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Abstract
Non-parametric approaches for analyzing network data based on ex-
changeable graph models (ExGM) have recently gained interest. The key
object that defines an ExGM is often referred to as a graphon. This non-
parametric perspective on network modeling poses challenging questions
on how to make inference on the graphon underlying observed data. In
this paper, we propose a computationally efficient procedure to estimate
a graphon from a set of observed networks generated from it. This pro-
cedure is based on a stochastic blockmodel approximation (SBA) of the
graphon. We show that, by approximating the graphon with a stochas-
tic block model, the graphon can be consistently estimated, that is, the
estimation error vanishes as the size of the graph approaches infinity.

Problem
Graphons can be seen as kernel functions for random network models.
To construct an n-vertex random graph G(n,w) for a given w, we first
assign a random label ui ∼ Uniform[0, 1] to each vertex i ∈ {1, . . . , n},
and connect any two vertices i and j with probability w(ui, uj), i.e.,

Pr (G[i, j] = 1 | ui, uj) = w(ui, uj), i, j = 1, . . . , n,
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Figure 1: [Left] We draw i.i.d. samples ui, uj from Uniform[0,1] and assign
Gt[i, j] = 1 with probability w(ui, uj), for t = 1, . . . , 2T . [Middle] Heat map
of a graphon w. [Right] A random graph generated by the graphon shown
in the middle.

The problem of interest is defined as follows: Given a sequence of 2T
observed directed graphs G1, . . . , G2T , can we make an estimate ŵ of w,
such that ŵ → w with high probability as n → ∞? (In this problem we
assume that the observed graphs share the same set of vertices, in a way
that the i-th vertex have the same position ui in all graphs)

Similarity of graphon slices
To measure the similarity between two labels using the graphon slices,
we define the following distance

dij =
1

2

(∫ 1

0

[w(x, ui)− w(x, uj)]
2
dx+

∫ 1

0

[w(ui, y)− w(uj , y)]
2
dy

)

=
1

2

[
(cii − cij − cji + cjj) + (rii − rij − rji + rjj)

]

where

cij =

∫ 1

0

w(x, ui)w(x, uj)dx and rij =

∫ 1

0

w(ui, y)w(uj , y)dy.

We consider the following estimators for cij and rij :

ckij =
1

T 2

 ∑
1≤t1≤T

Gt1 [k, i]

 ∑
T<t2≤2T

Gt2 [k, j]

 ,

rkij =
1

T 2

 ∑
1≤t1≤T

Gt1 [i, k]

 ∑
T<t2≤2T

Gt2 [j, k]

 .

Summing all possible k’s yields an estimator d̂ij that looks similar to dij :

d̂ij =
1

2

[
1

S

∑

k∈S

{(
r̂kii − r̂kij − r̂kji + r̂kjj

)
+
(
ĉkii − ĉkij − ĉkji + ĉkjj

)}
]
,

where S = {1, . . . , n}\{i, j} is the set of summation indices.

Theorem 1 The estimator d̂ij for dij is unbiased and satisfies

P(|dij − d̂ij | > ε) ≤ 8e−
Sε2

32/T+8ε/3 ,

for any ε > 0.

Algorithm (SBA)
To cluster the unknown labels {u1, . . . , un} we propose a greedy ap-
proach as shown in Algorithm 1. Starting with Ω = {u1, . . . , un}, we
randomly pick a node ip and call it the pivot. Then for all other ver-
tices iv ∈ Ω\{ip}, we compute the distance d̂ip,iv and check whether
d̂ip,iv < ∆2 for some precision parameter ∆ > 0. If d̂ip,iv < ∆2,
then we assign iv to the same block as ip. Therefore, after scan-
ning through Ω once, a block B̂ = {ip, iv1

, iv2
, . . .} will be defined.

By updating Ω as Ω ← Ω\B̂, the process repeats until Ω = ∅.

Algorithm 1: Clustering the vertices
Input: Observed graphs G1, . . . , G2T and precision parameter ∆
Output: Estimated stochastic blocks B̂1, . . . , B̂K

Initialize: Ω = {1, . . . , n}, and k = 1;
while Ω 6= ∅ do

Randomly choose a vertex ip from Ω and assign it as the pivot for B̂k:
B̂k ← ip;
for iv ∈ Ω\{ip} do

Compute the distance estimate d̂ip,iv ;
if d̂ip,iv ≤ ∆2 then

assign iv as a member of B̂k: B̂k ← iv;
end

end
Update Ω← Ω\B̂k;
Update k ← k + 1;

end

Once the blocks B̂1, . . . , B̂K are defined, we can then determine ŵ(ui, uj)
by computing the empirical frequency of edges that are present across
blocks B̂i and B̂j :

ŵ(ui, uj) =
1

|B̂i| |B̂j |

∑
ix∈B̂i

∑
jy∈B̂j

1

2T
(G1[ix, jy] + G2[ix, jy] + . . . + G2T [ix, jy])

where B̂i is the block containing ui.

Consistency
The performance of the Algorithm 1 depends on the number of blocks it
defines. On the one hand, it is desirable to have more blocks so that the
graphon can be finely approximated. But on the other hand, if the num-
ber of blocks is too large then each block will contain only few vertices,
what might be a problem because in order to estimate the probabilities of
connection, a sufficient number of vertices in each block is required. The
trade-off between these two cases is controlled by the precision param-
eter ∆: a large ∆ generates few large clusters, while small ∆ generates
many small clusters. The following theorems shows how to balance the
choice of ∆ in order to achieve consistency.

Theorem 2 Let ∆ be the accuracy parameter and K be the number of
blocks estimated by Algorithm 1, then

Pr

[
K >

QL
√

2

∆

]
≤ 8n2e

− S∆4

128/T+16∆2/3 ,

where L is the Lipschitz constant and Q is the number of Lipschitz blocks
in w.

Theorem 3 If S ∈ Θ(n) and ∆ ∈ ω
((

log(n)
n

) 1
4

)
∩ o(1), then

lim
n→∞

E[MAE(ŵ)] = 0 and lim
n→∞

E[MSE(ŵ)] = 0.

where

MSE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

(w(uiv , ujv )− ŵ(uiv , ujv ))
2

MAE(ŵ) =
1

n2

n∑

iv=1

n∑

jv=1

|w(uiv , ujv )− ŵ(uiv , ujv )| .

Choosing parameter
In practice, we estimate ∆ using a cross-validation scheme to find the
optimal 2D histogram bin width. The idea is to test a sequence of potential
values of ∆ and seek the one that minimizes the cross validation risk,
defined as

Ĵ(∆) =
2

h(n− 1)
− n+ 1

h(n− 1)

K∑

j=1

p̂2j ,

where p̂j = |B̂j |/n and h = 1/K.

Algorithm 2: Cross Validation
Input: Graphs G1, . . . , G2T

Output: Blocks B̂1, . . . , B̂K , and optimal ∆
for a sequence of ∆’s do

Estimate blocks B̂1, . . . , B̂K from G1, . . . , G2T . [Algorithm 1];
Compute p̂j = |B̂j |/n, for j = 1, . . . ,K;
Compute Ĵ(∆) = 2

h(n−1)
− n+1

h(n−1)

∑K
j=1 p̂

2
j , with h = 1/K;

end
Pick the ∆ with minimum Ĵ(∆), and the corresponding B̂1, . . . , B̂K ;

Experiments
For the purpose of comparison, we consider (i) the universal singu-
lar value thresholding (USVT) [Cha2012]; (ii) the largest-gap algorithm
(LG) [CRD2012]; (iii) matrix completion from few entries (OptSpace)
[KMO2010].

• Estimating stochastic blockmodels We generate (arbitrarily) a
graphon

w =


0.8 0.9 0.4 0.5
0.1 0.6 0.3 0.2
0.3 0.2 0.8 0.3
0.4 0.1 0.2 0.9

 , (1)

which represents a piecewise constant function with 4 × 4 equi-
space blocks. The following figures show the asymptotic behavior
of the algorithms when n grows (left), and the estimation error of
SBA algorithm as T grows for graphs of size 200 vertices (right).
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Figure 2: (a) MAE reduces as graph size grows. For the fairness of the amount of data that can be
used, we use n

2 × n
2 × 2 observations for SBA, and n × n × 1 observation for USVT [6] and LG

[5]. (b) MAE of the proposed SBA algorithm reduces when more observations T is available. Both
plots are averaged over 100 independent trials.

Accuracy as a function of growing number of blocks. Our second experiment is to evaluate the
performance of the algorithms as K , the number of blocks, increases. To this end, we consider a
sequence of K , and for each K we generate a graphon w of K × K blocks. Each entry of the
block is a random number generated from Uniform[0, 1]. Same as the previous experiment, we fix
n = 200 and T = 1. The experiment is repeated over 100 trials so that in every trial a different
graphon is generated. The result shown in Figure 3(a) indicates that while estimation error increases
as K grows, the proposed SBA algorithm still attains the lowest MAE for all K .
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(a) Growing no. blocks, K (b) Missing links

Figure 3: (a) As K increases, MAE of all three algorithm increases but SBA still attains the lowest
MAE. Here, we use n

2 × n
2 × 2 observations for SBA, and n× n× 1 observation for USVT [6] and

LG [5]. (b) Estimation of graphon in the presence of missing links: As the amount of missing links
increases, estimation error also increases.

4.2 Estimation with missing edges

Our next experiment is to evaluate the performance of proposed SBA algorithm when there are
missing edges in the observed graph. To model missing edges, we construct an n× n binary matrix
M with probability Pr[M [i, j] = 0] = ξ, where 0 ≤ ξ ≤ 1 defines the percentage of missing
edges. Given ξ, 2T matrices are generated with missing edges, and the observed graphs are defined
as M1 ⊙ G1, . . . ,M2T ⊙ G2T , where ⊙ denotes the element-wise multiplication. The goal is to
study how well SBA can reconstruct the graphon ŵ in the presence of missing links.
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Figure 2: [Left] MAE reduces as graph size grows. For the fairness
of the amount of data that can be used, we use n

2
× n

2
×2 observations

for SBA, and n× n× 1 observation for USVT and LG. [Right] MAE
of the proposed SBA algorithm reduces when more observations T is
available. Both plots are averaged over 100 independent trials.

• Accuracy as a function of growing number of blocks

Our second experiment is to evaluate the performance of the al-
gorithms as K, the number of blocks, increases. To this end, we
consider a sequence of K, and for each K we generate a graphon
w ofK×K blocks. Each entry of the block is a random number gen-
erated from Uniform[0, 1]. Same as the previous experiment, we fix
n = 200 and T = 1. The experiment is repeated over 100 trials so
that in every trial a different graphon is generated. The result shown
in (a) indicates that while estimation error increases asK grows, the
proposed SBA algorithm still attains the lowest MAE for all K.
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Accuracy as a function of growing number of blocks. Our second experiment is to evaluate the
performance of the algorithms as K , the number of blocks, increases. To this end, we consider a
sequence of K , and for each K we generate a graphon w of K × K blocks. Each entry of the
block is a random number generated from Uniform[0, 1]. Same as the previous experiment, we fix
n = 200 and T = 1. The experiment is repeated over 100 trials so that in every trial a different
graphon is generated. The result shown in Figure 3(a) indicates that while estimation error increases
as K grows, the proposed SBA algorithm still attains the lowest MAE for all K .
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Figure 3: (a) As K increases, MAE of all three algorithm increases but SBA still attains the lowest
MAE. Here, we use n

2 × n
2 × 2 observations for SBA, and n× n× 1 observation for USVT [6] and

LG [5]. (b) Estimation of graphon in the presence of missing links: As the amount of missing links
increases, estimation error also increases.

4.2 Estimation with missing edges

Our next experiment is to evaluate the performance of proposed SBA algorithm when there are
missing edges in the observed graph. To model missing edges, we construct an n× n binary matrix
M with probability Pr[M [i, j] = 0] = ξ, where 0 ≤ ξ ≤ 1 defines the percentage of missing
edges. Given ξ, 2T matrices are generated with missing edges, and the observed graphs are defined
as M1 ⊙ G1, . . . ,M2T ⊙ G2T , where ⊙ denotes the element-wise multiplication. The goal is to
study how well SBA can reconstruct the graphon ŵ in the presence of missing links.
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Figure 3: As K increases, SBA still attains the lowest MAE. Here,
we use n

2
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2
× 2 observations for SBA, and n × n × 1 observation

for USVT and LG

Experiments
• Estimation with missing edges Our next experiment is to evaluate

the performance of proposed SBA algorithm when there are miss-
ing edges in the observed graph. To model missing edges, we con-
struct an n× n binary matrix M with probability Pr[M [i, j] = 0] = ξ,
where 0 ≤ ξ ≤ 1 defines the percentage of missing edges. Given
ξ, 2T matrices are generated with missing edges, and the observed
graphs are defined as M1 � G1, . . . ,M2T � G2T , where � denotes
the element-wise multiplication. The goal is to study how well SBA
can reconstruct the graphon ŵ in the presence of missing links.
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Figure 2: (a) MAE reduces as graph size grows. For the fairness of the amount of data that can be
used, we use n

2 × n
2 × 2 observations for SBA, and n × n × 1 observation for USVT [6] and LG

[5]. (b) MAE of the proposed SBA algorithm reduces when more observations T is available. Both
plots are averaged over 100 independent trials.

Accuracy as a function of growing number of blocks. Our second experiment is to evaluate the
performance of the algorithms as K , the number of blocks, increases. To this end, we consider a
sequence of K , and for each K we generate a graphon w of K × K blocks. Each entry of the
block is a random number generated from Uniform[0, 1]. Same as the previous experiment, we fix
n = 200 and T = 1. The experiment is repeated over 100 trials so that in every trial a different
graphon is generated. The result shown in Figure 3(a) indicates that while estimation error increases
as K grows, the proposed SBA algorithm still attains the lowest MAE for all K .
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Figure 3: (a) As K increases, MAE of all three algorithm increases but SBA still attains the lowest
MAE. Here, we use n

2 × n
2 × 2 observations for SBA, and n× n× 1 observation for USVT [6] and

LG [5]. (b) Estimation of graphon in the presence of missing links: As the amount of missing links
increases, estimation error also increases.

4.2 Estimation with missing edges

Our next experiment is to evaluate the performance of proposed SBA algorithm when there are
missing edges in the observed graph. To model missing edges, we construct an n× n binary matrix
M with probability Pr[M [i, j] = 0] = ξ, where 0 ≤ ξ ≤ 1 defines the percentage of missing
edges. Given ξ, 2T matrices are generated with missing edges, and the observed graphs are defined
as M1 ⊙ G1, . . . ,M2T ⊙ G2T , where ⊙ denotes the element-wise multiplication. The goal is to
study how well SBA can reconstruct the graphon ŵ in the presence of missing links.
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Figure 4: Estimation of graphon in the presence of missing links: As
the amount of missing links increases, estimation error also increases.

• Estimating continuous graphons

Our final experiment is to evaluate the proposed SBA algorithm
in estimating continuous graphons. Here, we consider two of the
graphons reported in [Cha 2012]:

w1(u, v) =
1

1 + exp{−50(u2 + v2)} , and w2(u, v) = uv,

where u, v ∈ [0, 1]. Here, w2 can be considered as a special

The modification of the proposed SBA algorithm for the case missing links is minimal: when com-
puting (6), instead of averaging over all ix ∈ B̂i and jy ∈ B̂j , we only average ix ∈ B̂i and jy ∈ B̂j

that are not masked out by all M ′s. Figure 3(b) shows the result of average over 100 independent
trials. Here, we consider the graphon given in (12), with n = 200 and T = 1. It is evident that SBA
outperforms its counterparts at a lower rate of missing links.

4.3 Estimating continuous graphons

Our final experiment is to evaluate the proposed SBA algorithm in estimating continuous graphons.
Here, we consider two of the graphons reported in [6]:

w1(u, v) =
1

1 + exp{−50(u2 + v2)} , and w2(u, v) = uv,

where u, v ∈ [0, 1]. Here, w2 can be considered as a special case of the Eigenmodel [11] or latent
feature relational model [19].

The results in Figure 4 shows that while both algorithms have improved estimates when n grows, the
performance depends on which of w1 and w2 that we are studying. This suggests that in practice the
choice of the algorithm should depend on the expected structure of the graphon to be estimated: If the
graph generated by the graphon demonstrates some low-rank properties, then USVT is likely to be
a better option. For more structured or complex graphons the proposed procedure is recommended.
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(a) graphon w1 (b) graphon w2

Figure 4: Comparison between SBA and USVT in estimating two continuous graphons w1 and w2.
Evidently, SBA performs better for w1 (high-rank) and worse for w2 (low-rank).

5 Concluding remarks

We presented a new computational tool for estimating graphons. The proposed algorithm approx-
imates the continuous graphon by a stochastic block-model, in which the first step is to cluster
the unknown vertex labels into blocks by using an empirical estimate of the distance between two
graphon slices, and the second step is to build an empirical histogram to estimate the graphon. Com-
plete consistency analysis of the algorithm is derived. The algorithm was evaluated experimentally,
and we found that the algorithm is effective in estimating block structured graphons.
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Concluding remarks
We presented a new computational tool for estimating graphons. The
proposed algorithm approximates the continuous graphon by a stochastic
block-model, in which the first step is to cluster the unknown vertex labels
into blocks by using an empirical estimate of the distance between two
graphon slices, and the second step is to build an empirical histogram to
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derived. The algorithm was evaluated experimentally, and we found that
the algorithm is effective in estimating block structured graphons.
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