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Abstract: In this article we recognize the profound effects that algorithmic decision-making can have on 
people’s lives and propose a harm-reduction framework for algorithmic fairness. We argue that any 
evaluation of algorithmic fairness must take into account the foreseeable effects that algorithmic design, 
implementation, and use have on the well-being of individuals. We further demonstrate how 
counterfactual frameworks for causal inference developed in statistics and computer science can be used 
as the basis for defining and estimating the foreseeable effects of algorithmic decisions. Finally, we argue 
that certain patterns of foreseeable harms are unfair. An algorithmic decision is unfair if it imposes 
predictable harms on sets of individuals that are unconscionably disproportionate to the benefits these 
same decisions produce elsewhere. Also, an algorithmic decision is unfair when it is regressive, i.e., when 
members of disadvantaged groups pay a higher cost for the social benefits of that decision. 
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I. Individual, group, and societal interests in control over information collected, sharing and use 
 
Artificial intelligence and machine learning are increasingly applied to personal information and used to 
make decisions that affect the lives of individuals in ways large and small. Examples include algorithms 
used by online retailers to tailor prices to consumers based on estimates of their location and by 
automobile insurance companies to calculate premiums based on factors such as the length of a 
customer’s commute (see [1], [2]). Law enforcement officers also use facial recognition algorithms to 
identify suspects appearing in footage from a crime scene, judges consult risk assessment algorithms on 
bail, sentencing, and parole decisions based on an individual’s demographic characteristics and criminal 
history, and airport security screeners make use of algorithmically-determined risk assessment scores for 
airline passengers (see [1], [2]). There are countless other examples from consumer, employment, 
education, health care, credit, insurance, finance, criminal justice, and national security applications, with 
the development and adoption of algorithmic approaches to decision-making continuing to expand 
rapidly. 
 
The potential for algorithmic decision-making to result in serious harm to individuals has been widely 
recognized in the literature, particularly within highly consequential contexts such as criminal justice, 
health care, education, and employment (see, e.g., [1] - [4]). Whether entirely or partially automated, 
algorithmic approaches to collecting, analyzing, classifying, and making decisions with respect to 
personal data can profoundly affect the wellbeing of individuals, groups, and society. The use of such 
approaches is intended to enhance predictions and recommendations in ways that are substantially 
beneficial to groups of people through improvements in areas such as public safety, health outcomes, or 
efficiency. At the same time, applications of algorithmic decision-making challenge individual, group, 
and societal interests regarding control over information collection, sharing, and use, as well as notions of 
privacy, equity, fairness, and autonomy (see [5]). In particular, they have the potential to create 
unintended and even unforeseen harmful effects, including contributions to systematic inequality of 
opportunity for socially disadvantaged individuals and communities. 
 
Yet current approaches to regulating algorithmic classification and decision-making elide an explicit 
analysis of harm—despite the emphasis on harm under analogous regulatory frameworks for uses of 
personal information, such as the ethical framework for the protection of human subjects participating in 
research. Existing legal and ethical frameworks have been developed to prevent or provide redress for 
some of the same types of harms resulting from automated decision-making. The ethical norms embodied 
in the law point to the broader responsibilities of the architects and users of algorithms that make 
decisions that affect the lives of individuals. 
 
Although much attention has been drawn to the immediate harms of criminal use of information 
stemming from data breaches, harms that stem from non-criminal use of personal information are not very 
well understood. An understanding of harm from algorithmic classification and decision-making can be 
informed by existing legal and ethical frameworks. Harm is a central concept in law and ethics, from the 
body of common law tort theory to the injury-in-fact requirement of the standing doctrine, and from the 
elements of criminal offenses to the ethical principles underlying human subjects protection regulation 
(see [6]). Notably, the Belmont Report developed by the National Commission for the Protection of 
Human Subjects of Biomedical and Behavioral Research in 1978 encapsulates fundamental ethical 
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principles that “serve as a basic justification for the many particular ethical prescriptions and evaluations 
of human actions” [7]. Among the fundamental principles is “respect for persons,” which requires 
protecting persons from harm following the principle that “[t]he extent of protection afforded should 
depend upon the risk of harm and the likelihood of benefit” [7]. In recognition of the principle of respect 
for persons, ethical frameworks encompass broad notions of harm, guiding actors to consider risks of 
psychological, physical, legal, social, and economic harm [7]. The Menlo Report includes a restatement 
of these principles in the context of information and communication technology research (see [8]). 
 
Although some regulatory approaches require an ex-ante review of the types of information that may 
permissibly be used as inputs to an algorithmic decision or transparency about the process that is used, to 
our knowledge, few, if any, approaches require a systematic ex-ante review of potential harms to 
individuals. More rigorous assessment of harm to individuals is likely to play an increasingly central role 
in regulatory and ethical review of algorithmic decision-making. Notably, the new European General 
Data Protection Regulation (GDPR) explicitly recognizes the importance of taking harm into 
consideration when automated decision-making is used, requiring data controllers to provide data subjects 
not only with “meaningful information about the logic involved” in the automated process but also 
information about “the significance and the envisaged consequences of such processing for the data 
subject” [9]. 
 
We argue, generally, that explicit analysis of algorithmic fairness, based on counterfactual analysis, 
should be incorporated into algorithm design. We illustrate this approach through an analysis of 
automated risk assessment in the criminal justice context. Specifically we identify four elements that 
should be incorporated into any analysis of algorithmic fairness: 
 

● Identification of the major choices in algorithmic design, implementation and application that  
have the potential to predictably and substantially affect well-being; 

● Assessment, using counterfactual causal estimation, of the effects of these decisions on the well-
being of individuals;  

● Measurement of well-being broadly, to include lifetime wealth, health, longevity, subjective life-
satisfaction, and the ability to make ethically relevant choices; and 

● Recognition of algorithmic unfairness as choices in algorithmic design, implementation, and 
application that have disproportionate effects on members of different groups. 

 
II. Using COMPAS to understand harm: Algorithmic discrimination in predictions of an 
individual’s risk of recidivism or failure to appear in court 
 
A particularly compelling real-world example of the potential for algorithmic discrimination and harm is 
the use of risk assessment scores within the criminal justice system. Judges are increasingly using 
automated decision support software, such as the Northpointe Correctional Offender Management 
Profiling for Alternative Sanctions (COMPAS) risk assessment algorithm, to predict an individual’s risk 
of recidivism or failure to appear in court based on various factors, including his or her criminal history 
and socioeconomic characteristics. COMPAS was developed with the aim of informing decisions across a 
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range of stages in the criminal justice process, including pretrial, jail, probation, prison, parole and 
community corrections decisions. It has been deployed for use in Florida, Michigan, New Mexico, 
Wisconsin, Wyoming, among other states. 
 
A 2016 ProPublica analysis of the use of COMPAS risk scores in Broward County, Florida, uncovered 
evidence of racial bias, finding that when the effect of race, age, and gender was isolated from criminal 
history and recidivism risk, “[b]lack defendants were still 77 percent more likely to be pegged as at higher 
risk of committing a future violent crime and 45 percent more likely to be predicted to commit a future 
crime of any kind” [10]. They also found that COMPAS “was particularly likely to falsely flag black 
defendants as future criminals, wrongly labeling them this way at almost twice the rate as white 
defendants. White defendants were mislabeled as low risk more often than black defendants” [10]. In 
addition, COMPAS “proved remarkably unreliable in forecasting violent crime: Only 20 percent of the 
people predicted to commit violent crimes actually went on to do so” [10]. 
 
Implicitly underlying criticisms of the use of automated risk assessments like COMPAS is the concern 
that they have the potential to make individuals worse-off. Adverse sentencing decisions have long-
ranging consequences for individuals including decreased quality of life over a substantial period of time 
and reduced lifetime job prospects and earnings due to one’s criminal conviction. Similarly, adverse bail 
decisions can result in harms to low-risk defendants such as loss of freedom, damage to familial 
relationships and family members, and losses in future employment and earnings.  
 
It is also important to recognize that the adverse effects of algorithmic decisions may reach beyond the 
individual directly subject to that decision. Harmful effects can also reach family members, communities, 
and society at large. Research has shown that children of inmates exhibit higher rates of mental health 
problems, behavioral problems, financial insecurity, poor school performance, and infant mortality (see 
[11]). Incarceration rates also vary substantially based on race and class, exacerbating societal issues of 
inequality. The literature also cites the disproportionate effects that mass incarceration have had on 
African American communities by “damaging social networks, distorting social norms, and destroying 
social citizenship” [12]. A group may be harmed disproportionately to the social benefit, and this is 
especially problematic if the group is a historically disadvantaged group. In addition, if the harms are not 
connected to choices made by the individuals, it may be clear that the absolute cost to those individuals is 
too high. 
 
These outcomes are ethically relevant because they are persistent and substantially affect multiple aspects 
related to an individual’s life satisfaction. Where the likelihood of adverse decisions is predictably 
affected by choices in the design, implementation, and application of algorithms, the underlying 
algorithmic choices demand ethical analysis. An ethical grounding for evaluations of COMPAS and other 
algorithmic decisions can be found in the life course approach (see, e.g., [11], [13]). This approach 
enables a comprehensive analysis of how a socially defined event, such as incarceration or pre-trial 
detention, influences an individual’s life trajectory, and its quality. Applications of this framework 
recognize the critical ethically relevant fact that the consequences of some harmful events are not only 
realized immediately subsequent to the decision but also have potential long-term effects throughout the 
course of an individual’s life.  
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Different fields of study, such as economics or public health, focus on different aspects of the life course, 
in part because these fields focus on different potential interventions. However, there is no reason to 
believe that a single aspect of the life course, such as health, is the only measure relevant to an ethical 
review. When analyzing fairness, one should measure all of the aspects of life that are widely recognized 
within social science and health fields as fundamental for well-being. Specifically, the literature identifies 
five key measures for a life course analysis: wealth, lifespan, health, subjective life-satisfaction, and the 
ability to make substantial choices about one’s life (sometimes referred to as “capability”).5 
 
Life course analysis can be applied to understand how the consequences of incarceration can be greater 
for some individuals than for others. For example, life course research has shown that incarcerating an 
individual during the critical period of transition into adulthood drastically alters the course on an 
individual’s life, putting that individual “off-time” with his or her peers, and decreasing the likelihood 
that he or she will eventually obtain a college degree, find stable employment, form a family, or 
participate in civic life (see [11]). Certain categories of individuals may be especially vulnerable for other 
reasons as well. For example, research has found that some groups, such as the young, small of stature, 
and mentally disabled are more likely to become victims of sexual assault during incarceration (see [16]). 
 
III. Applying life course analysis to critical choices in the design and application of the COMPAS 
recidivism risk score 
 
When can an algorithmic choice be expected to cause a change in a subject’s well-being? Although 
complex to estimate empirically, the answer can framed as a causal inference problem, using the 
potential-outcomes framework broadly recognized in statistics, social sciences, health science, and 
computer science (see, e.g., [17], [18]). Further, it is likely that a causal-counterfactual mode of analysis 
is the only one that can yield empirically reliable inferences based on heterogeneous, complex, 
observational data.6 An observation from the technical literature is that big data inference can be 
considered reliable if and only structural causal model information is included. This implies there is a 
confluence between the requirements of fairness and those of reliable inference. 
 
Viewed through the lens of the potential-outcomes framework, intuitively, an algorithmic decision causes 
harm to an individual when the expected outcome for that person given the decision is worse than the 
expected outcome for that person absent the decision. Applying this framework to the evaluation of real-
world risk assessment algorithms used in the criminal justice system, we can identify the relevant 
counterfactuals and find that they can be shown to yield concrete measures of harm to individuals. When 
developing and applying such an algorithm, there are at least four phases where key decisions can be 
made. As illustrated in Figure 1, these phases encompass choices related to the background or training 
data to include as inputs to the algorithm, the design and implementation of the algorithm, the application 
of the algorithm to a particular individual, and the use of the score in a given sentencing decision. 
 

                                                   
5 For a survey of life-satisfaction models and the measures commonly used, see [14]. For a discussion of the 
capability approach to individual and social analysis, see [15]. 
6 An observation from the technical literature is that big data inference can be considered reliable if and only 
structural causal model information is included. This implies there is a confluence between the requirements of 
fairness and those of reliable inference. See [19]. 
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Figure 1. Critical choices in the design and application of the COMPAS algorithm. 

 
To provide a detailed illustration, we focus on a series of counterfactuals relevant to classification 
algorithms used in criminal sentencing. Specifically, we analyze counterfactuals for potential 
interventions such as excluding racial data as inputs to the algorithm, running analyses on the data using 
differential privacy, substituting human judgment for an algorithm’s predictions, and utilizing an 
algorithm that balances classification error rates. The analysis identifies the relevant choice that was 
made, such as the inclusion of the individual’s information in an instance of data collection, storage, or 
computation. It also considers the available alternatives by way of, for example, a ceteris paribus analysis 
(that is, every fact remains the same except for that affected by a single choice), the comparison of the 
effects resulting from the use of one protective measure vs. the status quo or the use of another measure, 
and an opt-out rule, in which each individual has the right to opt out of an analysis. These examples are 
used to illustrate how harm can be measured in various ways based on the effect on an individual’s life 
trajectory in each use case. Example harms range from dollar amounts, to health outcomes—physical or 
emotional—and other quality of life measures, and from educational attainment to effects on one’s 
autonomy and liberty. 
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Counterfactual #1:  What if the decision were not based on race? Exclusion of racial data from inputs to 
the algorithm 
 
For the first counterfactual, we explore the effect of excluding information about race from the decision-
making algorithm. This could be interpreted as excluding racial information directly, or, perhaps, 
excluding all information correlated with race from the algorithm. In these counterfactuals, the relevant 
choice could have been made at either the collection or analysis stage, depending on which point the 
decision to include or exclude certain data as inputs to the algorithm was reached. 
 
Consider what happens when excluding protected attributes such as racial data from the model. Dwork et 
al. [20] and others have widely concluded that fairness through blindness fails because of redundant 
encodings. Because other attributes act as proxies for the protected attributes, the expected difference 
between the factual and counterfactual scenarios is minimal. In fact, the impact of the analysis may be 
identical under the factual and counterfactual scenarios, as illustrated in Figure 2 below. 
 

 
Figure 2. Well-being over a non-recidivist minority defendant’s life course with the adverse algorithmic 

decision, and with the counterfactual algorithmic decision of excluding protected attributes such as racial 
data as inputs to the analysis. 
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substantial correlation with race. However, it may be the case that all of the measures that are likely to 
predict recidivism have a substantial correlation with race. Removing all such measures would leave no 
data, or very limited data, with which to make predictions. In addition, treating individuals in different 
groups fairly may require taking protected features into account (see [20]). Removing protected attributes 
or attributed correlated with protected attributes, or prohibiting the release or analysis of such data, may 
also make it difficult to study the effect of discrimination based on race in criminal sentencing (see [21]). 
 
Counterfactual #2: What if participants’ privacy were protected? Using differential privacy as a control on 
the analysis 
 
Second, we explore the counterfactual in which measures are taken to protect the privacy of individuals 
when using their personal information. Specifically, we look at the example of the use of a formal privacy 
model, differential privacy, as a control on the analysis. Differential privacy is a mathematical guarantee 
of privacy protection in the context of statistical and machine learning analysis. It provides a quantifiable 
measure of the excess privacy risk any individual contributor may incur due to her participation in an 
analysis, compared with not participating. What can be learned about an individual contributor from a 
differentially private analysis is (essentially) limited to what could be learned about that individual from 
everyone else’s data without his or her own data being included in the analysis. 
 
In this counterfactual scenario, the relevant decision is made at the data analysis stage. More concretely, 
consider the scenario in which differential privacy is used in a machine learning model for predicting a 
defendant’s recidivism risk. A machine learning algorithm that satisfies differential privacy would be 
trained on historical data about defendants, their criminal histories, their demographic information, and 
their actual incidences of recidivism. When differential privacy is used, a model based on the training data 
would reveal very little about an individual in the training data, such as information about his or her 
criminal history, but would enable the relationship between demographic characteristics, criminal history, 
and recidivism to be determined at the population level. The use of differential privacy would not prevent 
the machine learning algorithm from identifying and applying a trend in the training data such as 
defendants from a particular minority group being associated with a higher than average rate of 
recidivism. 
 
In order to make a decision with respect to an individual, that individual’s information must be used. 
When the differentially private machine learning model is applied to a defendant’s information in order to 
make a prediction about the defendant’s risk of recidivism, the individual’s information will be used and 
the predictive power of certain protected features, such as race, will continue to hold. For instance, if the 
model identifies a positive correlation between the defendant’s race and recidivism risk, the model may 
classify the defendant as a high recidivism risk, just as it would in the factual scenario. 
 
Figure 3 illustrates this counterfactual scenario. It shows how an individual’s life course is expected to be 
largely unaffected by the use of differential privacy. Differential privacy provides protection against 
learning about an individual’s attributes from the machine learning model in cases in which the 
individual’s information is included in the training data and the model is not applied to make predictions 
about that individual. However, it does not provide protection in cases in which the model is applied to 
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the individual’s information in order to make predictions about the individual, which in many cases will 
lead to much greater effects on that individual’s life course than the former. 
 

 
Figure 3. Well-being over a non-recidivist minority defendant's life course with the adverse algorithmic 

decision, and with the counterfactual algorithmic decision of using differential privacy as a control on the 
analysis. 

 
Therefore, differential privacy alone will not protect the defendant from all harms—or even the most 
relevant harms—from application of the model. This counterfactual illustrates how privacy may in some 
cases be orthogonal to other data use-related harms. Privacy controls can protect the privacy of 
individuals in an analysis, while still failing to protect them from non-privacy-related harms resulting 
from the analysis. In many cases, other harms, such as discrimination, will far exceed the privacy-related 
harms that are mitigated by the privacy intervention. 
 
A related counterfactual is one in which a defendant is given the opportunity to choose whether to reveal 
his or her risk score to a judge prior to sentencing. This counterfactual leads to a signaling equilibrium, in 
which scores predicting a high likelihood of recidivism are inferred (albeit with some uncertainty) from a 
choice not to reveal the score. This is an example of a more general observation that the potential for 
signaling equilibria undercuts the assumption that allowing individuals to choose to withhold or reveal 
personal information systematically protects them (see [22]). 
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Counterfactual #3: What if an algorithm were not used at all? Substituting human judgment for an 
algorithm’s predictions 
 
Third, we explore the counterfactual difference between basing a sentencing decision on an algorithmic 
prediction and basing a sentencing decision on human judgment. When making a sentencing decision, a 
judge identifies rational correlations between individual attributes and outcomes in order to make a 
prediction about a defendant’s recidivism risk, resembling a machine learning algorithm in key ways. 
This process, however, is subject to the limits of human decision-making, in addition to the limits of 
computational decision-making. A judge’s predictions about a given defendant’s risks of recidivism are 
inherently imperfect, whether due to imperfect information, imperfect mental models, or limited 
experience. For this counterfactual, the literature on sources of error in human decision-making, empirical 
research estimating the error rates of judge-made decisions, and studies comparing the performance of 
human decisions and algorithmic predictions can be instructive. 
 
Kleinberg et al. [23], for example, demonstrate the potential for algorithms to provide improved 
predictions compared to judge-made decisions. The authors evaluate a machine learning algorithm for 
making predictions about judges’ pre-trial detention decisions and estimate that decisions based on the 
algorithm’s predictions could reduce the crime rate by 24.7% while holding the jail detention rate 
constant, or reduce the jail detention rate from 26.4% to 15.4% holding the crime rate constant (see [23]). 
While the focus of this research is pre-trial detention decisions, where what is being predicted is flight 
risk rather than recidivism risk, it is closely analogous to sentencing decisions and suggests that 
algorithmic approaches have the potential to produce large gains over human decisions. One possible 
explanation for the counterfactual difference between the algorithmic and human decisions is the reliance 
by judges on unobserved attributes that are not good predictors of flight risk. The authors note that 
“[w]hatever these unobserved variables are that cause judges to deviate from the predictions—whether 
internal states, such as mood, or specific features of the case that are salient and over-weighted, such as 
the defendant’s appearance—they are not a source of private information so much as a source of mis-
prediction. The unobservables create noise, not signal” [23] (citations omitted). 
 
Figure 4 illustrates the expected counterfactual difference between algorithmic and human decisions in 
the context of sentencing decisions, reflecting the results of research demonstrating that algorithmic 
decisions have the potential to better isolate the signal from the various attributes used as the basis for 
predictions of an individual’s recidivism risk. This diagram accordingly shows how the adverse impact on 
an individual’s life course can potentially be much greater when the decision is made by a human and not 
informed by an algorithm’s prediction. When comparing the decisions made by multiple judges to 
decisions informed by a single algorithm, not only does the expected value change, but the variance 
grows as well. Greater variance is undesirable, ceteris paribus, because individuals tend to be risk averse, 
especially when the risks are large. 
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Figure 4. Well-being over a non-recidivist minority defendant's life course with the adverse algorithmic 

decision, and with the counterfactual human decision. 
 

Counterfactual #4: What if a better algorithm were used? Comparing outcomes with those of a fairer or 
more predictive model 
 
For this counterfactual, we examine the difference between outcomes under the algorithm being evaluated 
and a hypothetical model that is a stronger predictor of recidivism risk. This comparison depends on the 
metric used to assess whether an algorithm is better than another. For instance, an algorithm may be 
shown to be better because it provides strictly lower error rates for all individuals or Pareto improvements 
in error rates for historically disadvantaged populations. There are also practical challenges to empirical 
evaluations of error rates associated with applications of algorithm. For example, the analysis may require 
examining the sentencing decisions made in jurisdictions where judges are randomly assigned to cases. In 
addition, as mentioned above, assessing the fairness of an algorithm is challenging due to inherent 
tradeoffs between different fairness metrics. Another important consideration is that an algorithm used to 
guide sentencing decisions that is determined to be fairer or more accurate in its predictions will still lead 
to harms to the individuals who are incarcerated as a result. 
 
For one example illustrating this counterfactual, consider again the Kleinberg et al. [23] machine learning 
model for pre-trial detention predictions. Their initial model did not include race or ethnicity data as 
inputs, although the authors note that “it is possible the algorithm winds up using these factors 
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distribution inadvertently—if other predictors are correlated with race or ethnicity” [23]. They explore the 
effects of applying various fairness constraints to this model and demonstrate that such constraints can 
“ensure no increase in racial disparities in the jail with very little impact on the algorithm’s performance 
in reducing crime” or “reduce the share of the jail population that is minority—that is, reduce racial 
disparities within the current criminal justice system—while simultaneously reducing crime rates relative 
to the judge” [23]. 
 

 
Figure 5. Well-being over a non-recidivist minority defendant's life course with the adverse algorithmic 
decision, and with the counterfactual of an algorithmic decision based on an algorithm that balances 

error rates. 
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correctly by the algorithm, leading to a reduction in harm. Although some individuals would remain 
misclassified by the algorithm and thus unimproved by its use, in the aggregate one can expect the overall 
expected level of harm to decrease. However, as we discuss in Section IV, such improvements alone do 
not necessarily ensure fairness, as the distribution of harms across groups could nevertheless be unfair. 
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Time

W
el

l-b
ei

ng

Non-recidivist minority 
defendant scored as 
recidivist  

Non-recidivist minority 
defendant scored as 
recidivist if error rates 
are balanced

Choose a risk prediction 
algorithm that balances 
error rates

Sentencing



14 

differential privacy to protect information about individuals, are largely irrelevant when seeking to 
address fairness concerns. They also suggest that other protections, such as prohibiting discriminatory 
intent or requiring transparency of an algorithm’s code, inputs, or logic, are insufficient to ensure fairness. 
 
IV. Using the distribution of harms to evaluate fairness 
 
The counterfactuals discussed above describe how choices affect the types and frequencies of errors made 
by algorithms and the potential harm to individuals subject to them. While an analysis of harm is an 
important component of determining whether an algorithm is fair, it is important to note that the existence 
of harm alone does not directly imply unfairness. Even fair algorithms can be expected to cause some 
peoples’ lives to go worse. In order to determine whether an algorithm is fair, one must evaluate the 
distribution of harms across the population. This following discussion describes an approach to evaluating 
fairness by assessing the distribution of potential impacts under a particular counterfactual. 
 
Surprisingly, algorithms that appear to be non-discriminatory can lead to imbalances in the distribution of 
costs and benefits for different groups to which they are applied. This can happen because the outcome 
depends not only on the algorithm itself, but also on a variety of empirical factors. Among these empirical 
factors are, primarily, the distribution of groups in the population; the types of classification made by the 
algorithm; the expected cost and benefit of each possible decision, based on that classification, for 
members of each group; and the distribution of errors made by the algorithm, with respect to each 
decision and each group. 
 
This can be illustrated using the model of recidivism decision-making outlined in Section III. To simplify 
the analysis, we consider groups of people and types of classification in two categories, respectively: two 
groups (minority and non-minority); and two types of classification (non-recidivist or recidivist). Figure 6 
below shows how these factors determine the distribution of outcomes, in the form of a decision tree. 
 



15 

 
 
Figure 6. Decision tree showing how four factors lead to a distribution of outcomes. Decision factors are 
shown on the left, with rounded corners, and outcomes are shown on the right. Unshaded shapes indicate 

that the factor or outcome cannot be directly observed. For simplicity, only the costs associated with 
errors are shown.  

 
From left to right, the diagram includes the race of the subject being scored, the true risk that the subject 
will recidivate (which is not known at the time of the decision), the COMPAS score assigned to the 
subject, the outcome resulting from that score, and the cost of that outcome. For simplicity of explanation 
in this section, we assume that all of the algorithmic design decisions have already been made, that parole 
decisions are directly determined by score, and that only incorrect decisions impose costs. 
 
The formulation of this decision tree builds upon the ideas presented in previous sections. The costs that 
appear on the right-hand side of the decision tree can be estimated using the life course analysis discussed 
in Section II. The algorithmic decisions decisions discussed in Section III will influence the error rates of 
the algorithm (sensitivity and specificity, below), as well as the likelihood of a prison or parole decision 
based on a particular score. For example, under the third counterfactual discussed above, scores would 
influence the outcomes (i.e., change the likelihood of the outcome) but not be associated with a single 
deterministic outcome. Under the fourth counterfactual, the sensitivity and specificity rates would be 
improved and equalized across all groups. 
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A nominally fair algorithm will always yield an even distribution of costs across groups when each of the 
probabilities, percentages, and costs above are equal for each group. In other words, fair outcomes are 
guaranteed, if the criminal population is 50% minority, the risk of recidivism does not truly depend on 
race, the algorithm’s error rate is identical for each member of the group, and the cost of mistakes is 
identical. 
 
In almost all actual cases, however, some of the factors above will differ between groups, yielding 
differences in the distributions of outcomes. These distributions must be evaluated for fairness. In 
particular, there are three general conditions in which procedurally “fair” algorithms can yield unfair 
outcomes. 
 
First, race blindness does not guarantee that the decisions will be equally accurate for each race. In other 
words the sensitivity and specificity rates (also known as the true positive and true negative rates) for the 
algorithm may differ based on group membership. Further, whenever the sensitivity and specificity of the 
algorithm have not been explicitly estimated for each group, they are very likely to differ—especially if, 
as explained in Section III, race is not an input to the algorithmic training. Worse, it is provably 
impossible to balance these error rates in practice [23].  
 
Second, balancing accuracy rates—even in the idealized case—would not guarantee that mistaken 
decisions are equally distributed across the minority and non-minority groups. Algorithmic choices could 
yield substantially different distributions of outcomes for members of each group because of differences 
in the prior distribution of crime or true recidivism risk. This problem is commonly known as the “base 
rate fallacy” or “prosecutor’s fallacy.” For example, suppose, for the sake of argument, that the COMPAS 
algorithm were 99% accurate across the board, e.g., misclassifying only 1 out of 100 recidivists as low 
risk (and vice versa), regardless of race. Even in this case, the probability that a minority defendant is 
incorrectly sentenced could be much higher than the probability that a non-minority defendant is 
incorrectly sentenced—if the true (but hidden) recidivism risk for minority defendants is lower. Further, 
even if true recidivism risks were identical, the aggregate costs of incorrect decisions would be higher for 
minority groups, if minorities made up a higher proportion of the population of defendants. 
 
Third, balancing the distribution of mistaken decisions would not guarantee that the distribution of costs 
is equal for members of each group, nor that the distribution of costs will be fair. The social-scientific 
analysis of life courses (discussed in Section II) demonstrates that the same event (such as parole) may 
have predictably different consequences for members of different groups. As noted in Section II, 
incarceration often has a larger long-term negative impact on adolescents than adults, by significantly 
reducing the likelihood that individuals in the former category will ever attain a degree, find stable 
employment, and form a family. Individual costs of incarceration may also vary by race and ethnicity. For 
example, one study has found that the negative effect of a criminal record on the likelihood of receiving a 
callback from a prospective employer is 40% greater for African-American job candidates than it is for 
white candidates [24]. 
 
In summary, under most realistic conditions the pattern of harm produced by mistaken algorithmic 
decisions will be unevenly distributed among groups. These patterns will depend on the algorithmic 



17 

design choices discussed in Section III; however, no practical algorithmic design choice is outcome-
neutral. Thus, algorithm designers must choose, implicitly or explicitly, which types of errors are most 
important, and which groups should be classified more accurately, in order to yield a preferred 
distribution of harms and benefits. Algorithmic design choices are therefore to be considered ethically 
relevant choices. 
 
Further, when algorithms are used in legal and government processes, there is quite frequently a social-
choice problem that is being implicitly “solved.” For example, the implied social benefits of using a 
recidivism risk score are better crime prevention through deterrence and incapacitation, which improves 
the lives of individuals who would otherwise become victims of crime. Thus the goal of the implied 
social choice problem is to balance the benefits to such individuals against the harms to the individuals 
scored and sentenced. In such an analysis, it is relevant to consider whether a decision to incarcerate an 
individual will harm that individual while also likely providing much greater benefits to others, and then 
assess how these harms and benefits are distributed across groups.  
 
Although a full discussion of outcome fairness is beyond the scope of this article, we argue that a key 
question of fairness has been neglected in analyses of the use of recidivism risk scores in criminal 
sentencing. Namely, algorithmic decisions result in member of minority groups paying higher individual 
costs than members of non-minority groups, in proportion to the societal benefit gained.  
 
When considering the fairness of algorithmic design decisions, we offer several recommendations. We 
recommend that the principle of progressive burden sharing be employed in cases in which the individual 
costs imposed by the use of an algorithmic decision are high and likely to be unequally distributed across 
different populations. Where, as is generally the case, the costs of algorithmic errors cannot be equalized 
across groups, algorithmic design choices should be considered unfair if they require members of less-
privileged groups to pay higher costs (whether because of the frequency or severity of those errors) than 
members of more-privileged groups for the same types of algorithmic mistakes. Further, one should avoid 
algorithmic design choices that impose costs to some individuals that are highly disproportionate to the 
expected social gain. In particular, design choices that predictably, catastrophically, and persistently 
reduce the well-being of individuals who are members of a known class should be avoided. In addition, 
we recommend that algorithmic designers consider the harm incurred by all members of a group, in 
aggregate. For example, group punishment—meaning a choice that predictably, substantially, and 
persistently reduces the aggregate well-being of an entire historically disadvantaged class of individuals—
is unfair and should be avoided in algorithmic design.   
 
V. Recommendations: Accountability for algorithmic decisions 
 
In this article we recognize the profound effects that algorithmic decision-making can have on people’s 
lives and proposes a harm-reduction framework for algorithmic fairness. We argue that any evaluation of 
algorithmic fairness must take into account the foreseeable effects that algorithmic design, 
implementation, and use have on the well-being of individuals. We further demonstrate how 
counterfactual frameworks for causal inference developed in statistics and computer science can be used 
as the basis for defining and estimating the foreseeable effects of algorithmic decisions. Finally, we argue 
that certain patterns of foreseeable harms are unfair. An algorithmic decision is unfair if it imposes 
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predictable harms on sets of individuals that are unconscionably disproportionate to the benefits these 
same decisions produce elsewhere. Also, an algorithmic decision is unfair when it is regressive, i.e., when 
members of disadvantaged groups pay a higher cost for the social benefits of that decision.  
 
An application of this framework to the COMPAS algorithm suggests that some common procedural 
interventions do not reliably improve algorithmic fairness. In particular, protecting informational privacy 
(e.g. through redaction, k-anonymity, or differential privacy), excluding information about protected 
attributes from a decision, and equalizing classification rates across protected groups do not generally 
increase algorithmic fairness. Further, under some conditions, these interventions may reduce fairness. 
Moreover, since accountability requires the ability to evaluate the effect of complex algorithmic decisions 
on the outcome in hypothetical situations, neither open data nor open source code is necessarily sufficient 
as an intervention [25]. 
 
In general, we find that because common procedural controls may have counterintuitive effects, there is 
an ethical responsibility to design, implement, and apply them in a manner that recognizes the potential 
for algorithmic choices to impose disproportionate harms on potentially vulnerable groups. To manage 
the potential for harm, we offer three practical recommendations.  
 
First, we recommend that algorithms be designed and implemented in a way that facilitates the evaluation 
of how the harms from algorithmic decisions are distributed across groups. Section IV describes the 
factors that must be measured directly or estimated in order to facilitate such an analysis. These factors 
will generally include the relevant characteristics of individuals processed by the algorithm, the estimated 
ex-ante error rates for the algorithm when applied to individuals conditioned on different characteristics, 
and the distribution of actual algorithmic decisions for individuals with those characteristics.  
 
Second, we recommend that explicit counterfactual causal analysis be used to predict the consequences of  
major algorithmic design decisions. As detailed in Section III, this analysis should evaluate the 
consequences of decisions with respect to use of training data, choice of algorithm, application of the 
algorithm to an individual’s data, and use of the outcome of the algorithm in a decision.  
 
Third, we recommend the use of counterfactual analysis in explaining algorithmic decisions. Models 
developed in this framework can be used to guide compliance with requirements arising from regulations 
such as the GDPR or governance by institutional review boards and other ethics review bodies. The 
GDPR requires data controllers to provide data subjects with “meaningful information about the logic 
involved” in an automated decision-making process, as well as information about “the significance and 
the envisaged consequences of such processing for the data subject” [9]. Providing data subjects with 
information regarding the logic involved in an algorithmic decision-making process can be informed by 
an analysis designed to help an individual understand why a particular decision was reached [27,28]. 
Informing data subjects about the envisaged consequences can be done in the form of a counterfactual 
analysis as described in this article, with assessment focusing on counterfactual causal estimation of the 
effects of an automated decision on the well-being of an individual. This analysis framework also can be 
used to characterize whether a decision can be expected to produce significant, long-term effects on an 
individual’s life course, measured in terms of lifetime wealth, health, longevity, subjective life 
satisfaction, and ability to make ethically relevant choices. It can also be used to help identify what should 
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be considered a “decision” for the purposes of providing such an explanation, with the list of 
counterfactual categories provided in Section III as a guide. Further, this approach may be useful 
wherever a meaningful explanation of the consequences of an algorithmic decision is required—for 
example, to explain credit decisions under the Fair Credit Reporting Act [26], or to inform subjects of the 
consequences resulting from the use of their personal data as part of a consent process. 
 
The proposed systematic approach to analyzing harm has numerous benefits. For instance, when applied 
ex-ante, it can help level the playing field for the process, imposing less burden on individuals to identify 
harm, giving groups and regulators more opportunity to identify issues, and enabling externalities and 
those indirectly affected to be taken into account. When used ex-post, the process provides a basis for 
auditing an automated decision. Although algorithms can lead to unforeseen consequences, serious 
attention to harm in advance, and the implementation of harm monitoring and reduction reveals an intent 
not to discriminate. It can also be used to help avoid the pitfalls of discriminatory effects and to calibrate 
socially appropriate trade-offs between accuracy and error. 
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