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Abstract

A pervasive task in the differential privacy literature is to select the k items of “highest
quality” out of a set of d items, where the quality of each item depends on a sensitive dataset
that must be protected. Variants of this task arise naturally in fundamental problems like
feature selection and hypothesis testing, and also as subroutines for many sophisticated
differentially private algorithms.

The standard approaches to these tasks—repeated use of the exponential mechanism
or the sparse vector technique—approximately solve this problem given a dataset of n =
O(
√
k logd) samples. We provide a tight lower bound for some very simple variants of the

private selection problem. Our lower bound shows that a sample of size n = Ω(
√
k logd) is

required even to achieve a very minimal accuracy guarantee.
Our results are based on an extension of the fingerprinting method to sparse selection

problems. Previously, the fingerprinting method has been used to provide tight lower
bounds for answering an entire set of d queries, but often only some much smaller set of k
queries are relevant. Our extension allows us to prove lower bounds that depend on both
the number of relevant queries and the total number of queries.
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1 Introduction

This work studies lower bounds on the sample complexity of differentially private selection
problems. Informally, a selection problem consists of a large number of items each with a
corresponding value and the task is to select a small subset of those items with large values. In
a private selection problem, the values of the items depend on a dataset of sensitive information
that must be protected.

Selection problems appear in many natural statistical problems, including private multiple
hypothesis testing [DSZ15], sparse linear regression [ST13, TTZ15], finding frequent item-
sets [BLST10], and as subroutines in algorithms for answering exponentially many statistical
queries [BLR13, RR10, HR10, GRU12, Ull15], approximation algorithms [GLM+10], and for es-
tablishing the generalization properties of differentially private algorithms [BNS+16]. Selection
problems appear in many different guises. As we are proving lower bounds, we consider the
simplest possible form of selection problems.

More specifically, we consider the following simple selection problem motivated by applica-
tions in feature selection and hypothesis testing. There is an unknown probability distribution
P over {0,1}d with mean p := E [P ] ∈ [0,1]d , and our goal is to identify a set of coordinates whose
mean is large—that is, a set S ⊂ [d] of size k� d, such that pj is large for all j ∈ S. To do this,
we obtain n independent samples X1, · · · ,Xn ∈ {0,1}d from P . However, each Xi corresponds to
the private data of an individual.1 To protect this data, our procedure for selecting S using the
data X1, · · · ,Xn should satisfy differential privacy [DMNS06], which is a strong notion of privacy
requiring that no individual sample Xi has a significant influence on the set of coordinates S
that we select.

For example, suppose P represents a population of patients suffering from some illness and
each coordinate represents the presence of absence of a certain genetic trait. It would be useful
for medical researchers to identify genetic traits that are unusually common in this population,
but it is also essential not to reveal any individual’s genetic information. Thus the researchers
would like to obtain genetic data X1, . . . ,Xn from n random members of this population and run
a differentially private selection algorithm on this dataset.

Without privacy, it is necessary and sufficient to draw n & logd samples from P , and
compute X = 1

n

∑
iXi . This ensures that ‖X − p‖∞ is small with high probability,2 so large

coordinates of X correspond to large coordinates of p. We can ensure differential privacy by
adding carefully calibrated noise to the empirical mean X to obtain a noisy empirical mean
X̃ [DN03, DN04, BDMN05, DMNS06]. Unfortunately, there are strong lower bounds showing
that, unless n &

√
d, there is no differentially private algorithm whose output X̃ gives a useful

approximation to the population mean p [BUV14, SU17, DSS+15].
We can avoid this

√
d lower bound if we only want to identify the k approximately largest

coordinates of p, rather than approximating all d values. Specifically, we can use the exponential
mechanism [MT07] to identify an approximate largest coordinate of p, and then repeat on the
other coordinates. This algorithm provides non-trivial error using just n &

√
k logd samples.

This sample complexity is also achieved by the sparse vector algorithm [DNR+09] (see [DR14,
§3.6] for a textbook treatment) and report noisy max [DR14, §3.3].

1For clarity, we use superscripts to denote the index of a column or item and subscripts to denote the index of a
row or individual.

2More precisely, if n ≥ log(2d/β)
2α2 , then P

[
‖X − p‖∞ ≤ α

]
≥ 1− β. Since we are proving negative results, we focus on

the low-accuracy regime of α,β = Ω(1), where n = Θ(logd) samples are both necessary and sufficient.
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Our first result shows that this sample-complexity is essentially the best possible for the
approximate top-k selection problem, even if P is a product distribution.

Theorem 1 (Informal version of Corollary 13). Fix n,d,k ∈N with k� d. LetM be a differentially
private algorithm that takes a dataset X ∈ ({0,1}d)n of n samples, and outputs an indicator vector
M(X) ∈ {0,1}d such that ‖M(X)‖1 = k. Suppose that for every product distribution P over {0,1}d ,

E
X←Pn
M

 ∑
j∈[d] : M(X)j=1

pj

 ≥ max
t∈{0,1}d
‖t‖1=k

∑
j∈[d] : tj=1

pj − k
10
, (1)

where p = E [P ]. Then n = Ω(
√
k logd).

Observe that our lower bound applies whenever the error is at most k/10, which is just
slightly smaller than the trivial error of k that can be obtained by selecting the first k coordinates.

Scaling with the Privacy and Accuracy Parameters. For simplicity, we suppress the depen-
dence on the privacy and accuracy parameters in Theorem 1. We assume constant error 1

10 per
selected coordinate, and our lower bound applies to algorithms satisfying (1,1/nd)-differential
privacy. Generic reductions can be used to give the appropriate dependence on these parameters
in many cases (see e.g. [BUV14, SU17]).

Empirical Error vs. Population Error

In Theorem 1, accuracy was defined with respect to the population mean p = E [P ]. This
statistical framework is motivated by the fact that we are interested in finding underlying
patterns in the population, rather than random empirical deviations.

We could equally well define accuracy with respect to the empirical mean X = 1
n

∑
iXi . Since

E[‖X − p‖∞] ≤
√

log(2d)
2n and we are interested in settings where n & logd, these settings are

equivalent.3 In particular, we can replace the accuracy condition (1) in Theorem 1 with

E

M

 ∑
j∈[d] : M(X)j=1

X
j

 ≥ max
t∈{0,1}d
‖t‖1=k

∑
j∈[d] : tj=1

X
j − k

20
. (2)

This empirical variant of the problem was first studied in a very recent work by Bafna and
Ullman [BU17]. They proved an optimal lower bound for the empirical variant of the problem
in the regime where the error is very small. Specifically they show that, if the empirical error
is� k

√
log(d)/n (i.e. a constant factor smaller than the sampling error), then a dataset of size

n = Ω(k logd) is necessary.4 However, their results do not give any lower bound for larger error,
or for the statistical problem of approximating the largest entries of the population mean p.
Indeed, their lower bounds hold even for uniformly random datasets X. For these datasets we
can easily achieve empirical error k

√
2log(d)/n and, since p = (1

2 , . . . ,
1
2 ) is fixed, we can achieve

population error 0. Thus, our lower bounds for large error are qualitatively different from the
lower bounds of [BU17] for small error.

3We need n & logd even in the non-private statistical setting to have meaningful statistical accuracy. In the
absence of privacy constraints, the empirical accuracy guarantee can be satisfied for every n.

4The results of [BU17] actually use a slightly stronger accuracy requirement, which requires that for every j ∈ [d],

if M(X)j = 1 then X
(k) −Xj �

√
log(d)/n where X

(k)
is the k-th largest entry of X. This technical distinction is not

crucial for this high-level discussion.
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Application to Multiple Hypothesis Testing

We can prove an analogous lower bound for a related problem where we do not have a fixed
number of coordinates k that we want to select, but instead we want to distinguish coordinates
of p that are larger than some threshold τ from those that are smaller than some strictly lower
threshold τ ′ < τ . This problem is a special case of multiple hypothesis testing in statistics.
Without privacy it can be solved using just n =Oτ,τ ′ (logd) samples.

As before, we can use the exponential mechanism or the sparse vector technique to obtain a
private algorithm for this problem. The algorithm uses n =Oτ,τ ′ (

√
k logd) samples, where k is

an upper bound on the number of coordinates of p that are above the threshold τ ′.5

Our second result shows that this sample complexity is essentially optimal for the multiple
hypothesis testing problem, even if P is a product distribution.

Theorem 2 (Informal version of Corollary 14). Fix n,d,k ∈N with k � d. There exist absolute
constants τ,τ ′ ,ρ ∈ (0,1), τ ′ < τ such that the following holds. Let M be a differentially private
algorithm that takes a dataset X ∈ ({0,1}d)n of n samples, and outputs an indicator vector M(X) ∈
{0,1}d . Suppose that for every product distribution P over {0,1}d such that |{j : pj ≥ τ}| ≤ k,

1. pj ≤ τ ′ =⇒ P

X←P n,M

[
M(X)j = 1

]
≤ ρk/d,

2. pj ≥ τ =⇒ P

X←P n,M

[
M(X)j = 1

]
≥ 1− ρ,

where p = E [P ]. Then n = Ω(
√
k logd).

As before, we remark that the fact that τ ′ = τ −Ω(1) makes our lower bound stronger. Also,
note that we allow the probability of a false positive (pj ≤ τ ′ but M(X)j = 1) to be as large as
ρk/d, which means that in expectation there can be as many as Ω(k) of these false positives. In
contrast there are only k true positives (pj ≥ τ and M(X)j = 1), so our lower bound applies even
to algorithms for which the number of false positives is a constant fraction of the number of
true positives. The accuracy condition in Theorem 2 is closely related to the false discovery rate,
which is a widely used statistical criterion introduced in the influential work of Benjamini and
Hochberg [BH95]. A recent work by Dwork, Su, and Zhang [DSZ15] introduced the problem of
privately controlling the false discovery rate.

1.1 Techniques

Our techniques build on the recent line of work proving lower bounds in differential privacy
and related problems via either fingerprinting codes or techniques inspired by fingerprinting
codes [BUV14, HU14, SU15, SU17, DSS+15, BSU17]. Our results follow from the following very
general lower bound that refines and generalizes several of the results from those works.

Theorem 3 (Main Lower Bound). Let β,γ,k > 0 and n,d ∈ N be a fixed set of parameters. Let
P 1, · · · , P d be independent draws from Beta(β,β) and let X ∈ ({0,1}d)n be a random dataset such that
every Xji is independent (conditioned on P ) and E[Xji ] = P j for every i ∈ [n] and j ∈ [d].

5We assume that the upper bound k is specified as part of the problem input. If k is not specified, the problem and
the accuracy guarantee can be formulated differently, but this is not relevant for the current high-level discussion.
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Let M : ({0,1}d)n→ [−1,1]d be a (1,βγk/nd)-differentially private algorithm and assume that M
satisfies the condition E

P ,X,M

[
‖M(X)‖22

]
= k and the accuracy condition

E

P ,X,M

∑
j∈[d]

M(X)j ·
(
P j − 1

2

) ≥ γk.
Then n ≥ γβ

√
k.

In our applications, γ = Ω(1) is a small constant, whereas β = ω(1) is large, namely β =
Θ(log(d/k)) for the top-k lower bound. For the purposes of this introduction, it suffices to know
that Beta(α,β) is a family of probability distributions over [0,1] with mean α

α+β . For simplicity,
we restrict our attention to the symmetric case where α = β. The distribution Beta(1,1) is the
uniform distribution on [0,1] and the distribution becomes more concentrated around 1/2 as
β→∞, specifically the variance of Beta(β,β) is Θ( 1

β ). The necessary technical details about the
beta distribution are in Section 2.3.

Observe that in our lower bound the population mean P is itself random. If the population
mean were fixed, then we could obtain a private algorithm with perfect accuracy by ignoring the
sample and outputting a fixed function of P . Thus to obtain lower bounds then we must assume
that the distribution P is chosen randomly and that M is accurate for these distributions P .

We now describe informally how Theorem 3 implies Theorem 1. First, observe that any algo-
rithm for approximate top-k selection by definition satisfies E

[
‖M(X)‖22

]
= k, since it outputs an

indicator vector with exactly k non-zero coordinates. By Theorem 3, to prove an n = Ω(
√
k logd)

lower bound, it suffices to show that for some β = Ω(logd), if M solves the approximate top-k
problem, then E

[∑
jM(X)j · (P j − 1

2 )
]

= Ω(k). By the accuracy assumption (1), it suffices to show

E

P

max
t∈{0,1}d
‖t‖1=k

∑
j:tj=1

(
P j − 1

2

)
− k

10

 ≥Ω(k). (3)

This is simply a property of the beta distribution and our choice of β. We give a simple anti-
concentration result for beta distributions showing that the required bound (3) holds for some
choice of β = Ω(logd).

We remark that previous fingerprinting-based lower bounds in differential privacy [BUV14,
BST14, DTTZ14, SU17, DSS+15, TTZ15] essentially correspond to setting β =O(1) in Theorem
3. Thus the key novelty of our result is that we obtain stronger lower bounds by setting β =ω(1).

Overview of the Analysis

We will sketch the argument for our lower bound in the case of approximate top-k selection.
Inspired by prior lower bounds [BUV14, SU17, DSS+15, BU17] we consider the quantity

Z :=
∑
i∈[n]

〈M(X), (Xi − P )〉 = n ·

 ∑
j:M(X)j=1

X
j − P j

 .
We then use the privacy and accuracy assumptions to establish conflicting upper and lower
bounds on the quantity E [Z]. Combining the two bounds yields the result.
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Firstly, we use the differential privacy of M to get an upper bound on E [Z]. Specifically,
for any i ∈ [n], M(X) should have approximately the same distribution as M(X∼i), where X∼i
is the dataset we obtain by replacing Xi with an independent sample from P . However, Xi
and M(X∼i) are independent (conditioned on P ) and, therefore, E [〈M(X∼i),Xi − P 〉] = 0. By
differential privacy, E [〈M(X),Xi − P 〉] ≈ E [〈M(X∼i),Xi − P 〉] = 0. More precisely, we obtain
E [〈M(X),Xi − P 〉] ≤O(

√
k) and, thus, E[Z] ≤O(n

√
k) (Lemma 8).

Secondly, if M(X) solves the approximate top-k selection problem, then E[Z] must be large
(Lemma 11). This is the technical heart of our result and requires extending the analysis of
fingerprinting codes. We give some imprecise intuition for why we should expect E [Z] ≥Ω(kβ).

The beta distribution has the following “conjugate prior” property. Suppose we sample
P ← Beta(β,β), independently sample Y1, . . . ,Yn ∈ {0,1} with mean P , and let Y = 1

n

∑
i Yi . Then

the conditional distribution of P given Y is

(P | Y = y) ∼ Beta (β +ny,β +n(1− y)) , so that E

[
P | Y = y

]
=
β +ny
2β +n

.

Thus, if y ≥ 1
2 +Ω(1), then

E

[
Y − P | Y = y

]
=

(2y − 1)β
2β +n

= Ω(β/n).

We connect this back to Z by observing that, if M accurately solves the approximate top-k

selection problem, then it will identify a set of k coordinates such that X
j

= 1
2 +Ω(1) on average

over the selected indices j. Applying this analysis and summing over the k selected coordinates
yields

1
n
E [Z] = E

 ∑
j∈[d] : M(X)j=1

X
j − P j

 ≈ k ·E
[
X
j − P j

∣∣∣∣∣ Xj ≥ 1
2

+Ω(1)
]
≥Ω(βk/n),

as desired. Unfortunately, our actual proof is somewhat more technical and deviates significantly
from this intuition, but also gives a more versatile result.

Finally, combining the bounds Ω(kβ) ≤ E [Z] ≤O(n
√
k) yields n ≥Ω(

√
kβ) (Theorem 3).

1.2 Relationship to Previous Lower Bounds and Attacks

Our argument is closely related to the work on tracing attacks [HSR+08, SOJH09, BUV14, SU17,
DSS+15, BSU17, DSSU17]. In a tracing attack, the adversary is given (i) the output M(X) (where
X←P n consists of n independent samples of individuals’ data), (ii) an approximate population
mean p ≈ E [P ], and (iii) the data Y of a “target” individual. The target individual is either a
random member of the dataset X or an independent random sample from the population P ,
and the attacker’s goal is to determine which of these two is the case. Although we don’t state
our attack in this model, our attack has essentially this format. Specifically, we consider the
quantity Z = ZY ,M(X),p = 〈M(X),Y − p〉. If Y ← P is a fresh sample from the population, Z is
zero in expectation and small with high probability. Whereas, when Y = Xi for a random i ∈ [n],
Z is large in expectation, thus we have some ability to distinguish between these two cases.

Another line of work proves lower bounds in differential privacy via reconstruction at-
tacks [DN03, DMT07, DY08, KRSU10, KRS13, MN12, NTZ13]. At a high-level, in a reconstruc-
tion attack, each sample Xi contains some public information and an independent, random
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sensitive bit. The attacker is given M(X) and the public information, and must determine the
sensitive bit for 99% of the samples. These attacks do not give any asymptotic separations
between the sample complexities of private and non-private problems, because it is easy to
prevent reconstruction attacks without providing meaningful privacy by simply throwing out
half of the samples and then running a non-private algorithm on the remaining samples. This
subsampling prevents reconstruction and only increases the sample complexity by a factor of
two compared to the non-private setting.

The work of Bun, Ullman, and Vadhan [BUV14] combines tracing attacks with reconstruc-
tion attacks to prove tight lower bounds for large, structured sets of queries (e.g. all k-wise
conjunctions). In particular, their work demonstrates that the private multiplicative weights
algorithm [HR10] is nearly optimal. Since selection is a subroutine of private multiplicative
weights, this implies a lower bound for private selection. However, this implicit lower bound for
private selection only holds in a complex adaptive setting [BSU17], where the algorithm must
select k items one at a time and the values of the available items change after each selection is
made. In contrast, our lower bound is stronger, as it holds for a simple set of items with fixed
values.

For the special case of pure differential privacy (i.e. (ε,δ)-differential privacy with δ = 0)
lower bounds can be proved using the “packing” technique [FFKN09, BKN10, HT10]. The
sample complexity of the top-k selection problem becomes n = Θ(k logd) under pure differential
privacy. (The upper bound is still attained by repeated use of the exponential mechanism, but
the stricter privacy requirement changes the analysis and increases the sample complexity.)
Packing arguments do not provide any non-trivial lower bounds for general differentially private
algorithms (i.e. (ε,δ)-differential privacy with δ > 0).

2 Preliminaries

2.1 Notational Conventions

We will use the following notational conventions extensively throughout our analysis. We
use [n] = {1,2, · · · ,n} to denote the first n natural numbers. We use X ←D to denote that X is
sampled from the probability distribution D. We also use the shorthand X1···n←D to denote
that X1, · · · ,Xn are drawn independently from D. Given a probability p ∈ [0,1], we use the
shorthand X ← p to denote that X ← Bernoulli(p) is a sample from a Bernoulli distribution.
Likewise, X1···n ← p denotes that X1, . . . ,Xn are independent samples from Bernoulli(p). We
follow the convention that upper case (non-caligraphic) letters represent random variables
and lower case letters represent their realizations. We will treat X ∈ ({0,1}d)n and X ∈ {0,1}n×d
equivalently. For i ∈ [n], j ∈ [d], we will subscript Xi to denote the ith row, superscript Xj to
denote the jth column, and Xji to denote the entry in the ith row and jth column, for i ∈ [n] and
j ∈ [d]. We use log to denote the natural logarithm, i.e. log(z) := loge(z).

2.2 Differential Privacy

A dataset x = (x1, . . . ,xn) ∈ ({0,1}d)n is an n×d matrix. We say that two datasets x,x′ are neighbors
if they differ on at most one row.

Definition 4 (Differential Privacy [DMNS06]). Fix n,d ∈N, ε,δ > 0. A (randomized) algorithm
M : ({0,1}d)n→R is (ε,δ)-differentially private if, for every pair of neighboring datasets x,x′, and
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every R ⊆R,
P [M(x) ∈ R] ≤ eεP

[
M(x′) ∈ R

]
+ δ.

This definition provides meaningful privacy roughly when ε ≤ 1 and δ� 1
n [KS14]. Since

our lower bounds allow for ε = 1 and δ almost as large as 1
n , they apply to nearly the entire

range of parameters for which differential privacy is meaningful.

2.3 Beta Distributions

Our results make heavy use of the properties of beta distributions. A beta distribution, denoted
Beta(α,β), is a continuous distribution on [0,1] with two parameters α > 0 and β > 0 and proba-
bility density at p proportional to pα−1(1− p)β−1. More precisely, the cumulative distribution
function is described by

∀α > 0 ∀β > 0 ∀p∗ ∈ [0,1] P

P←Beta(α,β)
[P ≤ p∗] =

∫ p∗

0

pα−1(1− p)β−1

B(α,β)
dp,

where B(α,β) :=
∫ 1

0 p
α−1(1− p)β−1dp is the beta function. For all α,β > 0,

E

P←Beta(α,β)
[P ] =

α
α + β

and Var
P←Beta(α,β)

[P ] =
αβ

(α + β)2(α + β + 1)
.

Note that Beta(1,1) is simply the uniform distribution on [0,1], and Beta(β,β) becomes more
concentrated around its mean of 1/2 as β gets larger.

The key result we need is a form of anti-concentration for beta distributions, which says
that if we draw d independent samples from a certain beta distribution with mean 1/2, then in
expectation the k largest samples are at least 3/4.

Proposition 5. Fix β > 0 and d,k ∈N. Let P 1, · · · , P d be independent samples from Beta(β,β). If
k ≥ 1 and 1 ≤ β ≤ 1 + 1

2 log
(

d
8max{2k,28}

)
, then

E

P 1···d

 max
s⊂[d] : |s|=k

∑
j∈s
P j

 ≥ 3
4
k.

The above proposition follows from an anti-concentration lemma for the beta distribution.

Lemma 6. For all β ≥ 1 and all p∗ ∈ [0,1/2],

P

P←Beta(β,β)
[P > 1− p∗] = P

P←Beta(β,β)
[P < p∗] ≥ (4p∗(1− p∗))β−1 p∗

β
≥ p∗ · e(log(4p∗(1−p∗))−1)(β−1).

Proof of Lemma 6. The equality in the statement follows from the fact that Beta(β,β) is symmet-
ric around 1/2. Now we prove the inequalities. We use two bounds: Firstly, p(1− p) ≤ 1/4 for all

7



p ∈ [0,1]. Secondly, p(1− p) ≥ p(1− p∗) for all p ∈ [0,p∗]. Thus

P

P←Beta(β,β)
[P < p∗] =

∫ p∗
0 (p(1− p))β−1dp∫ 1
0 (p(1− p))β−1dp

≥

∫ p∗
0 (p(1− p∗))β−1dp∫ 1

0 (1/4)β−1dp

=
(1− p∗)β−1

∫ p∗
0 pβ−1dp

(1/4)β−1

= (4(1− p∗))β−1 p
β
∗
β

= (4p∗(1− p∗))β−1 p∗
β

=: fp∗(β).

This proves the first inequality. Now we prove the second inequality by applying calculus to the
function fp∗ we have just defined.

We have fp∗(1) = p∗ and

f ′p∗(β) = (4p∗(1− p∗))β−1 p∗
β

(
log(4p∗(1− p∗))−

1
β

)
≥ fp∗(β) (log(4p∗(1− p∗))− 1) .

This differential inequation implies fp∗(β) ≥ p∗e(log(4p∗(−p∗))−1)(β−1), as required.

Proof of Proposition 5. By Lemma 6, for each j ∈ [d],

P

P j←Beta(β,β)

[
P j >

7
8

]
≥ 1

8
e(log(4·(1/8)·(7/8))−1)(β−1) ≥ 1

8
e−2(β−1),

Since 1 ≤ β ≤ 1 + 1
2 log

(
d

8max{2k,28}

)
≥ 1, we have, for all j ∈ [d],

P

P j←Beta(β,β)

[
P j >

7
8

]
≥ max{2k,28}

d
.

Let Aj = I[P j > 7/8] be the indicator of the above event for each j ∈ [d]. Let a := E [A1] = E [A2] =

· · · = E [Ad]. Then E

[∑
j∈[d]Aj

]
= da ≥ max{2k,28}. Since Aj ∈ {0,1}, E

[
A2
j

]
= E

[
Aj

]
= a and

8



Var
[
Aj

]
= a(1− a) for all j ∈ [d] and, hence, Var

[∑
j∈[d]Aj

]
= da(1− a). By Chebyshev’s inequality,

P

[
∃s ⊂ [d] |s| = k ∧ ∀j ∈ s P j > 7/8

]
= P

∑
j∈[d]

Aj ≥ k


≥ P

∑
j∈[d]

Aj ≥
1
2

max{2k,28}


≥ P

∑
j∈[d]

Aj ≥
1
2
E

∑
j∈[d]

Aj




≥ 1−P


∣∣∣∣∣∣∣∣
∑
j∈[d]

Aj −E

∑
j∈[d]

Aj


∣∣∣∣∣∣∣∣ ≥ 1

2
E

∑
j∈[d]

Aj




≥ 1−
Var

[∑
j∈[d]Aj

]
(

1
2E

[∑
j∈[d]Aj

])2

= 1− 4
da(1− a)

(da)2

≥ 1− 4
da
≥ 1− 4

max{2k,28}
≥ 6

7
.

Finally,

E

 max
s⊂[d] : |s|=k

∑
j∈s
P j

 ≥ 7
8
kP

[
∃s ⊂ [d] (|s| = k) ∧ (∀j ∈ s P j > 7/8)

]
≥ 7

8
k

6
7

=
3
4
k.

This completes the proof.

3 Proof of the Main Lower Bound (Theorem 3)

The goal of this section is to prove the following theorem from the introduction.

Theorem 7 (Theorem 3 restated). Let β,γ,k > 0 and n,d ∈ N be a fixed set of parameters. Let
P 1, · · · , P d be independent draws from Beta(β,β) and let X ∈ ({0,1}d)n be a random dataset such that
every Xji is independent (conditioned on P ) and E[Xji ] = P j for every i ∈ [n] and j ∈ [d].

Let M : ({0,1}d)n→ [−1,1]d be a (1,βγk/nd)-differentially private algorithm and assume that M
satisfies the condition E

P ,X,M

[
‖M(X)‖22

]
= k and the accuracy condition

E

P ,X,M

∑
j∈[d]

M(X)j ·
(
P j − 1

2

) ≥ γk.
Then n ≥ γβ

√
k.

9



For the remainder of this section, we will fix the following parameters and variables. Fix
β,γ,ε,δ,∆ > 0 and n,d ∈ N. Let M : ({0,1}d)n → R

d satisfy (ε,δ)-differential privacy. Let
P 1, · · · , P d ← Beta(β,β) be independent samples. Define a random variable X ∈ ({0,1}d)n to have
independent entries (conditioned on P ) where E[Xji ] = P j for all i ∈ [n] and j ∈ [d].

The crux of the proof is to analyze the expected value of
∑
i∈[n],j∈[d]M(X)j(Xji − P

j). To this
end, for every i ∈ [n] and j ∈ [d], we define the random variables

Z
j
i =M(X)j · (Xji − P

j ), Zi =
∑
j∈[d]

Z
j
i , Zj =

∑
i∈[n]

Z
j
i , Z =

∑
i∈[n]
j∈[d]

Z
j
i .

At a high level, we will show that when the size of the dataset n is too small, we obtain
contradictory upper and lower bounds on E

P ,X,M
[Z].

3.1 Upper Bound via Privacy

First we prove that (ε,δ)-differential privacy of M implies an upper bound on E

P ,X,M
[Z].

Lemma 8. Suppose that ‖M(X)‖1 ≤ 2∆ with probability 1. Then

E

P ,X,M
[Z] ≤ n ·

(
eε

1
2

√
E

P ,X,M

[
‖M(X)‖22

]
+∆δ

)
.

Proof. Fix i ∈ [n] and also fix the vector P ∈ [0,1]d . Since
∑
j∈[d] |M(X)j | ≤ 2∆, we have

Zi =
∑
j∈[d]

M(X)j
(
P j − 1

2

)
≤ ∆.

Let X∼i ∈ ({0,1}d)n denote X with Xi replaced with an independent draw from P . In particular,
the marginal distribution of X∼i is the same as X. However, conditioned on P , Xi is independent
from X∼i . By the differential privacy assumption M(X) and M(X∼i) are indistinguishable. We
can use this fact to bound the expectation of Zi in the following calculation.

E

X,M
[Zi] ≤ E

X,M
[max{0,Zi}]

=
∫ ∆

0
P

X,M
[Zi ≥ z]dz

=
∫ ∆

0
P

X,M

∑
j∈[d]

M(X)j
(
X
j
i − P

j
)
≥ z

dz (4)

Now, defining the event T (z) :=
{
y ∈Rd :

∑
j∈[d] y

j
(
X
j
i − P

j
)
≥ z

}
, we can apply (ε,δ)-differential

10



privacy to (4) to obtain

(4) =
∫ ∆

0
P

X,M
[M(X) ∈ T (z)]dz

≤
∫ ∆

0
min

{
1, eε P

X,X∼i ,M
[M(X∼i) ∈ T (z)] + δ

}
dz

=
∫ ∆

0
min

1, eε P

X,X∼i ,M

∑
j∈[d]

M(X∼i)
j
(
X
j
i − P

j
)
≥ z

+ δ

dz (5)

Observe that in (5), M(X∼i) is independent of Xi , which allows us to bound (5) as follows

(5) ≤
∫ ∆

0
eε P

X,X∼i ,M

∑
j∈[d]

M(X∼i)
j
(
X
j
i − P

j
)
≥ z

+ δdz

= eε E

X,X∼i ,M

max

0,
∑
j∈[d]

M(X∼i)
j
(
X
j
i − P

j
)

+∆δ

≤ eε

√√√√√
E

X,X∼i ,M


∑
j∈[d]

M(X∼i)j
(
X
j
i − P j

)
2+∆δ

= eε

√√√√
E

X∼i ,M

∑
j∈[d]

(M(X∼i)j )2
E

Xi

[(
X
j
i − P j

)2
]+∆δ

≤ eε

√√√√
E

X∼i ,M

∑
j∈[d]

(M(X∼i)j )2 1
4

+∆δ = eε
1
2

√
E

X,M

[
‖M(X)‖22

]
+∆δ.

Finally, we sum over i and average over P to obtain

E

P ,X,M
[Z] ≤ n ·E

P

[
eε

1
2

√
E

X,M

[
‖M(X)‖22

]
+∆δ

]
≤ n ·

(
eε

1
2

√
E

P ,X,M

[
‖M(X)‖22

]
+∆δ

)
,

where the final inequality follows from Jensen’s inequality and the concavity of the function
x 7→
√
x.

3.2 Lower Bound via Accuracy

The more involved part of the proof is to use the accuracy assumption

E

P ,X,M

∑
j∈[d]

M(X)j ·
(
P j − 1

2

) ≥ γ · E

P ,X,M

[
‖M(X)‖22

]
.

to prove a lower bound on E

P ,X,M
[Z]. In order to do so we need to develop a technical tool

that we call a “fingerprinting lemma,” which is a refinement of similar lemmas from prior
work [SU17, DSS+15, BSU17] that more carefully exploits the properties of the distribution P .

11



3.2.1 Fingerprinting Lemma

To keep our notation compact, throughout this section we will use the shorthand X1···n← p to
denote that X1,X2, · · · ,Xn ∈ {0,1} are independent random variables each with mean p.

Lemma 9 (Rescaling of [SU15, DSS+15]). Let f : {0,1}n→R. Define g : [0,1]→R by

g(p) = E

X1···n←p
[f (X)].

Then

E

X1···n←p

f (X)
∑
i∈[n]

(Xi − p)

 = p(1− p)g ′(p)

for all p ∈ [0,1].

Proof of Lemma 9. Firstly, P

X←p
[X = 1] = p and P

X←p
[X = 0] = 1− p. Thus

p(1− p)
d

dp
P

X←p
[X = 1] = p(1− p)

d
dp
p = p(1− p) = (1− p) P

X←p
[X = 1] (6)

and

p(1− p)
d

dp
P

X←p
[X = 0] = p(1− p)

d
dp

(1− p) = p(1− p)(−1) = (0− p) P

X←p
[X = 0]. (7)

Hence

p(1− p)g ′(p) = p(1− p)
d

dp

∑
x∈{0,1}n

P

X1···n←p
[X = x]f (x)

=
∑

x∈{0,1}n
f (x)p(1− p)

d
dp

∏
i∈[n]

P

X←p
[X = xi]

=
∑

x∈{0,1}n
f (x)

∑
i∈[n]

 ∏
j∈[n]\{i}

P

X←p

[
X = xj

]
(
p(1− p)

d
dp

P

X←p
[X = xi]

)

(by (6) and (7)) =
∑

x∈{0,1}n
f (x)

∑
i∈[n]

 ∏
j∈[n]\{i}

P

X←p

[
X = xj

]
(
(xi − p) P

X←p
[X = xi]

)

=
∑

x∈{0,1}n
f (x)

∑
i∈[n]

(xi − p)

∏
j∈[n]

P

X←p

[
X = xj

]
= E

X1···n←p

f (X)
∑
i∈[n]

(Xi − p)

.

Lemma 10. Let f : {0,1}n→R and let α,β > 0. Define g : [0,1]→R by

g(p) = E

X1···n←p
[f (X)].

12



Then

E
P←Beta(α,β)
X1···n←P

f (X)
∑
i∈[n]

(Xi − P )

 = (α + β) E

P←Beta(α,β)

[
g(P )

(
P − α

α + β

)]
.

This is the form of the lemma we use. Note that E [P ] = α/(α + β).

Proof of Lemma 10. The proof is a calculation using integration by parts. Using Lemma 9 and
the fundamental theorem of calculus, we have

E
P←Beta(α,β)
X1···n←P

f (X)
∑
i∈[n]

(Xi − P )

 = E

P←Beta(α,β)

[
P (1− P )g ′(P )

]
=

∫ 1

0
p(1− p)g ′(p) ·

pα−1(1− p)β−1

B(α,β)
dp

=
1

B(α,β)

∫ 1

0
g ′(p) · pα(1− p)βdp

=
1

B(α,β)

∫ 1

0

(
d

dp

(
g(p) · pα(1− p)β

)
− g(p) · d

dp

(
pα(1− p)β

))
dp

=
1

B(α,β)

(
g(1) · 1α(1− 1)β − g(0) · 0α(1− 0)β

)
− 1
B(α,β)

∫ 1

0
g(p) · d

dp

(
pα(1− p)β

)
dp

= 0− 1
B(α,β)

∫ 1

0
g(p) · (α − (α + β)p)pα−1(1− p)β−1)dp

= E

P←Beta(α,β)
[g(P )((α + β)P −α)].

This completes the proof.

3.2.2 Using the Fingerprinting Lemma

Now we can use Lemma 10 to prove a lower bound

Lemma 11.

E

P ,X,M
[Z] ≥ 2β E

P ,X,M

∑
j∈[d]

M(X)j
(
P j − 1

2

)
Proof of Lemma 11. Fix a column j ∈ [d]. Define f : {0,1}n→ [0,1] and g : [0,1]→ [0,1] to be

f (xj ) := E

P −j ,X−j

[
M(x−j‖Xj )j

]
and define g to be

g(pj ) := E

P −j ,X
j
1...n∼P j

[
f (Xj )

]
.

That is f (x) is the expectation of M(X)j conditioned on Xj = x, where the expectation is over the
randomness of M and the randomness of P j

′
and Xj

′
for j ′ , j. Similarly g(p) is the expectation

13



of M(X)j conditioned on P j = p, where the expectation is over M and P j
′

and Xj
′

for j ′ , j and
also over Xj . Now we can calculate

E

P ,X,M

[
Zj

]
= E

P ,X,M

M(X)j
∑
i∈[n]

(Xji − P
j )


= E

P j←Beta(β,β)

X
j
1···n←P

j

f (Xj )
∑
i∈[n]

(Xji − P
j )


= 2β E

P j←Beta(β,β)

[
g(P j )

(
P j − 1

2

)]
(Lemma 10)

= 2β E

P j←Beta(β,β)

X
j
1···n←P

j

[
f (Xj )

(
P j − 1

2

)]

= 2β E

P ,X,M

[
M(X)j

(
P j − 1

2

)]
,

The result now follows by summation over j ∈ [d].

3.3 Putting it Together

We can now combine the upper bound (Lemma 8) and the lower bound (Lemma 11) that we’ve
proven on the expectation of Z to complete the proof of Theorem 3.

Proof of Theorem 3. By our accuracy assumption and Lemmas 11 and 8,

2βγ · E

P ,X,M

[
‖M(X)‖22

]
≤ 2β E

P ,X,M

∑
j∈[d]

M(X)j
(
P j − 1

2

)
≤ E

P ,X,M
[Z]

≤ n · eε 1
2

√
E

P ,X,M

[
‖M(X)‖22

]
+n∆δ.

This implies

n ≥
4βγ E

P ,X,M

[
‖M(X)‖22

]
− 2n∆δ

eε
√

E

P ,X,M

[
‖M(X)‖22

] ≥
3βγ
e

√
E

P ,X,M

[
‖M(X)‖22

]
,

where the final inequality follows from E

P ,X,M

[
‖M(X)‖22

]
= k, ‖M(x)‖1 ≤ d = 2∆, ε = 1, and

δ = βγk/nd.

4 Using our Lower Bound

In this section we show how to apply the lower bound of Theorem 3 to natural problems, and
thereby prove Theorems 1 and 2 from the introduction. We can also use it to derive known lower
bounds for releasing the dataset mean [BUV14, SU17, DSS+15], which we detail in Appendix A.
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4.1 Application to Approximate Top-k Selection

We first state an upper bound for the top-k selection problem:

Theorem 12. Fix d,k ∈ N and α,ε,δ > 0. For every n ≥ 1
αε

√
8k log( e

ε

δ ) log(d), there is an (ε,δ)-

differentially private algorithm M : ({0,1}d)n→ {0,1}d such that for every x ∈ ({0,1}d)n, such that

E

M

∑
j∈[d]

M(x)jxj
 ≥ max

s⊂[d]:|s|=k

∑
j∈s
xj −αk.

This theorem follows immediately by using the exponential mechanism [MT07] (see [DR14,
Theorem 3.10] and [BNS+16, Lemma 7.1] for the analysis) to repeatedly “peel off” the column of
x with the approximately largest mean xj , and applying the composition theorem for differential
privacy [DMNS06, DRV10, BS16].

Alternatively, Theorem 12 can provide ρ-concentrated differential privacy [BS16] (instead of

(ε,δ)-differential privacy) for n ≥ logd
α

√
2k
ρ (with the same accuracy guarantee).

Using Theorem 3 we can obtain a nearly matching lower bound that is tight up to a factor of
O(

√
log(1/δ)) in most parameter regimes.6 The lower bound actually holds even for algorithms

M that provide just average case accuracy guarantees.

Corollary 13. Fix n,d,k ∈N with d ≥max{16k,224}. Set β = 1 + 1
2 log

(
d

8max{2k,28}

)
. Let P 1, · · · , P j

be independent draws from Beta(β,β) and let X ∈ ({0,1}d)n be such that each Xji is independent

(conditioned on P ) and E

[
X
j
i

]
= P j for all i ∈ [n] and j ∈ [d]. Let M : ({0,1}d)n → {0,1}d be

(1,1/nd)-differentially private. Suppose ‖M(x)‖1 = ‖M(x)‖22 = k for all x with probability 1. Suppose

E

P ,X,M

∑
j∈[d]

M(X)jP j
 ≥ E

P

 max
s⊂[d]:|s|=k

∑
j∈s
P j

− k
10
.

Then n ≥ 1
14

√
k log( d

16k+208 ).

Although Corollary 13 is stated for accuracy guarantees that hold with respect to the

population mean P , since E

X

[
‖X − P ‖∞

]
≤

√
log(2d)

2n , we can replace the accuracy condition with

E

P ,X,M

∑
j∈[d]

M(X)jX
j

 ≥ E

P ,X

 max
s⊂[d]:|s|=k

∑
j∈s
X
j

− k
 1

10
−
√

2log(2d)
n


to get a theorem that is more directly comparable to Theorem 12.

Proof of Corollary 13. By Proposition 5 and our choice of β,

E

P 1···d

 max
s⊂[d] : |s|=k

∑
j∈s
P j

 ≥ 3
4
k.

6The lower bound can be made to include a log(1/δ) factor using a group privacy reduction [SU17]. For the sake
of clarity, we do not delve into this issue.
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Thus

E

P ,X,M

∑
j∈[d]

M(X)j
(
P j − 1

2

) ≥ 1
4
k − k

10
=

3
20

E

P ,X,M

[
‖M(X)‖22

]
.

Thus, by Theorem 3,

n ≥ β 3
20

√
k =

3
20

√
k

(
1 +

1
2

log
(

d
8max{2k,28}

))
.

This completes the proof.

4.2 Application to Multiple Hypothesis Testing

Corollary 14. Fix n,d,k ∈N with d ≥ 16k ≥ 32. Set β = 1+ 1
2 log

(
d

16k

)
. Let P 1, · · · , P j be independent

draws from Beta(β,β) and let X ∈ ({0,1}d)n be such that each Xji is independent (conditioned on P )

and E

[
X
j
i

]
= P j for all i ∈ [n] and j ∈ [d]. Let M : ({0,1}d)n → {0,1}d be (1,1/8nd)-differentially

private. Suppose that M is such that for every j,

• (Assumption 1) P j ≤ 7
8 −

3
16 =⇒ P

X,M

[
M(X)j = 1

]
≤ k

16d , and

• (Assumption 2) P j ≥ 7
8 =⇒ P

X,M

[
M(X)j = 1

]
≥ 1− 1

16 ,

then n ≥ 1
16

√
k log( d

16k ).

The assumptions of the theorem may seem a bit confusing, so we will clarify a bit. Note that
for every j ∈ [d] we have P

[
P j > 7

8

]
≥ 2k

d (Lemma 6), so in expectation there are at least 2k such

values P j . Thus, the second assumption implies that on average M(X)j must have at least 30
16k

non-zero entries. Thus, the parameter k plays roughly the same role in this problem as it does for

the top-k selection problem. Furthermore, since P 1, · · · , P d are independent,
∣∣∣∣{j ∈ [d] : P j > 7

8

}∣∣∣∣
concentrates around its expectation.

Proof of Corollary 14. First, we can lower bound the expected norm of M(X) by

E

P ,X,M

[
‖M(X)‖22

]
= E

P ,X,M

∑
j∈[d]

M(X)j


=
∑
j∈[d]

P

P ,X,M

[
M(X)j = 1

]
(M(X)j ∈ {0,1})

≥
∑
j∈[d]

P

P

[
P j ≥ 7

8

]
· P

P ,X,M

[
M(X)j = 1 | P j ≥ 7

8

]
≥

∑
j∈[d]

2k
d
· 15

16
(Lemma 6 and Assumption 2)

≥ k
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We need to relate this quantity to E

[∑
jM(X)j(P j − 1

2 )
]
. As a shorthand, let τ := 7

8 −
3

16 = 11
16

be the constant from assumption 2. We start by writing

E

P ,X,M

∑
j∈[d]

M(X)j
(
P j − 1

2

) =
∑
j∈[d]

E

P ,X,M

[
M(X)j

(
P j − 1

2

)]
=

∑
j∈[d]

(Aj ) + (Bj )

where we define

(Aj ) := P

P

[
P j ≤ τ

]
· E

P ,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣∣ P j ≤ τ]
(Bj ) := P

P

[
P j > τ

]
· E

P ,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣∣ P j > τ]
We will manipulate each of the three terms separately. First, for (Aj ), using our first assumption
on M we can calculate

(Aj ) = P

P

[
P j ≤ τ

]
· E

P ,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣∣ P j ≤ τ]
≥ P

P

[
P j ≤ τ

]
· E

P ,X,M

[
M(X)j

∣∣∣ P j ≤ τ] · (0− 1
2

)
(M(X)j ≥ 0)

= P

P

[
P j ≤ τ

]
·
(

E

P ,X,M

[
M(X)j

∣∣∣ P j ≤ τ] · (τ − 1
2

)
− τ · E

P ,X,M

[
M(X)j

∣∣∣ P j ≤ τ])
≥ P

P

[
P j ≤ τ

]
·
(

E

P ,X,M

[
M(X)j

∣∣∣ P j ≤ τ] · (τ − 1
2

)
− τ · k

16d

)
(Assumption 1)

≥ P

P

[
P j ≤ τ

]
· E

P ,X,M

[
M(X)j

∣∣∣ P j ≤ τ] · (τ − 1
2

)
− k

16d
(τ ≤ 1)

And, for (Bj ), we can calculate

(Bj ) = P

P

[
P j > τ

]
· E

P ,X,M

[
M(X)j

(
P j − 1

2

) ∣∣∣∣∣ P j > τ]
≥ P

P

[
P j > τ

]
· E

P ,X,M

[
M(X)j

∣∣∣ P j > τ] · (τ − 1
2

)

Combining our inequalities for (Aj ) and (Bj ) we have∑
j∈[d]

(Aj ) + (Bj )

≥ ·
∑
j∈[d]

((
τ − 1

2

)
E

P ,X,M

[
M(X)j

]
− k

16d

)
=

(
τ − 1

2

)
· E

P ,X,M

[
‖M(X)‖22

]
− k

16
(M(X)j ∈ {0,1})

≥
(
τ − 1

2
− 1

16

)
· E

P ,X,M

[
‖M(X)‖22

]
(E

[
‖M(X)‖22

]
≥ k)

=
(11

16
− 1

2
− 1

16

)
· E

P ,X,M

[
‖M(X)‖22

]
=

1
8
· E

P ,X,M

[
‖M(X)‖22

]
(τ = 11

16 )

Applying Theorem 3 completes the proof.
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A Releasing the Dataset Mean

To illustrate the versatility of Theorem 3, we show how it implies known lower bounds for
releasing the mean of the dataset [BUV14, SU17, DSS+15].

Corollary 15. Let M : ({0,1}d)n → [0,1]d be (1,1/10n)-differentially private. LetP 1, · · · , P j be
independent draws from the uniform distribution on [0,1] and let X ∈ ({0,1}d)n be such that

each Xji is independent (conditioned on P ) and E

[
X
j
i

]
= P j for all i ∈ [n] and j ∈ [d]. Assume

E

P ,X,M

[
‖M(X)− P ‖22

]
≤ α2d. If α ≤ 1/18, then n ≥

√
d/5.

Note that we can use empirical values X = 1
n

∑
i∈[n]Xi instead of population values P , as we

have E

P ,X

[
‖X − P ‖22

]
= 1
n

∑
j∈[d]E

P

[
P j(1− P j )

]
≤ d

4n . In this case the accuracy assumption would be

replaced with E

P ,X,M

[
‖M(X)−X‖22

]
≤ (α2 − 1

4n )d

Proof. Let k = E

P ,X,M

[
‖M(X)‖22

]
. We have

|k − d/3| =
∣∣∣∣∣ E

P ,X,M

[
‖M(X)‖22 − ‖P ‖

2
2
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[(‖M(X)‖2 − ‖P ‖2) (‖M(X)‖2 + ‖P ‖2)]

∣∣∣∣∣
≤

∣∣∣∣∣ E

P ,X,M

[
‖M(X)− P ‖2 · 2

√
d
]∣∣∣∣∣

≤ 2
√
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So d(1/3− 2α) ≤ k ≤ d(1/3 + 2α). Furthermore,
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k,
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as long as α ≤ 1/18. Hence, if α ≤ 1/18, by Theorem 3 (with β = 1 and γ = 1/2), we have

n ≥ 1
2

√
k ≥
√
d/3− 2αd

2
≥

√
2
9d

2
≥
√
d

5
.

This completes the proof.

22


	1 Introduction
	1.1 Techniques
	1.2 Relationship to Previous Lower Bounds and Attacks

	2 Preliminaries
	2.1 Notational Conventions
	2.2 Differential Privacy
	2.3 Beta Distributions

	3 Proof of the Main Lower Bound (Theorem ??)
	3.1 Upper Bound via Privacy
	3.2 Lower Bound via Accuracy
	3.2.1 Fingerprinting Lemma
	3.2.2 Using the Fingerprinting Lemma

	3.3 Putting it Together

	4 Using our Lower Bound
	4.1 Application to Approximate Top-k Selection
	4.2 Application to Multiple Hypothesis Testing

	A Releasing the Dataset Mean

