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Abstract

Privacy-preserving statistical data analysis addresses the general question
of protecting privacy when publicly releasing information about a sensitive
dataset. A privacy attack takes seemingly innocuous released information
and uses it to discern the private details of individuals, thus demonstrating
that such information compromises privacy. For example, re-identification
attacks have shown that it is easy to link supposedly de-identified records to
the identity of the individual concerned. This survey focuses on attacking
aggregate data, such as statistics about how many individuals have a certain
disease, genetic trait, or combination thereof. We consider two types of
attacks: reconstruction attacks, which approximately determine a sensitive
feature of all the individuals covered by the dataset, and tracing attacks,
which determine whether or not a target individual’s data is included in the
dataset. We also discuss techniques from the differential privacy literature
for releasing approximate aggregate statistics while provably thwarting any
privacy attack.
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1. INTRODUCTION

Beginning in the mid-2000s, the field of privacy-preserving statistical analysis of data has
witnessed an influx of ideas developed some two decades earlier in the cryptography community.
These include the formalization of the notion of a privacy adversary, the introduction of a
meaningful measure of privacy loss, the development of general and robust definitions of privacy,
the development of a theory of how privacy loss compounds over repeated privacy-preserving data
access (a process known as composition), the design of basic privacy-preserving computational
building blocks, the development of techniques for combining these basic building blocks in
creative ways to obtain privacy-preserving algorithms for sophisticated analytical tasks, and an
investigation of the limits of what can be achieved while preserving privacy. Privacy attacks—that
is, algorithms for the privacy adversary to execute—are central to establishing fundamental limits
of what is possible; they also play a seminal role in formulating achievable privacy goals. Privacy
attacks are the subject of this article.

We focus on the simple scenario in which there is a dataset x containing sensitive information,
and the goal is to release statistics about the dataset to the public. These statistics may be fixed in
advance, or may be chosen by the analyst, who queries the dataset. Speaking intuitively (because
we have not yet defined privacy), the goal in privacy-preserving data analysis is to protect the
privacy of the individual records in the dataset, even if the analyst maliciously chooses queries
according to an attack strategy designed to compromise privacy. We restrict our discussion to a
single analyst, as a collection of colluding analysts can be modeled by a single analyst.

To study a class of attacks, we need to characterize the notion of success for the attacker,
that is, what it means for the adversary to win. This can make sense even before settling on a
formal definition of privacy. For example, we can set a ridiculously low threshold for privacy, or,
equivalently, a high threshold for what constitutes a privacy break, such as “The adversary can
correctly guess the sickle cell status of 99.999% of the members in the dataset.” Most people would
agree that success of this type is inconsistent with any reasonable notion of privacy, so an attack that
achieves this goal on arbitrary datasets ostensibly protected by a given technique must be viewed as
a repudiation of the protection technique. By the same token, if the protection technique provably
satisfies a candidate definition of privacy, then such an attack refutes the value of the definition.

The remainder of this article is organized as follows. We begin with a discussion of three
adversarial goals: re-identification; reconstruction, which is precisely the kind of 99.999% correct
guessing just described; and tracing, in which the adversary determines whether a given individual
is, or is not, present in a given dataset. Tracing can be significant if, for example, the dataset com-
prises medical records of participants in a pharmaceutical trial or patient records from an abortion
clinic. We also present some basic definitions that will be used throughout. Reconstruction and
tracing attacks are then surveyed in Sections 2 and 3, respectively. Finally, Section 4 discusses dif-
ferential privacy, a definition of privacy tailored to statistical data analysis, and highlights a variant
that achieves the limits established by the attacks. (Although differential privacy is a worst-case
notion of privacy, it is interesting that our attacks require no strong assumptions either about the
data or the information available to the adversary.)

1.1. Adversarial Goals and Resources

Achieving different adversarial goals may require different resources, so to fully specify an attack,
we must also specify the resources to which the adversary has access. Examples of resources include
computational capabilities and additional, or auxiliary, information beyond what is supplied by
interacting with the dataset. Examples of useful auxiliary information might be personal details
about an individual, known, for example, to a sibling or coworker, such as the approximate dates
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on which one has watched a few movies on Netflix (Narayanan & Shmatikov 2008), and outputs
from a product recommendation system (Calandrino et al. 2011).

First, we formalize the computational model for interacting with a dataset. Roughly speaking,
the raw data remain hidden from the data analyst—who is also our adversary. Information is
obtained by posing a query, which is simply a function mapping datasets to a range, such as the
real numbers, and receiving a response in the range. Note that the queries may be specified ahead
of time, for example, when a government agency decides on a set of tables to release, or may be
specified implicitly, for example, when a release of synthetic data promises to preserve certain
statistics of the original data. Regardless, the algorithm that provides the response is called a
mechanism. This survey focuses on linear queries such as, for example, “What fraction of the rows
in the dataset satisfy property P?” (see Definition 1 below).

Definition 1 (Mechanism). A mechanism is a randomized algorithm, often denoted M,
mapping datasets to an arbitrary set of outputs. Let x be an arbitrary dataset. Because
M is randomized, M(x) yields a probability distribution on the range of M.

As noted above, datasets will be collections of rows, and the mechanisms will provide approx-
imate answers to linear queries over the dataset. Each dataset row will correspond to the data
of a single individual.1 Thus, in a dataset containing information about physical attributes of a
collection of individuals, a row might hold the height, weight, and age of a single individual, a
query might ask, “What fraction of the members of the dataset are over six feet tall?”, and the
mechanism might compute the true answer to the query, and produce as output the sum of the
true answer and some random noise. In this survey the attacker’s access to the dataset will be
exclusively through these mechanisms.

1.1.1. Re-identification/de-anonymization. The technical literature and popular press fre-
quently speak about re-identifying data. Such references implicitly assume an approach to pri-
vacy protection in which individual data records, containing explicit identifying information, are
putatively de-identified or anonymized. Re-identification refers to reversing this step, tracing an
individual record back to its human source. Although re-identification may seem difficult when a
dataset is considered in isolation, anyone looking at supposedly de-identified data who also knows
auxiliary information about a member of the dataset may well be in a position to re-identify. By
linking public, not anonymous records, such as voter registration records, with de-identified data,
strangers can do this too (Sweeney 1997, Narayanan & Shmatikov 2008). Indeed, the richer the
dataset, the greater the set of possibilities for useful auxiliary information, and a host of results
suggest that “de-identified data isn’t”, meaning that it is either not de-identified or no longer can
serve as data. In the words of the President’s Council of Advisors on Science and Technology
(2014, p. 38), “Anonymization of a data record might seem easy to implement. Unfortunately, it
is increasingly easy to defeat anonymization by the very techniques that are being developed for
many legitimate applications of big data.” For this reason we focus herein on the privacy risks
posed by the release of statistics.

1.1.2. Reconstruction. Reconstruction is most easily understood by thinking of the dataset
as a collection of rows, one per individual. Imagine that each row contains a large amount of
nonprivate identifying information and a secret bit, one per individual, for example, indicating

1In fact, the attacks we discuss are robust to a fair amount of noise in the data.
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whether or not the individual has the gene for Alzheimer’s disease. The goal in a reconstruction
attack is to determine the secret bits for nearly all individuals in the dataset.

Definition 2 (Reconstruction). Consider an n-row dataset in which each row contains a
unique identifier and a single bit, possibly with additional information. For example, the
identifiers might be the numbers 1, 2, . . . , n and the bit might be the sickle cell status.
Let b be the column vector of the bits. The reconstruction goal is to produce a vector c
of n bits that agrees with b in all but o (n) locations.

A few remarks are in order. First, the identifier is an abstraction: Individuals could be identified,
for example, by a collection of attributes. There is no need for the adversary waging a reconstruc-
tion attack to know an ordering on the rows. Rather, the adversary will learn that the individual with
a given set of attributes has a given sickle cell status. At the time of the attack, the attacker might
not know the identity of the individual who actually has this set of attributes. This is scant comfort,
however, as the attacker might learn such information at a later date. Second, reconstruction attacks
can be launched against a subset of the rows of a dataset by proper formulation of the linear query.
An example of a properly formed linear query would be, on the members of an extended family,
“what fraction of the rows in the dataset correspond to members of family F that are over six feet
tall?”

There is by now a rich literature showing that any mechanism providing overly accurate answers
to too many linear queries is blatantly nonprivate, meaning that it succumbs to a reconstruction
attack. Indeed, there is a single attack strategy that succeeds against all such overly accurate
answering of too many queries. Here, “too many” is quite small (e.g., only n queries) and “overly
accurate” means having fractional error on the order of o (1/

√
n). This literature is the subject of

Section 2.

1.1.3. Tracing. Reconstruction represents spectacular success on the part of the adversary, or,
conversely, a spectacular failure of the putative privacy mechanisms. Tracing—that is, determining
whether or not a specific individual is a member of a given dataset—is a much more modest
adversarial goal. (There are settings in which tracing attacks are possible, but reconstruction
attacks are provably impossible.) 2

Tracing entered the popular consciousness when a group of researchers showed how to use 1-
way marginals, specifically allele frequency statistics in a genome-wide association study, together
with the DNA of a target individual and allele frequency statistics for the general population, to
determine the target’s presence or absence in the study (Homer et al. 2008). In response, the US
National Institutes of Health and the Wellcome Trust changed the access policy to statistics of
this type in the studies they fund. Section 3 surveys results in tracing.

1.1.4. The attack that isn’t: correlation detection. We are interested in statistical analysis
of data—for example, learning facts about a population such as “smoking causes cancer.”
Releasing the information that smoking and cancer are correlated may reveal sensitive medical
information about an individual who is known to smoke. However, we do not view this as a
privacy compromise, as facts of this type can be learned even if the given individual is not in

2The name has its roots in the close connection to the traitor tracing problem in cryptography (Chor et al. 1994); see Dwork
et al. (2009).
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the dataset. These facts about the population as a whole are precisely what we seek to learn
in statistical data analysis. Several works in the literature discuss attacks that in fact consist of
correlation detection. We discuss the distinction further in Section 4.

1.1.5. Differential privacy. Differential privacy ensures that even a highly informed adversary,
knowing a dataset x and an additional data record r , and interacting with a dataset y ∈ {x ∪ {r}, x}
through a differentially private mechanism, cannot determine whether y = x or y = x ∪ {r} (see
Section 4 for details). Thus, differential privacy by definition prevents tracing; it also protects
against reconstruction and re-identification. At the same time, it permits the analyst to learn
precisely the type of statistical correlations just discussed.

Surprisingly, this very strong guarantee comes at no extra cost in accuracy, in the following
sense: The bounds shown in Section 4 for achieving differential privacy match the limits imposed
by reconstruction and tracing attacks in Sections 2 and 3.

2. RECONSTRUCTION ATTACKS

Suppose we have a dataset of n individuals. For each individual i , we have information (xi , s i ).
There is one bit, denoted s i , that is considered sensitive and unknown a priori to an attacker
(perhaps it indicates i ’s political party affiliation, diabetes status, or lack of interest in Bayesian
decision theory). The remainder of the record, denoted xi , is public and easily available—for
example, the demographic information visible on i ’s Facebook account.

A well-intentioned curator might want to release various statistics about how the secret vector
s = (s1, . . . , sn) relates to the public variables x. For example, if each xi is a list of d binary attributes,
xi = (xi (1), . . . , xi (d )) ∈ {0, 1}d , then one might want to release, for example:

1. The joint marginal distribution of s i with each of the attributes—that is, for each j , a 2 × 2
contingency table indicating how many records have each of the four possible combinations
for the pair s i , xi ( j )

2. The joint marginal of s i together with every subset of k public attributes, for some integer
k > 1—that is, a collection of (d

k) contingency tables, each with 2k+1 entries

3. The coefficients of a logistic regression model fit to predict s i from xi

Under what conditions do such releases allow an attacker, who knows the xi s and the released
statistics, to reconstruct all or most of the vector s ? What if the curator releases only approximate
statistics? These questions are addressed by reconstruction attacks, as introduced by Dinur &
Nissim (2003) and developed by a large body of subsequent work.

Let M the denote the mechanism used by the curator to generate a vector of released statistics
q̂ = M(x, s ).

Definition 3 (Blatant nonprivacy). A mechanism M is blatantly nonprivate for a public
dataset x if there is an attack A such that for every vector s , we have Ham(s , ŝ ) ≤ n

10 ,
where ŝ = A(x,M(x, s )). Here Ham(s , ŝ ) denotes the Hamming distance between two
vectors (that is, the number of positions in which they differ).

Thus, as discussed informally in the Introduction, a mechanism is blatantly nonprivate if it
allows an attacker to reconstruct almost all secret bits s i . There is nothing special about recon-
struction of 9/10 of the entries of s ; we could have used any other constant close to 1. When we
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say that a class (or set or collection) of mechanisms is blatantly nonprivate, we mean that there
exists a single attack algorithm A that works against every mechanism in the class.

Note that because the attack works for every secret vector s , it cannot rely on detecting un-
derlying statistical correlations between x and s . It is not an instance of correlation detection (see
Section 1.1.4),3 but rather an attack learning information highly specific to this particular dataset.

2.1. Reconstruction from Linear Statistics

The releases discussed above all share a particular structure, namely that the exact statistics are
linear functions of the secret vector s : For each one, we can interpret the released statistics q̂ as an
approximation to Bs for some matrix B, whose rows correspond to queries. For example, releasing
the pairwise marginals of s with each public column (the setting in Example 1) reveals, in particular,
Bs where B = xᵀ and x is the matrix of public values. Releasing (k + 1)-way contingency tables
(item 2 in the list above) reveals Bs , where the rows of B consist of all (d

k) entry-wise products
of subsets of k columns of x. Less obviously, releasing the logistic regression coefficients also
corresponds to a linear release, by viewing the released coefficients as a vector where the gradient
of the logistic loss function, summed over all pairs (xi , s i ), is 0d .

In all these settings, the task of the attacker A is to solve a noisy system of linear equations. To
allow the comparison of results, we normalize the matrix B so that entries lie in [0, 1], and divide
the result by n to obtain an answer in [0, 1].

Definition 4 (Fractional linear query). A fractional linear query is specified by a vector
b ∈ [0, 1]n; the exact answer is qb (s ) = 1

n bᵀ s (which lies in [0, 1] as long as s is binary).
An answer q̂b is α-accurate if |q̂b − qb (s )| ≤ α.

If a collection of fractional linear query statistics, given by the rows of a matrix B, is answered
to within some error α, we get the following problem:

Definition 5 (B-reconstruction problem). Given a matrix B and a vector q̂ = 1
n Bs + e ,

where ‖e‖∞ ≤ α and s ∈ {0, 1}n, find ŝ with Ham(ŝ , s ) ≤ n
10 . The reconstruction error

is the fraction Ham(ŝ ,s )
n .

Understanding reconstruction attacks based on linear statistics thus boils down to understand-
ing when the B-reconstruction problem can be solved, and how efficiently. The theory of noisy
linear systems is deep and well developed, with extensive connections to numerical analysis, ge-
ometry, compressed sensing, and the theory of streaming algorithms. In the remainder of this
section, we give a taste of how it applies to reconstruction.

2.2. An Exponential Attack

An important class of linear statistics are sums of subsets of the bits of s , which correspond to
matrices B with entries in {0, 1}. As a warm-up, consider what happens when approximations to
all possible subset sums are released, that is, when B has 2n rows, one for every vector in {0, 1}n.

3In particular, this means that reconstruction attacks are fundamentally different from the statistical literature on constructing
good predictors from aggregate statistics and “ecological” correlations, as in the problem of learning from label proportions
(see, e.g., Quadrianto et al. 2009 and following work).
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Because the normalized subset sums lie in [0, 1], the accuracy parameter must be less than 1
2 for the

answers to convey any information at all about s (if α ≥ 1
2 , simply releasing 1

2 as the approximation
to each normalized subset sum, regardless of s , satisfies the accuracy requirement).

In this case, we can get nontrivial reconstruction attacks whenever the accuracy parameter α

goes to 0 (that is, when the error in answering each query is a vanishing fraction of each query’s
maximum possible value).

Theorem 1 (Dinur & Nissim 2003). When B ∈ {0, 1}2n×n has all possible rows in {0, 1}n,
there is an attack A that solves the B-reconstruction problem with reconstruction error
at most 4α (given α-accurate query answers), for every α > 0. In particular, every
mechanism that releases such statistics is blatantly nonprivate when α < 1/40.

Proof. This brute-force attack simply enumerates all vectors s̃ ∈ {0, 1}n and picks one
that agrees, within α, with all entries of q̂ , meaning ‖q̂ − 1

n Bs̃ ‖∞ ≤ α. We know such an
s̃ exists because s is a solution. Let us call it ŝ .

We now argue that Ham(ŝ ,s )
n ≤ 4α. Let b0 = s , and let b1 denote the bit-wise comple-

ment of s (that is, the n-bit vector with zeros in positions where s has ones, and ones
where s has zeros). Because ŝ agreed with q̂ in the position corresponding to b0, we have
| 〈b0,ŝ 〉

n − q̂b0 | ≤ α. Because by assumption | 〈b0,s 〉
n − q̂b0 | ≤ α, we have that s and ŝ disagree

on at most 2αn locations in which s is zero. An analogous argument shows they disagree
on at most 2αn locations in which s is one (based on their mutual agreement with q̂b1 ).

Theorem 1 has important implications: there is no way to construct a noisy table that will permit
highly accurate answers to be derived for computations that are not specified at the outset, even if
only a relatively small number of linear queries will ever be of interest. Because we do not know
in advance which queries will be of interest, the table must permit the analyst to learn accurate
answers to all queries. Theorem 1 tells us that any such table providing answers to all 2n queries
described in the theorem will succumb to a reconstruction attack. As a result, when releasing
information about sensitive data, we must make choices: Because no method can accurately and
privately provide answers to everything, thought must be given to the use of the resource.

2.3. Attacks Requiring only Polynomially Many Queries

The attack of the previous section runs in exponential time and requires a release of exponentially
many statistics. What can we do when the number of released statistics and the time available to
the attacker are more limited? Before giving a general answer to this question, we consider a few
special cases.

Theorem 2 (Dwork & Yekhanin 2008). There exists a matrix B ∈ {0, 1}2n×n and an
attack A running in time O(n log n) that solves the B-reconstruction problem with re-
construction error at most 16α2n when the answers are α-accurate. In particular, every
mechanism that releases such statistics is blatantly nonprivate when α < 1

13
√

n .

A similar result is known to hold when the entries of B are chosen uniformly at random, though
the number of rows must then be larger than n by a constant factor and the attack takes longer
(about the time required to multiply two n × n matrices), and even if a certain constant number of
responses have unbounded error (Dinur & Nissim 2003, Dwork et al. 2007). Furthermore, one
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can interpolate smoothly through Theorems 1 and 2. The following slightly generalizes a result
of Dinur & Nissim (2003):

Theorem 3. There exists an attack A such that, if B is chosen uniformly at random in
{0, 1}m×n and 1.1n ≤ m ≤ 2n then, with high probability over the choice of B, A(B, q̂ ),
given any α-accurate answers q̂ , solves B-reconstruction with error β = o (1) as long as

α = o (
√

log(m/n)
n ). In particular, there is a c > 0 such that every mechanism for answering

the queries in B with error α ≤ c
√

log( m
n )/n is blatantly nonprivate.

The constant 1.1 in the theorem is somewhat arbitrary. It suffices that log(m/n) be bounded
below by a positive constant. We omit the proof of Theorem 3, though we outline below a general
connection to discrepancy theory on which the proof is based.

2.4. Reconstruction, Spectral Bounds and Discrepancy

Understanding linear reconstruction attacks boils down to understanding the geometric prop-
erties of the query matrix B. We start by describing a very efficient attack, first presented by
Dwork & Yekhanin (2008), who provide a proof of Theorem 2. The attack relies on bounding
the eigenvalues of B.

Proof of Theorem 2. Suppose for now that n = 2� is an integer power of 2. To simplify
computations, we allow the coefficients of the query matrix to lie in {−1, 1} instead of
{0, 1}. (One can always simulate a query with {−1, 1} coefficients using two queries with
{0, 1} coefficients, at the cost of doubling the allowed error α).

We take B to be the Hadamard matrix H �, defined recursively by the formula H 0 =
(1) and H i+1 =

(
H i H i
H i −H i

)
. H � is a n × n matrix (because n = 2�) with entries in {±1}

with the property that H 2
� = nI where I is the identity matrix. This means that the

inverse of H � is
( 1

n H �

)
, and that the eigenvalues of H � are all ±√

n.
Given q̂ = 1

n H �s + e , the attacker first multiplies by H � = ( 1
n H �)−1 to obtain

r = H �q̂ = H �

(
1
n

H �

)
s + H �e = s + H �e .

Now the �2 norm of e is at most α
√

n because each of its entries has absolute value at
most α. Because the eigenvalues of H � are ±√

n, the �2 norm of H �e is at most αn. Thus,
we have ‖r − s ‖2

2 ≤ α2n2.
In the second step, the attacker rounds each entry of r to the nearer of {0, 1} to obtain

a candidate dataset ŝ ∈ {0, 1}n. We will use the following claim (proved below).

Claim 1. Let s ∈ {0, 1}n and r ∈ R
n be arbitrary, and let ŝ be obtained by rounding the

entries of r to {0, 1}. Then Ham(s , ŝ ) ≤ 4‖r − s ‖2
2.

The attacker’s reconstruction error β is thus Ham(ŝ , s ) ≤ 4α2n. The constant claimed
in the theorem statement is slightly higher than 4, because we must take into account
the conversion from ±1 to {0, 1} in the query coefficients, and also the padding required
to get n to the next largest power of 2.

The running time of the attack, perhaps surprisingly, is less than the time it takes
to write down the matrix H �. Because of the recursive form of H �, we can use a
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divide-and-conquer algorithm similar to the fast Fourier transform to multiply any
n-entry vector by H � in time O(n log n). (Multiplication by H � is in fact a Fourier
transform over an appropriate group.)

Finally, we prove Claim 1. Notice that ŝ and s differ only in positions j where
|r( j ) − s ( j )| ≥ 1

2 (and hence (r( j ) − s ( j ))2 ≥ 1/4). The average of (r( j ) − s ( j ))2 over all
entries is ‖r − s ‖2

2/n. By Markov’s inequality, the fraction of squared entries over 1/4 is
at most 4‖r − s ‖2

2/n, which proves the claim.

A careful inspection of the proof of the previous theorem shows that B-reconstruction is
possible roughly whenever B ∈ [0, 1]m×n has at least n rows, and its least singular value is bounded
below by a known quantity σmin. The attack simply multiplies q̂ by nB†, where B† is the left
pseudoinverse of B, and rounds the result to {0, 1}n. The reconstruction error is then at most
4α2nm/σ 2

min, because the maximum singular value of the pseudoinverse is 1/σmin. This general
connection was used by Kasiviswanathan et al. (2010, 2013) to get results for k-way marginal
releases and several more general kinds of releases, including the logistic regression example at
the beginning of this section.

For k-way marginal releases, the number of released statistics is 2k( d
k − 1) (because each released

contingency table gives marginal statistics for a set of k − 1 public attributes and the secret
attribute). The question raised by Kasiviswanathan et al. (2010) was, how large does d have to
be to carry out meaningful reconstruction? So far, the attacks we have considered use matrices
B with m > n rows, but the rows were selected independently (as in Theorem 3) or to be
far apart from each other (as in the proof of Theorem 2). Such query matrices can arise with
2-way statistics (setting item 1 from the list at the beginning of Section 2), but require high-
dimensional data: d must be at least n. To get matrices with n independent rows in the setting
of k-way statistics would also require d > n, effectively wasting many of the released statistics.
Building on results from random matrix theory, Kasiviswanathan et al. (2010) showed that in fact,
it suffices that the total number of released statistics 2k( d

k − 1) be at least c kn for a constant c k > 1
(that depends on k but not d or n); in particular, the dimension of the data d need only grow
as n1/k.

Though the spectral argument is very useful, it has limitations. A more sophisticated argument,
based on restricted isometry properties, was used by Dwork et al. (2007) (and later generalized
by De 2012) to handle releases where most statistics are answered α-accurately, but the error on
some fraction (bounded by a parameter η) of statistics is arbitrarily high. For various classes of
random matrices, the attack runs in polynomial time as long as η is a sufficiently small constant.
In fact, the attack works as long as η < 1

2 − �(1) (that is, as long as a strict majority of statistics
are α-accurate), though it takes exponential time in general.

2.4.1. Discrepancy-based bounds. We can in fact characterize when reconstruction from linear
statistics is possible, using a combinatorial analogue of the spectral argument. The framework we
use here was formulated by Muthukrishnan & Nikolov (2012), abstracting the idea in the proof
of Theorem 1. Consider an attacker who knows B and an α-accurate answer vector q̂ , and wants
to decide if a particular dataset ŝ is a plausible candidate for the true dataset s .

A natural approach is simply to check if all the entries of 1
n Bŝ are within α of the entries of

q̂ (that is, if ‖q̂ − 1
n Bŝ ‖∞ ≤ α), and accept ŝ as plausible if that is the case. This procedure will

always accept the true vector s ; under what conditions will it accept an incorrect vector ŝ ? By the
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triangle inequality, if this procedure accepts ŝ then every entry of 1
n B(s − ŝ ) must be at most 2α:∥∥∥∥1

n
B(s − ŝ )

∥∥∥∥
∞

≤
∥∥∥∥1

n
Bs − q̂

∥∥∥∥
∞︸ ︷︷ ︸

≤α since q̂ accurate

+
∥∥∥∥1

n
Bŝ − q̂

∥∥∥∥
∞︸ ︷︷ ︸

≤α since ŝ accepted

≤ 2α.

If ŝ differs from s in more than βn positions, then (s − ŝ ) is a vector with entries in {−1, 0, 1}, of
which at least βn entries are not zero. We can therefore ensure that no vector ŝ that is at Hamming
distance βn from s gets accepted if we ensure that Bz is large for all appropriate z.

Definition 6. The β-partial discrepancy of a matrix B ∈ R
m×n, denoted disc∞,β (B), is

disc∞,β (B) def= min
z∈{−1,0,1}n ,

‖z‖1≥βn

‖Bz‖∞.

If the partial discrepancy is at least 2αn, then no candidate ŝ which is at Hamming distance
more than βn from s will be accepted by the procedure above, that is, the reconstruction attack
succeeds. We can thus define an (exponential-time) attack which has reconstruction error at most
β whenever the accuracy α satisfies

α ≤ disc∞,β (B)/2n .

This idea underlies, among other results, the proof of Theorem 3.
Conversely, if the partial discrepancy is less than 2αn, then we can find vectors s , ŝ , and q̂ such

that s and ŝ are far apart (at Hamming distance at least βn), but q̂ is α-accurate for both data
sets. Thus, no reconstruction attack based on q̂ can reliably have reconstruction error less than β

2 ;
reconstruction attacks work if and only if the partial discrepancy of the query matrix exceeds the
error parameter α of the mechanism releasing the statistics.

The partial discrepancy generalizes the spectral arguments, because the smallest singular value
of B gives a lower bound on its partial discrepancy: disc∞,β (B) ≥ σmin

√
βn√

m (because every z in
{−1, 0, 1}n with at least βn nonzero entries has Euclidean norm at least

√
βn).

At the end of this survey, we describe differential privacy, a class of algorithms that resist
reconstruction attacks (and enjoy other important properties). Perhaps surprisingly, when the size
n of the dataset is very large, one can in fact answer a batch of linear queries with error roughly
comparable to a slight generalization of the partial discrepancy, called the hereditary discrepancy
(Nikolov et al. 2013). We omit the exact statement here.

3. TRACING ATTACKS

Reconstruction attacks are devastating when they occur, but simply avoiding reconstruction is not
a satisfactory guarantee of privacy on its own. For example, consider the subsampling algorithm:
subsample a random τ fraction of the dataset and release those samples. The reconstruction
attacks from Section 2 will fail when given only this subsample, because the released subsample
is completely independent of the data of a (1 − τ ) fraction of the rows, and yet a large number of
individuals lose all privacy. Note that the subsampling algorithm introduces error proportional to

1√
τn > 1√

n , so there is no contradiction with the results in Section 2.
We remark that subsampling ensures that very few people—only those unlucky enough to be

in the subsample—can possibly have their privacy compromised. We have often heard objections
of the form “only a few people will be hurt” in defense of weak privacy protections. When such
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risks are acceptable, subsampling provides a crisp privacy solution, accompanied by a plethora of
utility results.

Tracing is a more subtle privacy breach than reconstruction. In a tracing attack, the attacker
has (possibly noisy) statistics about the dataset and the data of a target individual, and wants to
determine if that target individual is present in the dataset or not. As we have discussed, mere
presence in the dataset can be highly sensitive information. By weakening the attacker’s goal to
tracing, we can reason about the privacy risks of very simple statistics, perturbed with a large
amount of noise, even when the attacker has very limited auxiliary information.

As we will demonstrate, in a rather general model of a tracing attack, not only does the sub-
sampling algorithm allow an attacker to trace a τ fraction of the individuals in the dataset, but so
does any algorithm of comparable utility!

3.1. Tracing from Exact Statistics

Sankararaman et al. (2009) presented a formal model of tracing attacks based on hypothesis test-
ing. Their model is well suited to capturing the attack of Homer et al. (2008) on genome-wide
association data, with one difference noted below. The dramatis personae of their model are as
follows.

1. We model our population by a distribution P over {±1}d . We call d the dimension of the
data. We assume that P is a product distribution, and we let

p = E
x∼P

[x]

be the population mean. We call p j the j th marginal of the population. Note that P is
entirely described by p .

2. There is a dataset x = {x1, . . . , xn} consisting of n independent and identically distributed
(i.i.d.) samples from P .

3. The sample mean

q = 1
n

n∑
i=1

xi = E
xi ∼x

[xi ]

is released. We use standard notation from the computation science literature and write
xi ∼ x to mean that xi is sampled from the uniform distribution over the elements of x. We
call q j the j th marginal of the sample.

4. The attacker has the data y ∈ {±1}d of a target individual. That individual y is either IN the
dataset, meaning y is a uniformly random element of x, or OUT of the dataset, meaning
y is an independent random sample from P . The attacker’s goal is to distinguish these two
cases.

5. The population P is unknown to the attacker. However, the attacker has a collection of m
i.i.d. reference samples z = {z1, . . . , zm} from P .

The attack is a function A(y , q , z) that takes the data of the target individual, the released
marginals, and the reference samples and outputs a value in {IN, OUT}.

Homer et al. (2008) and Sankararaman et al. (2009) (see also the analysis of Yu 2015) design
an attack based on hypothesis testing. Consider the null hypothesis H 0 corresponding to the case
where y is OUT of the dataset, meaning that y is a random sample from the population P ,
that is, y is sampled from a product distribution with marginals p . Also consider the alternative
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hypothesis H 1 corresponding to the case where y is IN the dataset.4 In this case, y is a random
sample from the dataset x, which can be approximated by a product distribution with mean q . If
the attacker has p and q , then the optimal way to determine if y is sampled from the population or
the dataset is to perform a log-likelihood test. In our model, the vector q is released, but the vector
p is unknown. However, if the attacker has sufficiently many reference samples z1, . . . , zm, then
the average p̂ = 1

m

∑m
i=1 zi will be a suitable approximation to p for the attack. All of the attacks

discussed in this section can (directly or with minor changes) be carried out using no information
about the reference set z except its mean. We can summarize what is known about this attack in
the following theorem.

Theorem 4 (Sankararaman et al. 2009). There is an attack A( y , q , z) that takes the data
y ∈ {±1}d of a targeted individual, the exact sample mean q of a dataset x of dimension
d = O(n log(1/δ)), and m = O(n) reference samples z = {z1, . . . , zm} ⊆ {±1}d such that
for every nontrivial product distribution P ,

1. If y is IN the dataset x, then P [A(y , q , z) = IN] ≥ 1 − δ.

2. If y is OUT of the dataset x, then P [A(y , q , z) = OUT] ≥ 1 − δ.

In both of these statements, the probabilities are taken over the random choices of the
dataset x ∼ Pn, the reference samples z ∼ Pm, and the choice of y according to either
y ∼ x ( IN) or y ∼ P ( OUT). In other words, the probabilities of both type I and type II
errors are at most δ.

In this theorem, a nontrivial product distribution is one whose marginals are bounded away from
−1 and 1. This condition is very mild and serves to rule out pathological cases, such as a population
in which every member of the population has the same data.

3.2. Robust Tracing for Noisy Statistics

What happens if the attacker does not get the exact sample mean q , but instead only a noisy sample
mean q̂? Is it still possible to trace individuals in the dataset? As Dwork et al. (2015d) showed, the
answer is resoundingly “yes!” However, it takes much more care to formalize tracing attacks when
the statistics can be noisy. To see why tracing attacks are more subtle with only noisy statistics,
we give a few examples of ways that the sample mean can be perturbed to make tracing difficult.

Example 1. Subsampling is one way to introduce noise into statistics. That is, we can
take a dataset x = {x1, . . . , xn} of n samples obtain a dataset x̂ = {x̂1, . . . , x̂s } ⊆ x of
s ≈ τn samples for some τ > 0. Now we can release the exact mean q̂ = 1

s

∑s
i=1 x̂i

of the subsample, which is a noisy sample mean of x. Sampling theory tells us that the
average over coordinates j of |q j − q̂ j | ≈ 1√

τn . However, when we run a tracing attack
on the released mean q̂ , and a random target individual xi that is IN the dataset x, with
probability 1 − τ , xi is independent of q̂ . Thus, we have

P
IN

[A( y , q̂ , z) = IN] − P
OUT

[A( y , q̂ , z) = IN] ≤ τ � 1,

4In Homer et al. (2008), the attacker sees only the mean of the reference set, and the null hypothesis is that y is drawn from
that set (see the discussion in Sankararaman et al. 2009).
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in contrast to the case of exact statistics where Theorem 4 yields

P
IN

[A(y , q̂ , z) = IN] − P
OUT

[A(y , q̂ , z) = IN] ≥ 1 − 2δ ≈ 1,

where P
IN

[E] is the probability of the event E when y is IN the dataset, and P
OUT

[E] is

defined analogously.

The subsampling example shows that, in general, we must give up on tracing every individual
who is in the dataset (but see Theorem 7 for a case in which all individuals in the dataset can be
traced). Thus, we will set our sights on tracing at least one individual in the dataset.

As our next example shows, the role played by the population P is much more delicate when
the statistics can be noisy.

Example 2. Suppose the population P and its mean p are fixed and known. Then instead
of releasing the exact sample mean q of the dataset, the algorithm could release the noisy
population mean q̂ = p . By sampling theory, we will have that |q j − q̂ j | ≈ 1√

n on average
over coordinates j . Note that, although the population mean is likely of more interest
than the sample mean, they are noisy for the purposes of this example because they are
not equal to the sample mean. If we are only given the population mean q̂ , then we
cannot hope to trace because q̂ is independent of the dataset. Thus,

P
IN

[A(y , q̂ , z) = IN] = P
OUT

[A(y , q̂ , z) = IN] .

This example does not give an actual algorithm for releasing an approximately correct sample
mean, because we cannot assume that the holder of the dataset knows the population mean.
However, it demonstrates the need to model the data holder’s uncertainty about the population.
Thus, we assume that each of the population marginals p j is itself random and chosen i.i.d. from
some probability distribution P over [−1, 1]. To simplify notation, we will assume that every
marginal is chosen from the same distribution P . (It would not affect our results if each marginal
were chosen from a different distribution P j .)

Clearly P must be nontrivially random, or else the population’s marginals are not really un-
certain. Our final example considers two types of nontrivial yet degenerate distributions P that
will make it impossible to trace from noisy statistics.

Example 3. Suppose that P is uniform on some interval [a , b] for some 0 < a < b < 1.
Then, the noisy sample mean q̂ = ( b−a

2 , b−a
2 , . . . , b−a

2 ) will satisfy |q j − q̂ j | � b−a
2 for

every coordinate j . As in the previous example, q̂ is independent of the dataset, so
tracing cannot succeed against an algorithm that outputs q̂ . This example shows that P
must be well-spread in the sense that it must place significant mass on values that are
farther apart than the amount of noise we are willing to add to the mean.

Now, suppose that P is either − 1
2 or + 1

2 with equal probability. For this choice
of P , every population marginal p j is in {± 1

2 }. Consider the noisy mean q̂ such that
q̂ j = sign(q j )

2 ∈ {± 1
2 }. By sampling theory, we will have |q j − q̂ j | ≈ 1√

n on average over co-
ordinates j . However, changing the data of one person xi will, with high probability, not
change q̂ at all. Therefore, q̂ is nearly independent of any specific person in the dataset,
making tracing impossible. This example shows that P must be smooth in addition to
being well spread.
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A(y, q, z) :
Input:  target y, noisy marginals q, reference sample z.

Let T = O( d log(1/δ)) be a carefully chosen threshold. If

output IN, otherwise output OUT.

y, q   z, q  ≥ T,–

Figure 1
A description of our robust tracing attack.

The distributions in the example above show that for tracing to succeed, P must avoid certain
pathologies. The specific technical conditions we need to impose are beyond the scope of this
article but can be found in Dwork et al. (2015d). In the following, we refer to a distribution P
satisfying these unspecified conditions as a strong distribution. For example, the uniform distri-
bution on [−1, 1] is strong, as is the uniform distribution on an interval of sufficient length or a
Beta distribution with reasonable parameters.

3.2.1. The model. To address these pathologies, we need to modify some features of the model
we described in Section 3.1. These modifications only affect the way the population P is chosen
and the way the released vector q̂ are chosen, so we only give the modifications to these two parts
of the model.
Modified 1. We model our population P by a distribution P over {±1}d . We call d the dimension

of the data. We assume that P is a product distribution and we let

p = E
x∼P

[x]

so that p j is the mean of the j th attribute in the population. Each coordinate p j will
be random and chosen i.i.d. from a strong distribution P .

Modified 3. There is an algorithm M that takes the dataset x and outputs a noisy sample mean
q̂ = M(x). This vector satisfies 1

d ‖q − q̂‖1 ≤ α (i.e., |q j − q̂ j | ≤ α on average
over coordinates j ). Recall that q = 1

n

∑n
i=1 xi . If M is randomized, then we require

that accuracy holds with probability at least 2/3 over this randomization. We call an
algorithm that outputs such a vector α-accurate.

3.2.2. The attack. Dwork et al. (2015d) showed how to trace in this model using the very simple
attack in Figure 1. The attack requires no knowledge of M, and remarkably requires only a
reference sample from P .

We can interpret the quantities 〈y , q̂ 〉 and 〈z, q̂ 〉 as the correlation of the noisy sample mean
with the target individual and a random member of the population, respectively. Thus, the attack
is testing whether the target individual’s data is significantly more correlated with the released
statistics than a random member of the population. The attack itself is quite similar to the one used
by Homer et al. (2008), but the analysis is necessarily quite different because we can no longer view
the attack as testing one of two simple hypotheses. (By “simple hypotheses,” we mean that each
hypothesis stipulates a fixed distribution.) That is, because the distribution P and the algorithm
M are unknown to the attacker, the cases of IN and OUT no longer give rise to two specific
distributions on the triple (y , q̂ , z), and instead each case now corresponds to a whole family of
distributions (a composite hypothesis).
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We can summarize the properties of this attack in the following theorem.

Theorem 5 (Dwork et al. 2015d). There is an attack A(y , q , z) that takes a noisy sample
mean q̂ of a dataset x of dimension d = O(n2 log(1/δ)), the data y ∈ {±1}d of a targeted
individual, and a single reference sample z ∈ {±1}d , such that if the population P ’s mean
is chosen from any strong distribution P , and q̂ = M(x) for any 1/2-accurate M,

1. If y is IN the dataset x, then P [A(y , q , z) = IN] ≥ �(1/n).

2. If y is OUT of the dataset x, then P [A(y , q , z) = OUT] ≥ 1 − δ.

In both of these statements, the probabilities are taken over the random choices of the
population P ’s marginals p ∼ Pd , the dataset x ∼ Pn, the possibly random choice of
noisy marginals q̂ ∼ M(x), the reference sample z ∼ P , and the choice of y according
to either y ∼ x ( IN ) or y ∼ P ( OUT ).

Some comments are in order. First, note that this theorem is nontrivial when δ � 1/n. In this
case, when given a random member of the dataset, the attack will say IN with probability �(1/n),
but when given a random member of the population the attack says IN with probability at most
δ � 1/n.

Second, note that the condition of 1/2-accuracy is very weak—much less accurate than appli-
cations would require—and it is rather surprising that we can trace in the presence of so much
noise. In exchange for requiring such a weak notion of accuracy, the attack is only guaranteed
to trace when d � n2, whereas for exact marginals the attack in Theorem 4 was able to trace
with dimension d ≈ n. As we will see in Section 4, such high dimension is necessary to guarantee
tracing, because when d = o (n2) we can simultaneously achieve nontrivial accuracy and a strong
guarantee of privacy (see Theorem 8 for a precise statement). However, for certain algorithms
M , this attack may succeed even when d is much smaller.

3.2.3. Analysis of the robust tracing attack. A full proof of Theorem 5 is beyond the scope of
this article. Instead, we give some basic intuition for why the attack works and how to analyze it.

First, suppose y is OUT of the dataset x. Then y and z are independent samples from the
population P . Moreover, because x = {x1, . . . , xn} is independent of y , z, and q̂ = M(x), y and z
are distributed as two independent samples from P even when conditioned on any fixed value of
q̂ (even one that is not accurate). For any q̂ , we have E [〈y , q̂ 〉 − 〈z, q̂ 〉] = 0. Furthermore, because

P is a product distribution, the coordinates of y and z are independent and 〈y , q̂ 〉 − 〈z, q̂ 〉 can be
written as the sum of d bounded independent random variables. Applying Hoeffding’s inequality
to 〈y , q̂ 〉 − 〈z, q̂ 〉 thus shows that P[〈y , q̂ 〉 − 〈z, q̂ 〉 ≥ O(

√
d log(1/δ))] ≤ δ. The OUT case of the

theorem follows by setting an appropriate choice of T = O(
√

d log(1/δ)) and taking expectation
over q̂ .

Now, consider the more difficult case where y is IN the dataset x. The crucial claim to establish
is that

E

[
n∑

i=1

〈xi − z, q̂ 〉
]

≥ �(d ). (1)

If the inequality in Equation 1 holds, then by a concentration of measure argument we obtain that∑n
i=1〈xi −z, q̂ 〉 ≥ �(d ) holds with high probability. Consequently, with high probability, for some

y = xi , we have 〈y , q̂ 〉 − 〈z, q̂ 〉 ≥ �(d/n), and we want to ensure that this quantity is larger than
the threshold T . Given our choice of T = O(

√
d log(1/δ)), the IN case of the theorem follows

by taking an appropriately large choice of d = O(n2 log(1/δ)).
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It remains to justify our claim (Equation 1). By linearity of expectations, it suffices to understand
the case of d = 1 and show that

E

[
n∑

i=1

(xi − z)q̂

]
≥ �(1).

For intuition, consider the case of exact statistics where q̂ = q = 1
n

∑n
i=1 xi . Then

E

[
n∑

i=1

(xi − z)q̂

]
= 1

n

n∑
i=1

Var[xi ] ≥ �(1),

as long as the distribution P has high variance (i.e., the population mean p is bounded away
from −1 and 1). It remains to show that introducing error into q̂ does not completely break the
correlation between q̂ and

∑n
i=1 xi .

Suppose the exact marginal is q = 1. In this case, the dataset must be x1 = x2 = · · · = xn = 1.
Even if the answers are very noisy, we have that q̂ > +1/2. Similarly, if the exact marginal is
q = −1 then q̂ < −1/2. Now, as a thought experiment, start with the dataset x1 = · · · = xn = +1
and change the xi s from +1 to −1 one-by-one until the dataset x1 = · · · = xn = −1 is reached.
The sum of these changes takes q̂ from > +1/2 to < −1/2. Thus, on average over i , changing
each xi changes q̂ by > 1/n. So on average we have correlation at least 1/n between each xi and q̂ .
To establish our general claim about the correlation between

∑n
i=1 xi and q̂ , we need to show that,

when x1, . . . , xn are chosen randomly as in our model, the correlation behaves like the average in
this thought experiment, which requires the use of our assumption that P is a strong distribution.

3.2.4. Additional results. The strength of Theorem 5 is in the weakness of its assumptions.
However, as we have described, these weak assumptions lead to somewhat weaker conclusions
than what Theorem 4 gives for exact tracing, and certainly weaker than a reconstruction attack.
Nonetheless, as the next theorem shows, if we have more accuracy and more reference samples,
then we can trace with much lower-dimensional data.

Theorem 6. For every α ≥ 1√
n , there is an attack A(y , q , z) that takes a noisy sample

mean q̂ of a dataset x of dimension d = O(α2n2 log(1/δ)), the data y ∈ {±1}d of a targeted
individual, and m+1 = O( log(d )

α2 ) reference samples z0 and z = {z1, . . . , zm} ⊆ {±1}d such
that if the population mean P is chosen from any strong distribution P , and q̂ = M(x)
for any α-accurate M,

1. If y is IN the dataset x, then P [A(y , q , z) = IN] ≥ �(1/α2n).

2. If y is OUT of the dataset x, then P [A(y , q , z) = OUT] ≥ 1 − δ.

The probabilities are taken over the same random choices as in Theorem 5.

This result smoothly interpolates between Theorem 5 (minimal accuracy, minimal reference
samples, higher dimension) and Theorem 4 (perfect accuracy, many reference samples, lower
dimension). For every value of α > 0, the dimension required by our attack is essentially optimal,
by the positive results we present in Section 4.

The attack in this result is nearly identical to the one presented in Figure 1. The only differ-
ence is that we are given m + 1 reference samples z0, z1, . . . , zm. z0 acts like the single reference
sample in the basic attack, and ẑ = 1

m

∑m
i=1 zi serves as an estimate of the population mean.

Specifically, instead of computing 〈y − z, q̂ 〉, we compute 〈y − z, q̂ − ẑ〉, and apply a suitable
threshold.
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The first guarantee of this attack can be rephrased as saying that, on average, the attack outputs
IN for 1/α2 of the n individuals in the sample. In contrast, we can release α-accurate marginals
by using a random subsample of size O(1/α2). This comparison justifies our claim that every
algorithm allows almost the same number of individuals to be traced as the subsampling algorithm
with comparable accuracy.

In some settings we can make an even stronger claim and trace every individual. Of course,
we can only do this if we place restrictions that rule out the subsampling algorithm. One such
restriction is to require that the algorithm is symmetric—that is, it treats all users the same, which
can be formalized by requiring that the noisy marginals q ∼ M(x) depend only on the vector
of exact marginals q . In Markov chain notation, x → q → q̂ . This rules out the subsampling
algorithm, and allows us to prove the following theorem.

Theorem 7. There is an attack A(y , q , z) that takes a noisy sample mean q̂ of a dataset
x of dimension d = O(n2 log(1/δ)), the data y ∈ {±1}d of a targeted individual, and a
single reference sample z ∈ {±1}d such that if the population P ’s marginals are chosen
from any strong distribution P , and q̂ = M(x) for any symmetric 1/2-accurate M,

1. If y is IN the dataset x, then P [A(y , q , z) = IN] ≥ 1 − δ.

2. If y is OUT of the dataset x, then P [A(y , q , z) = OUT] ≥ 1 − δ.

In other words, the probabilities of both type I and type II errors are bounded by δ. The
probabilities are taken over the same random choices as in Theorem 5.

In this setting the attack is the one described in Figure 1, and only the analysis changes.

4. DIFFERENTIAL PRIVACY: FREE AT THE LIMIT

The limits imposed by reconstruction and tracing attacks are absolute: no mechanism protecting
against reconstruction and tracing can introduce less noise than is required to stymie the attacks
discussed earlier. However, there are other adversarial goals, such as learning the sickle cell status
of a specific individual, that do not require reconstruction, re-identification, or tracing, and each
of these new goals may have its own set of attack strategies. A privacy solution that rules out
reconstruction and tracing may not rule out attacks satisfying these other goals. The cryptographic
approach to this dilemma is to first define privacy and then provide techniques that provably
satisfy this definition. If the definition is too weak, in that it fails to protect against an important
class of adversarial goals, it can be strengthened and new algorithms designed. The advantage to
the definitional approach is that, because the definitions are getting stronger, progress is made.
Differential privacy was first proposed in 2006 and so far has not required strengthening.

Differential privacy is a very strong definition, and it is not without cost. Nonetheless in one
sense it is for free: differential privacy can be achieved by introducing exactly as much noise as
is necessary to combat the specific attacks of the previous sections. In other words, the marginal
cost of achieving differential privacy and all the protection that entails is zero, if one is protecting
against reconstruction and tracing.

4.1. Defining Privacy

Our ultimate privacy goal when releasing information about a sensitive dataset is to ensure that
anything that can be learned about an individual from the released information, can be learnt
without that individual’s data being included. This goal does not ensure that nothing about an
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individual can be learnt from the released information, which can only be achieved by releasing
no information (Dwork 2006, Dwork & Naor 2008). For example, as discussed in the Intro-
duction, releasing the fact that smoking and lung cancer are strongly correlated reveals sensitive
information about any individual known to smoke; however, we do not to consider this to be a
privacy violation, as learning this correlation has nothing to do with the use of that individual’s
data. Our goal is only to protect sensitive information that is localized to a single individual’s
data.

Differential privacy (Dwork et al. 2006b) is such a quantitative privacy goal. Differential privacy
is a property of a procedure or mechanismM that takes a sensitive dataset x and releases the output
M(x). We compare the output M(x) with a hypothetical output M(y) in which the input x is
changed to y by removing, adding, or modifying the data of a single individual. The requirement
of differential privacy is that M(x) should be indistinguishable from M(y) for any inputs x and y
differing only on the data of a single individual:

Definition 7 (Differential Privacy, Dwork et al. 2006b). A mechanism M satisfies ε-
differential privacy if, for any datasets x and y differing only on the data of a single
individual and any potential outcome q̂ ,

P [M(x) = q̂ ] ≤ e ε · P [M(y) = q̂ ] . (2)

Setting ε = 0 corresponds to revealing no information [M(x) and M(y) are identically dis-
tributed], whereas setting ε > 0 permits revealing some information about individuals. The
parameter ε (sometimes called the bound on privacy loss) should be thought of as a small con-
stant no larger than 1. The definition of differential privacy (Equation 2) is inherently proba-
bilistic; as in cryptography, randomness is used to hide or obscure the individual information
we wish not to reveal. Thus any nontrivial differentially private release of information requires
randomization.

There are several variants of this definition of differential privacy, which are similar in spirit
to what we discuss here, but have important quantitative differences. A common generalization of
differential privacy (Dwork et al. 2006a) introduces a second parameter δ and replaces Equation 2
with P [T (M(x)) = 1] ≤ e ε · P [T (M(y)) = 1] + δ, which is required to hold for all functions T .

For clarity, we only discuss the simplest definition.
Differential privacy is a very robust definition—as we would expect of a meaningful privacy

guarantee. In particular, it satisfies the following important properties.
� Postprocessing: Additional analysis of the released information or the inclusion of information

from other sources will not change the differential privacy guarantee. In particular, if an
attack (such as those discussed earlier) were applied to a differentially private release, then
the guarantee of differential privacy would apply to the output of the attack, which precludes
successful reconstruction or tracing.

� Composition: If the same individual’s data is used in multiple releases, then, as long as each
release satisfies differential privacy on its own, the combination of these releases also satisfies
differential privacy. However, the quantitative privacy guarantee degrades—namely, if each
release satisfies ε-differential privacy, then the combination of k such releases satisfies kε-
differential privacy.

� Group privacy: If information is shared by several individuals (such as a family), differential
privacy continues to protect this information. If we view the dataset as a random sample, this
corresponds to having some correlated samples, rather than i.i.d. samples. Again, the privacy
guarantee degrades with the number of individuals we wish to protect simultaneously. That
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is, if x differs from y by the addition, removal, or modification of the data of at most k
individuals and M satisfies ε-differential privacy, then P [M(x) = q̂ ] ≤ ekε · P [M(y) = q̂ ]

for all possible outcomes q̂ .

Composition is arguably the signature property of differential privacy, as it permits differentially
private analyses to be viewed as part of a larger system. Privacy-preserving data analysis does
not occur in a vacuum—a single individual’s data may be used multiple times over her lifetime.
Furthermore, simple mechanisms can be composed to perform complex analytical tasks. The
richness of the literature on differential privacy largely stems from the fact that composition
permits an algorithmic approach to differential privacy, whereby simple building blocks can be
combined in sophisticated ways to carry out a wide variety of analytical tasks.

Perhaps the most surprising property of differential privacy is that, despite its protective
strength, it is compatible with meaningful data analysis. An extensive literature has been developed
showing that a wide range of useful analyses can be carried out subject to differential privacy and
its variants (for an introduction to and overview of differential privacy, see the textbook on the
subject by Dwork & Roth 2014). Indeed, the parameter regime where the attacks of Sections 2
and 3 break down is very close to the setting where it becomes possible to release approximate
aggregate statistics while satisfying differential privacy.

Differential privacy is not only useful for privacy: A major concern in empirical science is
the danger of overfitting data and reaching conclusions that are specific to the dataset, rather
than generalizing to the larger population from which that dataset was drawn. This problem is
exacerbated by adaptivity—that is, when an analysis of a dataset is informed by prior exploration
of the same dataset, standard hypothesis testing techniques may misrepresent the significance
of a hypothesis owing to the dependence between the hypothesis and the dataset that has been
introduced by prior use (e.g., through model selection). However, differential privacy also offers
protection from such overfitting (Dwork et al. 2015a,b,c; Bassily et al. 2016). Namely, if a dataset
is only used in a differentially private manner, then any conclusion drawn from that information
cannot overfit the dataset. This is especially useful in the adaptive setting, as the composition
property of differential privacy holds even for adaptive data analysis. Indeed, differentially private
algorithms provide nearly optimal results for adaptive data analysis (Hardt & Ullman 2014,
Steinke & Ullman 2015). Thus we see that differential privacy can, in fact, be an aid to analysis,
even when privacy is not a concern.

4.2. Example: The Gaussian Mechanism

Having defined a formal privacy goal, we now discuss an example technique for releasing aggregate
statistics about a dataset while protecting privacy. We restrict our attention to aggregate statistics
of the form “what fraction of people in the dataset have property q?” For example, q may be the
property “smoke and have cancer.” This is a simple, yet powerful, class of aggregate statistics,
often called counting queries.

We assume that k properties q = (q1, . . . , qk) are specified, and we will release approximate
answers for all of them on a given dataset x containing the data of n individuals. Let q j (x) denote
the fraction of individuals in the dataset x having property q j and q (x) = (q1(x), . . . , qk(x)).

Definition 8 (Gaussian mechanism). Given properties q = (q1, . . . , qk), the Gaussian
mechanism Mq ,σ2 takes x as input and releases q̂ = (q̂1, . . . , q̂k) where each q̂ j is an
independent sample from N (q j (x), σ 2), for an appropriate variance σ 2.
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We first ask whether Mq ,σ2 (x) releases useful information about x: We would like to know
q j (x), but the Gaussian mechanism only gives us an approximation q̂ j . Whether this error with
standard deviation σ is acceptable depends on the context. However, in many situations, the
dataset x is itself a random sample of size n from a larger distribution, in which case q j (x) is
also only an approximation to the quantity of interest. In particular, the sampling error of q j (x)
has variance p j (1 − p j )/n, where p j is the probability that a random sample from the larger
distribution has property q j . Taking the unavoidable sampling error as a comparison point, we
argue that the error introduced by the Gaussian mechanism is tolerable as long as σ ≈ 1/

√
n.

Furthermore, the output of the Gaussian mechanism remains useful as long as σ � 1. For example,
if σ ≤ 1/100, then each y j is an estimate of q j (x) whose standard deviation is 1% of the size of the
dataset.

We give a self-contained analysis of the privacy guarantee afforded by the Gaussian mechanism
using the Neyman-Pearson lemma. Rather than satisfying differential privacy as defined earlier,
the Gaussian mechanism satisfies a variant called concentrated differential privacy (Bun & Steinke
2016, Dwork & Rothblum 2016). The properties of concentrated differential privacy are similar
to those of differential privacy listed earlier. However, concentrated differential privacy gives a
tighter and more elegant analysis of composition.

We demonstrate that, given the released output of Mq ,σ2 (x), we cannot infer much about an
individual in the dataset x, where “much” will be parameterized by ρ > 0. We formulate this
in the language of hypothesis testing by showing that any hypothesis about a single individual
cannot be tested accurately.5 However, the Gaussian mechanism is still useful in the sense that
hypotheses about the population as a whole can be tested accurately given the output of the
Gaussian mechanism. Thus we must distinguish hypotheses about individuals.

Consider simple null and alternate hypotheses H 0 and H 1 about an individual in the dataset,
where H 0 is the hypothesis that the dataset is x and H 1 is the hypothesis that the dataset is y .
Here x and y differ only in the addition, removal, or modification of the data of one individual,
who is the subject or target of this test. We show that it is impossible to accurately test H 0

versus H 1.

Lemma 1 (Neyman & Pearson 1933). Fix simple hypotheses H 0 and H 1. Define the
log-likelihood ratio test statistic by

LLR(q̂ ) = log

⎛
⎝P [q̂ |H 0]

P [q̂ |H 1]

⎞
⎠ .

Then any test T is dominated by the likelihood ratio test. That is,

P
[
T (q̂ ) = reject|H 0

] ≥ P [LLR(q̂ ) < η|H 0]

and

P
[
T (q̂ ) = reject|H 1

] ≤ P [LLR(q̂ ) ≤ η|H 1]

for some threshold η depending on T .

Lemma 1 tells us that, rather than considering all possible tests T for H 0 versus H 1, we
need only consider the likelihood ratio test. Under H 0, q̂ = Mq ,σ2 (x) is distributed according to

5For more about formulating differential privacy using hypothesis testing, see theorem 2.4 in Wasserman & Zhou (2010).
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Figure 2
Probability density, under H 0, of LLR(q̂ ) ∼ N (ρ, 2ρ) (blue) and probability density, under H 1, of
LLR(q̂ ) ∼ N (−ρ, 2ρ) (red ).

N (q (x), σ 2 I ) and, under H 1, q̂ = Mq ,σ2 (y) is distributed according to N (q (y), σ 2 I ). We calculate

LLR(q̂ ) = log

⎛
⎝ (2π )−k/2 · exp

(
−1
2σ 2

∑k
j=1(q̂ j − q j (x))2

)
(2π )−k/2 · exp

(
−1
2σ 2

∑k
j=1(q̂ j − q j (y))2

)
⎞
⎠

= −1
2σ 2

k∑
j=1

(
(q̂ j − q j (x))2 − (q̂ j − q j (y))2)

= 1
2σ 2

k∑
j=1

(
q j (x) − q j (y)

) (
2q̂ j − q j (x) − q j (y)

)
.

Thus, under H 0, LLR(q̂ ) is distributed according to N (ρ, 2ρ), where

ρ = 1
2σ 2

∥∥q (x) − q (y)
∥∥2

2 = 1
2σ 2

k∑
j=1

(q j (x) − q j ( y))2.

Under H 1, LLR(q̂ ) is distributed according to N (−ρ, 2ρ). Because x and y differ only on the data
of one individual, the fractions q j (x) and q j (y) differ by at most 1/n. (For simplicity, assume x and
y are datasets of the same size with the data of one individual modified, rather than removed or
added.) Hence,

ρ ≤ k
2n2σ 2

.

If ρ is small (say, 0.1 or 0.01), then the distribution N (ρ, 2ρ) is very close to N (−ρ, 2ρ).6 By
the Neyman-Pearson lemma, any test distinguishing H 0 from H 1 fares no better than distin-
guishing these distributions by means of a threshold. For example, if ρ = 0.01 and a test T has
significance P

[
T (q̂ ) = reject|H 0

] ≤ 0.05, then we conclude that the power of T is bounded by

P
[
T (q̂ ) = reject|H 1

] ≤ 0.067. Figure 2 shows how close these distributions are.

Similarly to differential privacy, we can show that, for any test T and any ε ≥ ρ,

P
[
T (q̂ ) = reject|H 1

] ≤ e ε · P
[
T (q̂ ) = reject|H 0

] + e−(ε−ρ)2/4ρ.

6By dividing LLR(q̂ ) by
√

2ρ we can rescale these to N (
√

ρ/2, 1) versus N (−√
ρ/2, 1).
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For ρ = 0.01, the statistical distance (also called total variation distance) between (q̂ ) under H 0

versus H 1 is 0.06. Hence, if ρ ≤ 0.01, then no test can correctly guess whether H 0 or H 1 holds
with probability greater than 53% in both cases.

A privacy attack can also be thought of as a test T . A tracing attack yields a test T to determine
whether a target individual is included in the dataset, whereas a reconstruction attack entails
multiple tests to determine the sensitive attribute of each user. Because the Gaussian mechanism
ensures that these tests cannot be accurate, these attacks must fail. Thus, if k � n2σ 2, then ρ � 1
and we can be assured that the output of Mq ,σ2 (x) does not reveal sensitive information about the
dataset x.

Theorem 8. The Gaussian mechanism can provide answers to k counting queries given
a dataset of size n with error standard deviation σ whilst protecting privacy, as long as
ρ = k

2n2σ 2 � 1.7 In particular, we can answer k ≈ n2 queries with constant relative error
(e.g., σ = 0.01) or we can answer k ≈ n queries with error comparable to the sampling
error (i.e., σ ≈ 1/

√
n).

The bounds of Theorem 8 almost match the attacks in Sections 2 and 3: Theorem 2 shows
that answering k = 2n queries with error σ � 1/

√
n makes a reconstruction attack possible. In

contrast, the Gaussian mechanism can answer k = 2n queries with error σ = 1/
√

ρn and privacy
ρ � 1. Similarly, Theorem 5 shows that answering k � n2 queries with error σ = 0.01 opens the
possibility of a tracing attack. Again, Theorem 8 shows that answering k ≈ n2 queries with error
σ = 0.01 is possible whilst protecting privacy. Therefore, the results we have surveyed essentially
pin down (in this simple setting) the boundary between what information can be released subject
to a strong privacy guarantee like differential privacy versus when the released information permits
a privacy attack.

We see that there is a tradeoff here—smaller values of σ yield less noisy answers, whereas larger
values of σ provide greater privacy protection. This is a fundamental and inescapable dilemma;
differential privacy provides the language in which to quantify and formally study the tension
between privacy and utility.

4.3. Beyond Noise Addition

The Gaussian mechanism is but one of many differentially private mechanisms. It is extremely
simple and versatile, but more sophisticated techniques can be used to obtain a better privacy-utility
tradeoff in certain circumstances. If the properties q = (q1, . . . , qk) are structured in some way
(such as being m-way marginals), then carefully correlated noise (instead of independent Gaussian
noise) sometimes yields better results. In particular, if the data is inherently low-dimensional (e.g.,
the data of each individual is described by d bits), there are differentially private mechanisms that
can answer many more queries (e.g., k ≈ 2σ 2n/

√
d queries, each with error σ ) (Blum et al. 2008,

Hardt & Rothblum 2010).
There is now a rich algorithmic and statistical literature on the design of differentially private

mechanisms, introducing a wide array of techniques. The reader is directed to Hardt et al. (2012),
Ligett (2013), Dwork & Roth (2014), and Vadhan (2016) for recent tutorials.

7Formally, the Gaussian mechanism satisfies concentrated differential privacy (Bun & Steinke 2016, Dwork & Rothblum 2016)
with parameter ρ, which implies that it satisfies (ε, δ)-differential privacy (Dwork et al. 2006a) with ε = ρ + 2

√
ρ log(1/δ) for

every δ > 0.
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