Applying Theoretical Advances in Privacy to Computational Social Science Practice: Publications

Victor Balcer and Salil Vadhan. 1/2018. “Differential Privacy on Finite Computers.” in 9th Innovations in Theoretical Computer Science Conference (ITCS 2018); also presented at Theory and Practice of Differential Privacy Conference (TPDP 2017). arXiv PageAbstract

We consider the problem of designing and analyzing differentially private algorithms that can be implemented on discrete models of computation in strict polynomial time, motivated by known attacks on floating point implementations of real-arithmetic differentially private algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomialtime algorithms. We use a case study the basic problem of approximating the histogram of a categorical dataset over a possibly large data universe X . The classic Laplace Mechanism (Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy & Confidentiality 2017) does not satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take time at least linear in |X |, which can be exponential in the bit length of the input.

In this paper, we provide strict polynomial-time discrete algorithms for approximate histograms whose simultaneous accuracy (the maximum error over all bins) matches that of the Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy guarantee. One of our algorithms produces a sparse histogram as output. Its “per-bin accuracy” (the error on individual bins) is worse than that of the Laplace Mechanism by a factor of log |X |, but we prove a lower bound showing that this is necessary for any algorithm that produces a sparse histogram. A second algorithm avoids this lower bound, and matches the per-bin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable representation of a dense histogram; it is based on an (n + 1)-wise independent implementation of an appropriately clamped version of the Discrete Geometric Mechanism.

Michael Bar-Sinai and Rotem Medzini. 2017. “Public Policy Modeling using the DataTags Toolset.” In European Social Policy Analysis network (ESPAnet). Israel.Abstract
We apply Tags, a framework for modeling data handling policies, to a welfare policy. The generated model is useful for assessing entitlements of specific cases, and for gaining insights into the modeled policy as a whole.
Vishesh Karwa and Salil Vadhan. 2018. “Finite Sample Differentially Private Confidence Intervals.” 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). arXiv PageAbstract
We study the problem of estimating finite sample confidence intervals of the mean of a normal population under the constraint of differential privacy. We consider both the known and unknown variance cases and construct differentially private algorithms to estimate confidence intervals. Crucially, our algorithms guarantee a finite sample coverage, as opposed to an asymptotic coverage. Unlike most previous differentially private algorithms, we do not require the domain of the samples to be bounded. We also prove lower bounds on the expected size of any differentially private confidence set showing that our the parameters are optimal up to polylogarithmic factors.
Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. 2017. “Exposed! A Survey of Attacks on Private Data.” Annual Review of Statistics and Its Application (2017).Abstract
Privacy-preserving statistical data analysis addresses the general question of protecting privacy when publicly releasing information about a sensitive dataset. A privacy attack takes seemingly innocuous released information and uses it to discern the private details of individuals, thus demonstrating that such information compromises privacy. For example, re-identification attacks have shown that it is easy to link supposedly de-identified records to the identity of the individual concerned. This survey focuses on attacking aggregate data, such as statistics about how many individuals have a certain disease, genetic trait, or combination thereof. We consider two types of attacks: reconstruction attacks, which approximately determine a sensitive feature of all the individuals covered by the dataset, and tracing attacks, which determine whether or not a target individual's data are included in the dataset.Wealso discuss techniques from the differential privacy literature for releasing approximate aggregate statistics while provably thwarting any privacy attack.
Kobbi Nissim, Thomas Steinke, Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi, David O'Brien, and Salil Vadhan. 2018. “Differential Privacy: A Primer for a Non-technical Audience.” Vanderbilt Journal of Entertainment and Technology Law , 21, 1, Pp. 209-276.Abstract

This document is a primer on differential privacy, which is a formal mathematical framework for guaranteeing privacy protection when analyzing or releasing statistical data. Recently emerging from the theoretical computer science literature, differential privacy is now in initial stages of implementation and use in various academic, industry, and government settings. Using intuitive illustrations and limited mathematical formalism, this document provides an introduction to differential privacy for non-technical practitioners, who are increasingly tasked with making decisions with respect to differential privacy as it grows more widespread in use. In particular, the examples in this document illustrate ways in which social scientists can conceptualize the guarantees provided by differential privacy with respect to the decisions they make when managing personal data about research subjects and informing them about the privacy protection they will be afforded. 

 

Micah Altman, Alexandra Wood, David R. O'Brien, and Urs Gasser. 2016. “Practical Approaches to Big Data Privacy Over Time.” Brussels Privacy Symposium.Abstract

Increasingly, governments and businesses are collecting, analyzing, and sharing detailed information about individuals over long periods of time. Vast quantities of data from new sources and novel methods for large-scale data analysis promise to yield deeper understanding of human characteristics, behavior, and relationships and advance the state of science, public policy, and innovation. At the same time, the collection and use of fine-grained personal data over time is associated with significant risks to individuals, groups, and society at large. In this article, we examine a range of longterm data collections, conducted by researchers in social science, in order to identify the characteristics of these programs that drive their unique sets of risks and benefits. We also examine the practices that have been established by social scientists to protect the privacy of data subjects in light of the challenges presented in long-term studies. We argue that many uses of big data, across academic, government, and industry settings, have characteristics similar to those of traditional long-term research studies. In this article, we discuss the lessons that can be learned from longstanding data management practices in research and potentially applied in the context of newly emerging data sources and uses.

Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ullman. 2016. “Algorithmic Stability for Adaptive Data Analysis.” 48th Annual Symposium on the Theory of Computing. arXiv VersionAbstract

Adaptivity is an important feature of data analysis---the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated the formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a sequence of adaptively chosen queries about the unknown distribution P. How many samples n must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions: (i) We give upper bounds on the number of samples n that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015, NIPS, 2015). (ii) We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries. As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that stability implies low generalization error. We also study weaker stability guarantees such as bounded KL divergence and total variation distance.

Rachel Cummings, Katrina Ligett, Kobbi Nissim, Aaron Roth, and Zhiwei Steven Wu. 2016. “Adaptive Learning with Robust Generalization Guarantees.” Conference on Learning Theory (COLT). arXiv VersionAbstract

The traditional notion of generalization---i.e., learning a hypothesis whose empirical error is close to its true error---is surprisingly brittle. As has recently been noted in [DFH+15b], even if several algorithms have this guarantee in isolation, the guarantee need not hold if the algorithms are composed adaptively. In this paper, we study three notions of generalization---increasing in strength---that are robust to postprocessing and amenable to adaptive composition, and examine the relationships between them. We call the weakest such notion Robust Generalization. A second, intermediate, notion is the stability guarantee known as differential privacy. The strongest guarantee we consider we call Perfect Generalization. We prove that every hypothesis class that is PAC learnable is also PAC learnable in a robustly generalizing fashion, with almost the same sample complexity. It was previously known that differentially private algorithms satisfy robust generalization. In this paper, we show that robust generalization is a strictly weaker concept, and that there is a learning task that can be carried out subject to robust generalization guarantees, yet cannot be carried out subject to differential privacy. We also show that perfect generalization is a strictly stronger guarantee than differential privacy, but that, nevertheless, many learning tasks can be carried out subject to the guarantees of perfect generalization.

Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O'Neill. 10/2016. “Generic Attacks on Secure Outsourced Databases.” 23rd ACM Conference on Computer and Communications Security.Abstract

Recently, various protocols have been proposed for securely outsourcing database storage to a third party server, ranging from systems with “full-fledged” security based on strong cryptographic primitives such as fully homomorphic encryption or oblivious RAM, to more practical implementations based on searchable symmetric encryption or even on deterministic and order-preserving encryption. On the flip side, various attacks have emerged that show that for some of these protocols confidentiality of the data can be compromised, usually given certain auxiliary information. We take a step back and identify a need for a formal understanding of the inherent efficiency/privacy trade-off in outsourced database systems, independent of the details of the system. We propose abstract models that capture secure outsourced storage systems in sufficient generality, and identify two basic sources of leakage, namely access pattern and communication volume. We use our models to distinguish certain classes of outsourced database systems that have been proposed, and deduce that all of them exhibit at least one of these leakage sources. We then develop generic reconstruction attacks on any system supporting range queries where either access pattern or communication volume is leaked. These attacks are in a rather weak passive adversarial model, where the untrusted server knows only the underlying query distribution. In particular, to perform our attack the server need not have any prior knowledge about the data, and need not know any of the issued queries nor their results. Yet, the server can reconstruct the secret attribute of every record in the database after about N 4 queries, where N is the domain size. We provide a matching lower bound showing that our attacks are essentially optimal. Our reconstruction attacks using communication volume apply even to systems based on homomorphic encryption or oblivious RAM in the natural way. Finally, we provide experimental results demonstrating the efficacy of our attacks on real datasets with a variety of different features. On all these datasets, after the required number of queries our attacks successfully recovered the secret attributes of every record in at most a few seconds.

Pages