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Executive Summary

Differential privacy is a strong, mathematical definition of privacy in the context of
statistical and machine learning analysis. It is used to enable the collection, analysis, and
sharing of a broad range of statistical estimates, such as averages, contingency tables, and synthetic
data, based on personal data while protecting the privacy of the individuals in the data.

Differential privacy is not a single tool, but rather a criterion, which many tools for analyzing
sensitive personal information have been devised to satisfy. It provides a mathematically provable
guarantee of privacy protection against a wide range of privacy attacks, i.e., attempts to learn private
information specific to individuals from a data release. Privacy attacks include re-identification,
record linkage, and differencing attacks, but may also include other attacks currently unknown or
unforeseen. These concerns are separate from security attacks, which are characterized by attempts
to exploit vulnerabilities in order to gain unauthorized access to a system.

Computer scientists have developed a robust theory for differential privacy over the last fifteen
years, and major commercial and government implementations have now started to emerge.

The differential privacy guarantee (§ 3). Differential privacy mathematically guarantees that
anyone seeing the result of a differentially private analysis will essentially make the same inference
about any individual’s private information, whether or not that individual’s private information is
included in the input to the analysis.

The privacy loss parameter (§ 4.2). What can be learned about an individual as a result of
her private information being included in a differentially private analysis is limited and quantified
by a privacy loss parameter, usually denoted epsilon (€). Privacy loss can grow as an individual’s
information is used in multiple analyses, but the increase is bounded as a function of € and the
number of analyses performed.

Interpreting the guarantee (§ 6.3). The differential privacy guarantee can be understood in
reference to other privacy concepts:

e Differential privacy essentially protects an individual’s information as if her information were
not used in the analysis at all.

e Differential privacy essentially ensures that using an individual’s data will not reveal any
personally identifiable information that is specific to her. Here, specific refers to information
that cannot be inferred unless the individual’s information is used in the analysis.

e Differential privacy essentially masks the contribution of any single individual, making it
impossible to infer any information specific to an individual, including whether the individual’s
information was used at all.

As these statements suggest, differential privacy is a new way of protecting privacy that is more
quantifiable and comprehensive than the concepts of privacy that underlie many existing laws,
policies, and practices around privacy and data protection. The differential privacy guarantee can
be interpreted in reference to these other concepts, and can even accommodate variations in how
they are defined across different laws. In many cases, data holders may use differential privacy to
demonstrate that they have complied with legal and policy requirements for privacy protection.



Differentially private tools (§ 7). Differential privacy is currently in initial stages of imple-
mentation and use in various academic, industry, and government settings, and the number of
practical tools providing this guarantee is continually growing. Multiple implementations of differ-
ential privacy have been deployed by corporations such as Google, Apple, and Uber, and federal
agencies such as the U.S. Census Bureau. Additional differentially private tools are currently under
development across industry and academia.

Some differentially private tools utilize an interactive mechanism, which enables users to submit
queries about a dataset and receive corresponding differentially private results, such as custom-
generated linear regressions. Others tools are non-interactive, enabling static data or data sum-
maries, such as synthetic data or contingency tables, to be released and used.

In addition, some tools rely on a curator model, in which a database administrator has access
to and uses private data to generate differentially private data summaries. Others rely on a local
model, which does not require individuals to share their private data with a trusted third party.
Instead, they answer questions about their data in a differentially private manner, and only these
differentially private answers are ever shared.

Benefits of differential privacy (§ 8). Differential privacy is supported by a rich and rapidly
advancing theory that enables one to reason with mathematical rigor about privacy risk. Adopting
this formal approach to privacy yields a number of practical benefits for users:

e Systems that adhere to strong formal definitions like differential privacy provide protection
that is robust to a wide range of potential privacy attacks, as defined above, including attacks
that are unknown at the time of deployment. An analyst designing a differentially private
data release need not anticipate particular types of privacy attacks, such as the likelihood
that one could link particular fields with other data sources that may be available.

e Differential privacy provides provable privacy guarantees with respect to the cumulative risk
from successive data releases and is the only existing approach to privacy that provides such
a guarantee.

e Differentially private tools also have the benefit of transparency, as it is not necessary to
maintain secrecy around a differentially private computation or its parameters. This feature
distinguishes differentially private tools from traditional de-identification techniques which
often require concealment of the extent to which the data have been transformed, thereby
leaving data users with uncertainty regarding the accuracy of analyses on the data.

e Differentially private tools can be used to provide broad, public access to data or data sum-
maries in a privacy-preserving way. They can enable wide access to data that cannot other-
wise be shared due to privacy concerns, and do so with a guarantee of privacy protection that
substantially increases the ability of the institution to protect the individuals in the data.

Differentially private tools can, therefore, help enable researchers, policymakers, and businesses
to analyze and share sensitive data while providing strong guarantees of privacy to the individuals
in the data.
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1 Introduction

Businesses, government agencies, and research institutions often use and share data containing
sensitive or confidential information about individuals. Improper disclosure of such data can have
adverse consequences for a data subject’s relationships, reputation, employability, insurability, or
financial status, or even lead to civil liability, criminal penalties, or bodily harm. Due to these and
related concerns, a large body of laws, regulations, ethical codes, institutional policies, contracts,
and best practices has emerged to address potential privacy-related harms associated with the
collection, use, and release of personal information. In the following discussion, we discuss aspects
of the broader data privacy landscape that motivated the development of formal privacy models
like differential privacy.

1.1 Introduction to legal and ethical frameworks for data privacy

The legal framework for privacy protection in the United States has evolved as a patchwork of
highly sector- and context-specific federal and state laws. Federal information privacy laws, for
instance, have been enacted to protect certain categories of personal information found in health,
education, financial, and government records, among others. State data protection and breach no-
tification laws prescribe specific data security and breach reporting requirements when managing
certain types of personal information. In addition, federal regulations generally require researchers
conducting research involving human subjects to secure approval from an institutional review board
and fulfill ethical obligations to the participants, such as disclosing the risks of participation, ob-
taining their informed consent, and implementing specific measures to protect privacy. It is also
common for universities and other research institutions to adopt policies that require their faculty,
staff, and students to abide by certain ethical and professional responsibility standards and set
forth enforcement procedures and penalties for mishandling data.

Further restrictions apply when privacy-sensitive data are shared under the terms of a data
sharing agreement, which will often strictly limit how the data can be used or redisclosed by the
recipient. Organizations may also require privacy measures set forth by technical standards, such
as those specifying information security controls to protect personally identifiable information.
In addition, laws such as the EU General Data Protection Regulation are in place to protect
personal data about European citizens regardless of where the data are held. International privacy
guidelines, such as the privacy principles developed by the Organisation for Economic Co-operation
and Development, have also been adopted by governments across the world. Moreover, the right
to privacy is also protected by various international treaties and national constitutions.

Taken together, the safeguards required by these legal and ethical frameworks are designed to
protect the privacy of individuals and ensure they fully understand the scope of personal information
to be collected and the associated privacy risks. They also help data holders avoid administrative,
civil, and criminal penalties, as well as maintain the public’s trust and confidence in commercial,
government, and research activities involving personal data.

1.2 Traditional statistical disclosure limitation techniques

A number of technical measures for disclosing data while protecting the privacy of individuals have
been produced within the context of these legal and ethical frameworks. In particular, a collection
of statistical disclosure limitation (SDL) techniques has been widely adopted by statistical agencies,



data analysts, and social science researchers to analyze and share data containing privacy-sensitive
data with the aim of making it more difficult (or impossible) to learn personal information pertaining
to an individual. This category of techniques encompasses a wide range of methods for suppressing,
aggregating, perturbing, and generalizing attributes of individuals in the data. ! Such techniques
are often applied with the explicit goal of de-identification, i.e., of making it difficult to link an
identified person to a record in a data release by redacting or coarsening data.

Over time, changes in the way information is collected and analyzed, including advances in
analytical capabilities, increases in computational power, and the expanding availability of personal
data from a wide range of sources, are eroding the effectiveness of traditional SDL techniques.
Since the 1990s, and with increasing frequency, privacy and security researchers have demonstrated
that data that have been de-identified can often be successfully re-identified via record linkage.
Re-identification via record linkage, or a linkage attack, refers to the re-identification of one or
more records in a de-identified dataset by uniquely linking a record in a de-identified dataset with
identified records in a publicly available dataset, such as a voter registration list. In the late 1990s,
Latanya Sweeney famously applied such an attack on a dataset containing de-identified hospital
records. Sweeney observed that records in the de-identified dataset contained the birth date,
sex, and ZIP code of patients, that many of the patients had a unique combination of these three
attributes, and that these three attributes were listed alongside individuals’ names and addresses in
publicly-available voting records. Sweeney was able to use this information to re-identify records in
the de-identified dataset.? Subsequent attacks on protected data have demonstrated weaknesses in
other traditional approaches to privacy protection, and understanding the limits of these traditional
techniques is the subject of ongoing research.’

1.3 The emergence of formal privacy models

Re-identification attacks are becoming increasingly sophisticated over time, as are other types of
attacks that seek to infer characteristics of individuals based on information about them in the data.
Successful attacks on de-identified data have shown that traditional technical measures for privacy
protection may be particularly vulnerable to attacks devised after a technique’s deployment and
use. Some de-identification techniques, for example, require the specification of attributes in the
data as identifying (e.g., names, dates of birth, or addresses) or non-identifying (e.g., movie ratings
or hospital admission dates). Data providers may later discover that attributes initially believed
to be non-identifying can in fact be used to re-identify individuals. Similarly, de-identification
procedures may require a careful analysis of present and future data sources that could potentially
be linked with the de-identified data and enable re-identification of the data, but unanticipated
sources of auxiliary information that can be used for re-identification may become available in the

'For an overview of traditional SDL techniques, see Federal Committee on Statistical Methodology,
Report on Statistical Disclosure Limitation Methodology, Statistical Policy Working Paper 22 (2005),
https://fcsm sites.usa.gov/files/2014 /04 /spwp22.pdf.

2See Recommendations to Identify and Combat Privacy Problems in the Commonwealth: Hearing on H.R. 351
Before the House Select Committee on Information Security, 189th Sess. (Pa. 2005) (statement of Latanya Sweeney,
Associate Professor, Carnegie Mellon University), http://dataprivacylab.org/dataprivacy /talks/Flick-05-10.html.

3See, e.g., Arvind Narayanan & Vitaly Shmatikov, Robust De-anonymization of Large Sparse Datasets, PRO-
CEEDINGS OF THE 2008 IEEE SYMPOSIUM ON RESEARCH IN SECURITY AND PRIVACY 111 (2008); Yves-Alexandre de
Montjoye et al., Unique in the Crowd: The Privacy Bounds of Human Mobility, 3 NATURE Scl. REP. 1376 (2013);
Joseph A. Calandrino, “You Might Also Like:” Privacy Risks of Collaborative Filtering, PROCEEDINGS OF THE 2011
IEEE SYMPOSIUM ON SECURITY AND PRIVACY 231 (2011).



future.

Issues such as these have underscored the need for privacy technologies that are immune not
only to linkage attacks, but to any potential attack, including attacks that are currently unknown
or unforeseen. They have also demonstrated that privacy technologies must provide meaningful
privacy protection in settings where extensive external information may be available to potential
attackers, such as employers, insurance companies, relatives, and friends of an individual in the
data. In addition, real-world attacks have illustrated that ex-post remedies, such as simply “taking
the data back” when a vulnerability is discovered, are ineffective because many copies of a set of
data typically exist; copies may even persist online indefinitely.*

In response to the accumulated evidence of weaknesses with respect to traditional approaches,
a new privacy paradigm has emerged from the computer science literature: differential privacy.
Differential privacy is primarily studied in the context of the collection, analysis, and release of
aggregate statistics, from simple statistical estimations, such as averages, to machine learning.
First presented in 2006,” differential privacy is the subject of ongoing research to develop privacy
technologies that provide robust protection against a wide range of potential attacks, including types
of attacks currently unforeseen. Importantly, differential privacy is not a single tool but a definition
or standard for quantifying and managing privacy risks for which many technological tools have
been devised. Analyses performed with differential privacy differ from standard statistical analyses,
such as the calculation of averages, medians, and linear regression equations, in that random noise
is added in the computation. Tools for differentially private analysis are now in early stages of
implementation and use across a variety of academic, industry, and government settings.

In the following sections, we provide a simplified and informal, but mathematically accurate,
description of differential privacy. Using intuitive illustrations and limited mathematical formalism,
we discuss the definition of differential privacy, how it addresses privacy risks, how differentially
private analyses are constructed, and how such analyses can be used in practice. This discussion
is intended to help non-technical audiences understand the guarantees provided by differential
privacy. It can help guide practitioners as they make decisions regarding whether to use differential
privacy and, if so, what types of promises they should make to data subjects about the guarantees
differential privacy provides. In addition, these illustrations are intended to help legal scholars and
policymakers consider how current and future legal frameworks and instruments should apply to
tools based on formal privacy models such as differential privacy.

2 Privacy: A property of the analysis—not its outcome

This document seeks to explain how data containing personal information can be shared in a form
that ensures the privacy of the individuals in the data will be protected. This question is motivated
by real-world examples of data releases that were thought to be sufficiently protective of privacy
but were later shown to carry significant privacy risks.

4As an example, in 2006 AOL published anonymized search history of 650,000 users over a period of three months.
Shortly after the release, the New York Times identified a person in the release and AOL removed the data AOL
from their site. However, in spite of its withdrawal by AOL, copies of the data are still accessible on the Internet
today.

5Cynthia Dwork, Frank McSherry, Kobbi Nissim & Adam Smith, Calibrating Noise to Sensitivity in Private Data
Analysis, PROCEEDINGS OF THE THIRD THEORY OF CRYPTOGRAPHY CONFERENCE 265 (2006), http://dx.doi.org/
10.1007/11681878_14.
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We begin this discussion with a cautionary tale about the re-identification of anonymized records
released by the Massachusetts Group Insurance Commission.

In the late 1990s, the Group Insurance Commission, an agency providing
health insurance to Massachusetts state employees, allowed researchers to access
anonymized records summarizing information about all hospital visits made by
state employees. The agency anticipated that the analysis of these records would
lead to recommendations for improving healthcare and controlling healthcare costs.

Massachusetts Governor William Weld reassured the public that steps would be
taken to protect the privacy of patients in the data. Before releasing the records
to researchers, the agency removed names, addresses, Social Security numbers,
and other pieces of information that could be used to identify individuals in the
records.

Viewing this as a challenge, Professor Latanya Sweeney, then a graduate student
at MIT, set out to identify Gov. Weld’s record in the dataset. She obtained
demographic information about Gov. Weld, including his ZIP code and date of
birth, by requesting a copy of voter registration records made available to the
public for a small fee. Finding just one record in the anonymized medical claims
dataset that matched Gov. Weld’s gender, ZIP code, and date of birth enabled her
to mail the Governor a copy of his personal medical records.

This case illustrates that, although a dataset may appear to be anonymous, it could neverthe-
less be used to learn sensitive information about individuals. Following Prof. Sweeney’s famous
demonstration, a long series of attacks have been carried out against different types of data releases
anonymized using a wide range of techniques. These attacks have shown that risks remain even if
additional pieces of information, such as those that were leveraged in Prof. Sweeney’s attack (gen-
der, date of birth, and ZIP code), are removed from a dataset prior to release. Risks also remain
when using some frameworks for protecting privacy, such as k-anonymity, which is satisfied for a
dataset in which the identifying attributes that appear for each person are identical to those of at
least k — 1 other individuals in the dataset. Research has continually demonstrated that privacy
measures that treat privacy as a property of the output, such as k-anonymity, will fail to protect
privacy.

We offer a brief note on terminology before we proceed. Throughout this primer, we will use the
terms analysis and computation interchangeably to refer to any transformation, usually performed
by a computer program, of input data into some output.

As an example, consider an analysis on data containing personal information about individuals.
The analysis may be as simple as determining the average age of the individuals in the data, or it
may be more complex and utilize sophisticated modeling and inference techniques. In any case, the
analysis involves performing a computation on input data and outputting the result. This notion
of an analysis is illustrated in Figure 1.

5See, e.g., Ashwin Machanavajjhala et al., “/-Diversity: Privacy Beyond k-Anonymity,” Proceedings of the 22nd
International Conference on Data Engineering (2006) (“In this paper we show with two simple attacks that a k-
anonymized dataset has some subtle, but severe privacy problems.”).
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Figure 1: An analysis (or computation) transforms input data into some output.

This primer focuses, in particular, on analyses for transforming sensitive personal data into
an output that can be released publicly. For example, an analysis may involve the application of
techniques for aggregating or de-identifying a set of personal data in order to produce a sanitized
version of the data that is safe to release. The data provider will want to ensure that publishing
the output of this computation will not unintentionally leak information from the privacy-sensitive
input data—but how?

As it turns out, one can be certain that the output of a computation is privacy-preserving if the
computation itself is privacy-preserving. A key insight from the theoretical computer science liter-
ature is that privacy is a property of the informational relationship between the input and output,
not a property of the output alone.” We illustrate why this is the case through a series of examples.

Anne, a staff member at a high school, would like to include statistics about
student performance in a presentation. She considers publishing the fact that a
representative ninth-grade GPA is 3.5. Because the law protects certain student
information held by educational institutions, she must ensure that the statistic will
not inappropriately reveal student information, such as the GPA of any particular
student.

One might naturally think that Anne could examine the statistic itself and determine that it is
unlikely to reveal private information about an individual student. However, although the publi-
cation of this statistic might seem harmless, Anne needs to know how the statistic was computed
to make that determination. For instance, if the representative ninth-grade GPA was calculated
by taking the GPA of the alphabetically-first student in the school, then the statistic completely
reveals the GPA of that student.®

"This insight follows from a series of papers demonstrating privacy breach enabled by leakages of infor-
mation resulting from decisions made by the computation. See, e.g., Krishnaram Kenthapadi, Nina Mishra,
& Kobbi Nissim, Denials Leak Information: Simulatable Auditing, 79 JOURNAL OF COMPUTER AND SYSTEM
SCIENCES 1322 (2013), https://www.sciencedirect.com/science/article/pii/S002200001300113X. For a general dis-
cussion of the advantages of formal privacy models over ad-hoc privacy techniques, see Arvind Narayanan,
Joanna Huey, & Edward W. Felten, A Precautionary Approach to Big Data Privacy, Working Paper (2015),
http://randomwalker.info/publications/precautionary.pdf.

80ne might object that the student’s GPA is not traceable back to that student unless an observer knows how
the statistic was produced. However, a basic principle of modern cryptography (known as Kerckhoffs’ assumption)
is that a system is not secure if its security depends on its inner workings being a secret. In our context, this means



Alternatively, Anne considers calculating a representative statistic based on aver-
age features of the ninth graders at the school. She takes the most common first
name, the most common last name, the average age, and the average GPA for
the ninth grade class. What she produces is “John Smith, a fourteen-year-old in
the ninth grade, has a 3.1 GPA.” Anne considers including this statistic and the
method used to compute it in her presentation. In an unlikely turn of events, a
new student named John Smith joins the class the following week.

This statistic does not reveal private information about John Smith because it is not based on
his student records in any way. While Anne might decide not to use the statistic in her presentation
because it is potentially confusing, using it would not reveal private information about John.

It may seem counter-intuitive that releasing a representative GPA violates privacy while releas-
ing a GPA attached to a student’s name would not. Yet these examples illustrate that the key
to preserving privacy is the informational relationship between the private input and the public
output, and not the output itself. Furthermore, not only is it necessary to examine the analysis
itself to determine whether a statistic can be published, but it is also sufficient. In other words, we
do not need to consider the output statistic at all, if we know whether the process used to generate
that statistic preserves privacy.

3 What is the differential privacy guarantee?

The previous section illustrated why privacy should be thought of as a property of a computation—
but how does one know whether a particular computation has this property?

Intuitively, a computation protects the privacy of individuals in the data if its output does
not reveal any information that is specific to any individual data subject. Differential privacy
formalizes this intuition as a mathematical definition. Just as we can show that an integer is even
by demonstrating that it is divisible by two, we can show that a computation is differentially private
by proving it meets the constraints of the definition of differential privacy. In turn, if a computation
can be proven to be differentially private, we can rest assured that using the computation will not
unduly reveal information specific to a data subject.

To see how differential privacy formalizes this intuitive privacy requirement as a definition, con-
sider the following scenario.

Researchers have selected a sample of individuals across the U.S. to participate
in a survey exploring the relationship between socioeconomic status and health
outcomes. The participants were asked to complete a questionnaire covering topics
such as where they live, their finances, and their medical history.

One of the participants, John, is aware that individuals have been re-identified in
previous releases of de-identified data and is concerned that personal information
he provides about himself, such as his medical history or annual income, could
one day be revealed in de-identified data released from this study. If leaked, this

that we assume that the algorithm behind a statistical analysis is public (or could potentially be public).



information could lead to an increase in his life insurance premium or an adverse
decision for a future mortgage application.

Differential privacy can be used to address John’s concerns. If the researchers promise they
will only share survey data after processing it with a differentially private computation, John is
guaranteed that any data they release will not disclose anything that is specific to him, even though
he participated in the study.

To understand what this means, consider a thought experiment, which we illustrate in Figure 2
and refer to as John’s opt-out scenario. In John’s opt-out scenario, an analysis is performed using
data about the individuals in the study, except that information about John is omitted. His
privacy is protected in the sense that the outcome of the analysis does not depend on his specific
information—because it was not used in the analysis at all.

without computation oupt
John’s
data

Figure 2: John’s opt-out scenario.

John’s opt-out scenario differs from the real-world scenario depicted in Figure 1, where the
analysis is based on John’s personal information along with the personal information of the other
study participants. In contrast to his opt-out scenario, the real-world scenario involves some po-
tential risk to John’s privacy. Some of his personal information could be revealed by the outcome
of the analysis because it was used as input to the computation.

3.1 What does differential privacy protect and what does it not protect?

Differential privacy aims to protect John’s privacy in the real-world scenario in a way that mimics
the privacy protection he is afforded in his opt-out scenario.” Accordingly, what can be learned
about John from a differentially private computation is (essentially) limited to what could be
learned about him from everyone else’s data without his own data being included in the computation.
Crucially, this same guarantee is made not only with respect to John, but also with respect to every
other individual contributing his or her information to the analysis.

9Tt is important to note that the use of differentially private analyzes is not equivalent to the traditional use of
opting out. On the privacy side, differential privacy does not require an explicit opt-out. In comparison, traditional
use of opt-out requires an explicit choice that may cause privacy harms by calling attention to individuals that choose
to opt out. On the utility side, there is no general expectation that using differential privacy would yield the same
outcomes as adopting the policy of opt-out.



A precise description of the differential privacy guarantee requires the use of formal mathe-
matical language, as well as technical concepts and reasoning that are beyond the scope of this
document. In lieu of the mathematical definition, this document offers a few illustrative exam-
ples to discuss various aspects of differential privacy in a way we hope is intuitive and generally
accessible.

Examples illustrating what differential privacy protects

The scenarios in this section illustrate the types of information disclosures that are addressed when
using differential privacy.

Alice and Bob are professors at Private University. They both have access to
a database that contains personal information about students at the university,
including information related to the financial aid each student receives. Because
it contains personal information, access to the database is restricted. To gain
access, Alice and Bob were required to demonstrate that they planned to follow
the university’s protocols for handling personal data, by undergoing confidentiality
training and signing data use agreements proscribing their use and disclosure of
personal information obtained from the database.

In March, Alice publishes an article based on the information in this database and
writes that “the current freshman class at Private University is made up of 3,005
students, 202 of whom are from families earning over $350,000 per year.” Alice
reasons that, because she published an aggregate statistic taken over 3,005 people,
no individual’s personal information will be exposed. The following month, Bob
publishes a separate article containing these statistics: “201 families in Private
University’s freshman class of 3,004 have household incomes exceeding $350, 000
b

per year.” Neither Alice nor Bob is aware that they have both published similar
information.

A clever student Eve reads both of these articles and makes an observation. From
the published information, Eve concludes that between March and April one fresh-
man withdrew from Private University and that the student’s parents earn over
$350, 000 per year. Eve asks around and is able to determine that a student named
John dropped out around the end of March. Eve then informs her classmates that
John’s parents probably earn over $350, 000 per year.

John hears about this and is upset that his former classmates learned about his
parents’ financial status. He complains to the university and Alice and Bob are
asked to explain. In their defense, both Alice and Bob argue that they published
only information that had been aggregated over a large population and does not
identify any individuals.

This story illustrates how, in combination, the results of multiple analyses using information
about the same people may enable one to draw conclusions about individuals in the data. Alice and
Bob each published information that, in isolation, seems innocuous. However, when combined, the
information they published compromised John’s privacy. This type of privacy breach is difficult for



Alice or Bob to prevent individually, as neither knows what information has already been revealed
or will be revealed by others in future. This problem is referred to as the problem of composition.

Suppose, instead, that the institutional review board at Private University only allows re-
searchers to access student records by submitting queries to a special data portal. This portal
responds to every query with an answer produced by running a differentially private computation
on the student records. As will be explained further below, differentially private computations
introduce a carefully tuned amount of random noise to the statistics outputted. This means that
the computation gives an approximate answer to every question asked through the data portal. We
will see that the use of differential privacy prevents the privacy leak that occurred in the previous
scenario.

In March, Alice queries the data portal for the number of freshmen who come from
families with a household income exceeding $350,000. The portal returns the noisy
count of 204, leading Alice to write in her article that “the current freshman class
at Private University is made up of 3,005 students, approximately 205 of whom
are from families earning over $350,000 per year.” In April, Bob asks the same
question and gets the noisy count of 199 students. Bob publishes in his article
that “approximately 200 families in Private University’s freshman class of 3,004
have household incomes exceeding $350,000 per year.” The publication of these
noisy figures prevents Eve from concluding that one student, with a household
income greater than $350,000, withdrew from the university in March. The risk
that John’s personal information could be uncovered based on these publications
is thereby reduced.

This example hints at one of the most important properties of differential privacy: it is robust
under composition. If multiple analyses are performed on data describing the same set of indi-
viduals, then, as long as each of the analyses satisfies differential privacy, it is guaranteed that all
of the information released, when taken together, will still be differentially private. Notice how
this scenario is markedly different from the previous hypothetical, in which Alice and Bob do not
use differentially private analyses and inadvertently release two statistics that in combination lead
to the full disclosure of John’s personal information. The use of differential privacy rules out the
possibility of such a complete breach of privacy. This is because differential privacy enables one to
measure and bound the cumulative privacy risk from multiple analyses of information about the
same individuals.

It is important to note, however, that every analysis, regardless whether it is differentially
private or not, results in some leakage of information about the individuals whose information is
being analyzed, and this leakage accumulates with each analysis. This is true for every release
of data, including releases of aggregate statistics, as we describe in further detail in Sections 4.5
and 6.2 below. For this reason, there is a limit to how many analyses can be performed on a specific
dataset while providing an acceptable guarantee of privacy. This is why it is critical to measure
privacy loss and to understand quantitatively how risk accumulates across successive analyses.

Examples illustrating what differential privacy does not protect

Next, we provide examples that illustrate the types of information disclosures differential privacy
does not aim to address.



Suppose Ellen is a friend of John’s and knows some of his habits, such as that
he regularly consumes several glasses of red wine with dinner. Ellen later learns
of a research study that found a positive correlation between drinking red wine
and the likelihood of developing a certain type of cancer. She might therefore
conclude, based on the results of this study and her prior knowledge of John’s
drinking habits, that he has a heightened risk of developing cancer.

It may seem at first that the publication of the results from the research study enabled a privacy
breach by Ellen. After all, learning about the study’s findings helped her infer new information
about John that he himself may be unaware of, i.e., his elevated cancer risk. However, notice
how Ellen would be able to infer this information about John even if John had not participated in
the medical study—i.e., it is a risk that exists in both John’s opt-out scenario and the real-world
scenario. Risks of this nature apply to everyone, regardless of whether they shared personal data
through the study or not.

Consider a second example:

Ellen knows that her friend John is a public school teacher with five years of
experience and that he is about to start a job in a new school district. She later
comes across a local news article about a teachers union dispute, which includes
salary figures for the public school teachers in John’s new school district. Ellen
is able to approximately determine John’s salary at his new job, based on the
district’s average salary for a teacher with five years of experience.

Note that, as in the previous example, Ellen can determine information about John (i.e., his
new salary) from the published information, even though the published information was not based
on John’s information. In both examples, John could be adversely affected by the discovery of the
results of an analysis, even in his opt-out scenario. In both John’s opt-out scenario and in a differ-
entially private real-world scenario, it is therefore not guaranteed that no information about John
can be revealed. The use of differential privacy only guarantees that (essentially) no information
specific to John is revealed.

These examples suggest, more generally, that any useful analysis carries a risk of revealing some
information about individuals. We argue, however, that such risks are largely unavoidable. In a
world in which data about individuals are collected, analyzed, and published, John cannot expect
better privacy protection than is offered by his opt-out scenario because he has no ability to prevent
others from participating in a research study or a release of public records. Moreover, the types
of information disclosures enabled in John’s opt-out scenario often result in individual and societal
benefits. For example, the discovery of a causal relationship between red wine consumption and
elevated cancer risk can inform John about possible changes he could make in his habits that would
likely have positive effects on his health. In addition, the publication of public school teacher salaries
may be seen as playing a critical role in transparency and public policy, as it can help communities
make informed decisions regarding appropriate salaries for their public employees.
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4 How does differential privacy limit privacy loss?

In the previous section, we explained that the only things that can be learned about a data subject
from a differentially private data release are essentially what could have been learned if the analysis
had been performed without that individual’s data.

How do differentially private analyses achieve this goal? And what do we mean by “essentially”
when we say that the only things that can be learned about a data subject are essentially those
things that could be learned without the data subject’s information? We will see that the answers
to these two questions are related. Differentially private analyses protect the privacy of individual
data subjects by adding carefully-tuned random noise when producing statistics. Differentially
private analyses are also allowed to leak some information specific to individual data subjects. A
privacy parameter controls exactly how much information can be leaked and, relatedly, how much
random noise is added during the differentially private computation.

4.1 Differential privacy and randomness

In the earlier example featuring Professors Alice and Bob at Private University, we saw that dif-
ferentially private analyses add random noise to the statistics they produce. Intuitively, this noise
masks the differences between the real-world computation and the opt-out scenario of each indi-
vidual in the dataset. This means that the outcome of a differentially private analysis is not exact
but an approrimation. In addition, a differentially private analysis may, if performed twice on
the same dataset, return different results. Because they intentionally add random noise, analyses
performed with differential privacy differ from standard statistical analyses, such as the calculation
of averages, medians, and linear regression equations.

Consider a differentially private analysis that computes the number of students in
a sample with a GPA of at least 3.0. Say that there are 10,000 students in the
sample, and exactly 5,603 of them have a GPA of at least 3.0. An analysis that
added no random noise would report that 5,603 students had a GPA of at least
3.0.

However, a differentially private analysis adds random noise to protect the privacy
of the data subjects. For instance, a differentially private analysis might report
an answer of 5,521 when run on the student data; when run a second time on the
same data, it might report an answer of 5,586.

Although a differentially private analysis might produce many different answers given the same
dataset, it is often possible to calculate accuracy bounds for the analysis that tell us how much
an output of the analysis is expected to differ from the noiseless answer. Section 6.1 discusses
how the random noise introduced by a differentially private analysis affects statistical accuracy.
Interested readers can find more information about the role randomness plays in the construction
of differentially private analyses in Appendix A.1.
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4.2 The privacy loss parameter

An essential component of a differentially private computation is the privacy loss parameter. This
parameter determines how much noise is added to the computation. It can be thought of as a
tuning knob for balancing privacy and accuracy. Each differentially private analysis can be tuned
to provide more or less privacy (resulting in less or more accuracy, respectively) by changing the
value of this parameter. The following discussion establishes an intuition for this parameter. It can
be thought of as limiting how much a differentially private computation is allowed to deviate from
the opt-out scenario of an individual in the data.

Consider the opt-out scenario for a certain computation, such as estimating the number of
HIV-positive individuals in a surveyed population. Ideally, this estimate should remain exactly
the same whether or not a single individual, such as John, is included in the survey. However,
ensuring this property exactly would require the total exclusion of John’s information from the
analysis. It would also require the exclusion of Gertrude’s and Peter’s information, in order to
provide privacy protection for them as well. If we continue with this line of argument, we come to
the conclusion that the personal information of every single surveyed individual must be removed
in order to satisfy that individual’s opt-out scenario. Thus, the analysis cannot rely on any person’s
information, and is completely useless.

To avoid this dilemma, differential privacy requires only that the output of the analysis remain
approximately the same, whether John participates in the survey or not. That is, differential privacy
allows for a deviation between the output of the real-world analysis and that of each individual’s
opt-out scenario. A parameter quantifies and limits the extent of the deviation between the opt-out
and real-world scenarios. As shown in Figure 3 below, this parameter is usually denoted by the
Greek letter € (epsilon) and referred to as the privacy parameter, or, more accurately, the privacy
loss parameter. The parameter € measures the effect of each individual’s information on the output
of the analysis. It can also be viewed as a measure of the additional privacy risk an individual could
incur beyond the risk incurred in the opt-out scenario. Note that in Figure 3 we have replaced
John with an arbitrary individual X to emphasize that the differential privacy guarantee is made
simultaneously to all individuals in the sample, not just John.

Choosing a value for € can be thought of as tuning the level of privacy protection required. This
choice also affects the utility or accuracy that can be obtained from the analysis. A smaller value
of € results in a smaller deviation between the real-world analysis and each opt-out scenario, and is
therefore associated with stronger privacy protection but less accuracy. For example, when € is set
to zero, the real-world differentially private analysis mimics the opt-out scenario of each individual
perfectly. However, as we argued at the beginning of this section, an analysis that perfectly mimics
the opt-out scenario of each individual would require ignoring all information from the input and
accordingly could not provide any meaningful output. Yet when € is set to a small number such
as 0.1, the deviation between the real-world computation and each individual’s opt-out scenario
will be small, providing strong privacy protection while also enabling an analyst to derive useful
statistics based on the data.

Although guidelines for choosing € have not yet been developed, they are expected to emerge
and evolve over time, as the expanded use of differential privacy in real-life applications will likely
shed light on how to reach a reasonable compromise between privacy and accuracy. As a rule of
thumb, however, e should be thought of as a small number, between approximately 1/1000 and 1.
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Figure 3: Differential privacy. The maximum deviation between the opt-out scenario and real-
world computation should hold simultaneously for each individual X whose information is included
in the input.

4.3 Bounding risk

We have discussed how the privacy loss parameter limits the deviation between the real-world
computation and each data subject’s opt-out scenario. However, it might not be clear how this
abstract guarantee relates to privacy concerns in the real world. Therefore, in this section, we
discuss a practical interpretation of the privacy loss parameter, as a bound on the financial risk
incurred by participating in a study.

As explained above in Section 3.1, any useful analysis carries the risk that it will reveal informa-
tion about individuals (which, in turn, might result in a financial cost). We will see in the following
example that, while differential privacy necessarily cannot eliminate this risk, it can guarantee that
the risk will be limited by quantitative bounds that depend on e.

Gertrude, a 65-year-old woman, is considering whether to participate in a medical
research study. While she can envision many potential personal and societal ben-
efits resulting in part from her participation in the study, she is concerned that
the personal information she discloses over the course of the study could lead to
an increase in her life insurance premium in the future.

For example, Gertrude is concerned that the tests she would undergo as part of
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the research study would reveal that she is predisposed to suffer a stroke and
is significantly more likely to die in the coming year than the average person of
her age and gender. If such information related to Gertrude’s increased risk of
morbidity and mortality is discovered by her life insurance company, it will likely
increase her premium substantially.

Before she opts to participate in the study, Gertrude wishes to be assured that
privacy measures are in place to ensure that her participation will have, at most,
a limited effect on her life insurance premium.

4.3.1 A baseline: Gertrude’s opt-out scenario

It is important to note that Gertrude’s life insurance company may raise her premium based on
something it learns from the medical research study, even if Gertrude does not herself participate
in the study. The following example is provided to illustrate such a scenario.'”

Gertrude holds a $100, 000 life insurance policy. Her life insurance company has
set her annual premium at $1, 000, i.e., 1% of $100, 000, based on actuarial tables
that show that someone of Gertrude’s age and gender has a 1% chance of dying
in the next year.

Suppose Gertrude opts out of participating in the medical research study. Regard-
less, the study reveals that coffee drinkers are more likely to suffer a stroke than
non-coffee drinkers. Gertrude’s life insurance company may update its assessment
and conclude that, as a 65-year-old woman who drinks coffee, Gertrude has a 2%
chance of dying in the next year. The company decides to increase Gertrude’s
annual premium from $1,000 to $2,000 based on the findings of the study.

In this example, the results of the study led to an increase in Gertrude’s life insurance premium,
even though she did not contribute any personal information to the study. A potential increase of
this nature is unavoidable to Gertrude because she cannot prevent other people from participating
in the study. Using the terminology of Section 3 above, this type of effect is taken into account by
Gertrude’s insurance premium in her opt-out scenario.

4.3.2 Reasoning about Gertrude’s risk

Next, we consider the increase in risk that is due to Gertrude’s participation in the study.

Suppose Gertrude decides to participate in the research study. Based on the results
of medical tests performed on Gertrude over the course of the study, the researchers
conclude that Gertrude has a 50% chance of dying from a stroke in the next year.
If the data from the study were to be made available to Gertrude’s insurance

0Figures in this example are based on data from Social Security Administration, Actuarial Life Table: Period Life
Table, 2011, http://www.ssa.gov/oact/STATS/tabled4c6.html.
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company, it might decide to increase her insurance premium from $2, 000 to more
than $50, 000 in light of this discovery.

Fortunately for Gertrude, this does not happen. Rather than releasing the full
dataset from the study, the researchers release only a differentially private sum-
mary of the data they collected. Differential privacy guarantees that, if the re-
searchers use a value of € = 0.01, then the insurance company’s estimate of the
probability that Gertrude will die in the next year can increase from 2% to at most

2% - (1+0.01) = 2.02%.

Thus Gertrude’s insurance premium can increase from $2, 000 to, at most, $2, 020.
Gertrude’s first-year cost of participating in the research study, in terms of a
potential increase in her insurance premium, is at most $20.

Note that this analysis above does not imply that the insurance company’s estimate
of the probability that Gertrude will die in the next year must increase as a result
of her participation in the study, nor that if the estimate increases it must increase
t0 2.02%. What the analysis shows is that if the estimate were to increase it would
not exceed 2.02%.

Consequently, this analysis does not imply that Gertrude would incur an increase
in her insurance premium, or that if she were to see such an increase it would cost
her $20. What is guaranteed is that, if Gertrude should see an increase in her
premium, this increase would not exceed $20.

Gertrude may decide that the potential cost of participating in the research study, $20, is too
high and she cannot afford to participate with this value of € and this level of risk. Alternatively,
she may decide that it is worthwhile. Perhaps she is paid more than $20 to participate in the study
or the information she learns from the study is worth more than $20 to her. The key point is that
differential privacy allows Gertrude to make a more informed decision based on the worst-case cost
of her participation in the study.

It is worth noting that, should Gertrude decide to participate in the study, her risk might
increase even if her insurance company is not aware of her participation. For instance, Gertrude
might actually have a higher chance of dying in the next year, and that could affect the study
results. In turn, her insurance company might decide to raise her premium because she fits the
profile of the studied population, even if it does not believe her data were included in the study.
On the other hand, differential privacy guarantees that, even if the insurance company knows that
Gertrude did participate in the study, it can essentially only make inferences about her that it could
have made if she had not participated in the study.

4.4 A general framework for reasoning about privacy risk

We can generalize from Gertrude’s scenario and view differential privacy as a framework for rea-
soning about the increased risk that is incurred when an individual’s information is included in a
data analysis. Differential privacy guarantees that an individual will be exposed to essentially the
same privacy risk whether or not her data are included in a differentially private analysis. In this
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context, we think of the privacy risk associated with a data release as the potential harm that an
individual might experience due to a belief that an observer forms based on that data release.

In particular, when € is set to a small value, the probability that an observer will make some
inference that is harmful to a data subject based on a differentially private data release is at most
1 + € times the probability that the observer would have made that inference without the data
subject’s inclusion in the data set.!! For example, if € is set to 0.01, then the privacy risk to an
individual resulting from participation in a differentially private computation grows by at most a
multiplicative factor of 1.01.

As shown in the Gertrude scenario, there is the risk to Gertrude that the insurance company will
see the study results, update its beliefs about the mortality of Gertrude, and charge her a higher
premium. If the insurance company infers from the study results that Gertrude has probablility p
of dying in the next year, and her insurance policy is valued at 100, 000, this translates into a risk
(in financial terms) of a higher premium of p x $100,000. This risk exists even if Gertrude does not
participate in the study. Recall how in the first hypothetical, the insurance company’s belief that
Gertrude will die in the next year doubles from 1% to 2%, increasing her premium from $1,000 to
$2,000, based on general information learned from the individuals who did participate. We also saw
that, if Gertrude does decide to participate in the study (as in the second hypothetical), differential
privacy limits the change in this risk relative to her opt-out scenario. In financial terms, her risk
increases by at most $20, since the insurance company’s beliefs about her probability of death
change from 2% to at most 2% - (1 + €) = 2.02%, where € = 0.01.

Note that the above calculation requires certain information that may be difficult to determine
in the real world. In particular, the 2% baseline in Gertrude’s opt-out scenario (i.e., Gertrude’s
insurer’s belief about her chance of dying in the next year) is dependent on the results from the
medical research study, which Gertrude does not know at the time she makes her decision whether
to participate. Fortunately, differential privacy provides guarantees relative to every baseline risk.

Say that, without her participation, the study results would lead the insurance
company to believe that Gertrude has a 3% chance of dying in the next year
(instead of the 2% chance we hypothesized earlier). This means that Gertrude’s
insurance premium would increase to $3,000. Differential privacy guarantees that,
if Gertrude had instead decided to participate in the study, the insurer’s estimate
for Gertrude’s mortality would have been at most 3% - (1 + €) = 3.03% (assuming
an e of 0.01), which means that her premium would not increase beyond $3,030.

Calculations like those used in the analysis of Gertrude’s privacy risk can be performed by
referring to Table 1. For example, the value of € used in the research study Gertrude considered
participating in was 0.01, and the baseline privacy risk in her opt-out scenario was 2%. As shown
in Table 1, these values correspond to a worst-case privacy risk of 2.02% in her real-world scenario.
Notice also how the calculation of risk would change with different values. For example, if the
privacy risk in Gertrude’s opt-out scenario were 5% rather than 2% and the value of epsilon remained
the same, then the worst-case privacy risk in her real-world scenario would be 5.05%.

The fact that the differential privacy guarantee applies to every privacy risk means that Gertrude
can know for certain how participating in the study might increase her risks relative to opting out,
even if she does not know a priori all the privacy risks posed by the data release. This enables

111 general, the guarantee made by differential privacy is that the probabilities differ by at most a factor of e™*,
which is approximately 1 4+ ¢ when € is small.
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posterior belief
given A(x') value of e
in % 0.01 0.05 0.1 0.2 0.5 1
0 0 0 0 0 0 0
1 1.01 1.05 1.1 1.22 1.64 | 2.67
2 2.02 2.1 2.21 2.43 | 3.26 5.26
) 0.06 | 5.24 9.5 6.04 | 7.98 | 12.52
10 10.09 | 10.46 | 10.94 | 11.95 | 15.48 | 23.2
25 25.19 | 25.95 | 26.92 | 28.93 | 35.47 | 47.54
50 50.25 | 51.25 | 52.5 | 54.98 | 62.25 | 73.11
75 75.19 | 75.93 | 76.83 | 78.56 | 83.18 | 89.08
90 90.09 | 90.44 | 90.86 | 91.66 | 93.69 | 96.07
95 95.05 | 95.23 | 95.45 | 95.87 | 96.91 | 98.1
98 98.02 | 98.1 | 98.19 | 98.36 | 98.78 | 99.25
99 99.01 | 99.05 | 99.09 | 99.18 | 99.39 | 99.63
100 100 100 100 100 100 100
maximum posterior belief given A(z) in %

Table 1: Maximal change between posterior beliefs in Gertrude’s opt-out and real-world scenarios.
The notation A(z') refers to the application of the analysis A on the dataset 2/, which does not
include Gertrude’s information. As this table shows, the use of differential privacy provides a
quantitative bound on how much one can learn about an individual from a computation.

Gertrude to make a more informed decision about whether to take part in the study. For instance,
she can calculate exactly how much additional risk she incurs by participating in the study over
a range of possible baseline risk values, and decide whether she is comfortable with taking on the
risks entailed by these different scenarios.

4.5 Composition

Privacy risk accumulates with multiple analyses on an individual’s data, and this is true whether
or not any privacy-preserving technique is applied.'> One of the most powerful features of differ-
ential privacy is its robustness under composition. We are able to reason about—and bound—the
privacy risk that accumulates when multiple differentially private computations are performed on
an individual’s data.

The parameter € quantifies how privacy risk accumulates across multiple differentially private
analyses. In particular, say that two differentially private computations are performed on datasets
about the same individuals. If the first computation uses a parameter of €; and the second uses a
parameter of e, then the cumulative privacy risk resulting from these computations is no greater
than the risk associated with an aggregate parameter of €; + €5. In other words, the privacy risk
from running the two analyses is bounded by the privacy risk from running a single differentially

12\We emphasize that this observation is true for any use of information, and, hence, for any approach to preserving
privacy. It is not unique to differentially private analyses. However, the fact that the cumulative privacy risk from
multiple analyses can be bounded is a distinguishing property of differential privacy.
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private analysis with a parameter of €; + €.

This means that, while it cannot get around the fundamental law that privacy risk increases
when multiple analyses are performed on the same individual’s data, differential privacy guarantees
that privacy risk accumulates in a bounded and graceful way. For instance, two differentially private
analyses cannot be combined in a way that leads to a privacy breach that is disproportionate to
the privacy risk associated with each analysis in isolation. Differential privacy is currently the only
framework with quantifiable guarantees on how risk accumulates across multiple analyses.

Suppose that Gertrude decides to opt into the medical study because it is about
heart disease, an area of research she considers critically important. The study
leads to a published research paper, which includes results from the study produced
by a differentially private analysis with a parameter of e; = 0.01. A few months
later, the researchers decide that they want to use the same study data for another
paper. This second paper would explore a hypothesis about acid reflux disease,
and would require calculating new statistics based on the original study data. Like
the analysis results in the first paper, these statistics would be computed using
differential privacy, but this time with a parameter of e; = 0.02.

Because she only consented for her data to be used in research about heart dis-
ease, the researchers must obtain Gertrude’s permission to reuse her data for the
paper on acid reflux disease. Gertrude is concerned that her insurance company
could compare the results from both papers and learn something negative about
Gertrude’s life expectancy and drastically raise her insurance premium. She is
not particularly interested in participating in a research study about acid reflux
disease and is concerned the risks of participation might outweigh the benefits to
her.

Because the statistics from each study are produced using differentially private
analyses, Gertrude can precisely bound the privacy risk that would result from
contributing her data to the second study. The combined analyses can be thought
of a single analysis with a privacy loss parameter of

€1 + €2 =0.01 +0.02 = 0.03.

Say that, without her participation in either study, the insurance company would
believe that Gertrude has a 3% chance of dying in the next year, leading to a pre-
mium of $3,000. If Getrude participates in both studies, the insurance company’s
estimate of Gertrude’s mortality would increase to at most

3% - (14 0.03) = 3.09%.

This corresponds to a premium increase of $90 over the premium that Gertrude
would pay if she had not participated in either study.
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5 What types of analyses are performed with differential privacy?

A large number of analyses can be performed with differential privacy guarantees. The following
is a non-exhaustive list of analyses for which differentially private algorithms are known to exist:

e Count queries: The most basic statistical tool, a count query returns an estimate of the
number of individual records in the data satisfying a specific predicate. For example, a
count query could be used to return the number of records corresponding to HIV-positive
individuals in a sample. Differentially private answers to count queries can be obtained
through the addition of random noise, as demonstrated in the detailed example found above
in Section A.1.

e Histograms: A histogram contains the counts of data points as they are classified into
disjoint categories. For example, in the case of numerical data, a histogram shows how data
are classified within a series of consecutive non-overlapping intervals. A contingency table
(or cross tabulation) is a special form of a histogram representing the interrelation between
two or more variables. The categories of a contingency table are defined as conjunctions of
attribute variables. Differentially private histograms and contingency tables provide noisy
counts for the data classified in each category.

e Cumulative distribution function (CDF): For data over an ordered domain, such as age
(where the domain is integers, say, in the range 0 —100), or annual income (where the domain
is real numbers, say, in the range $0.00 — $1,000,000.00), a cumulative distribution function
depicts for every domain value x an estimate of the number of data points with a value up to
xz. A CDF can be used for computing the median of the data points (the value = for which
half the data points have value up to x) and the interquartile range, among other statistics.
A differentially private estimate of the CDF introduces noise that needs to be taken into
account when the median or interquartile range is computed from the estimated CDF.!?

e Linear regression: Social scientists are often interested in modeling how some dependent
variable varies as a function of one or more explanatory variables. For instance, a researcher
may seek to understand how a person’s health depends on her education and income. In linear
regression, an underlying linear model is assumed, and the goal of the computation is to fit
a linear model to the data that minimizes a measure of “risk” (or “cost”), usually the sum
of squared errors. Using linear regression, social scientists can learn to what extent a linear
model explains their data, and which of the explanatory variables correlates best with the
dependent variable. Differentially private implementations of linear regression introduce noise
in its computation. Note that, while this noise may in some cases hide existing correlations
in the data, researchers are engaged in ongoing work towards the development of algorithms
where this undesirable effect of noise addition can be controlled and minimized.

e Clustering: Clustering is a data analysis technique that involves grouping data points into
clusters, so that points in the same cluster are more similar to each other than to points
in other clusters. Data scientists often use clustering as an exploratory tool to gain insight

13For a more in depth discussion of differential privacy and CDFs, see Daniel Muise and Kobbi Nissim, “Differential
Privacy in CDFs,” Slide Deck (2016), http://privacytools.seas.harvard.edu/files/dpcdf_user_manual_aug_
2016.pdf.
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into their data and identify the data’s important sub-classes. Researchers are developing a
variety of differentially private clustering algorithms, and such tools are likely to be included
in future privacy-preserving tool kits for social scientists.

e Classification: In machine learning and statistics, classification is the problem of identifying
which of a set of categories a data point belongs in, based on a training set of examples
for which category membership is known. Data scientists often utilize data samples that
are pre-classified (e.g., by experts) to train a classifier which can later be used for labeling
newly-acquired data samples. Theoretical work has shown that it is possible to construct
differentially private classification algorithms for a large collection of classification tasks, and,
furthermore, that, at least in principle, the performance of these classification algorithms is
comparable with the performance of similar non-privacy-preserving algorithms.

e Synthetic data: Synthetic data are “fake” data produced from a statistical model based on
the original data. Synthetic data resemble the original sensitive data in format, and, for a
large class of analyses, results are similar whether performed on the synthetic or original data.
Theoretical work has shown that differentially private synthetic data can be generated for a
large variety of tasks. A significant benefit is that, once a differentially private synthetic data
set is generated, it can be analyzed any number of times, without any further implications
for the privacy budget. As a result, synthetic data can be shared freely or even made public
in many cases.

6 Practical considerations when using differential privacy

In this section, we discuss some of the practical challenges to using differential privacy, including
challenges related to the accuracy of differentially private statistics, and challenges due to the degra-
dation of privacy that results from multiple analyses. It is important to note that the challenges of
producing accurate statistics while protecting privacy and addressing composition are not unique
to differential privacy. It is a fundamental law of information that privacy risk grows with the
use of data, and hence this risk applies to any disclosure control technique. Traditional statistical
disclosure limitation techniques, such as suppression, aggregation, and generalization, often reduce
accuracy and are vulnerable to loss in privacy due to composition, and the impression that these
techniques do not suffer accumulated degradation in privacy is merely due to the fact that these
techniques have not been analyzed with the higher level of rigor that differential privacy has been.
A rigorous analysis of the effect of composition is important for establishing a robust and realistic
understanding of how multiple statistical computations affect privacy.

6.1 Accuracy

In this Section, we discuss the relationship between differential privacy and accuracy. The accuracy
of an analysis is a measure of how its outcome can deviate from the true quantity or model it
attempts to estimate. There is no single measure of accuracy, as measures of deviations differs

YMFor a discussion of privacy and utility with respect to traditional statistical disclosure limitation techniques, see
Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin Machanavajjhala, Privacy-Preserving Data Publishing,
Foundations and Trends in Databases 2.1-2 (2009): 1-167.
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across applications.'® Multiple factors have an effect on the accuracy of an estimate, including,

e.g., measurement and sampling errors. The random noise introduced in differentially private
computations to hide the effect of single individuals on the computed estimate similarly affects
accuracy.

Put differently, differential privacy increases the minimal sample size required to produce ac-
curate statistics. In practice, the amount of noise that is added to differentially private analyses
makes it difficult to obtain much utility from small- to moderately-sized datasets. As a rule of
thumb, almost no utility is expected from datasets containing 1/e or fewer records.'® Much of
the ongoing research on differential privacy is focused on understanding and improving the tradeoff
between privacy and utility, i.e., obtaining the maximum possible utility from data while preserving
differential privacy.

Procedures for estimating the accuracy of certain types of analyses have been developed. These
procedures take as input the number of records, a value for €, and the ranges of numerical and
categorical fields, among other parameters, and produce guaranteed accuracy bounds. Alterna-
tively, a desired accuracy may be given as input instead of €, and the computation results in a
value for € that would provide this level of accuracy. Figure 4 illustrates an example of a cumula-
tive distribution function and the results of its (noisy) approximation with different settings of the
privacy parameter €.!” Procedures for estimating the accuracy of an analysis are being developed
for practical implementations of differential privacy, including the tools that are being developed
for Harvard’s Dataverse project, as discussed below.

We note that statistical analyses are in general estimates and not exact, and that in some
cases the noise introduced by differential privacy is insignificant compared to other sources of error,
such as sampling error. Interested readers can find a more detailed discussion on this topic in
Appendix A.2.

Another concept related to accuracy is truthfulness. This term has appeared regularly, if infre-
quently, in the statistical disclosure control literature since the mid 1970s, though it does not have
a well-recognized formal definition.'® Roughly speaking, a privacy-protecting method is considered
truthful if one can determine unambiguously which types of statements, when true of the protected
data, are also necessarily true of the original data.

This concept may have an intuitive appeal. For data protected via suppressing some of the cells

15For example, a researcher interested in estimating the average income of a given population may care about the
absolute error of this estimate, i.e., the difference between the real average and the estimate, whereas a researcher
interested in the median income may care about the difference between the number of respondents whose income is
below the estimate and the number of respondents whose income is above the estimate.

16 An exception is when the amplification technique known as “secrecy of the sample” is used. See Section A.4 for
a discussion on this topic.

17 This figure first appeared in Daniel Muise and Kobbi Nissim, “Differential Privacy in CDFs,” Slide Deck (2016),
http://privacytools.seas.harvard.edu/files/dpcdf_user_manual_aug_2016.pdf.

18See, e.g., Ferrer, Sanchez & Soria Comez, DATABASE ANONYMIZATION 3.1 (Morgan & Claypool, eds., 2017)
(distinguishing between “perturbative masking (which distorts the original data and leads to the publication of non-
truthful data)” and “non-perturbative masking (which reduces the amount of information, either by suppressing
some of the data or by reducing the level of detail, but preserves truthfulness)”); Fung, Chang, Wen & Yu, Privacy
Preserving Data Publication, ACM COMPUTING SURVEYS 42(14) (2010) (describing, without defining, truthfulness
at the record level by explaining that “[ijn some data publishing scenarios, it is important that each published record
corresponds to an existing individual in real life. . . . Randomized and synthetic data do not meet this requirement.
Although an encrypted record corresponds to a real life patient, the encryption hides the semantics required for acting
on the patient represented.”
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Figure 4: An example of the outcome of a differentially private computation of the cumulative
distribution function (CDF) of income in District Q. The top left graph presents the original
CDF (without noise) and the subsequent graphs show the result of applying differentially private
computations of the CDF with e values of 0.005 (top right), 0.01 (bottom left), and 0.1 (bottom
right). Notice that, as smaller values of € imply better privacy protection, they also imply less
accuracy due to noise addition compared to larger values of e.

in the database, statements of the form “there is (are) record(s) with characteristics X and Y” are
true in the original data if they are true in the protected data. For example, one might definitively
state, using only the protected data, that “some plumbers earn over $50,000.” Arguably, one
cannot make this same statement definitively and truthfully for data that has been synthetically
generated.

One must be careful, however, to identify and communicate the types of true statements a
protection method supports. For example, neither suppression nor synthetic data support truthful
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non-existence claims at the microdata level. For example a statement such as “there are no plumbers
in Wisconsin who earn over $50,000” cannot be made definitively by examining the protected data
alone, if income or occupation values have been suppressed or synthetically generated. Moreover,
protection methods may, in general, preserve truth at the individual record level, but not at the
aggregate level (or vice versa). For example, synthetic data supports reliable truthful statements
about many aggregate computations (e.g. “the median income of a plumber is $45, 000 + $2,000”),
but data subject to suppression generally cannot support truthful aggregate statements and protect
privacy simultaneously.”

As mentioned above, there are many individual sources of error that contribute to the total
uncertainty in a calculation. These are traditionally grouped by statisticians into into the categories
of sampling and non-sampling errors. Generally, differentially private methods introduce more
uncertainty. However, it is a property of differential privacy that the method itself does not need
to be kept secret. This means the amount of noise added to the computation can be taken into
account in the measure of accuracy, and therefore lead to truthful statements about the data. This
is in contrast to many traditional statistical disclosure control methods which only report sampling
error, and keep the information needed to estimate the “privacy error” secret.

To summarize, any privacy-preserving method, if misused or misinterpreted, can produce un-
truthful statements. In addition, the truthfulness of some methods, such as suppression and aggre-
gation, is inherently limited to particular levels of computations, e.g., to existence statements on
microdata, or statements about selected aggregate statistical properties, respectively. Differential
privacy may be used truthfully for a broader set of computations, so long as the uncertainty of each
calculation is estimated and reported.

6.2 The “privacy budget”

One can think of the parameter e as determining the overall privacy protection provided by a
differentially private analysis. Intuitively, ¢ determines “how much” of an individual’s privacy an
analysis may utilize, or, alternatively, by how much the risk to an individual’s privacy can increase.
A smaller value for € implies better protection, i.e., less risk to privacy. Conversely, a larger value for
€ implies worse protection, i.e., higher potential risk to privacy. In particular, e = 0 implies perfect
privacy, i.e., the analysis does not increase any individual’s privacy risk at all. Unfortunately,
analyses that satisfy differential privacy with € = 0 must completely ignore their input data and
therefore are useless.

We can also think of € as a “privacy budget” to be spent by analyses of individuals’ data. If a
single analysis is expected to be performed on a given set of data, then one might allow this analysis
to exhaust the entire privacy budget e. However, a more typical scenario is that several analyses
are expected to be run on a dataset, and therefore one needs to calculate the total utilization of
the privacy budget by these analyses.

Fortunately, a number of composition theorems have been developed for differential privacy, as
mentioned above in Section 4.5. In particular, these theorems state that the composition of two
differentially private analyses results in a privacy loss that is bounded by the sum of the privacy
losses of each of the analyses.

9Correctly calculating and truthfully reporting the uncertainty induced by suppression would require revealing
the full details of the suppression algorithm and its parameterization. Revealing these details allows information to
be inferred about individuals. Traditional statistical disclosure control methods require that the mechanism itself be
kept secret in order to protect against this type of attack.
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To understand how overall privacy loss is accounted for in this framework, consider the following
example.

Suppose a data analyst using a differentially private analysis tool is required to
do so while maintaining differential privacy with an overall privacy loss parameter
e = 0.1. This requirement for the overall privacy loss parameter may be guided
by an interpretation of a regulatory standard, institutional policy, or best prac-
tice, among other possibilities. It means that all of the analyst’s analyses, taken
together, must have a value of € that is at most 0.1.

Consider how this requirement would play out within the following scenarios:

One-query scenario: The data analyst performs a differentially private analysis
with a privacy loss parameter ¢; = 0.1. In this case, the analyst would not be able
to perform a second analysis over the data without risking a breach of the policy
limiting the overall privacy loss to e = 0.1.

Multiple-query scenario: The data analyst first performs a differentially private
analysis with €; = 0.01, which falls below the limit of ¢ = 0.1. This means that the
analyst can also apply a second differentially private analysis, say with e = 0.02.
After the second analysis, the overall privacy loss amounts to

€1 +e2 = 0.01 40.02 = 0.03,

which is still less than € = 0.1, and hence allows the analyst to perform additional
analyses before exhausting the budget.

The multiple-query scenario can be thought of as if the data analyst has a privacy budget of
e = 0.1 that is consumed incrementally as she performs differentially private analyses, until the
budget has been exhausted. Performing additional analyses after the overall budget has been
exhausted may result in a privacy parameter that is larger (i.e., worse) than e. Any further use
would result in a privacy risk that is too significant.

Note that, in the sample calculation for the multiple-query example, we bounded the accumu-
lated privacy risk simply by adding the privacy parameters of each analysis. It is in fact possible
to obtain better bounds on the accumulation of the privacy loss parameter than suggested by this
example. Various tools for calculating the bounds on the accumulated privacy risks in real-world
settings using more sophisticated approaches are currently under development.

6.3 Complying with legal requirements for privacy protection

Statistical agencies, companies, researchers, and others who collect, process, analyze, store, or share
data about individuals must take steps to protect the privacy of the data subjects in accordance with
various laws, institutional policies, contracts, ethical codes, and best practices. In some settings,
tools that satisfy differential privacy can be used to analyze and share data, while both complying
with such legal obligations and providing strong mathematical guarantees of privacy protection for
the individuals in the data.
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Privacy regulations and related guidance do not directly answer the question of whether the use
of differentially private tools is sufficient to satisfy existing regulatory requirements for protecting
privacy when sharing statistics based on personal data. This issue is complex because privacy laws
are often context-dependent and there are significant gaps between differential privacy and the
concepts underlying regulatory approaches to privacy protection. Different regulatory requirements
are applicable depending on the sector, jurisdiction, actors, and types of information involved. As
a result, datasets held by an organization may be subject to different requirements. In some cases,
similar or even identical datasets may be subject to different requirements when held by different
organizations. In addition, many legal standards for privacy protection are, to a large extent, open
to interpretation and therefore require a case-specific legal analysis by an attorney.

Other challenges arise as a result of differences between the concepts appearing in privacy regu-
lations and those underlying differential privacy. For instance, many laws focus on the presence of
“personally identifiable information” or the ability to “identify” an individual’s personal informa-
tion in a release of records. Such concepts do not have precise definitions, and their meaning in the
context of differential privacy applications is unclear. In addition, many privacy regulations em-
phasize particular requirements for protecting privacy when disclosing individual-level data, such
as removing personally identifiable information, which are arguably difficult to interpret and apply
when releasing aggregate statistics. While in some cases it may be clear whether a regulatory
standard has been met by the use of differential privacy, in other cases—particularly along the
boundaries of a standard—there may be considerable uncertainty.

Regulatory requirements relevant to issues of privacy in computation rely on an understanding of
a range of different concepts, such as personally identifiable information, de-identification, linkage,
inference, risk, consent, opt out, and purpose and access restrictions. In the following discussion,
we show how the definition of differential privacy can be interpreted to address each of these
concepts while accommodating differences in how these concepts are defined across various legal
and institutional contexts.

Personally identifiable information (PII) and de-identification are central concepts in in-
formation privacy law. Regulatory protections typically extend only to personally identifiable in-
formation; information not considered personally identifiable is not protected. Although definitions
of personally identifiable information vary, they are generally understood to refer to the presence of
pieces of information that are linkable to the identity of an individual or to an individual’s personal
attributes.?’ PII is also related to the concept of de-identification, which refers to a collection
of techniques devised for transforming identifiable information into non-identifiable information
while also preserving some utility of the data. In principle, it is intended that de-identification, if
performed successfully, can be used as a tool for removing PII, or transforming PII into non-PII.
When differential privacy is used, it can be understood as (essentially) ensuring that using an

29For a general definition of personally identifiable information, see, e.g., Government Accountability Office, Alter-
natives Exist for Enhancing Protection of Personally Identifiable Information (2008). (“For purposes of this report,
the terms personal information and personally identifiable information are used interchangeably to refer to any infor-
mation about an individual maintained by an agency, including (1) any information that can be used to distinguish
or trace an individuals identity, such as name, Social Security number, date and place of birth, mothers maiden
name, or biometric records; and (2) any other information that is linked or linkable to an individual, such as medical,
educational, financial, and employment information.”). For a survey of various definitions of personally identifiable
information, see Paul M. Schwartz & Daniel J. Solove, The PII Problem: Privacy and a New Concept of Personally
Identifiable Information, 86 N.Y.U. L. Rev. 1814 (2011).
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individual’s data will not reveal personally identifiable information specific to him or her.?! Here,
the use of the term “specific” refers to information that is unique to the individual and cannot be
inferred unless the individual’s information is used in the analysis.

Linkage is a mode of privacy loss recognized, implicitly or explicitly, by a number of privacy
regulations.?? Linkage typically refers to the matching of information in a database to a specific
individual, often by leveraging information from external sources. Linkage is also closely related
to the concept of identifying an individual in a data release, as identifying an individual is often
accomplished via a successful linkage. Linkage has a concrete meaning when data are published as
a collection of individual-level records, often referred to as microdata. However, what is considered
a successful linkage when a publication is made in other formats (including, e.g., statistical models
and synthetic data) is open to interpretation.

Despite this ambiguity, it can be argued that differential privacy addresses record linkage in
the following sense. Differentially private statistics provably hide the influence of every individual,
and even groups of individuals, providing protection not only against releasing exact records but
also approximate statistics that leak individual-level information that could be used in a linkage
attack. Furthermore, differential privacy provides a robust guarantee of privacy protection that
is independent of the auxiliary information available to an attacker. When differential privacy is
used, an attacker utilizing auxiliary information cannot learn much more about an individual in a
database than she could if that individual’s information were not in the database at all.

Inference is another mode of privacy loss that is implicitly or explicitly referenced by some privacy
regulations. For example, some laws protect information that enables the identity of an individual
to be “reasonably inferred,”?? and others protect information that enables one to determine an
attribute about an individual with “reasonable certainty.”?* When discussing inference as a mode
of privacy loss, it is important to distinguish between two types: inferences about individuals and
inferences about large groups of individuals. Although privacy regulations generally do not draw
a clear distinction between these two types of inference, the distinction is key to understanding
which privacy safeguards would be appropriate in a given setting.

Differential privacy (essentially) protects an individual from inferences about attributes that
are specific to him or her (i.e., information that is unique to the individual and cannot be inferred
unless the individual’s information is used in the analysis). Interventions other than differential
privacy may be necessary in contexts in which inferences about large groups of individuals, such as
uses of data that result in discriminatory outcomes by race or sex, are a concern.

Risk is another concept that appears in various ways throughout regulatory standards for privacy

2INote that the term “use” in this statement refers to the inclusion of an individual’s data in an analysis.

22For example, by defining personally identifiable information in terms of information “linked or linkable to a
specific student,” FERPA appears to emphasize the risk of a successful record linkage attack. 34 C.F.R. § 99.3.
The Department of Health & Human Services in guidance on de-identifying data in accordance with the HIPAA
Privacy Rule includes an extended discussion of examples of record linkage attacks and de-identification strategies
for mitigating them. See Office for Civil Rights, Department of Health and Human Services, Guidance Regarding
Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability
and Accountability Act (HIPAA) Privacy Rule (2012).

23 See, e.g., Confidential Information Protection and Statistical Efficiency Act, Pub. L. 107-347 § 502(4) (protecting
“any representation of information that permits the identity of the respondent to whom the information applies to
be reasonably inferred by either direct or indirect means”).

21 See, e.g., FERPA, 34 C.F.R. § 99.3 (defining “personally identifiable information,” in part, in terms of information
that would allow one to identify a student “with reasonable certainty”).
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protection and related guidance. For example, some regulatory standards include a threshold level
of risk that an individual’s information may be identified in a data release.?® Similarly, some
regulations also acknowledge, implicitly or explicitly, that any disclosure of information carries
privacy risks, and therefore the goal is to minimize rather than eliminate such risks.?°

Differential privacy can readily be understood in terms of risk. Specifically, differential privacy

enables a formal quantification of risk. It (essentially) guarantees that the risk to an individual is
the same with or without her participation in the dataset, and this holds true for any notion of
risk adopted by a regulatory standard or institutional policy. In this sense, differential privacy can
be interpreted as (essentially) guaranteeing that the risk to an individual is minimal or very small.
Moreover, the privacy loss parameter epsilon can be tuned according to different requirements for
minimizing risk.
Consent and opt out are concepts underlying common provisions set forth in information privacy
laws. Consent and opt out provisions enable individuals to choose to allow, or not to allow, their
information to be used by or redisclosed to a third party.?” Such provisions are premised on the
assumption that providing individuals with an opportunity to opt in or out gives them control over
the use of their personal information and effectively protects their privacy. However, this assumption
warrants a closer look. Providing consent or opt-out mechanisms as a means of providing individuals
with greater control over their information is an incomplete solution as long as individuals are not
fully informed about the consequences of uses or disclosures of their information. In addition,
allowing individuals the choice to opt in or out can create new privacy concerns. An individual’s
decision to opt out may (often unintentionally) be reflected in a data release or analysis and invite
scrutiny into whether the choice to opt out was motivated by the need to hide compromising
information.?

The differential privacy guarantee can be interpreted as providing stronger privacy protection
than a consent or opt-out mechanism. This is because differential privacy can be understood as
automatically providing all individuals in the data with the protection that opting out is intended
to provide. When differential privacy is used, the consequences for an individual’s privacy are es-
sentially the same whether or not an individual’s information is included in an analysis. Moreover,
differential privacy provides all individuals with this privacy guarantee, thereby avoiding the pos-
sibility that individuals who choose to opt out would, by doing so, inadvertently reveal a sensitive
attribute about themselves or attract attention as individuals who are potentially hiding sensitive

25For example, the HIPAA Privacy Rule requires covered entities to use de-identification techniques prior to re-
leasing data in order to create a dataset with only a “very small” risk of identification. 45 C.F.R. § 164.514(b)(1);
65 Fed. Reg. 82,461, 82,543 (Dec. 28, 2000).

26Guidance on complying with CIPSEA requires agencies to “collect and handle confidential information to min-
imize risk of disclosure.” See Office of Management and Budget, Implementation Guidance for Title V of the E-
Government Act, Confidential Information Protection and Statistical Efficiency Act of 2002 (CIPSEA), 72 Fed. Reg.
33,361 (June 15, 2007). Guidance from the Department of Health & Human Services recognizes that de-identification
methods “even when properly applied, yield de-identified data that retains some risk of identification. Although the
risk is very small, it is not zero, and there is a possibility that de-identified data could be linked back to the identity
of the patient to which it corresponds.” Office for Civil Rights, Department of Health and Human Services, Guidance
Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance
Portability and Accountability Act (HIPAA) Privacy Rule (2012).

2TFor example, FERPA includes a provision requiring educational agencies and institutions to offer students an
opportunity to opt out of the disclosure of their personal information in school directories. 34 C.F.R. § 99.37.

28For a real-world example, consider recent reports that the National Security Agency’s surveillance efforts specially
target users of privacy services. See Kim Zetter, The NSA Is Targeting Users of Privacy Services, Leaked Code Shows,
WIRED, July 3, 2014.
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facts about themselves.

Purpose and access provisions often appear in privacy regulations as restrictions on the use or
disclosure of personal information to specific parties or for specific purposes. Legal requirements
reflecting purpose and access restrictions can be divided into two categories. The first category
includes restrictions, such as those governing confidentiality for statistical agencies,?” prohibiting
the use of identifiable information except for statistical purposes. The second category broadly
encompasses other types of purpose and access provisions, such as those permitting the use of
identifiable information for legitimate educational purposes.?

Restrictions limiting use to statistical purposes, including statistical purposes involving population-
level rather than individual-level analyses or statistical computations, are consistent with the use
of differential privacy. Tools that satisfy differential privacy can be understood to restrict uses to
only those that are for statistical purposes. However, other use and access restrictions, such as
provisions limiting use to legitimate educational purposes, are orthogonal to differential privacy
and demand alternative privacy safeguards.

The foregoing interpretations of the differential privacy guarantee can be used to demonstrate
that in many cases a differentially private mechanism would prevent the types of disclosures of
personal information that privacy regulations have been designed to address. Moreover, in many
cases, differentially private tools provide privacy protection that is more robust than that provided
by techniques commonly used to satisfy regulatory requirements for privacy protection. However,
further research to develop methods for proving that differential privacy satisfies legal requirements
and set the privacy loss parameter epsilon based on such requirements is needed.?* In practice,
data providers should consult with legal counsel when considering whether differential privacy tools,
potentially in combination with other tools for protecting privacy and security, are appropriate
within their specific institutional settings.

7 Tools for differentially private analysis

At the time of this writing, differential privacy is transitioning from a purely theoretical mathemat-
ical concept to one that underlies software tools for practical use by analysts of privacy-sensitive
data.The first real-world implementations of differential privacy have been deployed by compa-
nies such as Google, Apple, and Uber, and government agencies such as the U.S. Census Bureau.

29Title 13 restricts the use of confidential information from respondents, prohibiting uses “for any purpose other
than the statistical purposes for which it is supplied,”*° and restricting access to agency employees and approved
researchers with Special Sworn Status. CIPSEA prohibits the use of protected information “for any use other than
an exclusively statistical purpose,”3' where statistical purpose “means the description, estimation, or analysis of the
characteristics of groups, without identifying the individuals or organizations that comprise such groups.”*?

33FERPA generally prohibits the disclosure of personally identifiable information from education records, with
limited exceptions such as disclosures to school officials with a legitimate educational interest in the information,
34 C.F.R. §§ 99.31(a)(1), 99.7(a)(3)(iii), and organizations conducting studies for, or on behalf of, schools, school
districts, or postsecondary institutions, 34 C.F.R. § 99.31(a)(6).

34For an extended discussion of the gaps between legal and computer science definitions of privacy and a demon-
stration that differential privacy can be used to satisfy an institution’s obligations under the Family Educational
Rights and Privacy Act, see Kobbi Nissim, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi, Urs
Gasser, David R. O’Brien, Thomas Steinke, & Salil Vadhan, Bridging the Gap between Computer Science and Legal
Approaches to Privacy, HARVARD JOURNAL OF LAw & TECHNOLOGY (forthcoming 2018).
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Researchers in industry and academia are currently building and testing additional tools for dif-
ferentially private statistical analysis. This section briefly reviews some of these newly-emerging
tools, with a particular focus on the tools that inspired the drafting of this primer.

7.1 Government and commercial applications of differential privacy

Since 2005, the U.S. Census Bureau has published an online interface enabling the exploration of
the commuting patterns of workers across the United States, based on confidential data collected
by the Bureau through the Longitudinal Employer-Household Dynamics program.®> Through this
interface, members of the public can interact with synthetic datasets generated from confidential
survey records. Beginning in 2008, the computations used to synthesize the data accessed through
the interface provide formal privacy guarantees and satisfy a variant of differential privacy.?® In
2017, the Census Bureau announced that it was prototyping a system that would protect the full
set of publication products from the 2020 decennial Census using differential privacy.

Google, Apple, and Uber have also experimented with differentially private implementations.
For instance, Google developed the RAPPOR system, which applies differentially private compu-
tations in order to gather aggregate statistics from consumers who use the Chrome web browser.?”
This tool allows analysts at Google to monitor the wide-scale effects of malicious software on the
browser settings of their users, while providing strong privacy guarantees for individuals.?®

7.2 Differential privacy in Harvard’s Privacy Tools project
The Harvard Privacy Tools project® develops tools to help social scientists and other researchers
collect, analyze, and share data while providing privacy protection for individual research subjects.
To this end, the project seeks to incorporate definitions and algorithmic tools from differential
privacy into Dataverse, an open-source software application developed at Harvard. Dataverse pro-
vides a preservation and archival infrastructure that enables institutions to host data repositories
through which researchers can upload their data or access data made available by other researchers
for the purposes of replication or secondary research.

New privacy tools being developed for integration with the Dataverse infrastructure include a

private data sharing interface, PSL’ which facilitates data exploration and analysis using differ-

35Gee U.S. Census Bureau, OnTheMap Application for the Longitudinal Employer-Household Dynamics program,
http://onthemap.ces.census.gov (last visited Apr. 30, 2016).

36 See Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, & Lars Vilhuber, Privacy: Theory
Meets Practice on the Map, PROCEEDINGS OF THE IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING
277 (2008).

37 See Ulfar Erlingsson, Learning Statistics with Privacy, aided by the Flip of a Coin, Google Research Blog (Oct.
30, 2014), http://googleresearch.blogspot.com/2014/10/learning-statistics-with-privacy-aided.html; Ulfar Erlingsson,
Vasyl Pihur & Aleksandra Korolova, RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response, PRO-
CEEDINGS OF THE 21ST ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (2014).

380ther examples for using differential privacy (for which, to the best of our knowledge, no technical reports
have been published) include Google’s use of differential privacy in analyzing urban mobility and Apple’s use of
differential privacy in iOS 10. See Andrew Eland, Tackling Urban Mobility with Technology, Google Europe Blog
(Nov. 18, 2015), http://googlepolicyeurope.blogspot.com/2015/11/tackling-urban-mobility-with-technology.html,
and Andy Greenberg, Apples ‘Differential Privacy’ Is About Collecting Your Data—But Not Your Data, Wired (Jun.
13, 2016), http://www.wired.com/2016/06/apples-differential-privacy-collecting-data/.

39Harvard Privacy Tools Project, http://privacytools.seas.harvard.edu.

108ee Marco Gaboardi, James Honaker, Gary King, Jack Murtagh, Kobbi Nissim, Jonathan Ullman, & Salil P.
Vadhan, PSI (¢): a Private data Sharing Interface, Working paper (2016), http://arxiv.org/abs/1609.04340.
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ential privacy. The PSI interface provides researchers depositing datasets into Dataverse, who are
not necessarily data privacy experts, guidance on how to partition a limited privacy budget among
the many statistics to be produced or analyses to be run. It also provides researchers seeking
to explore a dataset available on Dataverse with guidance on how to interpret the noisy results
produced by a differentially private algorithm. PSI offers a basic collection of tools for producing
differentially private statistics whose results can be visualized using TwoRavens,*' a browser-based
interface for exploring and analyzing data. Through the differentially private access enabled by
PSI, researchers will be able to perform rough preliminary analyses of privacy-sensitive datasets
that currently cannot be safely shared. Such access will help researchers determine whether it is
worth the effort to apply for full access to the raw data.

PSI is also being designed to integrate with other tools available through Dataverse, such as
DataTags,*® which are simple, iconic labels that categorically describe certain requirements for
handling privacy-sensitive data. Each DataTag maps to a different set of transfer, storage, and
access requirements, from completely open data (a “blue” tag) to maximally-protected data (a
“crimson” tag).*® The Privacy Tools project seeks to develop tools using the DataTags framework
to denote handling policies for different versions of a dataset or for statistics derived from a dataset.
For example, while a raw version of a privacy-sensitive dataset might be assigned a more restrictive
DataTag (e.g., “red” or “crimson”) that enables access only by approved researchers, differentially
private statistics derived from the data might be assigned a less restrictive DataTag (e.g., “green”)
that enables access by any user registered with the Dataverse repository. In addition, members of
the Privacy Tools project are assessing the privacy protection guaranteed by different settings of
the differential privacy parameters (e and ¢), so that they can make recommendations regarding
the values of these parameters that are appropriate for producing statistics from a dataset that has
been assigned a given DataTag.

7.3 Other experimental implementations of differential privacy

Several other experimental systems enable data analysts to construct privacy-preserving analyses
without requiring an understanding of the subtle technicalities of differential privacy. Systems
such as Privacy Integrated Queries (PINQ),** Airavat,*® and GUPT*® aim to make it easier for
users to write programs that are guaranteed to be differentially private, either by composition of
differentially private building blocks,*” or through the use of general frameworks such as “partition-

“ITwoRavens, http://datascience.iq.harvard.edu/about-tworavens.

42DataTags, http://datatags.org.

43 See Latanya Sweeney, Merce Crosas, & Michael Bar-Sinai, Sharing Sensitive Data with Confidence: The Datatags
System, TECHNOLOGY SCIENCE (2015), http://techscience.org/a/2015101601.

44 Gee Frank McSherry, Privacy Integrated Queries: An FExtensible Platform for Privacy-preserving Data
Analysis, PROCEEDINGS OF THE 2009 INT’L CONFERENCE ON MANAGEMENT OF DATA 19 (2009),
http://doi.acm.org/10.1145/1559845.1559850.

45 See Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, & Emmett Witchel, Airavat: Security and
privacy for MapReduce, PROCEEDINGS OF THE 7TH USENIX SyMPOSIUM ON NETWORKED SYSTEMS DESIGN AND
IMPLEMENTATION 297 (2010), http://www.usenix.org/events/nsdil0/tech/full_papers/roy.pdf.

46 See Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, & David E. Culler, GUPT: Privacy Pre-
serving Data Analysis Made Fasy, PROCEEDINGS OF THE ACM SIGMOD INTERNATIONAL CONFERENCE ON MAN-
AGEMENT OF DATA 349 (2012), http://doi.acm.org/10.1145/2213836.2213876.

47See Frank McSherry, Privacy Integrated Queries: An FExtensible Platform for Privacy-preserving Data
Analysis, PROCEEDINGS OF THE 2009 INT’L CONFERENCE ON MANAGEMENT OF DATA 19 (2009),
http://doi.acm.org/10.1145/1559845.1559850; Andreas Haeberlen, Benjamin C. Pierce, & Arjun Narayan, Differen-
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and-aggregate” or “subsample-and-aggregate”*® to convert non-private programs into differentially
private ones.*” These systems rely on a common approach: they keep the data safely stored and
allow users to access them only via a programming interface which guarantees differential privacy.
They also afford generality, enabling one to design many types of differentially private programs
that are suitable for a wide range of purposes. However, note that most of these systems do not
provide much guidance for a lay user who has limited expertise in programming. Moreover, they
do not provide much guidance on deciding how to partition a limited privacy budget among many
statistics or analyses, or how to interpret the noisy results given by a differentially private algorithm.

7.4 Tools for specific data releases or specific algorithms

There have been a number of successful applications of differential privacy with respect to specific,
structured sources of data, including commuter patterns,”® mobility data,”’ client-side software
data,”® genome-wide association studies,’® location history data,”® and usage patterns for phone
technology.”® In these settings, differential privacy experts carefully optimize the choice of differ-
entially private algorithms and the partitioning of the privacy budget to maximize utility for the
particular data source. These tools are specific to the type of data they are designed to handle,
and they cannot be applied in contexts in which the collection of data sources and the structure of
the datasets are too heterogenous to allow for such optimizations.

Beyond these examples, there is a vast literature on the design of differentially private algo-
rithms for specific data analysis tasks, including substantial experimental work on comparing and
optimizing such algorithms across a wide range of datasets. For example, the recent work on DP-
Bench,? a framework for standardized evaluation of the accuracy of privacy algorithms, provides

tial Privacy Under Fire, PROCEEDINGS OF THE 20TH USENIX SECURITY SYMPOSIUM (2011), http://www.cis.upenn.
edu/ ahae/papers/fuzz-sec2011.pdf.

48Gee Kobbi Nissim, Sofya Raskhodnikova, & Adam Smith, Smooth Sensitivity and Sampling in Pri-
vate Data Analysis, PROCEEDINGS OF THE 39TH ACM SYMPOSIUM ON THEORY OF COMPUTING (2007),
http://doi.acm.org/10.1145/1250790.1250803.

49Gee Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, & Emmett Witchel, Airavat: Security
and privacy for MapReduce, PROCEEDINGS OF THE 7TH USENIX SYMPOSIUM ON NETWORKED SYSTEMS DESIGN
AND IMPLEMENTATION 297 (2010), http://www.usenix.org/events/nsdil0/tech/full_papers/roy.pdf; Prashanth
Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, & David E. Culler, GUPT: Privacy Preserving Data Analysis
Made Easy, PROCEEDINGS OF THE ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA 349
(2012), http://doi.acm.org/10.1145/2213836.2213876.

50Gee Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes Gehrke, & Lars Vilhuber, Privacy: Theory
Meets Practice on the Map, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING 277
(2008), http://dx.doi.org/10.1109/ICDE.2008.4497436.

518ee Darakhshan J. Mir, Sibren Isaacman, Ramén Céceres, Margaret Martonosi, & Rebecca N. Wright, DP-
WHERE: Differentially Private Modeling of Human Mobility, PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL
CONFERENCE ON B1G DATA 580 (2013), http://dx.doi.org/10.1109/BigData.2013.6691626.

525ee Ulfar Erlingsson, Vasyl Pihur & Aleksandra Korolova, RAPPOR: Randomized Aggregatable Privacy-
Preserving Ordinal Response, Proceedings of the 21st ACM Conference on Computer and Communications Security
(2014).

53 See Xiaogian Jiang, Yongan Zhao, Xiaofeng Wang, Bradley Malin, Shuang Wang, Lucila OhnoMachado, & Haixu
Tang, A community assessment of privacy preserving techniques for human genomes, BMC MEDICAL INFORMATICS
AND DECISION MAKING 14(Suppl 1) (2014), https://www.ncbi.nlm.nih.gov/pubmed/25521230.

% See Andrew Eland, Tackling Urban Mobility with Technology, Google Europe Blog (Nov. 18, 2015), http:
//googlepolicyeurope.blogspot.com/2015/11/tackling-urban-mobility-with-technology.html.

55 See Apple Press Info, Apple previews 108 10, the biggest iOS release ever (2016), https://www.apple.com/pr/
library/2016/06/13Apple-Previews-i0S-10-The-Biggest-i0S-Release-Ever.html.

56See Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, & Dan Zhang, Principled evaluation
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a thorough comparison of different algorithms and different ways of optimizing them.?”

8 Summary

Differential privacy provides a formal, quantifiable measure of privacy. It is established by a rich
and rapidly evolving theory that enables one to reason with mathematical rigor about privacy risk.
Quantification of privacy is achieved by the privacy loss parameter €, which controls, simultaneously
for every individual contributing to the analysis, the deviation between one’s opt-out scenario and
the actual execution of the differentially private analysis.

This deviation can grow as an individual participates in additional analyses, but the overall
deviation can be bounded as a function of € and the number of analyses performed. This amenability
to composition, or the ability to provable privacy guarantees with respect to the cumulative risk
from successive data releases, is a unique feature of differential privacy. While it is not the only
framework that quantifies a notion of risk for a single analysis, it is currently the only framework
with quantifiable guarantees on the risk resulting from a composition of several analyses.

The parameter ¢ can be interpreted as bounding the excess risk to an individual resulting
from her data being used in analysis (compared to her risk when her data are not being used).
Indirectly, the parameter € also controls the accuracy to which a differentially private computation
can be performed. For example, researchers making privacy-sensitive data available through a
differentially private tool may, through the interface of the tool, choose to produce a variety of
differentially private summary statistics while maintaining a desired level of privacy (quantified by
an accumulated privacy loss parameter), and then compute summary statistics with formal privacy
guarantees.

Systems that adhere to strong formal definitions like differential privacy provide protection
that is robust to a wide range of potential privacy attacks, including attacks that are unknown
at the time of deployment.”® An analyst designing a differentially private data release need not
anticipate particular types of privacy attacks, such as the likelihood that one could link particular
fields with other data sources that may be available. Differential privacy automatically provides a
robust guarantee of privacy protection that is independent of the methods and resources used by a
potential attacker.

Differentially private tools also have the benefit of transparency, as it is not necessary to maintain
secrecy around a differentially private computation or its parameters. This feature distinguishes
differentially private tools from traditional de-identification techniques which often require con-
cealment of the extent to which the data have been transformed, thereby leaving data users with
uncertainty regarding the accuracy of analyses on the data.

Differentially private tools can be used to provide broad, public access to data or data summaries
in a privacy-preserving way. Differential privacy can help enable researchers, policymakers, and
businesses to analyze and share sensitive data that cannot otherwise be shared due to privacy
concerns. Further, it ensures that they can do so with a guarantee of privacy protection that
substantially increases their ability to protect the individuals in the data. This, in turn, can
further the progress of scientific discovery and innovation.

of differentially private algorithms using DPBench, PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON
MANAGEMENT OF DATA (2016), http://dl.acm.org/citation.cfm?id=2882931.

57See also DPComp, https://www.dpcomp.org.

58We define privacy attacks as attempts to learn private information specific to individuals from a data release.
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Further reading

Differential privacy was introduced in 2006 by Dwork, McSherry, Nissim and Smith.?® This primer’s
presentation of the opt-out scenario vs. real-world computation is influenced by Dwork (2006),%°
and its risk analysis is influenced by Kasiviswanathan and Smith (2008).°! For other presentations
of differential privacy, see Dwork (2011) and Heffetz and Ligett (2014).°? For a thorough technical
introduction to differential privacy, see Dwork and Roth (2014).53

59Cynthia Dwork, Frank McSherry, Kobbi Nissim & Adam Smith, Calibrating Noise to Sensitivity in Private Data
Analysis, PROCEEDINGS OF THE THIRD THEORY OF CRYPTOGRAPHY CONFERENCE 265 (2006), http://dx.doi.org/
10.1007/11681878_14.

89Cynthia Dwork, Differential privacy, PROCEEDINGS OF THE 33RD INTERNATIONAL COLLOQUIUM ON AUTOMATA,
LANGUAGES AND PROGRAMMING 1 (2006), http://dx.doi.org/10.1007/11787006_1.

51Shiva Prasad Kasiviswanathan & Adam Smith, A note on differential privacy: Defining resistance to arbitrary
side information (2008), http://arxiv.org/abs/0803.3946.

52Cynthia Dwork, A firm foundation for private data analysis, 54 COMMUNICATIONS OF THE ACM 86 (2011),
http://doi.acm.org/10.1145/1866739.1866758; Ori Heffetz & Katrina Ligett, Privacy and data-based research, 28
JOURNAL OF ECONOMIC PERSPECTIVES 75 (2014), http://www.aeaweb.org/articles.php?doi=10.1257/jep.28.

53Cynthia Dwork & Aaron Roth, The algorithmic foundations of differential privacy, 9 FOUNDATIONS AND TRENDS
IN THEORETICAL COMPUTER SCIENCE 211 (2014), http://dx.doi.org/10.1561/0400000042.
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A Advanced topics

We conclude with some advanced topics for readers interested in exploring differential privacy
further. This section explores how differentially private analyses are constructed and how the noise
introduced by differential privacy compares to statistical sampling error, discusses the protection
differential privacy can provide for small groups of individuals, and introduces the concept of the
secrecy of the sample.

A.1 How are differentially private analyses constructed?

As indicated above, the construction of differentially private analyses relies on the careful introduc-
tion of uncertainty in the form of random noise. This section provides a simple example illustrating
how a carefully-calibrated amount of random noise can be added to the outcome of an analysis in
order to provide privacy protection.

Consider computing an estimate of the number of HIV-positive individuals in a
sample, where the sample contains n = 10,000 individuals of whom m = 38 are
HIV-positive. In a differentially private version of the computation, random noise
Y is introduced into the count so as to hide the contribution of a single individual.
That is, the result of the computation would be m’ = m +Y = 38 + Y instead of
m = 38.

The magnitude of the random noise Y affects both the level of privacy protection provided and
the accuracy of the count. For instance, a larger amount of noise would result in better privacy
protection and worse accuracy—and vice versa. The magnitude of Y depends on the privacy loss
parameter €, where a smaller value of € is associated with a larger noise magnitude.®*

When choosing the noise distribution, one possibility is to sample the random noise Y from a
normal distribution with zero mean and standard deviation 1/¢.%° Because the choice of the value
of € is inversely related to the magnitude of the noise introduced by the analysis, the mechanism
is designed to provide a quantifiable tradeoff between privacy and utility. Consider the following
example.

A researcher uses the estimate m’, as defined in the previous example, to approx-
imate the fraction p of HIV-positive people in the population. The computation
would result in the estimate

, m'  38+Y

P = T 10,000

54In some implementations of differential privacy, a second parameter denoted by the Greek letter & (delta) is also
used. The parameter ¢ controls the probability that a privacy breach event would happen, and hence should be kept
very small (e.g., one in a billion). To simplify the presentation here, we will assume that § is set to zero.

55More accurately, the noise Y is sampled from the Laplace distribution with zero mean and standard deviation
v/2/e. The exact shape of the noise distribution is important for proving that outputting m + Y preserves differential
privacy, but can be ignored for the current discussion.
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For instance, suppose the sampled noise is Y = 4.2. Then, the estimate would be

, 384+Y 38442 422

= = = = 0.42
10, 000 10, 000 10, 000 0.42%,

p

whereas without added noise, the estimate would have been p = 0.38%.

A.2 Two sources of error: sampling error and added noise

We continue with the example from the previous section. Note that there are two sources of error
in estimating p: sampling error and added noise. The first source, sampling error, would cause m
to differ from the expected p - n by an amount of roughly

|lm —p-n|~p n.

For instance, consider how the researcher from the example above would calculate the sampling
error associated with her estimate.

The researcher reasons that m’ is expected to differ from p - 10,000 by roughly

/P - 10,000 ~ /38 ~ 6.

Hence, the estimate 0.38% is expected to differ from the true p by approximately

6

10,000 L0,

even prior to the addition of the noise Y by the differentially private mechanism.

The second source of error is the addition of random noise Y in order to achieve differential
privacy. This noise would cause m’ and m to differ by an amount of roughly

Im’ —m| ~ 1/e.
The researcher in the example would calculate this error as follows.

The researcher reasons that, with a choice of € = 0.1, she should expect |[m’ —m| ~

1/0.1 = 10, which can shift p’ from the true p by an additional 101800 =0.1%.

Taking both sources of noise intro account, the researcher calculates that the dif-
ference between noisy estimate p’ and the true p is roughly

0.06% + 0.1% = 0.16%.

Because the two sources of noise are statistically independent, the researcher can
use the fact that their variances add to produce a slightly better bound:

|’ — p| ~ +/0.062 +0.12 = 0.12%.
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Generalizing from this example, we find that the standard deviation of the estimate p’ (hence
the expected difference between p’ and p) is of magnitude roughly

Ip" —p| = v/p/n+ 1/ne,

which means that for a large enough sample size n the sampling error would far exceed the noise
added for the purposes of privacy protection.

Note also that the literature on differentially private algorithms has identified many other noise
introduction techniques that result in better accuracy guarantees than the simple technique used
in the examples above. Such techniques are especially important for more complex analyses, for
which the simple noise addition technique discussed in this section is often sub-optimal in terms of
accuracy.

A.3 Group privacy

By holding individuals’ opt-out scenarios as the relevant baseline, the definition of differential
privacy directly addresses disclosures of information localized to a single individual. However, in
many cases, information may be shared between multiple individuals. For example, relatives may
share an address or certain genetic attributes.

How does differential privacy protect information of this nature? Consider the opt-out scenario
for a group of k individuals. This is the scenario in which the personal information of all k
individuals is omitted from the input to the analysis. For instance, John and Gertrude’s opt-out
scenario is the scenario in which both John’s and Gertrude’s information is omitted from the input
to the analysis.

Recall that the parameter e controls by how much the real-world scenario can differ from any
individual’s opt-out scenario. It can be shown that the difference between the real-world and
opt-out scenarios of a group of k individuals grows to at most

k-e.

This means that the privacy guarantee degrades moderately as the size of the group increases.
Effectively, a meaningful privacy guarantee can be provided to groups of individuals of a size of up
to about

k~1/e

individuals. However, almost no protection is guaranteed to groups of
k~10/e
individuals or greater. This is the result of a design choice to not a priori prevent analysts using
differentially private mechanisms from discovering trends across moderately-sized groups.
A.4 Amplifying privacy: Secrecy of the sample

As discussed in Section 6, differential privacy limits accuracy, and the extent of the inaccuracy
depends inversely on the privacy parameter €. Sometimes, the dataset used as input to a differ-
entially private mechanism is a random sample from a large population, as in the following example.
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Alice, a researcher at State University, collected personal information from individ-
uals in a study exploring the relationship between coffee consumption, economic
status, and health status. The personal information she collected in this study is
based on a uniformly random and secret sample of 3,000 individuals living in the
city of Boston.

Because Alice’s study uses a uniformly random sample,°® and, furthermore, the identities of
the participating individuals are kept confidential, Alice can apply a theorem in differential privacy
known as “secrecy of the sample.” This theorem effectively allows for a savings in the privacy
parameter € that corresponds to the ratio of sizes between the dataset and the larger population.
For instance, for a population the size of the city of Boston, approximately 600,000, the savings in
e can be 3,000/600,000 = 0.05. This means that greater accuracy, corresponding to a 0.05 decrease
in epsilon, can be provided for the differentially private analyses performed on the data from Alice’s
study.

This topic comes with two notes of caution. First, sampling from the sampling frame is usually
not uniform in practice. Alice should therefore be conservative in her estimate of the underlying
population. For example, if Alice draws her survey sample from a Boston phonebook, then she
should take the underlying population size to be no larger than the number of Boston residents who
are listed in the phonebook. Second, the effective decrease in € is conditioned on the identities of the
sampled individuals being kept secret. This may be a hard condition to maintain in practice. For
example, if Alice sends surveyors to respondents’ homes, then their neighbors may learn that they
participated in Alice’s research study. A more subtle consideration is that secrecy of the sample
also requires the identities of individuals who have not been sampled to be kept secret.

56By wniformly random we mean that each individual in the sampling frame is selected to be in the sample with
equal probability and independently of the other individuals in the sampling frame.
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