Stochastic Blockmodel Approximation of a Graphon: Theory and Consistent Estimation

Privacy Tools

Abstract

Non-parametric approaches for analyzing network data based on exchangeable graph models (ExGM) have recently gained interest. The key object that defines an ExGM is often referred to as a graphon. This nonparametric perspective on network modeling poses challenging questions on how to make inference on the graphon underlying observed data. In a graphon from a set of observed networks generated from it. This procedure is based on a stochastic blockmodel approximation (SBA) of the graphon. We show that, by approximating the graphon with a stochas-
tic block model, the graphon can be consistently estimated, that is, the tic block model, the graphon can be consistently estimated, that is, the estimation error vanishes as the size of the graph approaches infinity.

Problem

Graphons can be seen as kernel functions for random network models. To construct an n-vertex random graph $\mathcal{G}(n, w)$ for a given w, we firs assign a random label $u_{i} \sim$ Uniform $[0,1]$ to each vertex $i \in\{1$, .. and connect any two vertices i and j with probability $w\left(u_{i}, u_{j}\right)$, i.e
$\operatorname{Pr}\left(G[i, j]=1 \mid u_{i}, u_{j}\right)=w\left(u_{i}, u_{j}\right), \quad i, j=1, \ldots, n$,

Figure 1: [Left] We draw i.i.d. samples u_{i}, u_{j} from Uniform $[0,1]$ and assign Figure 1: Leftt We draw i.i.d. Samples u_{i}, u_{j} from Uniform 0,1$]$ and assign
$G_{t}[i, j]=1$ with probability $w\left(u_{i}, u_{j}\right)$, for $t=1, \ldots, 2 T$. [Middle] Heat map of a graphon w.
in the middle.
The problem of interest is defined as follows: Given a sequence of $2 T$ observed directed graphs $G_{1}, \ldots, G_{2 T}$, can we make an estimate \widehat{w} of w, such that $\widehat{w} \rightarrow w$ with high probability as $n \rightarrow \infty$? (In this problem we assume that the observed graphs share the same set of vertices, in a way that the i-th vertex have the same position u_{i} in all graphs)

Similarity of graphon slices

To measure the similarity between two labels using the graphon slices, we define the following distance
$d_{i j}=\frac{1}{2}\left(\int_{0}^{1}\left[w\left(x, u_{i}\right)-w\left(x, u_{j}\right)\right]^{2} d x+\int_{0}^{1}\left[w\left(u_{i}, y\right)-w\left(u_{j}, y\right)\right]^{2} d y\right)$ $=\frac{1}{2}\left[\left(c_{i i}-c_{i j}-c_{j i}+c_{j j}\right)+\left(r_{i i}-r_{i j}-r_{j i}+r_{j j}\right)\right]$
where
$c_{i j}=\int_{0}^{1} w\left(x, u_{i}\right) w\left(x, u_{j}\right) d x \quad$ and $\quad r_{i j}=\int_{0}^{1} w\left(u_{i}, y\right) w\left(u_{j}, y\right) d y$.
We consider the following estimators for $c_{i j}$ and $r_{i j}$:

$$
\begin{aligned}
& c_{i j j}^{k}=\frac{1}{T^{2}}\left(\sum_{1 \leq t_{1} \leq T} G_{t_{1}}[k, i]\right)\left(\sum_{T<t_{2} \leq 2 T} G_{t_{2}}[k, j]\right), \\
& r_{i j}^{k}=\frac{1}{T^{2}}\left(\sum_{1 \leq t_{1} \leq T} G_{t_{1}[i, k]}\right)\left(\sum_{T<t_{2} \leq 2 T} G_{t_{2}}[j, k]\right) .
\end{aligned}
$$

Summing all possible k^{\prime} s yields an estimator $\hat{d}_{i j}$ that looks similar to $d_{i j}$:

$$
\hat{d}_{i j}=\frac{1}{2}\left[\frac{1}{S} \sum_{k \in \mathcal{S}}\left\{\left(\hat{r}_{i i}^{k}-\hat{r}_{i j}^{k}-\hat{r}_{j i}^{k}+\hat{r}_{j j}^{k}\right)+\left(\hat{c}_{i i}^{k}-\hat{c}_{i j}^{k}-\hat{c}_{j i}^{k}+\hat{c}_{j j}^{k}\right)\right\}\right],
$$

where $\mathcal{S}=\{1, \ldots, n\} \backslash\{i, j\}$ is the set of summation indices.
Theorem 1 The estimator $\hat{d}_{i j}$ for $d_{i j}$ is unbiased and satisfies
$\mathbb{P}\left(\left|d_{i j}-\hat{d}_{i j}\right|>\epsilon\right) \leq 8 e^{-\frac{5 t^{2}}{32 / T+8 \epsilon / 3}}$,

Algorithm (SBA)

To cluster the unknown labels $\left\{u_{1}, \ldots, u_{n}\right\}$ we propose a greedy approach as shown in Algorithm 1 . Starting with $\Omega=\left\{u_{1}, \ldots, u_{n}\right\}$, we
randomly pick a node i_{p} and call it the pivot. Then for all other vertices $i_{v} \in \Omega \backslash\left\{i_{p}\right\}$, we compute the distance $\widehat{d}_{i_{p}, i_{v}}$ and check whether $\widehat{d}_{i_{p}, i_{v}}<\Delta^{2}$ for some precision parameter $\Delta>0$. If $\widehat{d}_{i_{p}, i_{v}}<\Delta^{2}$ then we assign i_{v} to the same block as i_{p}. Therefore, after scan ning through Ω once, a block $\widehat{B}=\left\{i_{p}, i_{v_{1}}, i_{v_{2}}, \ldots\right\}$ will be define By updating Ω as $\Omega \leftarrow \Omega \backslash \widehat{B}$, the process repeats until $\Omega=\emptyset$.

Algorithm 1: Clustering the vertices

Algorithm 1: Clustering the vertices
Input: Observed graphs G_{1}, \ldots, G_{25} and precision parameter
Output: Estimated stochastic blocks $\hat{B}_{1}, \ldots, \bar{B}_{K}$
Output: :stimated stochastic block
Initialize: $\Omega=\{1, \ldots, n\}$, and $k=1$;
while $\Omega \neq \emptyset$ do
Randomly choose a vertex i_{p} from Ω and assign it as the pivot for \widehat{B}_{k} : $\widehat{B}_{k} \leftarrow i_{p} ;$
for $i_{v} \in \Omega \backslash\left\{i_{p}\right\}$ do
Compute the distance estimate $\widehat{d_{i p}, i_{v}}$;
if $\widehat{d}_{i_{p}, i_{v}} \leq \Delta^{2}$ then
assign i_{v} as a member of $\widehat{B}_{k}: \widehat{B}_{k} \leftarrow i_{v}$;
end
Update $\Omega \leftarrow \Omega \backslash \widehat{B}_{k}$
$\underset{\text { end }}{ }$
Once the blocks $\widehat{B}_{1}, \ldots, \widehat{B}_{K}$ are defined, we can then determine $\widehat{w}\left(u_{i}, u_{j}\right)$ by computing the empirical frequency of edges that are present across blocks \widehat{B}_{i} and \widehat{B}_{j} :
$\widehat{w}\left(u_{i}, u_{j}\right)=\frac{1}{\left|\widehat{B_{i}}\right|\left|\widehat{B}_{j}\right|} \sum_{i_{x} \in \widehat{B}_{i} i_{j} \in \widehat{B}_{j}} \sum_{2 T} \frac{1}{2 T}\left(G_{1}\left[i_{x}, j_{y}\right]+G_{2}\left[i_{x}, j_{y}\right]+\ldots+G_{2 T}\left[i_{x}, j_{y}\right]\right)$
where \widehat{B}_{i} is the block containing u_{i}.

Consistency

The performance of the Algorithm 1 depends on the number of blocks defines. On the one hand, it is desirable to have more blocks so that the graphon can be finely approximated. But on the other hand, if the num what might be a problem because in order to estimate the probabilities of connection, a sufficient number of vertices in each block is required. The trade-off between these two cases is controlled by the precision parameter $\Delta:$ a large Δ generates few large clusters, while small Δ generates many small clusters. The following theorems shows how to balance the choice of Δ in order to achieve consistency.

Theorem 2 Let Δ be the accuracy parameter and K be the number of blocks estimated by Algorithm 1, then

$$
\operatorname{Pr}\left[K>\frac{Q L \sqrt{2}}{\Delta}\right] \leq 8 n^{2} e^{-\frac{S \Delta^{4}}{128 / T+16 \Delta^{2} / 3}},
$$

where L is the Lipschitz constant and Q is the number of Lipschitz blocks in w.
Theorem 3 If $S \in \Theta(n)$ and $\Delta \in \omega\left(\left(\frac{\log (n)}{n}\right)^{\frac{1}{4}}\right) \cap o(1)$, then
$\lim _{n \rightarrow \infty} \mathbb{E}[\operatorname{MAE}(\widehat{w})]=0$ and $\lim _{n \rightarrow \infty} \mathbb{E}[\operatorname{MSE}(\widehat{w})]=0$.
where
$\operatorname{MSE}(\widehat{w})=\frac{1}{n^{2}} \sum_{i_{v}=1}^{n} \sum_{j_{v}=1}^{n}\left(w\left(u_{i_{v}}, u_{j_{v}}\right)-\widehat{w}\left(u_{i_{v}}, u_{j_{v}}\right)\right)^{2}$
$\operatorname{MAE}(\widehat{w})=\frac{1}{n^{2}} \sum_{i_{v}=1}^{n} \sum_{j_{v}=1}^{n}\left|w\left(u_{i_{v}}, u_{j_{v}}\right)-\widehat{w}\left(u_{i_{v}}, u_{j_{v}}\right)\right|$.

Choosing parameter

In practice, we estimate Δ using a cross-validation scheme to find the optimal 2D histogram bin width. The idea is to test a sequence of potential defined as

$$
\widehat{J}(\Delta)=\frac{2}{h(n-1)}-\frac{n+1}{h(n-1)} \sum_{j=1}^{K} \widehat{p}_{j}^{2},
$$

where $\widehat{p}_{j}=\left|\hat{B}_{j}\right| / n$ and $h=1 / K$

Algorithm 2: Cross Validation
 Input: Graphs $G_{1}, \ldots, G_{2 T}$ Output: Blocks $\widetilde{B}_{1}, \ldots, \widehat{B}_{K}$, and optimal Δ

for a sequence of Δ 's do
Estimate blocks $\widehat{B}_{1}, \ldots, \widehat{B}_{K}$ from G_{1},
,
Compute $\widehat{\rho}_{j}=\left|\widehat{B}_{j}\right| / n$, for $j=1, \ldots, K ;$
Compute $\widehat{J}(\Delta)=\frac{2}{h(n-1)}-\frac{h+1}{h(n-1)} \sum_{j=1}^{K} \widehat{p}_{j}^{2}$, with $h=1 / K ;$
end
Pick the Δ with minimum $\widehat{J}(\Delta)$, and the corresponding $\widehat{B}_{1}, \ldots, \widehat{B}_{K}$;

Experiments

For the purpose of comparison, we consider (i) the universal singular value thresholding (USVT) [Cha2012]; (ii) the largest-gap algorithm (LG) [CRD20
[KMO2010].

- Estimating stochastic blockmodels We generate (arbitrarily) a graphon

$$
w=\left[\begin{array}{llll}
0.8 & 0.9 & 0.4 & 0.5 \\
0.1 & 0.6 & 0.3 & 0.2 \\
0.3 & 0.2 & 0.8 & 0.3 \\
0.4 & 0.1 & 0.2 & 0.9
\end{array}\right],
$$

which represents a piecewise constant function with 4×4 equispace blocks. The following figures show the asymptotic behavior
of the algorithms when n grows (left), and the estimation error of SBA algorithm as T grows for graphs of size 200 vertices (right).

Figure 2: [Left] MAE reduces as graph size grows. For the fairness of the amount of data that can be used, we use $\frac{n}{2} \times \frac{n}{2} \times 2$ observations
for SBA, and $n \times n \times 1$ observation for USVT and LG. [Right] MAE of the proposed SBA algorithm reduces when more observations T

- Accuracy as a function of growing number of blocks

Our second experiment is to evaluate the performance of the algorithms as K, the number of blocks, increases. To this end, we w of $K \times K$ blocks. Each entry of the block is a random number generated from Uniform $[0,1]$. Same as the previous experiment, we fix $n=200$ and $T=1$. The experiment is repeated over 100 trials so that in every trial a different graphon is generated. The result shown proposed SBA algorithm still attains the lowest MAE for all K.

Figure 3: As K increases, SBA still attains the lowest MAE. Here we use $\frac{n}{2} \times \frac{n}{2} \times 2$ observations for SBA, and $n \times n \times 1$ observatio

Experiments

Estimation with missing edges Our next experiment is to evaluate the performance of proposed SBA algorithm when there are missing edges in the observed graph. To model missing edges, we construct an $n \times n$ binary matrix M with probability $\operatorname{Pr}[M[i, j]=0]=\xi$,
where $0<\xi<1$ defines the percentage of missing edges. Given where $0 \leq \xi \leq 1$ defines the percentage of missing edges. Given graphs are defined as $M_{1} \odot G_{1}, \ldots, M_{2 T} \odot G_{2 T}$, where \odot denotes the element-wise multiplication. The goal is to study how well SBA can reconstruct the graphon \widehat{w} in the presence of missing links.

Figure 4: Estimation of graphon in the presence of missing links: A

Estimating continuous graphons

Our final experiment is to evaluate the proposed SBA algorithm in estimating continuous graphons. Here, we consider two of the graphons reported in [Cha 2012]:

$$
w_{1}(u, v)=\frac{1}{1+\exp \left\{-50\left(u^{2}+v^{2}\right)\right\}}, \quad \text { and } \quad w_{2}(u, v)=u v,
$$

where $u, v \in[0,1]$. Here, w_{2} can be considered as a special

Figure 5: Comparison between SBA and USVT in estimating two continuous graphons w_{1} and w_{2}. Evidently, SBA performs better for

Concluding remarks

We presented a new computational tool for estimating graphons. The proposed algorithm approximates the continuous graphon by a stochastic block-model, in which the first step is to cluster the unknown vertex labels into blocks by using an empirical estimate of the distance between two graphon slices, and the second step is to build an empirical histogram to derived. The algorithm was evaluated experimentally, and we found that the algorithm is effective in estimating block structured graphons.

References

[Cha2012] S. Chatteriee. Matrix estimation by universal singular value thresholding. ArXiv:1212.1247. 2012.

- [CDR2012] A. Channarond, J. Daudin, and S. Robin. Classification and estimation in the Stochastic Blockmodel based on the empirical degrees. Electronic Journal of Statistics, 6:2574-2601, 2012
- [KMO2010] R.H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE Trans. Information Theory, 56:2980-2998, Jun. 2010.
- [LOGR2012] J.R. Lloyd, P. Orbanz, Z. Ghahramani, and D.M. Roy. Random function priors for exchangeable arrays with applications to graphs and relational data. In Neural Information Processing Systems (NIPS), 2012.
[MGJ2009] K.T. Miller, T.L. Grififths, and M.I. Jordan. Nonparamet ric latent fature models for link prediction. In Neural Information Processing Systems (NIPS), 2009

