Towards Differentially Private Inference on Network Data


Alexander Koujianos Goldberg. 3/2018. “Towards Differentially Private Inference on Network Data.” Applied Mathematics. Thesis Type: Undergraduate thesis.


Statistical analysis of network data, while popular in a broad range of fields, can also be highly problematic from a privacy standpoint. In this thesis, we study privacy-preserving inference on network data using the rigorous notion of differential privacy. We propose new methods for differentially private inference using a common class of models known as Exponential Random Graph Models (ERGMs). The goal of our work is to accurately estimate the parameters of an ERGM applied to a network dataset, while offering meaningful privacy guarantees to participants. We propose methods that provably guarantee differential privacy at two different granularities: edge-level privacy, which protects the privacy of any single relationship in the network and node-level privacy, which protects all of the relationships of a participant. Specifically, using the framework of "restricted sensitivity," we take advantage of the sparsity of real-world networks to perturb data much less than prior work while guaranteeing differential privacy. We empirically evaluate the accuracy of inference in a series of experiments on both synthetic networks and a real network dataset. Experimental results suggest that our proposed methods enable accurate inference under meaningful privacy guarantees in settings where current methods do not, moving us closer to the goal of useful differentially private statistical modeling of network data.