provide experimental results demonstrating the efficacy of our attacks on real datasets with a variety of different features. On all these datasets, after the required number of queries our attacks successfully recovered the secret attributes of every record in at most a few seconds.

Yiling Chen, Stephen Chong, Ian Kash, Tal Moran, and Salil Vadhan. 6/2016. “Truthful Mechanisms for Agents that Value Privacy.” ACM Transactions on Economics and Computation (TEAC), 4, 3. TEAC VersionAbstract

Recent work has constructed economic mechanisms that are both truthful and differentially private. In these mechanisms, privacy is treated separately from truthfulness; it is not incorporated in players’ utility functions (and doing so has been shown to lead to nontruthfulness in some cases). In this work, we propose a new, general way of modeling privacy in players’ utility functions. Specifically, we only assume that if an outcome o has the property that any report of player i would have led to o with approximately the same probability, then o has a small privacy cost to player i. We give three mechanisms that are truthful with respect to our modeling of privacy: for an election between two candidates, for a discrete version of the facility location problem, and for a general social choice problem with discrete utilities (via a VCG-like mechanism). As the number n of players increases, the social welfare achieved by our mechanisms approaches optimal (as a fraction of n).

K. Nissim, A Bembenek, A Wood, M Bun, M Gaboardi, U. Gasser, D O'Brien, T Steinke, and S. Vadhan. 2018. “Bridging the Gap between Computer Science and Legal Approaches to Privacy Kobbi Nissim, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi, Urs Gasser, David R. O’Brien, and Salil Vadhan, Bridging the Gap between Computer Science and Legal Appro.” In , 2nd ed., 31: Pp. 687-780. Harvard Journal of Law & Technology. Publisher's VersionAbstract
The fields of law and computer science incorporate contrasting notions of the privacy risks associated with the analysis and release of statistical data about individuals and groups of individuals. Emerging concepts from the theoretical computer science literature provide formal mathematical models for quantifying and mitigating privacy risks, where the set of risks they take into account is much broader than the privacy risks contemplated by many privacy laws. An example of such a model is differential privacy, which provides a provable guarantee of privacy against a wide range of potential attacks, including types of attacks currently unknown or unforeseen. The subject of much theoretical investigation, new privacy technologies based on formal models have recently been making significant strides towards practical implementation. For these tools to be used with sensitive personal information, it is important to demonstrate that they satisfy relevant legal requirements for privacy protection. However, making such an argument is challenging due to the conceptual gaps between the legal and technical approaches to defining privacy. Notably, information privacy laws are generally subject to interpretation and some degree of flexibility, which creates uncertainty for the implementation of more formal approaches. This Article articulates the gaps between legal and technical approaches to privacy and presents a methodology for rigorously arguing that a technological method for privacy protection satisfies the requirements of a particular law. The proposed methodology has two main components: (i) extraction of a formal mathematical requirement of privacy based on a legal standard found in an information privacy law, and (ii) construction of a rigorous mathematical proof for establishing that a technological privacy solution satisfies the mathematical requirement derived from the law. To handle ambiguities that can lead to different interpretations of a legal standard, the methodology takes a conservative “worst-case” approach and attempts to extract a mathematical requirement that is robust to potential ambiguities. Under this approach, the mathematical proof demonstrates that a technological method satisfies a broad range of reasonable interpretations of a legal standard. The Article demonstrates the application of the proposed methodology with an example bridging between the requirements of the Family Educational Rights and Privacy Act of 1974 and differential privacy.
Ryan Rogers, Aaron Roth, Jonathan Ullman, and Salil Vadhan. 2016. “Privacy Odometers and Filters: Pay-as-you-Go Composition.” Neural Information Processing Systems (NIPS).Abstract

In this paper we initiate the study of adaptive composition in differential privacy when the length of the composition, and the privacy parameters themselves can be chosen adaptively, as a function of the outcome of previously run analyses. This case is much more delicate than the setting covered by existing composition theorems, in which the algorithms themselves can be chosen adaptively, but the privacy parameters must be fixed up front. Indeed, it isn't even clear how to define differential privacy in the adaptive parameter setting. We proceed by defining two objects which cover the two main use cases of composition theorems. A privacy filter is a stopping time rule that allows an analyst to halt a computation before his pre-specified privacy budget is exceeded. A privacy odometer allows the analyst to track realized privacy loss as he goes, without needing to pre-specify a privacy budget. We show that unlike the case in which privacy parameters are fixed, in the adaptive parameter setting, these two use cases are distinct. We show that there exist privacy filters with bounds comparable (up to constants) with existing privacy composition theorems. We also give a privacy odometer that nearly matches non-adaptive private composition theorems, but is sometimes worse by a small asymptotic factor. Moreover, we show that this is inherent, and that any valid privacy odometer in the adaptive parameter setting must lose this factor, which shows a formal separation between the filter and odometer use-cases.

Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan Ullman, Salil Vadhan, and Jack Murtagh. 6/2016. “PSI (Ψ): a Private data Sharing Interface.” In Theory and Practice of Differential Privacy. New York, NY. ArXiv VersionAbstract

We provide an overview of PSI (“a Private data Sharing Interface”), a system we are devel- oping to enable researchers in the social sciences and other fields to share and explore privacy- sensitive datasets with the strong privacy protections of differential privacy.

Poster presented at Theory and Practice of Differential Privacy (TPDP 2016).

Kobbi Nissim, Uri Stemmer, and Salil Vadhan. 2016. “Locating a Small Cluster Privately.” In PODS 2016. ACM SIGMOD/PODS Conference, San Francisco, USA, 2016.Abstract

We present a new algorithm for locating a small cluster of points with differential privacy [Dwork, McSherry, Nissim,and Smith, 2006]. Our algorithm has implications to private data exploration, clustering, and removal of outliers. Furthermore, we use it to significantly relax the requirements of the sample and aggregate technique [Nissim, Raskhodnikova,and Smith, 2007], which allows compiling of "off the shelf" (non-private) analyses into analyses that preserve differential privacy.

Marco Gaboardi, Hyun woo Lim, Ryan Rogers, and Salil Vadhan. 2016. “Differentially Private Chi-Squared Hypothesis Testing: Goodness of Fit and Independence Testing.” Proceedings of The 33rd International Conference on Machine Learning, PMLR . Publisher's VersionAbstract

Hypothesis testing is a useful statistical tool in determining whether a given model should be rejected based on a sample from the population. Sample data may contain sensitive information about individuals, such as medical information. Thus it is important to design statistical tests that guarantee the privacy of subjects in the data. In this work, we study hypothesis testing subject to differential privacy, specifically chi-squared tests for goodness of fit for multinomial data and independence between two categorical variables.
We propose new tests for goodness of fit and independence testing that like the classical versions can be used to determine whether a given model should be rejected or not, and that additionally can ensure differential privacy. We give both Monte Carlo based hypothesis tests as well as hypothesis tests that more closely follow the classical chi-squared goodness of fit test and the Pearson chi-squared test for independence. Crucially, our tests account for the distribution of the noise that is injected to ensure privacy in determining significance.
We show that these tests can be used to achieve desired significance levels, in sharp contrast to direct applications of classical tests to differentially private contingency tables which can result in wildly varying significance levels. Moreover, we study the statistical power of these tests. We empirically show that to achieve the same level of power as the classical non-private tests our new tests need only a relatively modest increase in sample size.

Jack Murtagh and Salil Vadhan. 2018. “The Complexity of Computing the Optimal Composition of Differential Privacy.” In Theory of Cryptography Conference (TCC 2016), 8th ed., 14: Pp. 1-35. Theory of Computing (2018). TOC's VersionAbstract

In the study of differential privacy, composition theorems (starting with the original paper of Dwork, McSherry, Nissim, and Smith (TCC'06)) bound the degradation of privacy when composing several differentially private algorithms. Kairouz, Oh, and Viswanath (ICML'15) showed how to compute the optimal bound for composing k arbitrary (ϵ,δ)-differentially private algorithms. We characterize the optimal composition for the more general case of k arbitrary (ϵ1,δ1),,(ϵk,δk)-differentially private algorithms where the privacy parameters may differ for each algorithm in the composition. We show that computing the optimal composition in general is #P-complete. Since computing optimal composition exactly is infeasible (unless FP=#P), we give an approximation algorithm that computes the composition to arbitrary accuracy in polynomial time. The algorithm is a modification of Dyer's dynamic programming approach to approximately counting solutions to knapsack problems (STOC'03).

Mercè Crosas, Gary King, James Honaker, and Latanya Sweeney. 2015. “Automating Open Science for Big Data.” The ANNALS of the American Academy of Political and Social Science, 659, 1, Pp. 260-273 . Publisher's VersionAbstract

The vast majority of social science research uses small (megabyte- or gigabyte-scale) datasets. These fixed-scale datasets are commonly downloaded to the researcher’s computer where the analysis is performed. The data can be shared, archived, and cited with well-established technologies, such as the Dataverse Project, to support the published results. The trend toward big data—including large-scale streaming data—is starting to transform research and has the potential to impact policymaking as well as our understanding of the social, economic, and political problems that affect human societies. However, big data research poses new challenges to the execution of the analysis, archiving and reuse of the data, and reproduction of the results. Downloading these datasets to a researcher’s computer is impractical, leading to analyses taking place in the cloud, and requiring unusual expertise, collaboration, and tool development. The increased amount of information in these large datasets is an advantage, but at the same time it poses an increased risk of revealing personally identifiable sensitive information. In this article, we discuss solutions to these new challenges so that the social sciences can realize the potential of big data.