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The problem of analyzing the effect of privacy concerns on the behavior of selfish utility-maximizing agents

has received much attention lately. Privacy concerns are often modeled by altering the utility functions of

agents to consider also their privacy loss [4, 14, 20, 28]. Such privacy-aware agents prefer to take a randomized

strategy even in very simple games in which non-privacy-aware agents play pure strategies. In some cases, the

behavior of privacy-aware agents follows the framework of Randomized Response, a well-known mechanism

that preserves differential privacy.

Our work is aimed at better understanding the behavior of agents in settings where their privacy concerns

are explicitly given. We consider a toy setting where agentA, in an attempt to discover the secret type of agent

B, offers B a gift that one type of B agent likes and the other type dislikes. As opposed to previous works,

B’s incentive to keep her type a secret isn’t the result of “hardwiring” B’s utility function to consider privacy,

but rather takes the form of a payment between B and A. We investigate three different types of payment

functions and analyze B’s behavior in each of the resulting games. As we show, under some payments, B’s

behavior is very different than the behavior of agents with hardwired privacy concerns and might even be

deterministic. Under a different payment, we show that B’s BNE strategy does fall into the framework of

Randomized Response.
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1 INTRODUCTION

In recent years, as the subject of privacy has become an increasing concern, many works have
discussed the potential privacy concerns of economic utility-maximizing agents. Obviously, utility-
maximizing agents are worried about the effect of revealing personal information in the current
game on future transactions and wish to minimize potential future losses. In addition, some agents
may simply care about what some outside observer, who takes no part in the current game, believes
about them. Such agents would like to optimize the effect of their behavior in the current game
on the beliefs of that outside observer. Yet specifying the exact way in which information might
affect the agents’ future payment or an outside observer’s beliefs is a complicated and intricate
task.

Differential privacy (DP), a mathematical model for privacy, developed for statistical data anal-
ysis [8, 9], avoids the need for such intricate modeling by providing a worst-case bound on agents’
exposure to privacy loss. Specifically, by using an ϵ-differentially private mechanism, agents can
guarantee that the belief of any observer about them changes by no more than a multiplicative
factor of eϵ ≈ 1 + ϵ once this observer sees the outcome of the mechanism [7]. Furthermore, as
pointed out in [14, 20], using an ϵ-differentially private mechanism, the agents guarantee that,
in expectation, any future loss increases by no more than a factor of eϵ − 1 ≈ ϵ . A recent line of
work [4, 14, 20, 28] has used ideas from differential privacy to model and analyze the behavior
of privacy awareness in game-theoretic settings. The aforementioned features of DP allow these
works to bypass the need to model future transactions. Instead, they model privacy-aware agents
as selfish agents with utility functions that are “hardwired” to trade off between two components:
a (positive) reward from the outcome of the mechanism versus a (negative) loss from their nonpri-
vate exposure. This loss can be upper-bounded using DP, and hence in some cases can be shown to
be dominated by the reward (of carefully designed mechanisms), showing that privacy concerns
don’t affect an agent’s behavior.

However, in other cases, the behavior of privacy-aware agents may differ drastically from the
behavior of classical, non-privacy-aware agents. For example, consider a toy game in which B
tells A which of the two free gifts that A offers (or coupons as we call it, for reasons to be ex-
plained later) B would like to receive. We characterize B using one of two types, 0 or 1, where
type 0 prefers the first gift and type 1 prefers the second one. (This is a rephrasing of the “Rye
or Wholewheat” game discussed in [20].) Therefore, it is simple to see that a non-privacy-aware
agent always (deterministically) asks for the gift that matches his or her type. In contrast, if we
model the privacy loss of a privacy-aware agent using DP as in the work of Ghosh and Roth [14]
(and the value of the coupon is large enough), a privacy-aware agent takes a randomized strat-
egy. (See Section 2.2.1.) Specifically, the agent plays Randomized Response, a standard differen-
tially private mechanism that outputs a random choice slightly biased toward the agent’s favorable
action.

However, it was argued [4, 20] that it is not realistic to use the worst-case model of DP to
quantify the agent’s privacy loss and predict his or her behavior. Differential privacy should only
serve as an upper bound on the privacy loss, whereas the agent’s expected privacy loss can (and
should in fact) be much smaller—depending on the agent’s predictions regarding future events, the
adversary’s prior belief about him or her, the types and strategies of other agents, and the random
choices of the mechanism and of other agents. As discussed above, these can be hard to model, so
it is tempting to use a worst-case model like differential privacy.

But what happens if we can formulate the agent’s future transactions? What if we know that
the agent is concerned with the belief of a specific adversary, and we can quantify the effects of
changes to that belief? Is the behavior of a classical selfish agent in that case well modeled by

ACM Transactions on Economics and Computation, Vol. 8, No. 2, Article 9. Publication date: May 2020.



Privacy Games 9:3

Fig. 1. A schematic view of the privacy game we model.

such a “DP-hardwired” privacy-aware agent? Will the agent even randomize his or her strategy?
In other words, we ask:

What is the behavior of a selfish utility-maximizing agent in a setting with clear

privacy costs?

More specifically, we ask whether we can take the above-mentioned toy game and alter it by
introducing payments between A and B such that the behavior of a privacy-aware agent in the
toy game matches the behavior of the classical (non-privacy-aware) agent in the altered game. In
particular, in case B takes a randomized strategy, does his or her behavior preserve ϵ-differential
privacy, and for what value of ϵ? The study of these questions may also provide insights relevant
for traditional, non-game-theoretic uses of differential privacy—helping us understand how tightly
differential privacy addresses the concerns of data subjects, and thus providing guidance in the
setting of the privacy parameter ϵ or the use of alternative, non-worst-case variants of differential
privacy (such as [1]).

Our model. In this work we consider multiple games that model an interaction between an agent
that has a secret type and an adversary whose goal is to discover this type. Though the games vary
in the resulting behavior of the agents, they all follow a common outline that is similar to the toy
game mentioned above. Agent A offers B a free coupon, which comes in one of two types {0, 1}.
Agent B has a secret type t ∈ {0, 1} chosen from a known prior (D0,D1), such that a type-t agent
has positive utility ρt for a type-t coupon and zero utility for a type-(1 − t ) coupon. And so the
game starts with B sending A a signal t̂ indicating the requested type of coupon. (Formally, B’s
utility for the coupon is ρt1[t̂=t ] for some parameters ρ0, ρ1.) Next, having observed the signal t̂

that B sent, A challenges B—A takes an action t̃ and as a result B pays A a payment of P (t̃ , t ).1

Figure 1 gives a schematic representation of the game’s outline.
We make a few observations of the above interaction. We aim to model a scenario where B

is a consumer balancing his or her immediate needs (the reward from getting the coupon that
best matches his or her type) with future privacy concerns (the payments to A). We thus picked a
model in which A has the most incentive to discover B’s type. Therefore, all of the payments we
consider have the property that if B’s type is t∗, then t∗ = arg maxt̃ P (t̃ , t∗). Furthermore, the game
is modeled so that the payments are transferred from B to A, which makes A’s and B’s goals as
opposite as possible. (In fact, past the stage where B sends a signal t̂ , we have that A and B play
a zero-sum game.) Note that the value of the coupon does not affect A’s utility—since, again, our
focus is on a model where A’s incentive is to find out B’s type. (Had we modeled A’s utility as a
function also of the coupon’s value, then our focus would have shifted toward the study of whether
discovering the type of B—or more broadly, whether such “privacy violation”—is worthwhile forA
or not.) We also note that A and B play a Bayesian game (in extensive form) as A doesn’t know the

1Hence the reason for the name “The Coupon Game.” We think of A as G—an “evil” car insurance company that offers its

client a coupon either for an eyewear store or for a car race, thereby increasing the client’s insurance premium based on

either the client’s bad eyesight or the client’s fondness for speedy and reckless driving.
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private type of B, only its prior distribution. We characterize Bayesian Nash Equilibria (BNE) in this
article and will show that in each game, the BNE is unique except when parameters of the game
satisfy certain equality constraints. It is not difficult to show that the strategies at every BNE of our
games are part of a Perfect Bayesian Equilibrium (PBE), i.e., a subgame-perfect refinement of the
BNE, when “padded” with the appropriate posterior beliefs (see further discussion in Section 2).

Our results and article organization. First, in Section 2, following preliminaries, we discuss the
DP-hardwired privacy-aware agent as defined by Ghosh and Roth [14] and analyze his or her
behavior in our toy game. Our analysis shows that given sufficiently large coupon valuations ρt ,
both types of B agent indeed play Randomized Response. We also discuss conditions under which
other models of DP-hardwired privacy-aware agents play a randomized strategy.

Following preliminaries, we consider three different games. These games follow the general
coupon-game outline, yet they vary in their payment function. The discussion for each of the
games follows a similar outline. We introduce the game, then analyze the two agents’ BNE strate-
gies and see if the strategy of theB agent is indeed randomized or pure, and in case it is randomized,
whether or not it follows Randomized Response for some value of ϵ . We also compare the coupon
game to a “benchmark game” where B takes no action and A guesses B’s type without any signal
from B. Investigating whether it is even worthwhile for A to offer such a coupon, we compare A’s
profit between the two games.2 The payment functions we consider are the following.

(1) In Section 3 we consider the case where the payment function is given by a proper scor-

ing rule. Proper scoring rules allow us to quantify B’s cost for any change in A’s belief
about his or her type; thus, if we view privacy concerns as a direct attempt to influence
an adversary’s belief regarding you, it is only natural we study a model where payment
directly relates to an adversary’s belief on the true type of B. We show that in the case of
symmetric scoring rules (scoring rules that are invariant to relabeling of event outcomes),
both types of B agent follow a randomized strategy—which is not Randomized Response,
yet the purpose of B’s BNE strategy is to cause A’s posterior belief on the types to re-
semble Randomized Response. That is, initially A’s belief on B being of type-0 (type-1,
respectively) is D0 (D1, respectively), but B plays in a way such that after viewing the
t̂ = 0 signal, A’s belief that B is of type-0 (type-1, respectively) is 1+ϵ

2 ( 1−ϵ
2 , respectively)

for some value of ϵ (and vice versa in the case of the t̂ = 1 signal with the same ϵ). We
stress that B’s BNE strategy is not Randomized Response—the different types of B agent
do not place the same probability on sending the signal that best matches their respective
types (t̂ = t ).

(2) In Section 4 we consider the case where the payments between A and B are the result of
A guessing correctly B’s type. A views the signal t̂ and then guesses a type t̃ ∈ {0, 1} and
receives a payment of 1[t̃=t ] from B. This payment models the following viewpoint of B’s
future losses: there is a constant gap (of one “unit of utility”) between interacting with
an agent that knows B’s type to an agent that does not know his or her type. We show
that in this case, if the coupon valuations are fixed as ρ0 and ρ1, then at least one type
of B agent plays deterministically; hence B’s BNE strategy in the simplest of all signaling
games does not follow Randomized Response. However, if B’s valuation for the coupon is
sampled from a continuous distribution, then A’s strategy effectively dictates a threshold
with the following property: any B agent whose valuation for the coupon is below the
threshold lies and signals t̂ = 1 − t , and any agent whose valuation is above the threshold

2The benchmark game is not to be confused with the toy game we discussed earlier in this introduction. In the toy game,

A takes no action and B decides on a signal. In the benchmark game, B takes no action and A decides which action to take

based on the specific payment function we consider in each game.
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signals truthfully t̂ = t . Hence, an A agent who does not know B’s valuation thinks of
B as following a randomized strategy, where under a certain regime of parameters this
randomized strategy could be interpreted by A as Randomized Response.

(3) In Section 5 we consider a variation of the previous game where A also has the option to
opt out and not challenge B into a payment game—to report ⊥ and get in return a fixed
payment (i.e., P (⊥, t ) = ϵ for each t ∈ {0, 1}).3 We show that in such a game, under a very
specific setting of parameters, the only BNE is such where both types of B agent take
a randomized strategy and in this BNE strategy B indeed plays like in the Randomized
Response. This is a direct result of the opt-out payment—B’s BNE strategy is such that it
skews the sent type just slightly in favor of his or her true type, yet maintains A’s (weak)
preference to opt out over making an accusation. Note, however, that under alternative
settings of the game’s parameters, the strategy of B is such that at least one of the two
types plays deterministically.

Conclusions and future directions appear in Section 6, where we provide a discussion of our re-
sults. Our work shows that Randomized Response does relate to the behavior of classical utility-
maximizing agents under concrete privacy concerns modeled in various ways. However, this rela-
tion is far from straightforward as our three different games show. In fact, finding a model in which
B’s BNE strategy is indeed to play Randomized Response (the game detailed in Section 5 where A
has an opt-out option) took multiple attempts. We find it surprising to see how minor changes to
the privacy payments lead to diametrically different behaviors. In particular, we see the existence
of a threshold phenomena. Under certain parameter settings in the game we consider in item 3
above, we have that if the value of the coupon is above a certain threshold, then at least one of the
two types of B agent plays deterministically; and if the value of the coupon is below this threshold,
B randomizes his or her behavior s.t. t̂ = t w.p. close to 1

2 . Note also that in all games we have the
same phenomenon: when the coupon’s value exceeds the concrete loss due to privacy concerns,
B acts deterministically as it would in the toy game (without a privacy accusation) and sends the
signal that discloses his or her type.

1.1 Related Work

The study of the intersection between mechanism design and differential privacy began with the
seminal work of McSherry and Talwar [19], who showed that an ϵ-differentially private mech-
anism is also ϵ-truthful. The first attempt at defining a privacy-aware agent was of Ghosh and
Roth [14], who quantified the privacy loss using a linear approximation vi · ϵ , where vi is an in-
dividual parameter and ϵ is the level of differential privacy that a mechanism preserves. Other
applications of differentially privacy mechanisms in game-theoretic settings were studied by Nis-
sim et al. [21]. The work of Xiao [28] initiated the study of mechanisms that are truthful even
when you incorporate the privacy loss into the agents’ utility functions. Xiao’s original privacy
loss measure was the mutual information between the mechanism’s output and the agent’s type.
Nissim et al. [20] (who effectively proposed a preliminary version of our coupon game called “Rye
or Whole Wheat”) generalized the models of privacy loss to only assume that it is upper bounded

by vi · ϵ . Chen et al [4] proposed a refinement where the privacy loss is measured with respect to
the given input and output. Fleischer and Lyu [11] considered the original model of agents as in
Ghosh and Roth [14] but under the assumption thatvi , the value of the privacy parameter of each
agent, is sampled from a known distribution.

Several papers in economics look at the potential loss of agents from having their personal data
revealed. In fact, one folklore objection to the Vickrey auction is that in a repeated setting, by

3Note that we can always shift all payments in the game by a constant so that P (⊥, t ) = 0.
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providing the sellers with the bidders’ true valuations for the item, the bidders subject themselves
to future loss should the seller prefer to run a reserved-price mechanism in the future. In the
context of repeated interaction between an agent and a company, there have been works [2, 6]
studying the effect of price differentiation based on an agent allowing the company to remember
whether he or she purchased the same item in the past. Interestingly, strategic agents realize this
effect and so they might “haggle”—reject a price below their valuation for the item in round 1 so
that they’d be able to get an even lower price in round 2. In that sense, the fact that the agents pub-
lish their past interaction with the company actually helps the agents. Other work [3] discusses
a setting where a buyer sequentially interacts with two different sellers and characterizes the
conditions under which the first seller prefers not to give the buyer’s information to the second
seller. Concurrently with our work, Gradwohl and Smorodinsky [16], whose motivation is to
analyze the effect of privacy concerns, introduce a framework of games in which an agent’s utility
is affected by both his or her actions and how his or her actions are perceived by a third party.

The privacy games that we propose and analyze in this article fall into the class of signaling
games [18], where a sender (B in our game) with a private type sends a message (i.e., a signal) to
a receiver (A in our game), who then takes an action. The payoffs of both players depend on the
sender’s message, the receiver’s action, and the sender’s type. Signaling games have been widely
used in modeling behavior in economics and biology. The focus is typically on understanding
when signaling is informative, i.e., when the message of the sender allows the receiver to infer the
sender’s private type with certainty, especially in settings when signaling is costly (e.g., Spence’s
job market signaling game [25]). In our setting, however, informative signaling violates privacy.
We are interested in characterizing when the sender plays in a way such that the receiver cannot
infer his or her type deterministically.

2 PRELIMINARIES

2.1 Equilibrium Concept

We model the games between A and B as Bayesian extensive-form games. A Bayesian game be-
tween two agents A and B is specified by their type spaces (ΓA, ΓB ), a prior distribution Π over
the type spaces (according to which nature draws the private types of the agents), sets of available
actions (CA,CB ), and utility functions,ui : ΓA × ΓB ×CA ×CB → R, i ∈ {A,B}. A mixed or random-

ized strategy of agent i maps a type of agent i to a distribution over his or her available actions, i.e.,
σi : Γi → Δ(Ci ), where Δ(Ci ) is the probability simplex overCi . When σi deterministically maps a
type to an action, it is called a pure strategy. The BNE of the two-player game is defined as follows.

Definition 2.1. A strategy profile (σA,σB ) is a Bayesian Nash Equilibrium if

E[ui (Ti ,T−i ,σi (Ti ),σ−i (T−i )) |Ti = ti ] ≥ E[ui (Ti ,T−i ,σ
′
i (Ti ),σ−i (T−i )) |Ti = ti ]

for all i ∈ {A,B}, all types ti ∈ Γi occurring with positive probability, and all strategies σ ′i , where
σ−i and T−i denote the strategy and type of the other agent, respectively, and the expectation is
taken over the randomness of agent typeT−i and the randomness of the strategies σi , σ−i , and σ ′i .

In other words, a strategy profile (σA,σB ) is a BNE if both agents maximize their expected utility
by playing σi in responding to the other player’s strategy σ−i ; i.e., they both play best response. In
our particular case, where the game is sequential (B moves first, then A takes an action based
on B’s action), we have that the set of possible actions of B is simple to describe: CB = {send t̂ =
0, send t̂ = 1}, whereas the set of possible actions ofA is dependent on the action of B, and thus,A’s
set of possible actions is composed of 2-tuples: each element ofCA is of the form 〈t̃0, t̃1〉, implyingA
plays t̃0 in response to B’s signal t̂ = 0 and t̃1 in response to t̂ = 1. It follows that the BNE strategy of
B maps his or her type to an action σ ∗B (t ) �→ Δ(CB ); and we often use the notation p∗ = Pr[σ ∗B (0) =
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0] (thus an agent of type t = 0 sends the signal t̂ = 0 w.p. p∗ and the signal t̂ = 1 w.p. 1 − p∗) and
q∗ = Pr[σ ∗B (1) = 1] (so an agent of type t = 1 sends the signal t̂ = 0 w.p. 1 − q∗ and the signal t̂ = 1
w.p. q∗).

As mentioned in Section 1.1, our games betweenA andB belong to the class of signaling games:B
is the sender andA is the receiver. In signaling games, an important subclass of dynamic/sequential
games, a commonly used refinement of BNE is an equilibrium concept called Perfect Bayesian Equi-

librium. PBEs are composed of the strategies for each player in each stage of the game, concate-
nated with his or her posterior belief after witnessing the history at each stage. (These beliefs
are the posterior distributions on each type and are consistent on the witnessed history and the
equilibrium strategies of all other players.) For brevity, we avoid formally defining the more subtle
concept of PBE as the refinement doesn’t provide additional insights for our problem and alleviates
us of the need to explicitly introduce the description of A’s posterior belief based on the observed
signal t̂ . It is, however, evident that all of the BNEs considered in our article can be “extended” to
PBEs (by appropriately defining the beliefs of agent A about agent B’s type post witnessing the
signal t̂ ) as A’s BNE strategy σ ∗A must be such that the actions taken in response to B sending t̂

are best response w.r.t to the resulting posterior distribution:
(

D0p∗

D0p∗+D1 (1−q∗ ) ,
D1 (1−q∗ )

D0p∗+D1 (1−q∗ )

)
after

witnessing t̂ = 0, and
(

D0 (1−p∗ )
D0 (1−p∗ )+D1q∗ ,

D1q∗

D0 (1−p∗ )+D1q∗

)
after witnessing t̂ = 1.4 For signaling games,

the terms separating equilibrium and pooling equilibrium are often used to characterize when sig-
naling is fully informative. At a separating equilibrium, a sender’s strategy allows the receiver to
deterministically infer his or her private type, while at a pooling equilibrium multiple types of
senders may take the same action, preventing the receiver from gaining any information about his
or her type. In contrast, our work is centered on finding a semipooling equilibrium that allows the
receiver to infer limited information as to the sender’s true type. We refer the interested reader
to [12] (Ch. 8.2) for more information regarding PBE in signaling games.

2.2 Differential Privacy

In order to define differential privacy, we first need to define the notion of neighboring inputs.
Inputs are elements in Xn for some set X, and two inputs I,I′ ∈ Xn are called neighbors if the
two are identical on the details of all individuals (all coordinates) except for at most one.

Definition 2.2 ([9]). An algorithm ALG that maps inputs into some rangeR satisfies ϵ-differential

privacy if for all pairs of neighboring inputs I,I′ and all subsets S ⊂ R it holds that Pr[ALG(I) ∈
S] ≤ eϵ

Pr[ALG(I′) ∈ S].

One of the simplest algorithms that achieves ϵ-differential privacy is called Randomized Re-

sponse [10, 17], which dates back to the 1960s [26]. This algorithm is best illustrated over a binary
input, where each individual is represented by a single binary bit (therefore, a neighboring in-
stance is one in which a single individual is represented by a different bit). Randomized Response
works by perturbing the input. For each individual i represented by the bit bi , the algorithm ran-

domly and independently picks a bit b̂i s.t. Pr[b̂i = bi ] =
1+γ

2 for some γ ∈ [0, 1). It follows from

the definition of the algorithm that it satisfies ϵ-differential privacy for ϵ = ln(
1+γ

1−γ
). Randomized

Response is sometimes presented as a distributed algorithm, where each individual generates his

or her respective b̂i locally, which he or she reports publicly. Therefore, it is possible to view this
work as an investigation of the type of games in which selfish utility-maximizing agents truthfully

follow Randomized Response, rather than sending some arbitrary bit as b̂i .

4Under the assumption that p∗ + 1 − q∗ > 0 and 1 − p∗ + q∗ > 0; namely, that both signals are sent with nonzero proba-

bility by B at equilibrium.
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In this work, we define certain games and analyze the behavior of the two types of B agents in
the BNE of these games. And so, denoting B’s strategy as σB , we consider the implicit algorithm
σB (t ) that tells a type-t agent what probability mass to put on the 0-signal and on the 1-signal.
Knowing B’s strategy σB , we say that B satisfies ln(Xgame)-differential privacy where5

Xgame
def
= Xgame (σB ) = max

t, t̂ ∈{0,1}

(
Pr[σB (t ) = t̂]

Pr[σB (1 − t ) = t̂]

)
.

We are interested in finding settings whereXgame (σ ∗B ) is finite, where σ ∗B denotes B’s BNE strategy.
We say B plays a Randomized Response strategy in a game whenever his or her BNE strategy σ ∗B
satisfies Pr[σ ∗B (0) = 0] = Pr[σ ∗B (1) = 1] = p for some p ∈ [1/2, 1).

2.2.1 Privacy-Aware Agents. The notion of privacy-aware agents has been developed through a
series of works [4, 14, 20, 28]. The utility function of our privacy-aware agent B is of the formuB =

uout
B
− upr iv

B
. The first term, uout

B
, is the utility of agent B from the mechanism. The second term,

u
pr iv

B
, represents the agent’s privacy loss. The exact definition ofu

pr iv

B
(and even the variablesu

pr iv

B
depends on) varies between the different works mentioned above, but all works bound the privacy

loss of an agent that interacts with a mechanism that satisfies ϵ-differential privacy byu
pr iv

B
≤ v · ϵ

for somev > 0. Here we argue about the behavior of a privacy-aware agent with the maximal pri-
vacy loss function, which is the type of agent considered by Ghosh and Roth [14]—i.e., the agent’s
privacy loss when interacting with a mechanism that satisfies ϵ-differential privacy is exactlyv · ϵ
for some v > 0. (We also briefly discuss later how to extend this result to other models of u

pr iv

B
.)

Recall our (simplest) toy game, in which all that happens is that B asks for a coupon of type t̂ .
Therefore, the outcome of this simple game is t̂ , precisely the action that B takes. B’s type is picked
randomly to be 0 w.p. D0 and 1 w.p. D1, and a B agent of type t has valuation of ρt for a coupon
of type t (and valuation of 0 a coupon of type 1 − t ). Therefore, in this game, uout

B
= ρt1[t̂=t ]. We

think of σ ∗B , B’s utility-maximizing strategy as the implicit algorithm that tells a type-t agents what

probability mass to put on sending the t̂ = 0 signal and what mass to put on the t̂ = 1 signal. As

noted above, this strategy satisfies ln(Xgame)-differential privacy, and so u
pr iv

B
(σ ∗B ) = v · ln(Xgame)

for some parameterv > 0. Assuming D0ρ0 � D1ρ1, our proof shows that this privacy-aware agent
chooses essentially between two alternatives in our toy game: either both types take the same
deterministic strategy and send the same signal (Pr[σ ∗B (0) = b] = Pr[σ ∗B (1) = b] = 1 for some
b ∈ {0, 1}) or the agent randomizes his or her behavior and plays using Randomized Response:
Pr[σ ∗B (0) = 0] = Pr[σ ∗B (1) = 1] ∈ [ 1

2 , 1). We show that for sufficiently large values of the coupon
the latter alternative is better than the first.

Theorem 2.3. Fix v > 0, and assume ρ0, ρ1 satisfy the following two conditions. (i) There exists

a constant α > 0 such that min{D0ρ0,D1ρ1} ≥ α (D0ρ0 + D1ρ1) (≥ α max{D0ρ0,D1ρ1}, i.e., no one

coupon dominates the value of the other), and (ii) ρ0, ρ1 are sufficiently large. Let B be a privacy-

aware agent whose privacy loss is given byv ln(Xgame). Then, the unique strategy σ ∗B that maximizes

B’s utility is a Randomized Response strategy. That is, Pr[σ ∗B (0) = 0] = Pr[σ ∗B (1) = 1] = p∗ for some

p∗ ∈ ( 1
2 , 1).

Proof. Recall the type of B is chosen randomly to be 0 w.p. D0 and 1 w.p. D1. Given a strat-
egy σB for B, we denote p = Pr[σB (0) = 0] and q = Pr[σB (1) = 1] (so Pr[σB (0) = 1] = 1 − p and
Pr[σB (1) = 0] = 1 − q). Therefore,

Xgame (σB ) = Xgame (p,q) = max

{
p

1 − q ,
1 − q
p
,

q

1 − p ,
1 − p
q

}
. (1)

5We use the convention 0
0 = 1.
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Note that Xgame (p,q) ≥ 1 with equality iff p = 1 − q (which means σB (t ) is independent of t and
B reveals no information about his or her type). And so B aims to maximizes the following utility
function:uB = D0ρ0p + D1ρ1q −v ln(Xgame). When the strategy that optimizes B’s utility, denoted

(p∗,q∗), satisfies p∗ = q∗ ∈ ( 1
2 , 1), we say that B plays using Randomized Response.

First, observe that if p + q < 1, then Xgame > 1 and the utility of B is D0ρ0p + D1ρ1q −
v ln(Xgame) < max{D0ρ0,D1ρ1}, soB can always improve the utility by playing either (p,q) = (1, 0)
or (p,q) = (0, 1). The same argument holds for any (p,q) where p + q = 1 and both are not inte-
gral. (If D0ρ0 = D1ρ1, then the agent is indifferent between any (p,q) satisfying p = 1 − q.) Second,
observe that the utility-maximizing strategy cannot be (p,q) with p = 1 and q > 0 (or with q = 1
and p > 0) because in that case the privacy loss is infinite. Therefore, we deduce the following.
If there exists a strategy (p,q) s.t. p > 1 − q and p,q ∈ (0, 1) whose utility is strictly greater than
max{D0ρ0,D1ρ1}, then it is a utility-maximizing strategy. (Otherwise, one of the two strategies
(0, 1) or (1, 0) maximizes B’s utility.)

We continue assuming wlog that D0ρ0 ≥ D1ρ1. Note that in this case the utility-maximizing
strategy (p∗,q∗) must satisfy p∗ ≥ q∗, since otherwise the strategy (q∗,p∗) yields greater utility
without changingXgame. This implies that we seek to maximize B’s utility over the domain {(p,q) :

p + q ≥ 1,p ≥ q}, where Xgame =
q

1−p
and B’s utility function is the function f (p,q) = D0ρ0p +

D1ρ1q −v ln(
q

1−p
). Observe that f is a convex function of q, and so the maximum must be obtained

when q = p or when q = 1 − p. As we rule out the latter option, we have that p = q.
We now ask whether there exists a value x∗ > 1

2 such that B gains more than D0ρ0 by playing
(p,q) = (x∗,x∗). That is, we ask

∃?x > 1
2 s.t. (D0ρ0 + D1ρ1)x −v ln

( x

1 − x

)
> D0ρ0.

Denoting Y = D0ρ0 + D1ρ1, we now use the assumption that some constant α exists s.t. D1ρ1 ≥
αY to deduce that D0ρ0 ≤ (1 − α )Y . This simplifies our question to whether x > 1

2 does exist s.t.
Y · x −v ln( x

1−x
) > (1 − α )Y . This last function is maximized for x∗ satisfying x∗ (1 − x∗) = v

Y
, i.e.,

x∗ = 1
2 (1 +

√
1 − 4v

Y
). Therefore, B will prefer playing this randomized strategy if

uB (x∗,x∗) = 1
2Y

(
1 +

√
1 − 4v

Y

)
−v ln

����
1 +

√
1 − 4v

Y

1 −
√

1 − 4v
Y

���� > (1 − α )Y ≥ D0ρ0.

Since limY→∞
uB (x ∗,x ∗ )

Y
= 1, then for a large enough value of Y , the above inequality holds. �

A general privacy valuation. As an immediate corollary of the proof, consider any alternative

definition of a privacy-aware agent in which the privacy valuation u
pr iv

B
(1) depends only on the

strategy σB , (2) is nonnegative, (3) is upper bounded byv ln(Xgame) for somev > 0, and (4)u
pr iv

B
=

∞ whenever Xgame = ∞. We argue that the utility-maximizing strategy of such an agent is also
randomized. (Observe that we no longer guarantee thatB’s optimal strategyσ ∗B satisfies Pr[σ ∗B (0) =
0] = Pr[σ ∗B (1) = 1].)

To see that, observe that whenever p = 1 − q, we have that Xgame = 0 so the privacy loss of
an agent is 0. Therefore, playing either (p,q) = (1, 0) or (0, 1), the agent can guarantee a utility of
max{D0ρ0,D1ρ1}. In contrast, should the agent play any (p,q) withp < 1 − q, then his or her utility
is upper bounded by D0ρ0p + D1ρ1q ≤ max{D0ρ0,D1ρ1}, because the privacy loss is nonnegative.
Therefore, the agent prefers playing (p,q) = (1, 0) or (0, 1) to any (p,q) with p < 1 − q. Second,
since we assume infinite privacy loss whenever Xgame = ∞, then B’s utility-maximizing strategy
cannot satisfy that p = 1 and q > 0 (or vice versa). Lastly, the proof of Theorem 2.3 gives a strategy
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(p,q) with p > 1 − q where the lower bound on B’s utility is greater than max{D0ρ0,D1ρ1}. It
follows that B strictly prefers playing some strategy (p,q) with p,q ∈ (0, 1) over playing (p,q) =
(1, 0) or (p,q) = (0, 1).

2.2.2 The Two Types of B Agents as Different Players. The above analysis assumed B is an agent
playing this coupon game, decides on a strategy before the realization of his or her type, and sticks
to that strategy even after his or her type is revealed. It is possible, though, to think of the two
types of B agents as two different agents ex-post—after each agent is revealed his or her own type.
As we show, the analysis in this case is slightly different. Observe that in this case we discuss a
straightforward Nash equilibrium, as both agents know their respective types. In the following,
we continue using our notation from earlier, where Pr[σ (i ) = t̂] denotes the probability a B agent
of type t = i sends the signal t̂ according to strategy σ .

Theorem 2.4. Consider the two-player game where player i ∈ {0, 1} is a B agent of type t = i .
Assume ρ0 = ρ1 = ρ and that ρ is sufficiently large. Let z∗ ∈ (1 − v

ρ
, 1) be the number that satisfies

2z∗ − 1 = v
ρ

ln( z∗

1−z∗ ). Then any NE of the game falls into one of three categories:

• Pr[σ (0) = 0] = Pr[σ (1) = 0] = z for some z ∈ [z∗, 1]. (Both agents take the same strategy and

send the signal t̂ = 0 with high probability z.)

• Pr[σ (0) = 1] = Pr[σ (1) = 1] = z for some z ∈ [z∗, 1]. (Both agents take the same strategy and

send the signal t̂ = 1 with high probability z.)

• Pr[σ (0) = 0] = Pr[σ (1) = 1] = z for some z ∈ [1 − v
ρ
, z∗]. (Both agents play Randomized Re-

sponse and report truthfully t̂ = t with the same probability z.)

Proof. We continue using the same notation from Theorem 2.3: p = Pr[σ (0) = 0] and q =
Pr[σ (1) = 1], and so Xgame = Xgame (p,q) as denoted in Equation (1). In particular, when p + q ≥ 1,

it holds that Xgame (p,q) =
p

1−q
when p ≤ q, and Xgame (p,q) =

q

1−p
when p ≥ q.

First, observe that the utilities of both agents are symmetric: uB,0 (p,q) = ρp −v ln(Xgame (p,q))
and uB,1 (p,q) = ρq −v ln(Xgame (p,q)). Second, observe that if one agent plays deterministically

Pr[σ (t ) = t̂] = 1, then, unless the other type deterministically sends the same signal,Xgame (p,q) =
∞, causing both agents to have utility of −∞. It is therefore clear that the strategies (p,q) = (1, 0)
and (p,q) = (0, 1) are both NEs. Second, observe that if (p,q) is an NE of the game, then it must
hold that p + q ≥ 1. Otherwise, if p + q < 1 and wlog p < 1/2, then type t = 0 agent can deviate to
playing 1 − q and only increase his or her utility.

Before continuing with our analysis, we discuss the following two functions:

• For any parameter q ∈ (0, 1), we denote fq (x ) = ρx −v ln(
q

1−x
). Since f ′q (x ) = ρ − v

1−x
is a

decreasing function on the interval [0, 1), we have that fq is maximized at x = 1 − v
ρ

. In

particular, fq is strictly increasing on the interval [0, 1 − v
ρ

] and strictly decreasing on the

interval [1 − v
ρ
, 1).

• For any parameter q ∈ (0, 1), we denote дq (x ) = ρx −v ln( x
1−q

). Since д′q (x ) = ρ − v
x

, it is

an increasing function on the interval (0, 1], and then дq is strictly decreasing on the (0, v
ρ

)

interval and strictly increasing on the [v
ρ
, 1] interval.

We return to our NE analysis. To find the remaining NEs of the game, we fix a certain strategy
for the t = 1 agent, denoted q = Pr[σ (1) = 1], and see what strategy p = Pr[σ (0) = 0] is type t = 0
agent’s best response for q. Since both agents are symmetric, our analysis also translates to a best-
response analysis for type t = 1 agent.
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Assume q = Pr[σ (1) = 1] < 1
2 for now. As we have p + q ≥ 1, it must hold that p ∈ [1 − q, 1).

Since p ≥ 1 − q ≥ 1
2 > q, Xgame =

q

1−p
, so type t = 0 agent’s utility from playing Pr[σ (0) = 0] = p

is precisely fq (p). There are two cases to consider here:

• When q ≤ v
ρ

: it implies that 1 − v
ρ
≤ 1 − q ≤ p < 1, and so on the interval [1 − q, 1) we have

that fq is strictly decreasing. Therefore, type t = 0 agent’s best response to q is to play
p = 1 − q.

• When v
ρ
< q < 1

2 : it implies that the point 1 − v
ρ

lies inside the interval [1 − q, 1), so type

t = 0 agent’s best response to q is to play p = 1 − v
ρ

.

Assume now the case 1
2 ≤ q. Now, the type t = 0 agent can play a strategy p that lies either in

the interval [1 − q,q] or in the interval [q, 1). In the former case, the utility of the type t = 0 agent
is дq (p), and in the latter case his or her utility is fq (x ). Therefore:

• When 1
2 ≤ q < 1 − v

ρ
: This implies [1 − q,q] ⊂ ( v

ρ
,q], so the strategy that maximizes дq on

the interval [1 − q,q] is to playp = q, where type t = 0 agent gainsдq (q) = ρq −v ln(
q

1−q
) =

fq (q). Also, it holds that the point 1 − v
ρ

lies inside the interval (q, 1), so the strategy that

maximizes fq on this interval is p = 1 − v
ρ

, where he or she gains fq (1 − v
ρ

) > fq (q). It fol-

lows that type t = 0 agent’s best response to q is to set p = 1 − v
ρ

.

• When 1 − v
ρ
≤ q < 1: This implies that in order to maximize the function дq on [1 − q,q],

type t = 0 agent considers the two strategies p = 1 − q and p = q; and in order to maxi-
mize the function fq on [q, 1), type t = 0 agent considers solely the strategy p = q. (Note
that fq (q) = дq (q).) Therefore, type t = 0 agent’s best response is p = q whenever дq (q) =
ρq −v ln(

q

1−q
) ≥ ρ (1 − q) = дq (1 − q); and his or her best response is p = 1 − q whenever

дq (q) ≤ дq (1 − q). Observe thatдq (q) = дq (1 − q) precisely forq = z∗. So forq ∈ [1 − v
ρ
, z∗],

the best response is to set p = q, and for q ∈ [z∗, 1), the best response is to set p = 1 − q.

Because of the symmetry between the two types of agents, it follows that the NEs of the game
are (1 − q,q) for any q ∈ [z∗, 1]; (1 − q,q) for any q ∈ [0, 1 − z∗]; and (q,q) for any q ∈ [1 − v

ρ
, z∗].

(Note, for q ∈ (1 − z∗, v
ρ

), type t = 0 agent’s best response is to play p = 1 − q, but then type t = 1

agent’s best response is to deviate to q = 1 − v
ρ

.) �

3 THE COUPON GAME WITH SCORING RULES PAYMENTS

In this section, we model the payments between A and B using a proper scoring rule (see below).
This model is a good “first attempt” model for the following two reasons. (1) Proper scoring rules
assign profit to A based on the accuracy of his or her belief, so A has incentives to improve his or
her prior belief on B’s type. (2) As we show, in this model it is possible to quantify B’s tradeoff
between an ϵ-change in the belief and the cost that B pays A. In that aspect, this model gives a
clear quantifiable tradeoff that explains what each additional unit of ϵ-differential privacy buys B.
Interestingly, proper scoring rules were recently applied in the context of differential privacy [13]
(yet in a very different capacity).

Proper scoring rules (see surveys [15, 27]) were devised as a method to elicit experts to report
their true prediction about some random variable. For a {0, 1}-valued random variableX , an expert
is asked to report a prediction x ∈ [0, 1] about the probability that X = 1. We pay him or her
f1 (x ) if indeed X = 1 and f0 (x ) otherwise. A proper scoring rule is a pair of functions ( f0, f1) such
that arg maxx Et←X [ft (x )] = Pr[X = 1]. Hence, a risk-neutral agent’s best strategy is to report x =
Pr[X = 1]. The most frequently used proper scoring rules are symmetric (or label-invariant) rules,
where∀x , f1 (x ) = f0 (1 − x ) (also referred to as neutral scoring rules in [5]). With symmetric proper
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scoring rules, the payment to an expert reporting x as the probability of a random variableX to be 1
is identical to the payment of an expert reporting (1 − x ) as the probability of the random variable
(1 − X ) to be 1. Additional background regarding proper scoring rules is deferred to Appendix A.

3.1 The Game with Scoring Rule Payments

We now describe the game and analyze its BNE. In this game A interacts with a random B from
a population that has D0 fraction of type 0 agents and D1 fraction of type 1 agents. Wlog we
assume throughout Sections 3, 4, and 5 that D0 ≥ D1. A aims to discover B’s secret type. He or
she has utility that is directly linked to his or her posterior belief on B’s type, and A reports his or
her belief that B is of type 1. A’s payments are given by a proper scoring rule, composed of two
functions ( f0, f1), so that after reporting a belief of x , a B agent of type t pays ft (x ) to A.

A benchmark game. First consider the following straightforward (and more boring) game where
B does nothing, A merely reports x—his or her belief that B is of type 1. In this game A gets

paid according to a proper scoring rule—i.e., A gets a payment of FD1 (x )
def
= D0 f0 (x ) + D1 f1 (x )

in expectation. Since ( f0, f1) is a proper scoring rule, A maximizes his or her expected payment

by reporting x = D1. So, in this game A gets paid д(D1)
def
= fD1 (D1) in expectation, whereas B’s

expected cost is д(D1). (Alternatively, a B agent of type 0 pays f0 (D1) and a B agent of type 1 pays
f1 (D1).)

The full game. We now turn our attention to a more involved game. Here A, aiming to have a
more accurate posterior belief on B’s type, offers B one of two possible coupons, knowing that
agents of type t prefer a coupon of type t . And so, B chooses what type to report to A, who
subsequently makes a prediction about B’s probability of being of type 1. The formal stages of the
game are as follows:

(0) B’s type, t , is drawn randomly with Pr[t = 0] = D0 and Pr[t = 1] = D1.
(1) B reports to A a type t̂ = σB (t ) and receives utility of ρt if indeed t̂ = t . We assume

throughout this section that ρ0 = ρ1 = ρ.
(2) A reports a prediction x , representing Pr[t = 1 | σB (t ) = t̂], and receives a payment from

B of ft (x ).

Theorem 3.1. Consider the coupon game with payments in the form of a symmetric proper scoring

rule where both types of agents have the same value for the coupon ρ (= ρ0 = ρ1). Assume also the

following about ρ, the value of the coupon:

f1 (D0) − f1 (D1) < ρ < f1 (1) − f1 (0) (= f0 (0) − f0 (1)).

Then the unique BNE strategy of B in this game, denoted σ ∗B , satisfies that Pr[t = 0 | σ ∗B (t ) = 0] =
Pr[t = 1 | σ ∗B (t ) = 1].

Prior to presenting the proof of Theorem 3.1 (in Section 3.2), we wish to make a few observations
and comments.

Comparison with Randomized Response. Note that a Randomized Response strategy σB for B
would instead have Pr[σB (0) = 0] = Pr[σB (1) = 1]. This strategy is different from the BNE strategy
σ ∗B given in Theorem 3.1 when Pr[t = 0] � Pr[t = 1] (i.e., D0 � D1). Yet, in this game, a rational
agent B plays s.t. A’s posterior on B’s type is symmetric. Specifically, the proof of Theorem 3.1 is
that the BNE strategy of B satisfies

D0p
∗

D0p∗ + D1 (1 − q∗) =
D1q

∗

D0 (1 − p∗) + D1q∗
⇒ D2

0p
∗ (1 − p∗) = D2

1q
∗ (1 − q∗), (2)

and so, unless D0 = D1, we have that p∗ � q∗.
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The viewpoint of A. We also comment about A’s payment. The proof of Theorem 3.1 shows
that when t̂ = 0, A gets an expected payment of д(y0), and when t̂ = 1, A gets д(y1), where y0 =

D0p∗

D0p∗+D1 (1−q∗ ) and y1 =
D1q∗

D0 (1−p∗ )+D1q∗ (and p∗ and q∗ are set such that y0 = 1 − y1). Now, since the

scoring rule is symmetric, we have that A gets the same payment regardless of the signal, so A’s
payment is д(y1). Recall that y1 is the point where ρ = д′(y1).

So, is this game worthwhile for A? Suppose A could choose between either this coupon game
or the “benchmark game” mentioned in the beginning of this section, in which A guesses B’s type
based solely on the known prior distribution (without viewing any signal from B). Recall, in the
benchmark game, A gets an expected profit of д(D1) = д(D0). Thus, we ask, when is it the case
that д(y1) > д(D0)?6

Recall that д is a convex function that is minimized at x = 1
2 . Therefore, д(y1) > д(D0) iff 1

2 ≤
D0 < y1, which also impliesд′(D0) < д′(y1) = ρ. In other words,A gains more money in the coupon
game than in the benchmark game only if A offers a coupon of high-value—a coupon whose value
exceeds д′(D0).

The case with ρ0 � ρ1. We briefly discuss the case where ρ0 and ρ1 are not equal. First of all, ob-
serve that now there could be situations in which the BNE is of the form (1,q∗) with a nonintegral
q∗, or the symmetric (p∗, 1)—when the coupon’s value of the respective type is large enough to
compensate for A knowing for certain B’s type. However, when the coupon’s value isn’t so large,
both types of B agents play a randomized strategy and we can show that the resulting posterior
distributions (given by y0 and y1 as detailed above) satisfy

ρ1

ρ0 + ρ1
f0 (y0) +

ρ0

ρ0 + ρ1
f1 (y0) =

ρ1

ρ0 + ρ1
f0 (y1) +

ρ0

ρ0 + ρ1
f1 (y1).

In other words, setting μ =
ρ0

ρ0+ρ1
, we have Fμ (y0) = Fμ (y1). Sadly, it is no longer the case that

y1 = 1 − y0.

3.2 Proof of Theorem 3.1

We now present the proof of Theorem 3.1.

Proof. We first analyze both agents’ utilities and strategies. The utility of A is solely based
on the payments of the proper scoring rule: Et←{D0,D1 }[ft (x )]. A has to decide on two potential
reports: x0 and x1, where for b ∈ {0, 1}, xb represents A’s belief about Pr[t = 1 | t̂ = b]. Therefore,
a strategy σA of A maps a signal t̂ into a report. The utility of B has two components—B gains a
certain amount of utility ρt from reportingA the true type but then has to payA his or her scoring
rule payments. Therefore, a strategy σB maps each of B’s types to a signal. Given a strategy σB ,
we use the following notation:

p = Pr[σB (0) = 0], q = Pr[σB (1) = 1].

This way, B’s utility function takes the form

uB = D0uB,0 + D1uB,1,

where uB,0 = p (ρ − f0 (x0)) + (1 − p) (−f0 (x1))

uB,1 = q (ρ − f1 (x1)) + (1 − q) (−f1 (x0)) .

6Again, we assume the coupon costs A nothing. So A merely chooses whether to (1) not offer B the coupon and get an

expected reward of д (D1) or (2) offer B the coupon and obtain a reward of д (y1).
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When A sees the signal t̂ , the probability over B’s type is given by Bayes Rule:

y0 = y0 (p,q)
def
= Pr[t = 1 | t̂ = 0] =

D1 (1 − q)

D0p + D1 (1 − q)
=

1

1 +
D0p

D1 (1−q )

(3)

y1 = y1 (p,q)
def
= Pr[t = 1 | t̂ = 1] =

D1q

D0 (1 − p) + D1q
=

1

1 +
D0 (1−p )

D1q

, (4)

and since A’s payments come from a proper scoring rule, it follows that A reports x0 = σA (0) = y0

and x1 = σA (1) = y1. In other words, given that B’s BNE strategy is (p∗,q∗), then A plays best
response of x∗0 = y0 (p∗,q∗),x∗1 = y1 (p∗,q∗).

We now turn to analyze B’s utility. Denote the strategy that A plays as x0 and x1. Then agent B
decides on p and q that maximize the utility function

uB = D0 · (p (ρ − f0 (x0)) − (1 − p) f0 (x1)) + D1 · (q(ρ − f1 (x1)) − (1 − q) f1 (x0)).

It is simple to characterize B’s best response to A’s strategy of (x0,x1).

If ρ > f0 (x0) − f0 (x1), then p = 1.

If ρ < f0 (x0) − f0 (x1), then p = 0.

If ρ = f0 (x0) − f0 (x1), then B may play any p ∈ [0, 1].

If ρ > f1 (x1) − f1 (x0), then q = 1.

If ρ < f1 (x1) − f1 (x0), then q = 0.

If ρ = f1 (x1) − f1 (x0), then B may play any q ∈ [0, 1]. (5)

We now wish to characterize the game’s BNEs. First, we claim that in a BNE, with B playing
σ ∗B = (p∗,q∗), it cannot be that p∗ < 1 − q∗. This follows from the fact that y0 (p,q) > y1 (p,q) ⇔
p < 1 − q. It means that A’s best response to such (p∗,q∗) is to answer some (x0,x1) s.t. x0 > x1.
But since f0 is a decreasing function, f1 is an increasing function, and ρ > 0, then B’s best response
to such (x0,x1) is to deviate to (1, 1). Similarly, should (p∗,q∗) be such that p∗ = 1 − q∗ and both

p∗,q∗ ∈ (0, 1), thenA’s best response (x0,x1) is ( 1
2 ,

1
2 ), which implies again that B prefers to deviate

to (1, 1). It follows that, with the exception of (1, 0) and (0, 1), any BNE strategy of B satisfies
p∗ > 1 − q∗, and so any BNE strategy of A satisfies x0 < x1.

Before continuing with the proof, we would like to make two observations, which we will repeat-
edly use. Let X be a uniform Bernoulli random variable. We examine the expected payment to an
expert reporting a belief of z as to the probability of the eventX = 1, which we denote as F1/2 (z) =
1
2 ( f0 (z) + f1 (z)). The function F1/2 is a concave function with a unique maximum at z = 1

2 , and it is

strictly increasing on the [0, 1
2 ] interval and strictly decreasing on [ 1

2 , 1] interval. Therefore, for any

a there exists at most two distinct preimages z1 ≤ 1
2 ≤ z2 satisfying F1/2 (z1) = F1/2 (z2) = a. Recall

that we assume ( f0, f1) is a symmetric proper scoring rule (so f1 (z) = f0 (1 − z) for any z ∈ [0, 1]).
So our first observation is: for any z1, z2 satisfying F1/2 (z1) = F1/2 (z2) and z2 > z1, we have that
z2 = 1 − z1 with z1 ∈ [0, 1/2) and z2 ∈ (1/2, 1]. Using again the fact that ( f0, f1) is a symmetric
proper scoring rule and the fact that F1/2 is maximized at z = 1

2 , we make our second observation:

for any z, z ′ satisfying F1/2 (z) ≥ F1/2 (z ′) it must hold that |z − 1
2 | ≤ |z

′ − 1
2 |, which implies that

z ∈ [z ′, 1 − z ′] if z ′ ≤ 1/2.
We now return to the proof of the theorem using case analysis as to the potential BNE strategies

of B. We will rely also on our assumption that D0 ≥ D1.

(i) (p∗,q∗) = (1, 1), i.e., B always plays t̂ = t . This means that A sets x0 = 0 and x1 = 1 (i.e.,
A always predicts t = b given the signal t̂ = b).

ACM Transactions on Economics and Computation, Vol. 8, No. 2, Article 9. Publication date: May 2020.



Privacy Games 9:15

(∗) We deduce that if ρ ≥ f0 (0) − f0 (1) and ρ ≥ f1 (1) − f1 (0), then the game has a BNE
of

(x∗0 ,x
∗
1 ) = (0, 1), (p∗,q∗) = (1, 1).

We comment that since ( f0, f1) is a symmetric proper scoring rule, then we have that
f0 (0) − f0 (1) = f1 (1) − f1 (0).

(ii) (p∗,q∗) = (1, 0), i.e.,B only sends the t̂ = 0 signal. So when A sees the t̂ = 0 signal, he

or she sets x0 = D1 just as in the benchmark yet. But A is indifferent as to the choice
of x1 since the t̂ = 1 signal is never sent. In order for this to be a BNE, it must hold
that f1 (x1) − f1 (D1) ≥ ρ ≥ f0 (D1) − f0 (x1) so that both types of B agents would keep
sending the t̂ = 0 signal. So x1 satisfies that F1/2 (x1) = 1

2 ( f0 (x1) + f1 (x1)) ≥ F1/2 (D1) =
1
2 ( f0 (D1) + f1 (D1)). Based on our second observation, we have that x1 ∈ [D1,D0].

(∗) We deduce that if the parameters of the game are set such that there exists v ∈
[D1,D0] satisfying both f0 (v ) ≥ f0 (D1) − ρ and f1 (v ) ≥ f1 (D1) + ρ, then the game has a
BNE of

(x∗0 ,x
∗
1 ) = (D1,v ), (p∗,q∗) = (1, 0).

As f1 is an increasing function, it must hold that ρ ≤ f1 (D0) − f1 (D1). In other words,
when ρ > f1 (D0) − f1 (D1), this cannot be a BNE.

(iii) (p∗,q∗) = (0, 1). This means that B only sends the t̂ = 1 signal. So now A sets x1 = D1

but A is indifferent regarding the value of x0. In order for B not to deviate from (0, 1),
x0 should satisfy both ρ ≤ f0 (x0) − f0 (D1) and ρ ≥ f1 (D1) − f1 (x0). This implies that
F1/2 (x0) ≥ F1/2 (D1) and our second observation gives that x0 ∈ [D1,D0]. But observe
that f0 (x0) ≥ ρ − f0 (D1) > f0 (D1). This contradicts the fact that f0 is a strictly decreasing
function.

(iv) p∗ = 1 while q∗ ∈ (0, 1). This meansA setsx1 = 1 (because only type 1 agents can send t̂ =

1), while setting x0 = y0 (p∗,q∗) > 0. To keep B from deviating, x0 should satisfy that ρ ≥
f0 (x0) − f0 (1) and ρ = f1 (1) − f1 (x0). Therefore, F1/2 (1) ≥ F1/2 (x0), so our observation
yields the contradiction 1 ∈ [x0, 1 − x0].

(v) q∗ = 1 while p∗ ∈ (0, 1). This case is symmetric to the previous case, and we get a similar
contradiction using F1/2 (0) ≥ F1/2 (x1).

(vi) p∗,q∗ ∈ (0, 1) with p∗ > 1 − q∗.We know that A’s best response is setting x∗0 = y0 (p∗,q∗)

and x∗1 = y1 (p∗,q∗) and we have already shown that y0 < y1. In order for B to play
best response against (y0,y1), we must have that ρ = f0 (y0) − f0 (y1) = f1 (y1) − f1 (y0) so
F1/2 (y0) = F1/2 (y1). Based on our first observation from before, we have that y1 = 1 − y0.
In other words, B picks p∗ and q∗ s.t. the signals t̂ = 0 and t̂ = 1 are symmetric:

Pr[t = 1 | t̂ = 1] = y1 = 1 − y0

= 1 − Pr[t = 1 | t̂ = 0] = Pr[t = 0 | t̂ = 0],

so regardless of the value of b, the expression Pr[t = t̂ | t̂ = b] is the same.
Observe that we have ρ = f0 (y0) − f0 (y1) = f0 (y0) − f0 (1 − y0) = −д′(y0) or ρ =

д′(y1). (Recall, ( f0, f1) are derived using a convex function д as detailed in Section A.1.) In
other words, B sets (p∗,q∗) by first finding y1 ∈ ( 1

2 , 1] s.t. д′(y1) = ρ, then finding (p∗,q∗)
that satisfy Equation (2) and yield y1. Formally, B finds (p∗,q∗) that satisfy

ρ = д′
(

D1q
∗

D0 (1 − p∗) + D1q∗

)
= −д′

(
D1 (1 − q∗)

D0p∗ + D1 (1 − q∗)

)
. (6)

Recall that д is convex and д′′ > 0 on the [0, 1] interval. This implies that as ρ increases,
the point y1 (p∗,q∗) gets further away from 1

2 and closer to 1. �
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Modifications of the proof for the case where ρ0 � ρ1. We briefly discuss the case where ρ0 and ρ1

are not equal. First of all, observe that now there could be situations in which the BNE is of the form
(1,q∗) with a nonintegral q∗ or the symmetric (p∗, 1). This is because the previous contradiction
that held in these cases no longer holds. More interestingly, for the BNE we get that (y0,y1) and
(p∗,q∗) still satify Equations (3) and (4), and also

ρ0 = f0 (y0) − f0 (y1), ρ1 = f1 (y1) − f1 (y0),

which, using ρ0ρ1, can be manipulated into
ρ1

ρ0 + ρ1
f0 (y0) +

ρ0

ρ0 + ρ1
f1 (y0) =

ρ1

ρ0 + ρ1
f0 (y1) +

ρ0

ρ0 + ρ1
f1 (y1).

In other words, setting μ =
ρ0

ρ0+ρ1
, we have Fμ (y0) = Fμ (y1). Alternatively, it is possible to subtract

the two equalities and deduce
1
2 (ρ0 − ρ1) = 1

2 ( f0 (y0) + f1 (y0)) − 1
2 ( f0 (y0) + f1 (y1)) = F1/2 (y0) − F1/2 (y1).

These two conditions (along withy0 < y1) dictate the value ofy0,y1, and thus the values of (p∗,q∗).
Sadly, it is no longer the case that y1 = 1 − y0.

In Appendix A.2 we discuss the implications of using specific scoring rules.

4 THE COUPON GAME WITH THE IDENTITY PAYMENTS

In this section, we examine a different variation of our initial game. As always, we assume that B
has a type sampled randomly from {0, 1} w.p. D0 and D1, respectively, and wlog D0 ≥ D1. Yet this
time, the payments between A and B are given in the form of a 2 × 2 matrix we denote as M . This
payment matrix specifies the payment from B to A in case A “accuses” B of being of type t̃ ∈ {0, 1}
and B is of type t . In general, we assume that A strictly gains from finding out B’s true type and
potentially loses otherwise (or conversely, that a B agent of type t strictly loses utility if A accuses
B of being of type t̃ = t and potentially gains money if A accuses B of being of type t̃ = 1 − t ).
In this section specifically, we consider one simple matrix M—the identity matrix I2×2. This is of
course the simplest of all signaling games. Thus,A gets utility of 1 from correctly guessing B’s type
(the same utility regardless of B’s type being 0 or 1) and 0 utility if he or she errs. We comment
that in Section 5 we consider a more general matrix of payments.7

4.1 The Game and Its Analysis

The benchmark game. The benchmark for this work is therefore a very simple “game” where B
does nothing,A guesses a type, and B paysA according to M . It is clear thatA maximizes utility by
guessing t̃ = 0 (since D0 ≥ D1) and so A gains in expectation D0, where an agent B of type t = 0
pays 1 to A, and an agent B of type t = 1 pays 0 to A.

The full game. Aiming to get a better guess for the actual type of B, we now assumeA first offers
B a coupon. As before, B gets a utility of ρt from a coupon of the right type and 0 utility from a
coupon of the wrong type. And so, the game takes the following form now:

(0) B’s type, denoted t , is chosen randomly, with Pr[t = 0] = D0 and Pr[t = 1] = D1.
(1) B reports a type t̂ = σB (t ) to A. A in return gives B a coupon of type t̂ .
(2) A accuses B of being of type t̃ = σA (t̂ ) and B pays 1 to A if indeed t̃ = t .

And so, the utility of agentA isuA = 1[t̃=t ]. The utility of agent B is a summation of two factors—
reporting the true type to get the right coupon and the loss of paying A for finding B’s true type.
So uB = ρt1[t̂=t ] − 1[t̃=t ].

7Moreover, if we consider a general 2 × 2-payment matrix M , the result remains qualitatively similar—some type of B

agent plays deterministically (unless some specific equality happens making that type of agent indifferent to any strategy).
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Theorem 4.1. In the coupon game with payments given by the identity matrix with ρ0 � ρ1, any

BNE strategy of B is pure for at least one of the two types of B agent. Formally, for any BNE strategy

of B, denoted σ ∗B , there exist t , t̂ ∈ {0, 1} s.t. Pr[σ ∗B (t ) = t̂] = 1.

The proof of Theorem 4.1 appears in Section 4.3. Here, we make a few comments about the BNE
of this game.

First, we comment that technically, it is possible to have a BNE strategy for B, which is Ran-
domized Response. In the case where ρ0 = ρ1, B has infinitely many randomized BNE strategies,
including a BNE strategy σ ∗B s.t. 1

2 ≤ Pr[σ ∗B (0) = 0] = Pr[σ ∗B (1) = 1] < 1 (Randomized Response),
yet this Randomized Response strategy is not preferable to any other BNE strategy.

But, assuming ρ0 � ρ1, then we have that at BNE, B plays in a way where the t̂ = 0 signal leads
A to play the same way he or she plays in the benchmark game (with no coupon)—to always
play t̃ = 0, because Pr[t = 0 | t̂ = 0] > Pr[t = 1 | t̂ = 0]. However, given the signal t̂ = 1, it holds
that Pr[t = 0 | t̂ = 1] = Pr[t = 1 | t̂ = 1] (since B’s BNE strategy is on the �2 line). In other words,
after viewing the t̂ = 1 signal, A has posterior belief on B’s type of ( 1

2 ,
1
2 ). Of course, if B plays the

strategy (1, 0), then this last statement is vacuous since the t̂ = 1 signal is never sent.
Lastly, we compare A’s payment in the full game to his or her payment in the benchmark game.

Recall that in the benchmark gameA always accuses t̃ = 0 and so in expectation his or her payment
is D0. As the proof of Theorem 4.1 demonstrates, the utility that A gets by playing his or her BNE
strategy isD0p

∗ + D0 (1 − p∗) = D0. In other words, moving from the benchmark game to this more
complicated coupon game givesA no additional revenue. In fact, the only agent that gains anything
is B. In the benchmark game B’s utility is−D0. In the coupon game, B’s utility (at BNE) isD0 (ρ0 − 1)
when ρ0 ≥ ρ1, or D0 (ρ0 − 1) + D1 (ρ1 − ρ0) when ρ0 < ρ1.

4.2 Continuous Coupon Valuations

We now consider the same game with the same payments, but under a different setting. Whereas
before we assumed the valuations that the two types of B agents have for the coupon are fixed (and
known in advance), we now assume they are not fixed. In this section we assume the existence of a

continuous prior over ρ, where each type t ∈ {0, 1} has its own prior, so CDF0 (x )
def
= Pr[ρ < x | t =

0] with an analogous definition of CDF1 (x ). We use CDFB to denote the cumulative distribution
function of the prior over ρ (i.e., CDFB (x ) = Pr[ρ < x] = D0CDF0 (x ) + D1CDF1 (x )). We assume
the CDF is continuous and so Pr[ρ = y] = 0 for any y. Given any z ≥ 0, we denote CDF−1

B (z) the
set {y : CDFB (y) = z}. Observe that now, the strategy of B maps both his or her type and his or her

valuation of the coupon to an action t̂ ∈ {0, 1}. Thus, σB is a randomized function from R≥0 × {0, 1}
to {0, 1}.

Theorem 4.2. In every BNE (σ ∗A,σ
∗
B ) of the coupon game with identity payments, where D0 � D1

and the valuations of the B agents for the coupon are taken from a continuous distribution over [0,∞),
the BNE strategies are as follows:

• Agent A always plays t̃ = 0 after viewing the t̂ = 0 signal (i.e., Pr[σ ∗A (0) = 0] = 1) and plays

t̃ = 1 after viewing the t̂ = 1 signal with probability y∗ (i.e., Pr[σ ∗A (1) = 1] = y∗), where y∗ is

any value in CDF−1
B (D1) when Pr[ρ < 1] ≥ D1 and y∗ = 1 when Pr[ρ < 1] < D1.

• Agent B reports truthfully (sends the signal t̂ = t ) whenever his or her valuation for the coupon

is greater thany∗, and lies (sends the signal t̂ = 1 − t ) otherwise. That is, for every t ∈ {0, 1} and

ρ ∈ [0,∞), we have that if ρ > y∗, then Pr[σ ∗B (ρ, t ) = t] = 1, and if ρ < y∗, then Pr[σ ∗B (ρ, t ) =
t] = 0.

ACM Transactions on Economics and Computation, Vol. 8, No. 2, Article 9. Publication date: May 2020.



9:18 Y. Chen et al.

Observe that in continuous-value variation of the coupon game, from A’s perspective—who
doesn’t know the realized value of the coupon—it appears that B is playing a randomized strategy.
Furthermore, should the coupon valuation and the type be chosen independently (i.e., PDF0 =

PDF1), thenA views B’s strategy as Randomized Response—since for a randomly chosen ρ it holds
that Pr[σ (ρ, 0) = 0] = Pr[σB (ρ, 1) = 1] = Pr[ρ > y∗]. In that case the behavior of B preserves ϵ-
differential privacy for

ϵ = ln

(
D0

D1

)
.

And so, even though it holds that at BNE both players’ strategies are fairly simple, we can still
argue that Randomized Response arises as a strategy of utility-maximizing agents at equilibrium.
The proof of Theorem 4.2 appears in Section 4.3.

4.3 Proofs of Theorem 4.1 and 4.2

We now present the proofs of Theorems 4.1 and 4.2. We begin with the proof of Theorem 4.1.

Proof of Theorem 4.1. First, we denote the strategies of agents A and B. We denote

For B: p = Pr[σB (0) = 0], and q = Pr[σB (1) = 1].

For A: x = Pr[σA (0) = 0], and y = Pr[σA (1) = 1].

Using these four parameters, we analyze the utility functions of the agents of the game. We start
with the utility function of A:

uA = D0px + D0 (1 − p) (1 − y) + D1qy + D1 (1 − q) (1 − x ).

This function characterizes A’s best response strategy as follows. A determines x = Pr[σA (0) = 0]
based on the relation betweenD0p (= Pr[t = 0 ∧ t̂ = 0]) andD1 (1 − q) (= Pr[t = 1 ∧ t̂ = 0])—ifD0p
is the larger term, then x = 1; if D1 (1 − q) is the larger term, then x = 0; and if both are equal,
then A is free to set any x ∈ [0, 1]. Similarly, the relationship between D1q = Pr[t = 1 ∧ t̂ = 1] and
D0 (1 − p) = Pr[t = 0 ∧ t̂ = 1] determines the value of y = Pr[σA (1) = 1].

We therefore denote the following two lines on the [0, 1] × [0, 1] square of possible choices for
p and q:

�1 : q = 1 − D0

D1
p, (i.e., D0p = D1 (1 − q)).

�2 : q =
D0

D1
(1 − p), (i.e., D0 (1 − p) = D1q).

These are A’s “lines of indifference”: when B plays (p,q) ∈ �1, A is indifferent to any value of x in
the range [0, 1], and when B plays (p,q) ∈ �2, A is indifferent between any value of y.

Observe that �1 and �2 have the same slope, and so they are parallel, and that the point (p,q) =
(1, 0) is above �1 yet on �2. It follows that �2 is above �1 (unless D0 = D1 =

1
2 , in which case the two

lines coincide). The two lines are shown in Figure 2.
We now turn our attention to the utility functions of B. The utility of B of type t = 0 is

uB,0 = p · (ρ0 − x ) + (1 − p) (−1 + y),

and the utility of B of type t = 1 is

uB,1 = q · (ρ1 − y) + (1 − q) (−1 + x ),
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Fig. 2. The strategy space for agent B and the corresponding best response ofA. When B plays a (p,q)-point

above line �1, A sets x = 1; when B plays a (p,q)-point above line �2, A sets y = 1.

which means that B’s best response strategies are

if ρ0 > x + y − 1, then p = 1;

if ρ0 < x + y − 1, then p = 0;

if ρ0 = x + y − 1, then B can play any p ∈ [0, 1];

if ρ1 > x + y − 1, then q = 1;

if ρ1 < x + y − 1, then q = 0;

if ρ1 = x + y − 1, then B can play any q ∈ [0, 1].

Using the best response strategies of both A and B, we can analyze the game’s potential BNEs.
First we cover the simple case.

If max{ρ0, ρ1} > 1, then at least one coupon has value strictly greater than 1 and so one of the
two types of B agents strictly prefers deviating to playing deterministically. Wlog this type is the
t = 0 type, and so in any BNE of the game we have that Pr[σ ∗B (0) = 0] = 1.

The interesting case is when max{ρ0, ρ1} ≤ 1, and since we assume ρ0 � ρ1, then for some type
of B agent the value of the coupon is strictly less than 1. (This intuitively makes sense—the coupon
game becomes interesting only when B’s value for the coupon is below the max-payment from B
to A, and hence B has incentive to hide his or her true type.)

We continue with a case analysis as to the potential BNE strategies of B.

(i) Strictly above the �2 line, where D1q > D0 (1 − p).
This means B plays s.t. D1Pr[σ ∗B (1) = 1] > D0Pr[σ ∗B (0) = 1], and as a result

D1Pr[σ ∗B (1) = 0] = D1 − D1q < D0 − D0 (1 − p) = D0Pr[σ ∗B (0) = 0].

Therefore, given that A observes any signal t̂ ∈ {0, 1}, it is more likely that a B agent
of type t̂ sent that signal. So A responds to such strategy by playing deterministically
Pr[σ ∗A (t̂ ) = t̂] = 1 for any signal t̂ ∈ {0, 1}. As A prefers to play x = y = 1 and some type
of B agent has coupon valuation <1, then that type deviates (so either p = 0 or q = 0),
and so the BNE strategy of B cannot be above the �2 line.

(ii) Strictly below the �2 line, where D1q < D0 (1 − p).

This means B plays s.t. D1Pr[σ ∗B (1) = 1] < D0Pr[σ ∗B (0) = 1]. So the t̂ = 1 signal is
more likely to come from a t = 0 type agent, and so A’s best response is to set
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(1 − y) = Pr[σ ∗A (1) = 0] = 1. We thus have that x + y − 1 ≤ 0,whereas ρ0, ρ1 > 0. Hence,
B deviates to playing (p,q) = (1, 1), and so the BNE of B cannot be below the �2 line.

(iii) On the �2 line, where D1q = D0 (1 − p).

This means B plays s.t. D1Pr[σ ∗B (1) = 1] = D0Pr[σ ∗B (0) = 1], and as a result

D1Pr[σ ∗B (1) = 0] = D1 − D1q < D0 − D0 (1 − p) = D0Pr[σ ∗B (0) = 0],

assuming D1 < D0 (the special case where D0 = D1 =
1
2 will be discussed later). And so

when A views the t̂ = 0 signal, it is more likely that the type of B agent is t = 0, so x =
Pr[σ ∗A (0) = 0] = 1, whereas when A views the t̂ = 1 signal, both types of B agents are as
likely to send the signal, so A is indifferent as to the value of y = Pr[σ ∗A (1) = 1].

Since ρ0 � ρ1, by setting the single parameter y, A can makes at most one of the two
types of B agent indifferent, while the other type plays a pure strategy. In other words,
B’s BNE strategy can only be one of the two extreme points: (p,q) = (1, 0) or (p,q) =

( D0−D1

D1
, 1). The pure strategy of the nonindifferent type is determined by the relation

between ρ0 ≷ ρ1. So the possible BNEs are

If ρ0 > ρ1, σ
∗
A = (1,y) with y ∈ [ρ1, ρ0],σ ∗B = (1, 0).

If ρ0 = ρ1, σ
∗
A = (1, ρ0),σ ∗B = (p,q) with (p,q) ∈ �2.

If ρ0 < ρ1, σ
∗
A = (1, ρ0),σ ∗B = ( D0−D1

D0
, 1).

In the special case where D0 = D1 (the two lines are the same one), (p = 1,q = 0) and
(p = 0,q = 1) are both BNE regardless of the A BNE strategy being any (x ,y) satisfying
with min{ρ0, ρ1} ≤ x + y − 1 ≤ max{ρ0, ρ1}.

Observe that in the case with ρ0 = ρ1 < 1, in a BNE, B may play any strategy on the �2 line and
A makes both types of B agents indifferent to the value of p,q by settingy = ρ0 = ρ1. Since the line
p = q (i.e., agent B plays Randomized Response) does intersect the �2 line at (D0,D0), it is possible
that B plays Randomized Response (with ϵ = ln(D0/D1)). (And if ρ0 = ρ1 = 1, then B may play any
(p,q) on �2 or above it, whereas A plays x = y = 1.) �

Proof of Theorem 4.2. We assume B’s parameters are sampled as follows. First, we pick a type
t s.t. Pr[t = 1] = D1 and Pr[t = 0] = D0. Then, given t , we sample ρ ← PDFt , where Pr[ρ ≤ 0] = 0
for both types. And whileA knows D0,D1,PDF0, and PDF1,A does not know B’s realized type and
valuation.

We apply the same notation from before, denoting a strategy σB of B using p and q (where
p = Pr[σB (0) = 0] and q = Pr[σB (1) = 1]), and denoting a strategy σA of A using x and y (where
x = Pr[σA (0) = 0] and y = Pr[σA (1) = 1]).

The utility function of B remains the same:

uB,0,ρ = p (ρ − x ) + (1 − p) (−1 + y), uB,1,ρ = q(ρ − y) + (1 − q) (−1 + x ).

So B’s best response to any strategy of (x ,y) of A is given by

σbr
B (ρ, t ) =

{
t , if ρ > x + y − 1
1 − t , if ρ < x + y − 1.

We call such a strategy a threshold strategy characterized by a parameterT , where any agent with
ρ < T plays t̂ = 1 − t and any agent with ρ > T plays t̂ = t .8 Clearly, in any BNE, B follows a
threshold strategy for some value of T .

8Since ρ is sampled from a continuous distribution, the probability of the event ρ = T is 0.
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Therefore, sinceA’s BNE strategy is best response to B’s BNE strategy, it suffices to considerA’s
best response against a threshold strategy. Given that B follows a threshold strategy with threshold
T , we have that A’s utility function is

uA = xD0 (1 − CDF0 (T )) + (1 − x )D1CDF1 (T )

+yD1 (1 − CDF1 (T )) + (1 − y)D0CDF0 (T )

= CDFB (T ) + x (D0 − CDFB (T )) + y (D1 − CDFB (T )),

where we use the notation CDFB = D0CDF0 + D1CDF1. As A maximizes his or her strategy, we
have that A sets x > 0 only if CDFB (T ) ≤ D0. Similarly, y > 0 only if CDFB (T ) ≤ D1. Since D1 ≤
D0, we only have three cases to consider.

(i) If CDFB (T ) < D1 : In this case A’s best response is to set x = y = 1 and B’s best response

to (1, 1) is to set the threshold parameterT = x + y − 1 = 1. (So every B agent with ρ < 1
deterministically sends the signal t̂ = 1 − t and any B agent with ρ > 1 sends the signal
t̂ = t .) Clearly, if it holds that CDFB (1) < D1, i.e., that the probability of a random B agent
to have ρ ≤ 1 is less than D1, then we have a BNE.

(ii) If CDFB (T ) > D1 : In this case A’s best response sets y = 0 and x ∈ [0, 1]. As B is play-

ing best response to A’s strategy, then it means that the threshold parameter is set to
T = x − 1 ≤ 0. (And so all B agents have coupon valuation ρ > 0 and we have that all B
agents deterministically send the signal t̂ = t .) But for such T we have that CDFB (T ) ≤
CDFB (0) = 0 < D1, we get an immediate contradiction.

(iii) If CDFB (T ) = D1 : In this case A sets x = 1 and is indifferent to the choice of y. Observe

that B’s best response to A’s strategy of (1,y) is to set the threshold parameter to T =
y. We have that this is indeed a BNE if y ∈ CDF−1

B (D1). Assuming uniqueness to the

inverse of CDFB , then σ ∗A = (1,y∗) withy∗ = CDF−1
B (D1) isA’s BNE strategy, and B’s BNE

strategy is a threshold strategy with the threshold parameter set toT = y∗. We comment
that in the case where D0 = D1 and A is indifferent to the choice of x as well, the BNE
strategy of A is defined using any x∗,y∗ ∈ [0, 1] that satisfy x∗ + y∗ ∈ CDF−1

B (D1). �

5 THE COUPON GAME WITH AN OPT-OUT STRATEGY

In this section, we consider a version of the game considered in Section 4. The revised version of
the game we consider here is very similar to the original game, except for A’s ability to “opt out”
and not guess B’s type.

In this section, we consider the most general form of matrix payments. We replace the identity

matrix payments with general payment matrix M of the form M =

[
M0,0 −M0,1

−M1,0 M1,1

]
in which the

(i, j ) entry in M means A guessed t̃ = i and B’s true type is t = j, and so B pays A the amount
detailed in the (i, j )-entry. We assume M0,0,M0,1,M1,0,M1,1 are all nonnegative. Indeed, when pre-
viously considering the identity matrix payments, we assumed that forA, realizing that B has type
t = 0 is worth just as much as finding out that B has type t = 1. But it might be the case that finding
a person of t = 1 should be more worthwhile forA. For example, type t = 1 (the minority, since we
always assume D0 ≥ D1) may represent having some embarrassing medical condition, while type
t = 0 represents not having it. Therefore, M1,1 can be much larger than M0,0, but similarly, M1,0 is
probably larger than M0,1. (Falsely accusing B of being of the embarrassing type is costlier than
falsely accusing a B of type 1 of belonging to the nonembarrassing majority.) Our new payment
matrix still motivates A to find out B’s true type—A gains utility by correctly guessing B’s type
and loses utility by accusing B of being of the wrong type.
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The revised matrix of payments just allows a brother perspective on our signaling game, yet it
doesn’t change the setting drastically.9 The key change between the current setting of the game
vs. the setting in Section 4 lies inA’s ability to opt out and still gain something—which in turn alters
the game’s BNE substantially. In this new setting B knows that as long as his or her behavior is
such that A (weakly) prefers opting out to making an accusation, then the accusation is worth
(weakly) less then opting out in expectation. This allow B to behave in a way that skews ever so
slightly his or her signal in favor of the signal that matches his or her true type. Indeed, as we
prove later, in this game with an opt-out option for A, it does hold (under certain parameters) that
B’s BNE strategy is Randomized Response.

The benchmark game. First, prior to analyzing the full coupon game with an opt-out option, we
yet again consider a much simpler setting. Consider a simple game where B makes no move (A
offers no coupon) andA tries to guess B’s type without getting any signal from B. ThenA has three
possible pure strategies: (1) guess that B is of type 0, (2) guess that B is of type 1, and (3) guess
nothing. In expectation, the outcome of option (1) is D0M0,0 − D1M0,1 and the outcome of option
(2) is D1M1,1 − D0M1,0. If the parameters of M are set such that both options are negative, then
A’s preferred strategy is to opt out and gain 0. We assume throughout this section that indeed the
above holds. (Intuitively, this assumption reflects the fact that we don’t make assumptions about
people’s type without first getting any information about them.) So we have

M0,0

M0,1
<

D1

D0
, and

M1,1

M1,0
<

D0

D1
. (7)

A direct (and repeatedly used) corollary of having A determinisitcally playing “opt out” in the
benchmark game—namely, from assuming that both conditions in Equation (7) hold—is that
M0,0

M0,1
<

M1,0

M1,1
. This condition, M0,0M1,1 < M0,1M1,0, can be intuitively interpreted as having a wrong

“accusation” being costlier than the gain from a correct “accusation” (on average and in absolute
terms).

The full game. We now give the formal description of the game.

(0) B’s type, denoted t , is chosen randomly, with Pr[t = 0] = D0 and Pr[t = 1] = D1.
(1) B reports a type t̂ to A. A in return gives B a coupon of type t̂ .
(2) A chooses whether to accuse B of being of a certain type or opting out.
• If A opts out (denoted as t̃ = ⊥), then B pays A nothing.
• If A accuses B of being of type t̃ , then, if t̃ = t , then B pays Mt,t to A, and if t̃ = 1 − t ,

then B pays −M1−t,t to A (or A pays M1−t,t to B).

Introducing the option to opt out indeed changes significantly the BNE strategies of A and B.

Theorem 5.1. If the parameters of the game satisfy the following condition:

0 < ρ1M1,0 − ρ0M1,1 < M0,1M1,0 −M0,0M1,1

0 < ρ0M0,1 − ρ1M0,0 < M0,1M1,0 −M0,0M1,1, (8)

and we also have that D2
0M0,0M1,0 = D2

1M0,1M1,1, then the unique BNE strategy of B, denoted σ ∗B , is

such that B plays Randomized Response: 1
2 ≤ Pr[σ ∗B (0) = 0] = Pr[σ ∗B (1) = 1] < 1.

Proving Theorem 5.1 is the goal of this section. However, before proving Theorem 5.1, we stress
that the interplay between the different terms involved in Equation (8) plays a key role in deter-
mining what is the BNE of the coupon game under the opting-out option. In fact, Table 1 gives

9In fact, one can reiterate the analysis from Section 4 and obtain similar BNE strategies.
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Table 1. The Various Conditions under Which We Characterize the BNEs of the Game

Case
Condition

A’s Strategy
B’s Strategy

No. (Always: x1 = y0 = 0)
1 ρ0 ≥ M0,0 +M1,0 and ρ1 ≥ M0,1 +M1,1 (x0,y1) = (1, 1) (1, 1)

2 ρ0 ≤ M0,0 and
ρ0

ρ1
≤ M0,0

M0,1
(x0,y1) = (

ρ0

M0,0
, 0) P1 = (0, 1)

3 0 ≤ ρ0 −M0,0 ≤ M1,0 (x0,y1) = (1,
ρ0−M0,0

M1,0
) P2

ρ1M1,0 − ρ0M1,1 ≥ M0,1M1,0 −M0,0M1,1

4 ρ1 ≤ M1,1 and
ρ0

ρ1
≥ M1,0

M1,1
(x0,y1) = (0,

ρ1

M1,1
) P3 = (1, 0)

5 0 ≤ ρ1 −M1,1 ≤ M0,1 (x0,y1) = (
ρ1−M1,1

M0,1
, 1) P4

ρ0M0,1 − ρ1M0,0 ≥ M0,1M1,0 −M0,0M1,1

6 0 ≤ ρ1M1,0 − ρ0M1,1 ≤ M0,1M1,0 −M0,0M1,1 See below P5

0 ≤ ρ0M0,1 − ρ1M0,0 ≤ M0,1M1,0 −M0,0M1,1

We use the notation P2 = (1 − D1M1,1
D0M1,0

, 1), P4 = (1, 1 − D0M0,0
D1M0,1

), and P5 =
( D0D1M0,1M1,0−D2

1 M0,1M1,1

D0D1M0,1M1,0−D0D1M0,0M1,1
,

D0D1M0,1M1,0−D2
0 M0,0M1,0

D0D1M0,1M1,0−D0D1M0,0M1,1

)
. The point P5 lies at the intersection between two specific lines, and points P2

and P4 are the intersection points of each of those lines with the (q = 1)-line and (p = 1)-line resp. In case 6, the

strategy of A is given by (x0, y1) = 1
M1,0M0,1−M0,0M1,1

(M1,0ρ1 −M1,1ρ0, M0,1ρ0 −M0,0ρ1).

a summary of the various relations between ρ0, ρ1, and the four entries of M , and the unique
BNE of the game in each case. Note that the six different conditions detailed in Table 1 cover all
possible settings of the game and they are also mutually exclusive (unless some inequality holds
as an equality). It is plain to see that the last case in Table 1 is precisely the case discussed in
Theorem 5.1. The notation in Table 1 is consistent with our notation in the analysis of the game. A
strategy σB of agent B is denoted as (p,q) and a strategy σA of agent A is denoted as (x0,x1,y0,y1).
Formally, we denote p = Pr[σB (0) = 0] and q = Pr[σB (1) = 1], and xb = Pr[σA (0) = b] and yb =

Pr[σA (1) = b] for b ∈ {0, 1}. (So A’s opting-out probabilities are x⊥ = Pr[σA (0) = ⊥] = 1 − x0 − x1

and y⊥ = Pr[σA (1) = ⊥] = 1 − y0 − y1.)
Recall, in addition to the conditions specifically stated in Case 6 in Table 1, we also require that

D2
0M0,0M1,0 = D2

1M0,1M1,1 in order for the two types of agent B to play Randomized Response. In
other words, this condition implies that B’s BNE strategy, represented by the point

P5 =

(
D0D1M0,1M1,0 − D2

1M0,1M1,1

D0D1M0,1M1,0 − D0D1M0,0M1,1
,

D0D1M0,1M1,0 − D2
0M0,0M1,0

D0D1M0,1M1,0 − D0D1M0,0M1,1

)
,

lies on the p = q line. And so in this case the B agent plays a Randomized Response strategy that

preserves ϵ-differential privacy for ϵ = ln(
p

1−q
) = ln

(
D1M0,1

D0M0,0

)
. Observe that this value of ϵ is inde-

pendent from the value of the coupon (i.e., from ρ0 and ρ1). This is due to the nature of BNE in
which an agent plays his or her Nash strategy in order to make his or her opponent indifferent be-
tween various strategies rather than maximizing his or her own utility. Therefore, the coordinates
of P5 are such that they make agentA indifferent between opting out and playing x0 = 1 (or opting
out and y1 = 1). Since the utility function of A is independent of ρ0, ρ1, we have that perturbing
the values of ρ0, ρ1 does not affect the coordinates of P5. (Yet, perturbing the values of ρ0, ρ1 does
affect the various relations between the parameters of the game, and so it may determine which
of the six cases in Table 1 holds.)

The rest of the section is devoted to proving that the six cases detailed in Table 1 indeed char-
acterize all of the BNEs of the game under any possible setting of parameters. First, in Section 5.1
we argue that under the conditions of Theorem 5.1 agent B indeed has a BNE strategy which is
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represented by the point P5 in Table 1. In Section 5.2 we argue that in each of the cases detailed in
Table 1 the detailed strategies form BNEs. Lastly, in Section 5.3 we argue completeness—that the
six cases span all possible settings of parameters and that there are no additional BNEs.

5.1 Proof of Theorem 5.1: Finding a BNE Strategy for B

Recall, we assume Pr[t = 0] = D0 and Pr[t = 1] = D1, where wlog D0 ≥ D1. As we did before, we
denote B’s strategy σB using p = Pr[σB (0) = 0] and q = Pr[σB (1) = 1]. In contrast to the previous
analysis, nowAhas to decide between three alternatives per t̂ signal, soAhas six options. However,
seeing as A’s choice to opt out always give A a utility of 0, we just denote four alternatives:

x0 = Pr[σA (0) = 0], x1 = Pr[σA (0) = 1]

y0 = Pr[σA (1) = 0], y1 = Pr[σA (1) = 1],

and we constrain x0 + x1 ≤ 1 and y0 + y1 ≤ 1.10

Now, given that A views a signal t̂ , he or she has three alternatives:

• Accuse B of being of type 0 and get an expected revenue of

M0,0Pr[t = 0 | t̂] −M0,1Pr[t = 1 | t̂]

=
1

Pr[t̂]

(
M0,0Pr[t = 0]Pr[σB (0) = t̂] −M0,1Pr[t = 1]Pr[σB (1) = t̂]

)
=

1

Pr[t̂]

(
M0,0D0Pr[σB (0) = t̂] −M0,1D1Pr[σB (1) = t̂]

)
.

• Accuse B of being of type 1 and get an expected revenue of

M1,1Pr[t = 1 | t̂] −M1,0Pr[t = 0 | t̂]

=
1

Pr[t̂]

(
M1,1Pr[t = 1]Pr[σB (1) = t̂] −M1,0Pr[t = 0]Pr[σB (0) = t̂]

)
=

1

Pr[t̂]

(
M1,1D1Pr[σB (1) = t̂] −M1,0D0Pr[σB (0) = t̂]

)
.

• Opt out and get revenue of 0 = 0
Pr[t̂ ]

.

This means that A prefers accusing B of being of type 0 to opting out when

Pr[σB (0) = t̂] >
M0,1D1

M0,0D0
Pr[σB (1) = t̂].

Similarly, A prefers accusing B of being of type 1 to opting out when

Pr[σB (0) = t̂] <
M1,1D1

M1,0D0
Pr[σB (1) = t̂].

From Equation (7) we have that
M1,1D1

M1,0D0
< 1 <

M0,1D1

M0,0D0
. Therefore, given that Pr[t̂] > 0, A’s best re-

sponse is determined by the ratio:

Pr[σB (0) = t̂]

Pr[σB (1) = t̂]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

<
M1,1D1

M1,0D0
, A plays Pr[σA (t̂ ) = 1] = 1

=
M1,1D1

M1,0D0
, A is indifferent between ⊥ and playing t̃ = 1

∈
(

M1,1D1

M1,0D0
,

M0,1D1

M0,0D0

)
A plays Pr[σA (t̂ ) = ⊥] = 1

=
M0,1D1

M0,0D0
, A is indifferent between ⊥ and playing t̃ = 0

>
M0,1D1

M0,0D0
A plays Pr[σA (t̂ ) = 0] = 1.

10Whereas in the previous section we constrained x0 + x1 = 1 and y0 + y1 = 1.
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Therefore, A’s BNE strategy when viewing the signal t̂ (which is the best response to B’s BNE
strategy) is such that A never plays both t̃ = t̂ and t̃ = 1 − t̂ with nonzero probability.

Switching to the B agent, the utility functions of B are similar to before:

For type t = 0 : UB,0 = p (ρ0 − x0M0,0 + x1M1,0) + (1 − p) (−y0M0,0 + y1M1,0),

For type t = 1 : UB,1 = q(ρ1 − y1M1,1 + y0M0,1) + (1 − q) (−x1M1,1 + x0M0,1),

and so p = 1 if ρ0 > M0,0 (x0 − y0) −M1,0 (x1 − y1) and p = 0 if ρ0 < M0,0 (x0 − y0) −M1,0 (x1 −
y1); similarly, q = 1 if ρ1 > M1,1 (y1 − x1) −M0,1 (y0 − x0) and q = 0 if ρ1 < M1,1 (y1 − x1) −
M0,1 (y0 − x0).

We can now make our first claim about the BNE of the game.

Claim 5.2. In any BNE strategy of B we have that either

p

1 − q =
Pr[σ ∗B (0) = 0]

Pr[σ ∗
B

(1) = 0]
≥

M0,1D1

M0,0D0
or

1 − p
q
=

Pr[σ ∗B (0) = 1]

Pr[σ ∗
B

(1) = 1]
≤

M1,1D1

M1,0D0
.

Proof. Assume for the sake of contradiction that both conditions do not hold. Then, given
the t̂ = 0 signal, it holds that x0 = Pr[σ ∗A (0) = 0] = 0, and given the t̂ = 1 signal, it holds that
y1 = Pr[σ ∗A (1) = 1] = 0. Thus, B’s best response to A’s strategy is to switch to (p,q) = (1, 1) (since
ρ0, ρ1 > 0) and now both conditions do hold. �

Claim 5.3. In any BNE strategy of B we have that both

p

1 − q =
Pr[σ ∗B (0) = 0]

Pr[σ ∗
B

(1) = 0]
>

M1,1D1

M1,0D0
and

1 − p
q
=

Pr[σ ∗B (0) = 1]

Pr[σ ∗
B

(1) = 1]
<

M0,1D1

M0,0D0
.

Proof. Based on the previous claim, one of the two inequalities is immediate. Assume we have
p

1−q
≥ M0,1D1

M0,0D0
> 1 >

M1,1D1

M1,0D0
; we now show that

1−p

q
<

M0,1D1

M0,0D0
must also hold. If, for contradiction,

we have that
1−p

q
≥ M0,1D1

M0,0D0
, then

1 = p + (1 − p) ≥
M0,1D1

M0,0D0
(q + (1 − q)) =

M0,1D1

M0,0D0
,

which contradicts Equation (7). The argument for the case
1−p

q
≤ M1,1D1

M1,0D0
is symmetric. �

Based on the last claim and on A’s best-response analysis, we have that in any BNE strategy
of A it holds that x1 = Pr[σ ∗A (0) = 1] = 0 and y0 = Pr[σ ∗A (1) = 0] = 0 (i.e., given the signal t̂ , A
never plays t̃ = 1 − t̂ ). As a result, B’s best-response analysis simplifies to p = 1 if ρ0 > M0,0x0 +

M1,0y1 and p = 0 if ρ0 < M0,0x0 +M1,0y1; similarly, q = 1 if ρ1 > M1,1y1 +M0,1x0 and q = 0 if ρ1 <
M1,1y1 +M0,1x0.

We are now able to prove the existence of a BNE as specified in Theorem 5.1.

Claim 5.4. Assume that 0 ≤ ρ1M1,0 − ρ0M1,1 ≤ M0,1M1,0 −M0,0M1,1 and 0 ≤ ρ0M0,1 − ρ1M0,0 ≤
M0,1M1,0 −M0,0M1,1. The strategies σ ∗A and σ ∗B denoted below are BNE strategies.

For A :x∗0 = Pr[σ ∗A (0) = 0] =
M1,0ρ1 −M1,1ρ0

M1,0M0,1 −M0,0M1,1

x∗1 = Pr[σ ∗A (0) = 1] = 0

y∗0 = Pr[σ ∗A (1) = 0] = 0

y∗1 = Pr[σ ∗A (1) = 1] =
M0,1ρ0 −M0,0ρ1

M1,0M0,1 −M0,0M1,1
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For B :p∗ = Pr[σ ∗B (0) = 0] =
D1M0,1 (D0M1,0 − D1M1,1)

D0D1M0,1M1,0 − D0D1M0,0M1,1

1 − p∗ = Pr[σ ∗B (0) = 1] =
D1M1,1 (D1M0,1 − D0M0,0)

D0D1M0,1M1,0 − D0D1M0,0M1,1

1 − q∗ = Pr[σ ∗B (1) = 0] =
D0M0,0 (D0M1,0 − D1M1,1)

D0D1M0,1M1,0 − D0D1M0,0M1,1

q∗ = Pr[σ ∗B (1) = 1] =
D0M1,0 (D1M0,1 − D0M0,0)

D0D1M0,1M1,0 − D0D1M0,0M1,1

Proof. First, observe that under the given assumptions in the claim it holds that x∗0 ,y
∗
1 ∈ [0, 1],

and due to Equation (7) it holds that p∗,q∗, 1 − p∗, 1 − q∗ are all strictly positive (so p∗,q∗ ∈ (0, 1)).

Now observe that when B follows σ ∗B , A has no incentive to deviate since
p∗

1−q∗ =
M0,1D1

M0,0D0
and

1−p∗

q∗ =
M1,1D1

M1,0D0
. When A follows σ ∗A, B has no incentive to deviate since

M0,0x
∗
0 +M1,0y

∗
1 =

M1,0M0,1ρ0 −M0,0M1,1ρ0

M1,0M0,1 −M0,0M1,1
= ρ0

M0,1x
∗
0 +M1,1y

∗
1 =

M0,1M1,0ρ1 −M1,1M0,0ρ1

M1,0M0,1 −M0,0M1,1
= ρ1.

�

Observe that when D2
0M0,0M1,0 = D2

1M0,1M1,1, p∗ = q∗. Furthermore, in this case we have that

p∗ > 1
2 because

2D0D1M0,1M1,0 − 2D2
1M0,1M1,1 > D0D1M0,1M1,0 − D0D1M0,0M1,1

⇔ D0D1M0,1M1,0 − D2
1M0,1M1,1 > D2

0M0,0M1,0 − D0D1M0,0M1,1

⇔ D1M0,1 (D0M1,0 − D1M1,1) > D0M0,0 (D0M1,0 − D1M1,1)

⇔ 0 > −D1M0,1 + D0M0,0,

where the last derivation and the last inequality are both true because of Equation (7). This con-
cludes the existence part of Theorem 5.1. The more complicated part is to show that B’s BNE
strategy is unique. Formally, our goal is to prove the following.

Theorem 5.5. Assume that 0 < ρ1M1,0 − ρ0M1,1 < M0,1M1,0 −M0,0M1,1 and 0 < ρ0M0,1 −
ρ1M0,0 < M0,1M1,0 −M0,0M1,1. Then in all BNEs of the game both types of B agents play a mixed

strategy.

Assuming Theorem 5.5 holds and using our above best-response analysis, the uniqueness of
the BNE of Theorem 5.1 is immediate. If both p and q are nonintegral, then it must hold that x∗0
and y∗1 are unique, since this pair is the unique solution to a well-defined system of two linear
equations in two variables that set both types of B agents indifferent. Under the assumption of
Theorem 5.5, we have that both x∗0 and y∗1 are nonintegral as well. This means that B plays (p,q)

s.t. A is indifferent to the value of x∗0 ,y
∗
1, i.e., p = (1 − q)

M0,1D1

M0,0D0
and 1 − p = q M1,1D1

M1,0D0
. Again, since

this is a linear system in two variables, there exists a unique (p,q) pair that satisfies this condition,
which is given by (p∗,q∗).

In the remainder of this section, our goal is to prove Theorem 5.5. In fact, we give a full analysis
of all the points (p,q) that may be B’s BNE strategy, and for each such possible (p,q) we analyze the
conditions over the parameters of the game under which it is a BNE strategy for B. The analysis
is fairly long and tedious, as it involves checking feasibility constraints over the six parameters
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Fig. 3. The four regions created by the l1 and l2, and the five intersection points of the two lines and the

borders of the squares.

of the game: ρ0, ρ1, M0,0, M0,1, M1,0, and M1,1. Furthermore, after deriving the suitable feasibility
constraints, we show (in Section 5.3) that they cover all settings of the parameters of the game and
are mutually exclusive (when inequalities are strict).

5.2 Proof of Theorem 5.1: Characterizing All Potential BNEs of the Game

Consider the space [0, 1] × [0, 1] of all possible strategies (p,q) for the two types of B agents. We
denote the two “lines of indifference” for A on this square:

l1 : p =
M0,1D1

M0,0D0
(1 − q)

l2 : 1 − p = M1,1D1

M0,1D1
q,

where (p,q) = (0, 1) ∈ l1 and (p,q) = (1, 0) ∈ l2. These lines partition the [0, 1] × [0, 1] square into
multiple different regions, as shown in Figure 3.

First, we argue that any (p,q) in the lower region, below l1 and l2 (the shaded blue region in
Figure 3), cannot be B’s strategy in a BNE. We in fact have already shown this: for any (p,q) in

this blue region we have that
p

1−q
<

M0,1D1

M0,0D0
and

1−p

q
<

M1,1D1

M0,1D1
, contradicting our earlier claim.

Second, we argue that a point (p,q) above both lines is B’s strategy in a BNE if the valuation
of B for the coupons is high. Observe that, for any (p,q) above the line, A’s best response is to
set x0 = y1 = 1, which means B’s utility is p (ρ0 −M0,0) + (1 − p)M1,0 for agents of type t = 0, and
q(ρ1 −M1,1) + (1 − q)M0,1 for type t = 1. Therefore, B has no incentive to deviate from (p,q) only
if ρ0 ≥ M0,0 +M1,0 and ρ1 ≥ M0,1 +M1,1. In particular, when both inequalities are strict, we have
that (1, 1) is B’s BNE; when both are equalities, any point above both l1 and l2 is a BNE; and when
one is an equality and the other is a strict inequality, we have that the BNE strategy is on the
border of the [0, 1] × [0, 1] square.

We now turn our attention to the points strictly between the lines l1 and l2 (excluding all points
on these lines). To any (p,q) in these regions, A’s best response is to play t̃ = t̂ when seeing one
signal and to opt out when seeing the other signal; e.g., for any (p,q) above l1 but below l2 (the top-
left region), A opts out when seeing the t̂ = 1 signal but plays t̃ = 0 when seeing the t̂ = 0 signal.
In that case, B’s utility function is p (ρ0 −M0,0) for type t = 0, and qρ1 + (1 − q)M0,1 for type t = 1.
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Therefore, unless ρ0 = M0,0, agents of type t = 0 have incentive to deviate (either to playing p = 0
or p = 1). In addition, it must also hold that ρ1 ≥ M0,1. (If this inequality is strict, then the BNE
strategy lies on the border of the square.) Analogously, should the BNE strategy lie above the l2
line but below the l1 line (lower-right area), then it must be the case that ρ1 = M1,1 and ρ0 ≥ M1,0.

We now consider points on the l1 and l2, excluding the five intersection points we have with
either of the two lines or any of the lines intersecting with the p = 1 line or the q = 1 line.

(i) For any (p,q) on the l1 line below the l2 line (top-left side of l1 bordering the blue region):
A’s best response to any such (p,q) is to set y0 = y1 = 0 and x1 = 0. It follows that B’s
utility is p (ρ0 − x0M0,0) and qρ1 + (1 − q)x0M0,1 for types t = 0 and t = 1, respectively.
Hence, if 0 ≤ ρ0

M0,0
=

ρ1

M0,1
≤ 1, then such strategies can be BNE.

(ii) For any (p,q) on the l1 line above the l2 line (bottom-right side of l1 bordering the red
region): A’s best response to such (p,q) is to set x1 = y0 = 0, y1 = 1; B’s utility functions
are p (ρ0 − x0M0,0) + (1 − p)M1,0 and q(ρ1 −M1,1) + (1 − q)x0M0,1 for types t = 0 and t =

1, respectively. It follows that if 0 ≤ ρ0−M1,0

M0,0
=

ρ1−M1,1

M0,1
≤ 1, then such point gives a BNE.

(iii) For any (p,q) on the l2 line below the l1 line (bottom-right side of l2 bordering the blue
region): As a response to any (p,q) here,A sets x0 = x1 = 0 andy0 = 0. B’s utility function
is therefore pρ0 + (1 − p) (y1M1,0) and q(ρ1 − y1M1,1). Hence, in case 0 ≤ ρ0

M1,0
=

ρ1

M1,1
≤ 1,

we have a BNE with such (p,q).
(iv) For any (p,q) on the l2 line above the l1 line (top-left side of l2 bordering the red region):

As best response to such (p,q),A sets x1 = y0 = 1 and x0 = 1. And so B’s utility functions
are p (ρ0 −M0,0) + (1 − p)y1M1,0 and q(ρ1 − y1M1,1 + (1 − q)M0,1. Therefore, if we have

0 ≤ ρ0−M0,0

M1,0
=

ρ1−M0,1

M1,1
≤ 1, then we have a BNE with such (p,q).

Thus far (with the exception of the potential BNE at the point (p,q) = (1, 1)) we have considered
only BNEs that may arise only when the parameters of the game (ρ0, ρ1 and the entries of M)
satisfy some equality constraints. Assuming we perturb the values of ρ0 and ρ1 a little such that
none of the above-mentioned equalities hold, we are left with five points on which the BNE can
occur:

P1 = (0, 1), P2 =

(
1 −

D1M1,1

D0M1,0
, 1

)
, P3 = (1, 0), P4 =

(
1, 1 −

D0M0,0

D1M0,1

)

P5 =

(
D0D1M0,1M1,0 − D2

1M0,1M1,1

D0D1M0,1M1,0 − D0D1M0,0M1,1
,

D0D1M0,1M1,0 − D2
0M0,0M1,0

D0D1M0,1M1,0 − D0D1M0,0M1,1

)
.

We traverse them one by one. We remind the reader that since
M0,1

M0,0
> D0

D1
>

M1,1

M1,0
, M0,0M1,1 <

M0,1M1,0. We repeatedly use this inequality in the analysis below.

5.2.1 Conditions under Which B’s BNE Strategy Is P1. Observe that in this case B never sends
the t̂ = 0 signal. A’s best response is naturally to opt out, but A still commits to certain values of
x0 and x1 (to prevent B from deviating from the (0, 1) strategy). B’s utility functions are

For t = 0 : p (ρ0 − x0M0,0 + x1M1,0).

For t = 1 : qρ1 + (1 − q) (x0M0,1 − x1M1,1).

So A should set x0 and x1 s.t. ρ0 ≤ x0M0,0 − x1M1,0 and ρ1 ≥ x0M0,1 − x1M1,1.

Proposition 5.6. There exist x0,x1 ∈ [0, 1] satisfying both ρ0 ≤ x0M0,0 − x1M1,0 and ρ1 ≥
x0M0,1 − x1M1,1 iff ρ0 ≤ M0,0 and ρ0M0,1 ≤ ρ1M0,0.
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Proof. To see that these conditions are sufficient, assume that ρ0 ≤ M0,0 and ρ0M0,1 ≤ ρ1M0,0.
Then we can set x0 =

ρ0

M0,0
and x1 = 0. Clearly, both lie on the [0, 1]-interval. We can check and see

that indeed ρ0 ≤ ρ0

M0,0
M0,0 − 0 ·M1,0 and ρ1 ≥ ρ0

M0,0
M0,1 − 0 ·M1,1.

We now show these conditions are necessary. Suppose that ρ0 > M0,0; then observe that any
x0,x1 satisfying the two constraints must satisfy 0 ≤ x1M1,0 ≤ x0M0,0 − ρ0, so x0 ≥ ρ0

M0,0
. As a result

of our assumption, we have that x0 > 1. Contradiction.
So assume now that ρ0 ≤ M0,0 yet ρ0M0,1 > ρ1M0,0. Any x0,x1 satisfying the two constraints

must also satisfy

x0
M0,1

M1,1
− ρ1

M1,1
≤ x1 ≤ x0

M0,0

M1,0
− ρ0

M1,0
,

which, using our assumption, yields

x0
M0,1M1,0−M0,0M1,1

M1,1M1,0
≤ ρ1

M1,1
− ρ0

M1,0
< ρ0

(
M0,1

M0,0M1,1
− 1

M1,0

)
= ρ0

M1,0M0,1−M0,0M1,1

M0,0M1,0M1,1
,

so we have x0 <
ρ0

M0,0
. Contradiction. �

5.2.2 Conditions under Which B’s BNE Strategy Is P2. As a response to this strategy, A’s best
response is to set x1 = y0 = 0 and x0 = 1, while y1 is to be determined. So B’s utility functions are

For t = 0 : p (ρ0 −M0,0) + (1 − p)y1M1,0.

For t = 1 : q(ρ1 − y1M1,1) + (1 − q)M0,1.

Therefore, in order for B to not have any incentive to deviate,A should sety1 s.t ρ0 −M0,0 = y1M1,0

and ρ1 − y1M1,1 ≥ M0,1.

Proposition 5.7. There exists a y1 ∈ [0, 1] satisfying both ρ0 −M0,0 = y1M1,0 and ρ1 − y1M1,1 ≥
M0,1 iff M0,0 ≤ ρ0 ≤ M0,0 +M1,0 and (ρ0 −M0,0)M1,1 ≤

(
ρ1 −M0,1

)
M1,0.

Proof. Clearly, the only y1 that can satisfy both constraints is y1 =
ρ0−M0,0

M1,0
, and we therefore

must have that M0,0 ≤ ρ0 ≤ M0,0 +M1,0. We also need to verify that indeed the inequality holds in

the right direction, i.e., to have (ρ0 −M0,0)
M1,1

M1,0
≤ ρ1 −M0,1. Clearly, if those two conditions hold,

then y1 defined as above satisfies the required. �

Observation 5.8. If we have that (ρ0 −M0,0)M1,1 ≤
(
ρ1 −M0,1

)
M1,0, then also

ρ0

ρ1
<

M1,0

M1,1
.

Proof. ρ0M1,1 −M0,0M1,1 ≤ ρ1M1,0 −M0,1M1,0 < ρ1M1,0 −M0,0M1,1 ⇒ ρ0M1,1 < ρ1M1,0. �

5.2.3 Conditions ynder Which B’s BNE Strategy Is P3. Should B play (1, 0), then we have that
A only sees the t̂ = 0 signal and always opts out (i.e., x0 = x1 = 0). However, in order to prevent
B from deviating, A needs to commit to a y0,y1 that leaves B preferring not to deviate from (1, 0).
B’s utility functions are

For t = 0 : pρ0 + (1 − p) (−y0M0,0 + y1M1,0).

For t = 1 : q(ρ1 + y0M0,1 − y1M1,1).

Therefore, in order for B to not have any incentive to deviate,A should sety0,y1 s.t ρ0 ≥ −y0M0,0 +

y1M1,0 and ρ1 + y0M0,1 − y1M1,1 ≤ 0.

Proposition 5.9. There exist y0,y1 ∈ [0, 1] satisfying both ρ0 ≥ −y0M0,0 + y1M1,0 and ρ1 ≤
−y0M0,1 + y1M1,1 iff ρ1 ≤ M1,1 and ρ0M1,1 ≥ ρ1M1,0.

The proof is completely analogous to the proof of Proposition 5.6.
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5.2.4 Conditions under Which B’s BNE Strategy Is P4. As a response to this strategy, A’s best
response is to set x1 = y0 = 0 and y1 = 1, while x0 is to be determined. So B’s utility functions are

For t = 0 : p (ρ0 − x0M0,0) + (1 − p)M1,0.

For t = 1 : q(ρ1 −M1,1) + (1 − q)x0M0,1.

Therefore, in order for B to not have any incentive to deviate,A should set x0 s.t ρ0 − x0M0,0 ≥ M1,0

and ρ1 −M1,1 = x0M0,1.

Proposition 5.10. There exists a x0 ∈ [0, 1] satisfying both ρ0 − x0M0,0 ≥ M1,0 and ρ1 −M1,1 =

x0M0,1 iff M1,1 ≤ ρ1 ≤ M1,1 +M0,1 and
(
ρ1 −M1,1

)
M0,0 ≤

(
ρ0 −M1,0

)
M0,1.

The proof is analogous to the proof of Proposition 5.7.

5.2.5 Conditions under Which B’s BNE Strategy Is P5. As this point lies on the intersection of l1
and l2, A’s best response to this strategy is to set x1 = y0 = 0. Thus, B’s utility functions are

For t = 0 : p (ρ0 − x0M0,0) + (1 − p)y1M1,0.

For t = 1 : q(ρ1 − y1M1,1) + (1 − q)x0M0,1.

It is therefore up toA to pick x0 andy1 that satisfy both equalities
(

ρ0

ρ1

)
=

(
M0,0 M1,0

M0,1 M1,1

) (
x0

y1

)
. Cramer’s

formula give that the solution to this system is(
x0

y1

)
=

1

M1,0M0,1 −M0,0M1,1

(
−M1,1 M1,0

M0,1 −M0,0

) (
ρ0

ρ1

)
. (9)

In order for x0,y1 to be in the range [0, 1], we therefore must have that (1) ρ0M1,1 ≤ ρ1M1,0,
(2) (ρ1 −M0,1)M1,0 ≤ (ρ0 −M0,0)M1,1, (3) ρ1M0,0 ≤ ρ0M0,1, and (4) (ρ0 −M1,0)M0,1 ≤ (ρ1 −
M1,1)M0,0. In other words:

0 ≤ ρ1M1,0 − ρ0M1,1 ≤ M0,1M1,0 −M0,0M1,1

0 ≤ ρ0M0,1 − ρ1M0,0 ≤ M0,1M1,0 −M0,0M1,1. (10)

5.2.6 Summarizing. Table 1 summarized the six conditions under which each point is a BNE.
It is easy to verify that the condition of Theorem 5.5 is precisely condition 6, underwhich B’s BNE
strategy is unique (the point P5) and it is mixed.

5.3 Proof of Theorem 5.1: The Uniqueness of B’s BNE Strategy

So far we have introduced conditions for the existence of various BNEs. In this section, our goal
is to show that the above analysis gives a complete description of the game, that is, to show that
the cases detailed in Table 1 span all potential values the parameters of the game may take, and
furthermore (modulo cases of equality between parameters) they are also mutually exclusive.

Lemma 5.11. Assume that the parameters of the game (i.e., ρ0, ρ1 and the entries of M) satisfy one

of the six conditions detailed in Table 1 with strict inequalities. Then no other condition in Table 1 holds

simultaneously. In other words, the conditions in Table 1 are mutually exclusive (excluding equalities).

As the conditions are mutually exclusive, it means that under the condition specified in Theorem 5.5,

the game has a unique BNE—as specified by case 6 in Table 1.

Proof. We traverse the six cases, showing that if case i holds with strict inequalities, then some
other case j > i cannot hold.
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Case 1. Clearly, if the conditions of case 1 hold, then the conditions of cases 2, 3, 4, and 5
cannot hold. To see that the conditions of case 6 cannot hold, we argue that the con-
dition max{ρ1M1,0 − ρ0M1,1, ρ0M0,1 − ρ1M0,0} ≤ M0,1M1,0 −M0,0M1,1 implies that both
ρ0 ≤ M0,0 +M1,0 and ρ1 ≤ M0,1 +M1,1. This claim follows from the inequalities

ρ0 (M0,1M1,0 −M0,0M1,1) = M0,0 (ρ1M1,0 − ρ0M1,1) +M1,0 (ρ0M0,1 − ρ1M0,0)

≤ (M0,0 +M1,0) (M0,1M1,0 −M0,0M1,1)

ρ1 (M0,1M1,0 −M0,0M1,1) = M0,1 (ρ1M1,0 − ρ0M1,1) +M1,1 (ρ0M0,1 − ρ1M0,0)

≤ (M0,1 +M1,1) (M0,1M1,0 −M0,0M1,1).

Case 2. Clearly, the conditions of case 2 cannot hold simultaneously with the conditions of

cases 4 and 6. To exclude the other cases, observe that using our favorite inequality
M0,0

M0,1
<

M1,0

M1,1
, we have that the condition

ρ0

ρ1
≤ M0,0

M0,1
implies that

ρ0

ρ1
<

M1,0

M1,1
. Hence, case 3 cannot

hold, and neither does case 5 (using again the fact that M0,1M1,0 > M0,0M1,1).
Case 3. This case is symmetric to case 2—since M0,1M1,0 −M0,0M1,1 > 0, case 3 rules out case

4 (and the fact that it cannot hold simultaneously with cases 5 and 6 is obvious).
Case 4. Clearly, case 6 cannot hold together with case 4. To show that case 5 cannot hold

too, we claim that if both ρ1M1,0 − ρ0M1,1 ≥ M0,1M1,0 −M0,0M1,1 and ρ0M0,1 − ρ1M0,0 ≥
M0,1M1,0 −M0,0M1,1 hold, then ρ0 ≥ M0,0 +M1,0. This holds because the two inequalities
imply

ρ1 ≤ (ρ0 −M1,0)
M0,1

M0,0
+M1,1 and ρ1 ≥ (ρ0 −M0,0)

M1,1

M1,0
+M0,1

⇒ ρ0

(
M0,1

M0,0
−
M1,1

M1,0

)
≥ M0,1 −M1,1 +

M1,0M0,1

M0,0
−
M0,0M1,1

M1,0

⇒ ρ0 ≥
M0,0M0,1M0,1 −M0,0M1,0M1,1 +M0,1M

2
1,0 −M2

0,0M1,1

M0,1M1,0 −M0,0M1,1
= M0,0 +M1,0.

Case 5. Clearly, cases 5 and 6 cannot hold simultaneously. �

Lemma 5.12. Any choice of parameters for ρ0, ρ1 and the entries of M satisfies at least one of the

six cases detailed in Table 1.

Proof. First, suppose ρ0 ≥ M0,0 +M1,0. We claim that in this case, the value of ρ1 determines
which case holds.

• If ρ1 ≤ M1,1, then case 3 holds, since obviously M1,1
ρ0

M1,0
> M1,1 ≥ ρ1.

• If M1,1 < ρ1 ≤ M0,1 +M1,1, then case 5 holds since

ρ0M0,1 − ρ1M0,0 ≥ (M0,0 +M1,0)M0,1 − ρ1M0,0

= M0,1M1,0 +M0,0 (M0,1 − ρ1)

≥ M0,1M1,0 −M0,0M1,1.

• If ρ1 > M0,1 +M1,1, then clearly case 1 holds.

Symmetrically, if we have that ρ1 ≥ M0,1 +M1,1, then the value of ρ0 determines whether we
fall into case 2, case 4, or case 1.

So assume from now on that both ρ0 < M0,0 +M1,0 and ρ1 < M0,1 +M1,1.
Suppose that in addition to these two upper bounds on the value of the coupon, we also have

that
ρ0

ρ1
≤ M0,0

M0,1
.
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• If ρ0 ≤ M0,0, then clearly case 2 holds.

• If ρ0 ≥ M0,0, then we show that case 4 holds. Observe
ρ1

ρ0
− M1,1

M1,0
≥ M0,1

M0,0
− M1,1

M1,0
,

so
ρ1M1,0−ρ0M1,1

ρ0M1,0
≥ M0,1M1,0−M0,0M1,1

M0,0M1,0
. We conclude that ρ1M1,0 − ρ0M1,1 ≥ ρ0

M0,0
(M0,1M1,0 −

M0,0M1,1). So the fact that ρ0 ≥ M0,0 implies that the conditions of case 4 hold.

And symmetrically, if we assume that ρ0 < M0,0 +M1,0 and ρ1 < M0,1 +M1,1 and that in addition
ρ0

ρ1
≥ M1,0

M1,1
, then the same line of argument shows that either case 3 or case 5 holds.

So now, we assume both that ρ0 < M0,0 +M1,0, ρ1 < M0,1 +M1,1 and that
M0,0

M0,1
<

ρ0

ρ1
<

M1,0

M1,1
.

• If ρ1M1,0 − ρ0M1,1 ≥ M0,1M1,0 −M0,0M1,1, we argue that case 3 holds. This is because we

have both that ρ1 < ρ0
M0,1

M0,0
and that ρ1 ≥ ρ0

M1,1

M1,0
+M0,1 − M0,0M1,1

M1,0
. Combining the two, we

get

ρ0

(
M0,1

M0,0
− M1,1

M1,0

)
>

M0,1M1,0−M0,0M1,1

M1,0
⇒ ρ0 > M0,0.

• If ρ0M0,1 − ρ1M0,0 ≥ M0,1M1,0 −M0,0M1,1, then we are in the analogous case (case 5), as we

can show, using the inequality
ρ0

ρ1
<

M1,0

M1,1
, that ρ1 > M1,1.

This leaves us with the case that ρ0 < M0,0 +M1,0, ρ1 < M0,1 +M1,1,
M0,0

M0,1
<

ρ0

ρ1
<

M1,0

M1,1
and also

ρ1M1,0 − ρ0M1,1 < M0,1M1,0 −M0,0M1,1 and ρ0M0,1 − ρ1M0,0 < M0,1M1,0 −M0,0M1,1. This is pre-
cisely case 6. �

6 CONCLUSIONS AND FUTURE DIRECTIONS

Our work is a first attempt at exposing and reconciling the competing conclusions of two different
approaches to the same challenge: the theory of privacy-aware agents (where privacy loss is mod-
eled using differential privacy) and the behavior of standard utility-maximizing agents once they
explicitly assess future losses from having their behavior in the current game publicly exposed.
While the canonical privacy-aware agent randomizes his or her strategy, we show that different
explicit privacy losses cause very different behavior among agents. This is best illustrated with
the game studied in Section 4 (Theorem 4.2). In that game, agents assess their future loss and their
behavior is therefore quite simple: if the current gain is greater than the future loss, their behavior
is to truthfully report their type; otherwise, they lie and report the opposite type. We believe this
simple rule explains real-life phenomena, such as people trying to hide their medical condition
from the general public while truthfully answering a doctor’s questions.11

Observe, however, that in all the games we analyzed, we still have not pinned down a game in
which the behavior of a non-privacy-aware agent fully mimics the behavior of a privacy-aware
agent. Privacy-aware agents’ behavior is, after a fashion, quite reasonable. They trade off between
the value of the coupon they get and the amount of privacy (or change in belief) they are willing
to risk. Naturally, the higher the value of the coupon, the more privacy they are willing to risk.
In contrast, in the game discussed in Section 5, even under settings where B’s BNE strategy σ ∗B is
randomized and satisfies Pr[σ ∗B (0)] = Pr[σ ∗B (1)], we don’t see a continuous change in B’s behavior
based on the value of the coupon. Changing solely the value of the coupon while keeping all
other parameters the same, we see that B plays the same BNE strategy, whereas A’s BNE strategy
continuously changes.

A natural follow-up question is to extend our model to an agent B of one of three (or more) possi-
ble types. We believe such an extension is nontrivial for the following reason. Given only two types

11I’m likely to gain a little and potentially lose a lot from revealing my medical history to a random person, whereas I am

likely to gain a lot from truthfully reporting my medical history to a doctor.

ACM Transactions on Economics and Computation, Vol. 8, No. 2, Article 9. Publication date: May 2020.



Privacy Games 9:33

(t = 0 or t = 1), there’s a single mechanism that is differentially private: Randomized Response. In
contrast, the space of differentially private mechanisms over three types is far richer. Consider just
the following two ϵ-DP mechanisms:M1 is the exponential mechanism over the three possible out-
puts andM2 is the mechanism that adds geometric noise (integral Laplace noise) proportional to
2/ϵ to the input type and then truncates the result back to {0, 1, 2}. Assuming that ϵ is a very small
constant, we have that under the exponential mechanism it holds that for each i, j ∈ {0, 1, 2} we
have Pr[M1 (i ) = j] ≈ 1

3 , whereas for the truncated geometric noise mechanism we have that for

all i ∈ {0, 1, 2} it holds that Pr[M2 (i ) = 0] ≈ 1
2 and Pr[M2 (i ) = 2] ≈ 1

2 , while Pr[M2 (i ) = 1] ≈ ϵ .
If we were to interpret each mechanism as a strategy for an agent that broadcasts one of three
signals, it is intuitively clear that the incentives motivating a behavior similar toM1 ought to be
quite different than those motivating a BNE strategy similar toM2.

Lastly, it would be interesting to pursue this line of work further, by studying more complex
games. In particular, we propose the following scenario, which resembles the standard narrative in
differential privacy literature and should provide a complementary approach to the “sensitive sur-
veyor” problem [13, 14, 20, 22, 23]. Suppose that the signal that B sends is not for a type of coupon
that gives B an immediate and fixed reward, but rather a response of B to a survey question. That
is, suppose B interacts with a benevolent data curator that wishes to learn the distribution of type-
0 and type-1 agents in the population and B may benefit from the effect of the curator’s analysis.
(For example, the data curator may ask people with a certain disease about their exposure to some
substance.) In such a case, B’s utility is a function of the curator’s ability to well approximate the
true answer. In addition to the potential gain, there is also potential loss, based on B’s concerns
about his or her private information being publicly exposed. What formulation of this privacy loss
results in B playing according to a Randomized Response strategy? What explicit formulation of
privacy loss causes B to truthfully report his or her type knowing that A’s data will be published
using an ϵ-differentially private mechanism?

APPENDIX

A ADDITIONAL MATERIAL: COUPON GAME WITH PROPER SCORING RULES

A.1 Background: Proper Scoring Rules

Proper scoring rules (see surveys [15, 27]) were devised as a method to elicit experts to report
their true prediction as to the probability of an event happening. That is, given a Bernoulli random
variableX , we ask an expert to report his or her estimation of μ = Pr[X = 1]. Given that the expert
reports x , we pay him or her f1 (x ) if indeed X = 1 and pay him or her f0 (x ) otherwise. A proper

scoring rule is a pair of functions ( f0, f1) such that arg maxx Et←X [ft (x )] = μ,where the maximum
is obtained for a unique report. That is, it is in the expert’s best interest to report the true prior. It
was shown [15, 24] that a pair of twice-differentiable functions ( f0, f1) give a proper scoring rule
iff there exists a convex function д (i.e., д′′ > 0 on the [0, 1] interval) s.t. f0 (x ) = д(x ) − xд′(x ),
f1 (x ) = д(x ) + (1 − x )д′(x ). Using the derivatives of both functions (f ′0 (x ) = −xд′′(x ) and f ′1 (x ) =
(1 − x )д′′(x )), we deduce that f0 is a strictly decreasing function and f1 is a strictly increasing
function on the [0, 1] interval. And so, given thatX = 1 w.p. μ, we have that the expected payment
for an expert predicting x is

Fμ (x ) = (1 − μ ) f0 (x ) + μ f1 (x ) = д(x ) − (x − μ )д′(x ), (11)

which is maximized at x = μ, where Fμ (μ ) = д(μ ).
Most commonly discussed proper scoring rules are symmetric (or label-invariant) proper scoring

rules, which are oblivious to that outcomes of X (also referred to as neutral scoring rules in [5]).
That is, symmetric scoring rules have the property that for any two Bernoulli random variables
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X and X ′ s.t. Pr[X = 1] = Pr[X ′ = 0], the expected payment for an expert predicting x for X is
identical to the payment for an expert predicting 1 − x for X ′. Such symmetric scoring rules are
derived from a convex function д that is symmetric around 1

2 , i.e., д(x ) = д(1 − x ), and so д′(x ) =
−д′(1 − x ) and д′′(x ) = д′′(1 − x ).

Concrete examples of proper scoring rules, such as the quadratic scoring rule, the spherical
scoring rule, and the logarithmic scoring rules, are discussed in Section A.2.

A.2 Strategies under Specific Scoring Rules

We now plug in different types of proper and symmetric scoring rules and find what p∗ and q∗

are in each case. We analyze the game for a value of ρ s.t. the BNE is obtained where neither p∗

nor q∗ is integral. We also characterize what is the ϵ in A’s posterior probability—the value of

maxb

{
ln

(
Pr[t̂=t | t=b]

Pr[t̂=1−t | t=b]

)}
.

There exist three canonical rules often used in the literature: Quadratic, Spherical, and
Logarithmic.

Quadratic Scoring Rule. The quadratic scoring rule is defined by the functions ( f0 (x ), f1 (x )) =
(2 − 2x2, 4x − 2x2). The quadratic scoring rule is generated by the convex function д(x ) =
x2 + (1 − x )2 + 1 = 2 − 2x + 2x2. (So,д′(x ) = −2 + 4x andд′′(x ) = −2.) Therefore, ( f ′0 (x ), f ′1 (x )) =
(−4x , 4(1 − x )).

Observe that since д′ ∈ [−2, 2], Equation (6) gives that ρ ∈ [−2, 2] as well. Hence, Equation (6)
takes the form

ρ = 2 − 4

1 +
D0p

D1 (1−q )

⇒ D0p

D1 (1 − q)
=

2 + ρ

2 − ρ ⇒ p =
D1

D0

2 + ρ

2 − ρ (1 − q)

ρ = −2 +
4

1 +
D0 (1−p )

D1q

⇒ D0 (1 − p)

D1q
=

2 − ρ
2 + ρ

⇒ q =
D0

D1

2 + ρ

2 − ρ (1 − p).

So we have

p =
D1

D0

2 + ρ

2 − ρ −
(

2 + ρ

2 − ρ

)2

(1 − p) ⇒ p =

(
2 + ρ

2 − ρ

) (
D0

D1
− 2 + ρ

2 − ρ

) / ��1 −
(

2 + ρ

2 − ρ

)2�� ,
which boils down to

p =
2 + ρ

4
���

2+ρ

2−ρ
− D0

D1

2+ρ

2−ρ
− 1

��� =
2 + ρ

4
���

2(1 − D0

D1
) + ρ (1 + D0

D1
)

2ρ
��� =

2 + ρ

4

(
1

2

(
1 +

D0

D1

)
− D0 − D1

ρD1

)
.

And similarly,

q =
D0

D1

2 + ρ

2 − ρ −
(

2 + ρ

2 − ρ

)2

(1 − q) ⇒ q =

(
2 + ρ

2 − ρ

) (
D1

D0
− 2 + ρ

2 − ρ

) / ��1 −
(

2 + ρ

2 − ρ

)2�� ,
which gives

q =
2 + ρ

4
���

2+ρ

2−ρ
− D1

D0

2+ρ

2−ρ
− 1

��� =
2 + ρ

4
���

2(1 − D1

D0
) + ρ (1 + D1

D0
)

2ρ
��� =

2 + ρ

4

(
1

2

(
1 +

D1

D0

)
+
D0 − D1

ρD1

)
.

More importantly, under these p and q values, y0 =
2−ρ

4 and y1 =
2+ρ

4 . So from A’s perspective,
there is a Randomized Response move here with eϵ = y1/y0, and hence,

ϵ = ln

(
2 + ρ

2 − ρ

)
.
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The expected utility of A is uA = д(y0) = y2
0 + y

2
1 + 1 =

8+2ρ2

16 + 1 = 2 − 1
2 +

ρ2

8 . This is in com-

parison to д(D1) = 1 + D2
0 + D

2
1 = 2 − 2D1 + 2D2

1 = 2 − 2D1 (1 − D1) = 2 − 2D1D0. It follows that A

prefers the second game (with the coupon) to the first only if 1
2 −

ρ2

8 < 2D0D1 or ρ2 > 4 − 16D0D1.

Clearly, with D0 = D1 =
1
2 , we have that A prefers the coupon game over the benchmark game.

Spherical scoring rule. The spherical scoring rule is defined by the functions

( f0 (x ), f1 (x )) = �� 1 − x√
x2 + (1 − x )2

,
x√

x2 + (1 − x )2
�� ,

which are generated using д(x ) =
√
x2 + (1 − x )2. (So, д′(x ) = 2x−1√

x 2+(1−x )2
and д′′(x ) = (x2 + (1 −

x )2)−
3
2 .) Therefore, ( f ′0 (x ), f ′1 (x )) = (−x (1 − 2x + 2x2)−

3
2 , (1 − x ) (1 − 2x + 2x2)−

3
2 ).

Using the definition of д′(x ), Equation (6) now yields

ρ
√
y2

0 + 1 − 2y0 + y
2
0 = −2y0 + 1 ⇒ (4 − 2ρ2)y2

0 − (4 − 2ρ2)y0 + (1 − ρ2) = 0

ρ
√
y2

1 + 1 − 2y1 + y
2
1 = 2y1 − 1 ⇒ (4 − 2ρ2)y2

1 − (4 − 2ρ2)y1 + (1 − ρ2) = 0.

So y0 and y1 are the two different roots of the equation x2 − x + 1−ρ2

4−2ρ2 = 0, namely 1
2 ±

1
2

√
ρ2

2−ρ2 .

Plugging in the values of y0 and y1, we have

D1q − D0 (1 − p)

D1q + D0 (1 − p)
=

√
ρ2

2 − ρ2

D0p − D1 (1 − q)

D0p + D1 (1 − q)
=

√
ρ2

2 − ρ2
,

and this is because we assume D0p > D1 (1 − q) and D1q > D0 (1 − p). (That is, when we see the
signal t̂ = 0, it is more likely to come from a t = 0-type agent than a t = 1-agent, and similarly
with the t̂ = 1 signal.)

After arithmetic manipulations, we have

(1 − ρ2) (D2
0p

2 + D2
1 (1 − q)2) = 2D0D1p (1 − q) ⇒ (1 − ρ2)D0p = D1 (1 − q)

(
1 ± ρ

√
2 − ρ2

)
(1 − ρ2) (D2

0 (1 − p)2 + D2
1q

2) = 2D0D1 (1 − p)q ⇒ (1 − ρ2)D1q = D0 (1 − p)
(
1 ± ρ

√
2 − ρ2

)
using the fact that ρ ≤ 1 and that D0p > D1 (1 − q) and D1q > D0 (1 − p); then

D0p = D1 (1 − q)
1 + ρ

√
2 − ρ2

1 − ρ2

def
= ZρD1 (1 − q)

D1q = D0 (1 − p)
1 + ρ

√
2 − ρ2

1 − ρ2

def
= ZρD0 (1 − p)

(because 1 − ρ
√

2 − ρ2 ≤ 1 − ρ ≤ 1 − ρ2). We have that

D1 = D1q + D1 (1 − q) = ZρD0 (1 − p) +
1

Zρ
D0p

D0 = D0p + D0 (1 − p) = ZρD1 (1 − q) +
1

Zρ
D1q.
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We deduce

p =
Z 2

ρ − Zρ
D1

D0

Z 2
ρ − 1

, q =
Z 2

ρ − Zρ
D0

D1

Z 2
ρ − 1

.

More importantly, from A’s perspective, the signal is like a Randomized Response with param-
eter eϵ = y1/y0 so

ϵ = ln
���
���1 +

√
ρ2

2 − ρ2

���
/ ���1 −

√
ρ2

2 − ρ2

���
��� .

The utility of A from the game is now д(y0), which boils down to 1
2−ρ2 . This is in contrast to

D2
0 + D

2
1, soA prefers the game with the coupon over the baseline when ρ2 > 2 − 1

D2
0+D2

1
=

(D0−D1 )2

D2
0+D2

1
.

Complementary to that, B’s expected payment is

ρ (D0p + D1q) − д(y0) = ρ ��
D0Z

2
ρ − D1Zρ + D1Z

2
ρ − D0Zρ

Z 2
ρ − 1

�� − 1

2 − ρ2
=

ρZρ

Zρ + 1
− 2

2 − ρ2
.

Logarithmic scoring rule. The logarithmic scoring rule is defined by the functions ( f0 (x ), f1 (x )) =
(ln(1 − x ), ln(x )), which are generated by д(x ) = −H (x ) = x ln(x ) + (1 − x ) ln(1 − x ). (So, д′(x ) =
ln(x ) − ln(1 − x ) and д′′(x ) = 1

x
+ 1

1−x
.) Therefore, ( f ′0 (x ), f ′1 (x )) = (− 1

1−x
, 1

x
). Observe that the

logarithmic scoring rule has negative costs, and furthermore, we may charge infinite cost from an
expert reporting x = 0 or x = 1.

Using д′(x ), Equation (6) takes the form

ρ = ln

(
1 − y0

y0

)
= ln

(
y1

1 − y1

)
⇒ y0 =

1

1 + eρ
,y1 =

1

1 + e−ρ
.

This implies that

D0p

D1 (1 − q)
=

D1q

D0 (1 − p)
= eρ ⇒ p =

e2ρ − eρ D1

D0

e2ρ − 1
,q =

e2ρ − eρ D0

D1

e2ρ − 1
.

The Randomized Response behavior that A observes is for eϵ = y1/y0, which means that simply

ϵ = ρ. The utility for A is now д(y0) = − ln(1+e ρ )
1+e ρ − ln(1+e−ρ )

1+e−ρ . And the utility for B is uB = ρ (D0p +

D1q) − д(y0) = ρ e2ρ−e ρ

e2ρ−1
− д(y0) =

ρe ρ

e ρ+1 − д(y0).
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