Privacy Integrated Data Stream Queries

Lucas Waye

Harvard University

Iwaye@fas.harvard.edu

Abstract

Research on differential privacy is generally concerned with
examining data sets that are static. Because the data sets do
not change, every computation on them produces “one-shot”
query results; the results do not change aside from random-
ness introduced for privacy . There are many circumstances,
however, where this model does not apply, or is simply in-
feasible. Data streams are examples of non-static data sets
where results may change as more data is streamed. Theo-
retical support for differential privacy with data streams has
been researched in the form of differentially private stream-
ing algorithms. In this paper, we present a practical frame-
work for which a non-expert can perform differentially pri-
vate operations on data streams. The system is built as an
extension to PINQ (Privacy Integrated Queries), a differen-
tially private programming framework for static data sets.
The streaming extension provides a programmatic interface
for the different types of streaming differential privacy from
the literature so that the privacy trade-offs of each type of
algorithm can be understood by a non-expert programmer.

Categories and Subject Descriptors H.3 [Online Informa-
tion Services]: Data Sharing

Keywords Differential privacy; programming languages;
privacy

1. Introduction

With the increase of big data services where personal user
information is collected and stored in large quantities, the
need for privacy is very important. Differential privacy [2] is
a particularly strong definition of privacy that has withstood
many known forms of privacy attacks. Differential privacy
enforces that not much can be learned from a particular par-
ticipant’s data. To help make differential privacy more ac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PSP ’14, October 21, 2014, Portland, OR, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2296-6/14/10. .. $15.00.
http://dx.doi.org/10.1145/2687148.2687150

cessible, programming systems have been developed to help
non-experts leverage the guarantees of differential privacy.
Most of the research and techniques of differential privacy
have been with respect to a single non-changing database.
This precludes many environments where static data sets are
not feasible. Situations where we would like to avoid per-
forming queries on the entire data set include:

e The data is coming in over a long period of time and we
would like to observe intermediate query results.

e [t is practically infeasible to hold the entire data set in
memory at one time.

e We would like to offer privacy guarantees against in-
trusions into the system running the computation (e.g.
an intruder breaks into the system accessing the private
database).

To address these issues, many have looked at differential
privacy for streaming algorithms. Streaming algorithms can
store less state than the entire database by summarizing rel-
evant features of the data, produce intermediate outputs, and
also in some cases protect against unannounced intrusions
into the system. In this paper, we look at how differentially
private streaming algorithms can be used by a non-expert in
real-world applications where privacy is important.

1.1 Private Twitter

We are specifically motivated by scenarios where data is
plentiful and generated continuously, but where privacy is
still a concern. These scenarios come up in many places. For
example in Dwork et al., a website that tracks HIN1 symp-
toms was described where the intention was to analyze ag-
gregated information, possibly to track its growth or spread
[3]. The privacy requirements of the web app were explored
and potential privacy mechanisms were identified.

Consider another example web app with privacy expecta-
tions: a theoretical alternative to the popular social media
website Twitter where Twitter messages (fweets) are vis-
ible to only a user’s followers but where we would still
like to analyze aggregate message patterns in a privacy-
preserving way. In other words, a visitor can only see trends
about tweets rather than specific tweets from specific users.
Queries include examining topics that receive many tweets,
perhaps specific to certain geographic areas. Other queries

might include determining how many individuals are tweet-
ing about certain topics. (Note these are different queries as
the latter de-duplicates tweets from the same user.)

The need for privacy is apparent: users should be guar-
anteed that their tweets are only viewable to their followers
so that they cannot be identified by outsiders, but the service
may still like to compute aggregate information using their
tweets. Differential Privacy is a good notion of privacy for
this setting as any individual user or tweet cannot be singled
out and identified.

Depending on the types of queries we are interested in,
we find that we need to adjust our definitions of privacy
to accommodate many different types of privacy, each with
their own trade-offs:

¢ One may want their query results to be insensitive to cor-
related events. For example, a particular user frequently
tweeting about a specific topic should not heavily influ-
ence the observed query results.

® One might also have different goals in mind for the trade-
off between accuracy and responsiveness. That is, how
frequently we get an intermediate result from the algo-
rithm. One could do daily batches of the events or we
may want updated query results every time an event oc-
curs.

e Another important trade-off includes the amount of space
the algorithm uses and somewhat related to that is how
much privacy the algorithm preserves internally. In other
words, how is a user’s privacy affected if the algorithm’s
internal state is observed or leaked? For example, an
algorithm that stores the last 100 events of a data stream
could leak all information relating to those events if its
internal state was observed.

These factors impact certain characteristics about an algo-
rithm, including: privacy guarantees to each user, output be-
havior, and internal state of the algorithm. Related work pro-
vides theoretical results for these tradeoffs in the form of
specialized algorithms that give various guarantees an an-
alyst or data owner might desire. In order to be useful to
a non-expert, the salient properties of each streaming al-
gorithm should be clear in a unified framework so that the
best algorithm can be chosen for the given constraints (e.g.
privacy level or result accuracy) without regard to the algo-
rithm’s implementation.

1.2 Contributions

We extended the PINQ (Privacy Integrated Queries) plat-
form [7] to support differentially private streaming algo-
rithms'. Streaming PINQ provides a basis for handling
streaming data, which was not readily available in PINQ or
its underlying system for handling data (described later). The
data analyst can program against Streaming PINQ in an in-
tuitive way, similar to PINQ, but instead of receiving results

! Code is available at http://git.io/jeWc2Q

directly after making a query, a handle to a streaming algo-
rithm corresponding to the query is returned. The streaming
algorithm has a common interface, but its behavior can vary
depending the properties of the algorithm. We have imple-
mented five different differentially private streaming algo-
rithms. Our goal was not for a complete library based on the
literature, but rather to get a good representative sample of
different types of streaming algorithms that span the trade-
offs of characteristics identified in this paper. We primarily
focused on how the platform would handle the interaction
of various types of streaming algorithms while maintaing an
intuitive PINQ-like interface for the user of the platform.

2. Background

In this section we describe the definitions that will be used to
reason about the privacy guarantees of the system. We will
also describe the underlying platform, PINQ, that provides
mechanisms for privately querying static data sets.

2.1 Differential Privacy

Differential privacy enforces that a resulting output distribu-
tion does not change much based on a particular individual’s
data. In particular, we use the following definition of differ-
ential privacy.

DEFINITION 2.1 (Differential Privacy). A randomized al-
gorithm M provides e-differential privacy if for any two
adjacent input data sets A and B, and any set of possible
outputs S of M,

Pr[M(A) € S] < e Pr[M(B) € S]

Intuitively, this definition states that the outputs of differ-
entially private mechanisms should not be sensitive to small
changes in the input data sets. For example, a single change
in an input data set should not affect the output of a differ-
entially private mechanism very much. From a user’s per-
spective, the mechanism’s results will not change very much
based on their participation in the data set. As a result, a user
does not have to worry about their (possibly sensitive) infor-
mation being identified based on the outputs of the mecha-
nism. Other mechanisms, such as the removal of Personally
Identifiable Information (e.g. name, social security number,
etc.) do not have this property. Sweeney has shown that par-
ticipants of a data set can be identified from looking at the
output data set (original data set with Personally Identifiable
Information removed) [11]. The framework presented in this
paper is based on differentially privacy (as defined in Defi-
nition 2.1) as it is a particularly strong notion of privacy that
is resistant to many known privacy attacks.

The sensitivity of a mechanism is based on adjacency
of the inputs and outputs. In most settings where the input
data sets are databases x", adjacency would be databases
where just one row is changed. This form of adjacency
implies row-level privacy (i.e. just one row of a database

10

is changed). Note that in a streaming setting, this may not
capture an intuitive notion of privacy, so we will present
different definitions of adjacency later.

An important concept in programming is the ability to
easily compose operations together to form more compli-
cated operations that can be reasoned about in a predictable
way. Differential privacy is compatible with this concept. In
particular, any sequential composition of differentially pri-
vate computations implies differential privacy.

THEOREM 2.2 (Composition). If My is an €;-differentially
private algorithm and My is an ex-differentially private al-
gorithm, then the sequential composition of M1 (X) fol-
lowed by My (X) provides (€1 + €2)-differential privacy.

A corollary of Theorem 2.2 is that a sequence of differ-
entially private algorithms provides privacy equal to the sum
of their € values. Our programming framework makes use of
composition to handle multiple streaming algorithms oper-
ating on the same data.

Another important theorem which we make use of in-
volves operating over disjoint input sets. If differentially pri-
vate algorithms are operating on disjoint subsets of the input
data, then we can improve our guarantees.

THEOREM 2.3 (Disjointness). If My and My are e-differentially

private algorithms and X1 and Xgo are disjoint subsets of
the input domain X, then M1(X1) followed by Ma(X2)
provides e-differential privacy.

Intuitively, if algorithms are operating on separate data in
parallel, then there is no further privacy lost. This theorem
is useful when the input database contains many different
properties that an analyst may want to explore independently
without using up too much privacy from using composition.

2.2 Privacy Integrated Queries

var tweets = ReadAllSavedTweets(”tweets. txt”);
var agent = new PINQAgentBudget(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);
double tweetsFromNY = data
.Where(tweet => tweet.Location. State == ”"NY”)
.NoisyCount (1.0);

Console . WriteLine ("Tweets from NY: 7 +
tweetsFromNY) ;

Figure 1. PINQ program that provides a differentially pri-
vate (¢ = 1.0) count of the number of tweets from New
York.

There are a few differential privacy programming frame-
works available. PINQ [7] is an extension to LINQ (Lan-
guage Integrated Query) [8] which provides a programmer
with a differentially private view of a given LINQ data
source. In the basic feature set, it provides functionality to
add Laplace random noise in accordance with an internal

privacy budget on the data set that satisfies differential pri-
vacy. The privacy budget is enforced via an agent that is
attached to the private query mechanism and is notified ev-
ery time a differentially private operation takes place. The
PINQueryable object is responsible for adding the noise
and consulting the agent to check if the privacy budget is
exceeded. As a result, when a developer wants to implement
new differentially private primitive operations, it is the re-
sponsibility of the developer to prove its correctness. A user
of the system must trust the underlying implementation of
each PINQueryable implementation. The benefit is that it is
very easy to extend the system, but introduces possible un-
soundness in the system if a PINQueryable implementation
is unsound. Other systems have a smaller trusted base and
can enforce the privacy guarantees of new private functions
(e.g. [9D).

Figure 1 shows an example PINQ program in the Pri-
vate Twitter example. It loads all the tweets (stored in
"meets.), then constructs a differentially private queryable
object (named daa) where € = 1.0. Then a query is per-
formed on the data source which will yield a noisy version
of the true number of tweets originating from New York.
Note that the privacy budget of the data set in “tweets.txt”
has been completely consumed, so no further queries should
be performed on that data to preserve privacy.

2.3 Streaming Algorithms

In this paper, we are interested in streaming algorithms. The
key difference between streaming algorithms and batch algo-
rithms is that streaming algorithms do not have access to the
data all at once. Instead, the data is coming through a stream
one event at a time. Dwork et al. researched this setting and
came up with various differentially private algorithms one
could use with some extensions to the traditional definition
of differential privacy [4].

Event-Level vs. User-Level Privacy An important change
to support streaming differential privacy required re-defining
the notion of adjacency for streams. Since a stream can be
unbounded, the classic definition of row-level adjacency was
not sufficient. Dwork et al. distinguish between two types of
adjacency that give rise to two types of privacy: event-level
privacy and user-level privacy. Intuitively, in event-level pri-
vacy one can think of adjacency between two streams as dif-
fering in just one event. In user-level privacy, the user could
contribute to many events, so an adjacent stream would dif-
fer in all events a particular user contributed to. To formalize
this notion of adjacency, we use the following definition.

DEFINITION 2.4 (X-Adjacent Data Streams). Data streams
(or stream prefixes) S and S’ are X -adjacent if they differ
only in the presence or absence of any number of occur-
rences of a single element x € X. In other words, if all
occurrences of x are deleted from both streams, then the
resulting streams should be identical.

Definition 2.4 gives rise to event-level and user-level pri-
vacy. In user-level privacy, users are distiguished by their
values in the stream. That means that values in the stream
need to correspond to a particular user (e.g. user row identi-
fiers or unique names for each user).

Output Behavior Another important consideration with
streaming algorithms is output behavior. Some streaming al-
gorithms are single output algorithms [4]. That is, they can
process a stream for an indefinite period of time, but once
they receive a signal to output, they give one output and then
need to be reinitialized. In a later publication, Dwork et al.
provide a generalized transformation that can take a differ-
entially private streaming algorithm that produces only one
output to one that can produce continuous outputs [3]. It is
important to note, though, that an upper bound on the num-
ber of events to process must be given as a parameter to the
transformation upfront. Chan et al. present a differentially
private counter with non-trivial error that does not require
an upper bound on the number of events to process [1].

Pan-Privacy A nice characteristic of streaming algorithms
is their ability to summarize large amounts of data in a size
less than that of the stream. However, it is possible that the
internal state of the algorithm may not be differentially pri-
vate. Consider a private streaming counter that outputs noise
over the true count while internally maintaining the true
count. If an intrusion into the system were to occur, the algo-
rithm would not maintain privacy as it leaked the true count.
An algorithm that can maintain privacy under an intrusion is
said to be pan-private [4]. It is also important to note how
many intrusions the algorithm can withstand. Impossibility
results are given for some finite-state algorithms (in partic-
ular, estimating user density in a stream) against more than
one unannounced intrusion.

The above properties of streaming algorithms — which
are in general not applicable to non-streaming algorithms
— can be stated independently of each other. It is not clear
which properties are advantageous over others; it is very
dependent on the needs of the analyst and data owner. As
a result, the Streaming PINQ framework handles each of
these properties separately. For example, we provide a single
output streaming algorithm as well as a continuous output
streaming algorithm (at the expense of accuracy) so that the
data analyst can pick the algorithm suitable to their particular
needs. The only requirement that we make on algorithms is
that they characterize their behaviors according to the above
properties (i.e. event-level vs. user-level privacy, its output
behavior, and its level of pan-privacy).

3. Streaming PINQ

Streaming PINQ is an extension to PINQ that supports
streaming differentially private algorithms. It is imple-
mented in roughly 1,000 lines of C# code. The framework
is meant to have the same “look and feel” as PINQ. Many

10

11

14

16

18

19

of the classes are entirely new and do not rely on the PINQ
object model directly, but the same coding style is adopted
for the programmer’s ease of use and understanding.

To support streaming data, we designed a streaming data
provider interface. The interface is extendable so that data
providers can provide access to their own streams (e.g. net-
work streams, file streams, etc.). To provide privacy, the data
stream is wrapped around a StreamingQueryable<T> ob-
ject that controls access to the events in the stream (in a
similar fashion to PINQueryable<T> in PINQ). The wrap-
per object supports various transformations on the data. The
underlying data cannot be accessed except through a dif-
ferentially private streaming algorithm. The wrapper object
consults an agent to determine whether it is safe to run
a requested streaming algorithm. We extended the tradi-
tional PINQAgent class to distinguish between user-level
and event-level private algorithms. PINQ did not have to
distinguish between different notions of privacy that al-
gorithms provided so it could have just one implemen-
tation to check access. When requesting a differentially
private algorithm on the (possibly transformed) data, the
StreamingQueryable<T> wrapper object returns a handle
to the streaming algorithm for use by the programmer. The
supported operations include: fetching the output of the al-
gorithm, checking the number of events it has processed, and
to start and stop it. Streaming algorithms are implemented
on top of a base class StreamingAlgorithm<T>. Imple-
mentations of streaming algorithms must be trusted to be
implemented correctly, as the platform requires that classes
that extend StreamingAlgorithm<T> provide the privacy
guarantees.

3.1 Streaming PINQ By Example

// The private source of all tweets
var tweetData = new AllTweetsStreamFireHose () ;

// Get differentially private view of tweetData
var tweets = new StreamingQueryable<Tweet>(
tweetData , new UserLevelPrivacyBudget(1.0));

// Find users discussing #topic
var tweetedTag = tweets
.Where(tweet => tweet.Message. Contains ("#rag”))
.Select(tweet => tweet.User)
. UserDensityContinuous (0.5, AllUsers (), 10000);
// Every time a density is made,
tweetedTag.OnOutput = (d =>
Console. WriteLine (" Percent of users that 7 +
"tweeted #tag: 7 + d));

print it

// Process 10000 events and stop
tweetedTag . ProcessEvents (10000) ;

Figure 2. example streaming PINQ program

Figure 2 shows an example streaming PINQ program
for a setting similar to the one discussed in Section 1.1.
The program will output an estimate of the fraction of

users that have included “#tag” in their tweet every time
a tweet is seen, and then stop outputting estimates after
10,000 tweets. Line 2 instantiates a streaming data provider.
tweets wraps the private tweet data from the stream with
the UserLevelPrivacyBudget agent (discussed in Section
3.3). Lines 9 to 11 transform the data to filter and select only
users that are tweeting about a particular topic (“#tag”). Line
12 selects an algorithm that outputs an estimated user den-
sity (fraction of users who have appeared at least once in
the stream) and makes an outputs at every event seen in the
stream. The first parameter specifies the intended e value to
use, the second provides the algorithm with the data uni-
verse of users (a range of all possible users in the system),
and the third parameter gives an upper bound on the number
of events that can be processed. Line 15 assigns the output
callback to a function which writes the current output to the
console. Line 20 blocks the program and waits until 10,000
events have been processed, at which point the streaming al-
gorithm stops listening for events. The next sections describe
each component of the streaming PINQ implementation.

3.2 Streams

public abstract class StreamingDataSource<T>
Action<T> EventReceived { get; set; }

StreamingDataSource<I> filter (
Func<T, bool> predicate);

StreamingDataSource <U> map<U>(
Func<T, U> mapper);

Figure 3. abstract base class for streaming data

The StreamingDataSource<T> class provides the basis
for streaming data. It acts as a wrapper for a C# delegate with
extra functionality provided for filtering and mapping the el-
ements of the stream. Implementers of new data streams can
extend this class and invoke the EventReceived delegate
when a new event is received. Our implementation includes
streaming data source implementations for reading from the
console, generating random numbers, and also a functional
data stream that has outputs dependent on the number of
events sent.

The filter function behaves like an option monad with
null values. In a stream setting, it is possible for events not
to happen but a value should be given to the algorithm for
that timestep. Dwork at al. referred to these types of events
as the “nothing happened” element [3]. This element is en-
coded as null. So if a null event is received in the filter, it
is immediately passed on to the target stream. Otherwise the
filter predicate is run and if the filter matches then the event
is passed to the target stream, otherwise null is passed. The
same behavior is implemented for map, though the trans-

formed data is passed to the target stream rather than the
predicate check.”

3.3 Streaming Agents

public abstract class PINQStreamingAgent :
PINQAgent

{
bool ApplyEventLevel(double eps);
double UnapplyEventLevel (double eps);
bool ApplyUserLevel (double eps);
double UnapplyUserLevel (double eps);

Figure 4. streaming agent that distinguishes between event-
level and user-level privacy

Agents are responsible for enforcing that e-differential
privacy is preserved for the stream. Unlike PINQAgent, there
are two notions of ¢ for streaming algorithms: one associated
with event-level privacy and another associated with user-
level privacy. Since the notion of user-level privacy is based
on X-adjacency from Definition 2.4, we can see that event-
level privacy is a special case of user-level privacy where
the stream length is 1. As a result, if an e-event level pri-
vate algorithm runs for ¢ time steps, it is te-user level private.
Also note that user-level privacy is a much stronger notion of
event-level privacy. If an e-user level private algorithm runs
for ¢ time steps, it is still just e-event level private. Because
there is a way to relate these algorithms, they can be used
concurrently on the same stream. It should be noted, though,
that user-level private algorithms have a much stronger defi-
nition of privacy so running an event-level private algorithm
for even a short time has a very dramatic impact on the
stream’s user-level privacy.

The agent dynamically checks its budget every time an
event is received. Since algorithms can attach (start re-
ceiving events from the stream) and detach (stop receiv-
ing events from the stream) from listening at any time, the
agent is notified whenever an algorithm begins listening and
when it stops listening. It is the responsibility of the agent
to decide what to do when these events occur in order to
preserve differential privacy. When an algorithm attaches
to the stream, the agent is notified via ApplyEventLevel
or ApplyUserLevel depending on the algorithm’s privacy
type it respects. The agent can return true allowing the algo-
rithm to safely listen, or false if the algorithm should not be
allowed to listen to events. When an algorithm detaches from
the stream, the agent is notified via UnapplyEventLevel or
UnapplyUserLevel. The agent will return how much pri-
vacy has been returned to the stream for future events.

From the PINQStreamingAgent base class, there are
two inheriting classes that enforce either user-level privacy

2 Note that the filter function is just a specialized map function. That is,
filter can be implemented as map (input => predicate(input) ?
input : null)

or event-level privacy. In the user-level privacy agent, pri-
vacy can never be returned to the stream, since the notion of
adjacency extends to the entire stream, even after an algo-
rithm stops listening. In other words, the algorithm has al-
ready learned something about the user, it can not “unlearn”
it. On the other hand, when viewing the stream with event-
level privacy, intuitively the agent only needs to make sure
that at most € is “learned” for each event. As a result, when
an algorithm detaches it allows other algorithms to run af-
terwards with up to the entire initial privacy budget. The
logic encapsulating these changes in € is encoded in partially
implemented abstract classes PINQEventLevelAgent and
PINQUserLevelAgent.

We follow the same pattern as PINQ in establishing a
budget that is defined by the data stream owner. The data
stream owner provides the maximum amount of € that
can be used and also the type of privacy (event-level or
user-level). Any algorithm or combination of algorithms
that exceeds that level of ¢ is stopped. There are budget-
based agents for both user-level privacy and event-level pri-
vacy named PINQUserLevelAgentBudget (which extends

PINQUserLevelAgent)and PINQEventLevelAgentBudget

(which extends PINQEventLevelAgent).

3.4 StreamingQueryable

The StreamingQueryable<T> class is the wrapper around
a private stream in much the same way as PINQueryable<T>
is in PINQ. It supports transformations on the data and in-
stantiating streaming algorithms on the private data. It also
keeps track of active streaming algorithm subscribers to the
private stream data. The supported transformation operators
are: Where, Select, and Partition. The first two transfor-
mations simply return a new StreamingQueryable with
a filtered or mapped input data stream. The Partition
transformation takes a set of possible keys and a key map-
ping function and produces a dictionary of keys mapping
to their designated StreamingQueryable object. Figure 5
shows an example usage of the Partition transformation.
Note that we make use of Theorem 2.3 to enforce that the
amount of € needed is the maximum e used by the parti-
tioned queryable objects. This € is enforced in a similar way
to PINQ through a specialized agent that tracks the used ¢
for each partitioned StreamingQueryable, as described in
the previous section. In the case of Figure 5, an € value of
1.0 on the original wrapper (tweets) would suffice.

A StreamingQueryable object tracks which algorithms
are actively receiving events. It is the only part that di-
rectly receives events from the private stream (through the
EventReceived delegate described in Section 3.2).

Every time an event is received, the StreamingQueryable

object notifies its agent of all event-level algorithms that are
attached and their corresponding e values. If successful, the
event is passed to every streaming algorithm for processing.
After each algorithm has processed the event, the agent is
notified that all event-level algorithms have detached. Note

var tweets = new StreamingQueryable<Tweet>(
tweetData, new EventLevelPrivacyBudget(1.0));

var tweetsByState = tweets. Partition (
AllStates (), tweet => tweet.Location. State);

var countsByState = new Dictionary<
State , StreamingAlgorithm<State >>();

foreach (State state in tweetsByState.Keys) {
countsByState [state] = tweetsByState[state]
.BinaryCount (1.0, 10000);
countsByState[state]. StartListening () ;

}

Console. WriteLine ("By State in last 10k events:”)
foreach (State state in tweetsByState.Keys) {

// Ensure 10,000 events have been processed
countsByState [state]. ProcessEvents (10000);
Console. WriteLine (state + ”: ” +

countsByState [state]. LastOutput);

Figure 5. an example of partitioning disjoint events

that event level private algorithms are attached and detached
(from the perspective of the agent) after every event so as
to handle the case where user-level privacy is desired. Intu-
itively, this procedure simulates a user-level algorithm com-
ing online at every time step, which is intuitively what is
happening when an event-level private algorithm is used on
a data stream that must respect user-level privacy.

For user-level private algorithms, the StreamingQueryable

object only needs to notify the agent when they first regis-
ter to receive events or when they finally unsubscribe from
events on the stream. This book-keeping is handled in the
StreamingQueryable object as it has direct access to the
agent. It also frees streaming algorithms from needing to im-
plement this logic. As a result, streaming algorithms can rea-
son locally about their privacy and StreamingQueryable
reasons about the overall privacy of many algorithms run-
ning on the same data stream.

3.5 Streaming Algorithms

public abstract class StreamingAlgorithm<T>

Action<double> OnOutput { get; set; }
int EventsSeen { get; protected set; }
bool IsReceivingData { get; protected set; }

void ProcessEvents(int n, bool stopAfterwards);
abstract double GetOutput();
double? LastOutput { get; protected set; }

virtual void StartReceiving();
virtual void StopReceiving():

abstract void EventReceived (T data);

Figure 6. streaming algorithm base class

The StreamingAlgorithm<T> classes provide the mech-
anism for streaming differential privacy. The base class pro-

vides functionality to interact with the StreamingQueryable
object to receive events. The base class also has functionality
to get outputs made by the algorithm. This includes a con-
venience blocking mechanism that waits until a given num-
ber of events are processed. This method is implemented
using a Semaphore. Subclasses generally only need to im-
plement the EventReceived method to process the event.
Algorithms differentiate between being user-level private
and event-level private by extending the appropriate classes.
That is, the type is used to differentiate between user-level
private and event-level private algorithms.

We implemented five algorithms that span various char-
acteristics, summarized in Figure 7:

1. Buffered Average batches the outputs it receives and
then invokes PINQ’s NoisyAverage on the buffered data
when an output is requested.

2. Randomized Response Count will perform a randomized
response on an event actually being seen so it holds no
information about prior events on the stream. As a result,
it has no private internal state so it is pan-private and
works on an unbounded number of events.

3. Binary Counter maintains log 7 number of non-noisy
partial sums (hence why it is not pan-private) and adds
noise to each partial sum for output.

4. User Density creates a random sample of candidate users
with their probability of being included in the count %
When a user that is in the random sample is seen, the
probability of being included in the count is re-drawn
with a probability % + 3. The accuracy depends on how
large the initial data universe sample is (size is computed
in terms of «).

5. For the continuous bounded output case of User Den-
sity, the general transformation given in Dwork et al. was
applied to User Density [3]. This transformation keeps
a threshold of when to output a new result based on
how much the original algorithm varies. If the algorithm
varies frequently, accuracy is lost. For the User Density
algorithm, the error after this transformation was calcu-
lated as being 6.

For a more detailed description of the algorithms, please
see the referenced papers in Figure 7.

3.6 Limitations and Future Work

This framework is designed for non-adversarial users. There
are no formal checks on an implemented algorithm’s adver-
tised guarantees. For example, an implemented algorithm
may be marked as pan-private but the implementation may
be buggy and does not actually satisfy pan-privacy. Ad-
ditionally, there are known attacks against PINQ [5] that
Streaming PINQ is also susceptible to. For example, the
Where method in StreamingQueryable accepts arbitrary
C# predicates that can in general have side effects. As a re-

sult, an adversary could use a covert channel like timing to
discover information about the private data (e.g. run a very
long loop when encountering a row of interest).

In the cases where a data owner may prefer everyone
to use only algorithms that provide a certain property (e.g.
pan-privacy), one could imagine a scenario where a data
analyst mistakenly uses an algorithm that does not have the
data owner’s desired properties. We leave it for future work
to extend the system to enforce an algorithm’s properties,
much in the same way that user-level and event-level privacy
is enforced. One could imagine a more granular agent that
takes in the streaming algorithm object itself and compares
that to a whitelist provided by the data owner, or (more
ambitiously) even dynamically checks its code to assert its
algorithm’s advertised properties.

Another important caveat to streaming differentially pri-
vate algorithms is that they expose the timing of when events
are processed. Although implicit in the literature, one might
want to hide the timing of events as it could reveal additional
information about the event. For example, in analyzing a
stock trading stream, a stock trade being made after nor-
mal trading hours may reveal additional information about
the trade (e.g. that the trader is likely an institutional trader
with special access to the exchange). These events could be
mitigated by a time-boxed stream that buckets events into
windows, or randomly dispersed into the stream if order was
not important. This mechanism could be easily added to the
streams described in Section 3.2, though it is unclear what
the formal advantages are with this approach with respect to
differential privacy.

This paper does not evaluate the performance and useful-
ness of the platform on actual data sets. Rather, it presents a
design that extends a popular differential privacy program-
ming framework with streaming in a modular way. We in-
corporated a few of the different notions of streaming differ-
ential privacy to show how new definitions of privacy can be
added, but our aim was not to be exhaustive. For example, a
generalization of event-level privacy called w-event privacy
was not implemented in this framework [6]. We leave it as
future work to evaluate this framework on real data sets. We
hope that this work can serve as a practical benchmarking
platform for experimenting with new streaming private al-
gorithms and definitions.

4. Related Work

Fuzz, a programming system developed by Reed and Pierce,
implements a language that guarantees differential privacy
[9]. That is, any program written in Fuzz is differentially
private. This makes it difficult, though, to introduce new
differentially private primitives (such as dynamic data) into
the system, as it would require modifying the language and
compiler. It is not clear to the authors of this paper how Fuzz
could be modified to support streaming data.

Algorithm Privacy Number of Outputs Pan-Private Additive Error
1. Buffered Average* Event-Level Single No O(1)

2. Randomized Response Count* [1] Event-Level Continuous Unbounded Yes O(WT)

3. Binary Counter [1] Event-Level Continuous Bounded No O((log T)*®)
4. User Density [4] User-Level Single Yes awp.1—-0
5. User Density Continuous [3, 4] User-Level Continuous Bounded Yes 6awp.1—-0

Figure 7. Implemented Streaming Algorithms. Note that € is removed from accuracy measurements. o and (3 are user-defined
parameters to the algorithm. Algorithms with an asterisk (*) denote known optimal accuracy for their listed properties. Buffered
Average is simply adding just enough Laplace noise to achieve differential privacy. Randomized Response Count’s error
matches the theoretical lower bound from Dwork et al.’s negative result [3], given its properties (pan-private and continuous

observation). Pan-Privacy is with respect to just one intrusion.

Airavat, another differentially private programming sys-
tem, is a MapReduce based system that uses differentially
private composition of computation [10]. The implementa-
tion of the system is based on Hadoop. This system is diffi-
cult to extend for streaming as Hadoop has been classically
used for batch processing. Streaming data support in Hadoop
is currently not well supported and would require much ef-
fort to incorporate into the Airavat system.

Streaming PINQ is built as an extension to PINQ. It only
supports non-streaming data sets. This work extends it to
support streaming data sets. We chose to extend PINQ to in-
corporate streaming as it allows easy extensibility, but places
the proof burden of new mechanisms on the developer. PINQ
is also developed as a library written in C#, a general purpose
programming language, which allowed us to easily create a
programmatic abstraction for streaming data that could be
easily incorporated into the existing PINQ platform.

5. Conclusions

This paper describes an extension to PINQ that supports
differentially private streaming algorithms. The platform al-
lows a data analyst to choose the trade-offs in privacy vs.
quality of the results. For example, a data analyst might want
a very accurate result for user density, but would have to de-
crease the number of intermediate outputs seen. Also, if a
data owner wants to enforce pan-privacy (since he or she
may not trust the streaming algorithms to hold the data),
then some algorithms would be unusable. We have built the
platform to be flexible to allow the data owners and data
analysts to decide which algorithms to use based on their
needs without understanding the details of the algorithm’s
implementation. The only requirement the framework makes
is that the algorithms provide a form of e-differential pri-
vacy. (Whereas if privacy was not needed, then a far simpler
framework could be used.)

We hope that the platform can serve as both a practi-
cal implementation for differentially private streaming algo-
rithms that a data analyst could use, as well as provide a base
for implementing and experimenting with new differentially
private streaming algorithms.

Acknowledgments

We thank Salil Vadhan, Jonathan Ullman, and Stephen
Chong for their comments on an earlier version of this paper
and feedback on the project. We are grateful to the reviewers
for their helpful comments.

References

[1] T.-H. H. Chan, E. Shi, and D. Song. Private and continual
release of statistics. ACM Trans. Inf. Syst. Secur., 14(3):26:1—
26:24, Nov. 2011.

[2] C. Dwork. Differential privacy. In ICALP, pages 1-12.
Springer, 2006.

[3] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differen-
tial privacy under continual observation. In Proc. 42nd ACM
symposium on Theory of computing, STOC ’10, pages 715—
724, New York, NY, USA, 2010. ACM.

[4] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and
S. Yekhanin. Pan-private streaming algorithms. In Proc. ICS,
2010.

[5] A. Haeberlen, B. C. Pierce, and A. Narayan. Differential
privacy under fire. In Proc. 20th USENIX conference on
Security, SEC’11, pages 33-33, Berkeley, CA, USA, 2011.
USENIX Association.

[6] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias.
Differentially private event sequences over infinite streams.
PVLDB, 7(12):1155-1166, 2014.

[7] F. McSherry. Privacy integrated queries: an extensible plat-
form for privacy-preserving data analysis. Commun. ACM,
53(9):89-97, Sept. 2010.

[8] Microsoft. Linq (language integrated query).

[9] J. Reed and B. C. Pierce. Distance makes the types grow
stronger: a calculus for differential privacy. In Proc. 15th
ICFP, ICFP 10, pages 157-168, New York, NY, USA, 2010.
ACM.

[10] L. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel.
Airavat: security and privacy for mapreduce. In Proc. 7th
NSDI, NSDI'10, pages 20-20, Berkeley, CA, USA, 2010.
USENIX Association.

[11] L. Sweeney. Weaving technology and policy together to

maintain confidentiality. Journal of Law, Medicine & Ethics,
25(2 & 3):98-110, 1997.

