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Abstract

The increasing collection and use of sensitive personal data raises important privacy

concerns. Another concern arising from the use of data in empirical sciences is

the danger of producing results that are not statistically valid due to failing to

account for the influence of previous exploration of the data. This thesis studies

formalisations of these issues and the relationship between them.

• We give an alternative definition of differential privacy, which is a formal

privacy standard for protecting sensitive data. Our definition strikes a balance

between the mathematical elegance of so-called pure differential privacy and

the power of approximate differential privacy.

• We prove tighter upper and lower bounds for differential privacy. Namely,

we bound the minimum size of a dataset that permits accurately answering

simple “one-way marginal” queries subject to differential privacy. Our bounds

are tight up to constant or log log factors.

• We show fundamental limits for privacy by exhibiting a privacy attack that,

given the aggregate statistics of a suitable dataset and the data of an individual,

can determine whether or not the individual’s data is part of the dataset. Our

attack is particularly applicable to genetic data and is robust to errors in
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the aggregate statistics. This attack is very similar to our lower bounds for

differential privacy and demonstrates that differential privacy achieves the

fundamental limit of privacy in this setting.

• We simplify, tighten, and extend the connection between differential privacy

and generalisation established by Dwork et al. (STOC 2015). In particular,

when data is analysed adaptively – that is, multiple analyses are performed

and each may depend on the outcome of previous analyses – differentially

private algorithms produce statistically valid results in the setting where the

data is a sample from some larger population. Our results establish the tight

connection between differential privacy and generalisation.

• We prove lower bounds in the adaptive data analysis setting that nearly

match the upper bounds given by differential privacy. Namely, we show that,

given n samples from an unknown distribution, we cannot answer more than

O(n2) adaptive statistical queries about that distribution while guaranteeing

statistical accuracy.

• We show that adaptivity also poses a problem in differential privacy. We show

that, for certain classes of queries, it is much harder to answer queries in a

differentially private manner if the queries are posed adaptively than if the

queries are provided all at once.

All of our results rely on understanding the information-theoretic relationship be-

tween the input and output of a randomised algorithm. The criterion for protecting

privacy or ensuring generalisation is that changing a single input point of the data

analysis algorithm does not affect the output “too much” in a probabilistic sense.
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Chapter 1

Introduction

It is becoming increasingly easy to collect, store, and process large amounts of data,

which can be extremely useful for science, government, and industry. However,

using this data also presents challenges. In particular, much of this data is sensitive

and cannot be made public without imperiling the privacy of the individuals it

pertains to. Furthermore, a major concern in empirical sciences is the possibility

of overfitting data and reaching conclusions that do not generalise to the larger

population from which the data was drawn. This problem is exacerbated by

adaptivity – that is, when an analysis of a dataset incorporates information from

prior examination of the same data (such as through model selection). These two

related issues are the focus of this thesis.

We study formalisations of these issues in the form of differential privacy and

the statistical query model respectively. In both cases, the question boils down to

understanding the relationship between the input and output of a randomised

algorithm. Namely, we must understand how much “information” about the input

is revealed by the output. Any useful algorithm must reveal some information about

its input, but to preserve privacy and prevent overfitting the revealed information

1



must be controlled. In particular, we wish to protect “local” information about

individuals or that is specific to the sample, while permitting the release of “global”

properties of the input data or source population.

1.1 Differential Privacy

As more and more sensitive data is being collected about individuals, a big challenge

is releasing useful information about this data in a way that does not compromise

the privacy of the individuals concerned. Many ad hoc techniques have been used

to “de-identify” data on a record-by-record basis before public release. However,

these methods have suffered numerous failures; researchers have “re-identified” in-

formation about individuals [Swe97, BZ06, NS08, CKN+11] by linking the sensitive

data to public records or other data that overlaps with the released information.

These failures led to the development of differential privacy [DMNS06, DKM+06].

Differential privacy applies ideas developed in the cryptography community to the

problem of privacy-preserving data analysis and provides a rigorous and quantitative

theory in which to study the problem. In the decade since its inception, differential

privacy has developed a rich literature and this thesis makes several contributions

thereto.

1.1.1 Background

We first discuss how privacy is formalised by differential privacy. When releasing

information about a sensitive dataset, our ideal privacy criterion is that anything

that can be learnt about an individual from the released information, can be learnt without

that individual’s data being included. This does not ensure that nothing about an

individual can be learnt from the released information. For example, revealing that

2



smoking and lung cancer are strongly correlated reveals sensitive information about

an individual if that individual is known to smoke; however, this correlation can be

learnt without the use of the data of that individual, so we do not consider it to be a

privacy violation.

If we require that no information about any individual is revealed, we cannot

release any useful information. Thus, to permit the release of useful information,

the privacy criterion must be quantitatively relaxed to allow the revelation of small

amount of information about each individual. Differential privacy is a formal

quantification of this relaxed criterion.

Differential privacy is a property of a randomised procedure or mechanismM

that takes a sensitive dataset x as input and releases the outputM(x).1 We compare

the output distribution M(x) with a hypothetical output distribution M(x′) in

which the input x is changed to x′ by removing, adding, or modifying the data of a

single individual. The requirement of differential privacy is thatM(x) should be

indistinguishable fromM(x′) for any inputs x and x′ differing only on the data of

a single individual:

Definition 1.1.1 (Differential Privacy [DMNS06, DKM+06]). A mechanismM satisfies

(ε, δ)-differential privacy if, for all datasets x and x′ differing only on the data of a single

individual and every potential set of outcomes S,

P [M(x) ∈ S] ≤ eε ·P
[
M(x′) ∈ S

]
+ δ. (1.1)

The special case where δ = 0 is called pure differential privacy, in which case we refer to

ε-differential privacy, instead of (ε, 0)-differential privacy. The case where δ > 0 is called

approximate differential privacy.

1We emphasise that differential privacy is a property of the mechanism releasing the information,
not simply of the output.
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Setting the parameters ε = δ = 0 corresponds to revealing no information (M(x)

and M(x′) are identically distributed), whereas setting ε > 0 or δ > 0 permits

revealing some information about individuals.2 The definition of differential privacy

(1.1) is inherently probabilistic; as in cryptographic definitions, randomness is

necessary to “obscure” or “hide” the individual information. Thus any non-trivial

differentially private release of information requires randomisation.

Differential privacy is a very “robust” definition, as we would expect of a

meaningful privacy guarantee. Namely it satisfies the following properties, which,

for simplicity, we only state for pure differential privacy here.

• Postprocessing: If information is released in a differentially private manner,

then additional analysis of that released information — including combining

it with information from other sources — will not weaken the differential

privacy guarantee.

• Composition: If one individual’s data is used in multiple independent releases,

then the combination of these releases satisfies differential privacy, as long as

each release satisfies differential privacy on its own. However, the quantitative

privacy guarantee degrades: if each release satisfies ε-differential privacy, then

combining k such releases satisfies kε-differential privacy.

• Group privacy: If information is shared by several individuals (such as relatives),

differential privacy still protects this information. As for composition, the

privacy guarantee degrades with the number of individuals we wish to protect

simultaneously. That is, if x differs from x′ on the data of at most k individuals

2The parameter ε (sometimes called the privacy loss bound) is usually thought of as a small
constant no larger than 1, whereas δ is usually much smaller (no larger than 10−6, as δ bounds the
probability of a potential catastrophic failure).
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andM satisfies ε-differential privacy, then P [M(x) ∈ S] ≤ ekε ·P [M(x′) ∈ S]

for all possible sets of outcomes S.

Arguably, composition is the signature property of differential privacy. Composition

permits viewing differentially private analyses as part of a larger system. Indeed,

analysis of private data does not occur in a vacuum — a single individual’s data

will be used multiple times over their lifetime. As such, it is vital to understand

the risk to privacy posed by the accumulated information released by independent

analyses. Furthermore, simple mechanisms can be composed to perform more

complex analytical tasks.

Perhaps the most surprising feature of differential privacy is that, despite its

strength as a privacy protection, it is amenable to meaningful data analysis. An

extensive literature has been developed showing that a wide range of useful analyses

can be carried out subject to differential privacy and its variants. (See the textbook

on the subject [DR14].)

1.1.2 Contributions

Concentrated Differential Privacy (§2, [BS16])

The original definition of differential privacy (Definition 1.1.1) has withstood a

decade of scrutiny; subsequent research has (generally) validated it as the appropri-

ate formalisation of privacy protection. However, there remains room to tweak the

definition slightly to obtain better results. In particular, the aforementioned com-

position property becomes more complex in the setting of approximate differential

privacy.

A key result in differential privacy is the so-called advanced composition theorem

[DRV10]: Suppose k differentially private analysesM1, · · · ,Mk are applied to the
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same dataset, where eachMi is (εi, δi)-differentially private. Then the combination

of these analyses satisfies (ε, δ′ + ∑i δ)-differential privacy for any δ′ > 0 and

ε =
1
2 ∑

i
ε2

i +
√

2 log(1/δ′)∑
i

ε2
i .

This is a very powerful result, which is used widely in the literature to obtain near-

optimal results. However, it is not a tight result and, in practice, obtaining a sharper

understanding of how differential privacy composes is critical. Unfortunately,

the tightest composition bound is unwieldy and is #P-hard to compute exactly

[KOV15, MV16]. Approximate differential privacy can be mathematically inelegant.

Pure differential privacy, on the other hand, has very elegant composition properties,

but is a less practical and more restrictive definition.

Our work combines the mathematical elegance of pure differential privacy with

the power of approximate differential privacy. For this, we consider an alternative

definition of differential privacy, namely concentrated differential privacy, which was

first defined by Dwork and Rothblum [DR16]. We present an alternative formulation

of the concept of concentrated differential privacy in terms of the Rényi divergence

between the distributions obtained by running an algorithm on neighboring inputs.

Using our reformulated definition of concentrated differential privacy, we prove

sharper quantitative results, establish lower bounds, and raise a few new questions.

In particular, we are able to show (with some caveats) that any mechanism satisfying

concentrated differential privacy can be converted into a mechanism satisfying pure

differential privacy with only a quadratic blowup in sample complexity. Our lower

bounds demonstrate sharp limits on the power of concentrated differential privacy.

Specifically, concentrated differential privacy is susceptible to so-called packing

lower bounds [HT10], which are often “too pessimistic.” To circumvent these

lower bounds and also unify concentrated differential privacy with approximate

6



differential privacy, we give an appropriate definition of “approximate concentrated

differential privacy.”

Tighter Upper and Lower Bounds for Differential Privacy (§4, [SU15a])

A natural way to measure the tradeoff between privacy and utility is sample com-

plexity—the minimum number of records n that is sufficient in order to publicly

release an accurate approximation to a given set of statistics about the dataset, while

satisfying differential privacy. Intuitively, it’s easier to achieve these two goals when

n is large, as each individual’s data will have only a small influence on the aggregate

statistics of interest. Conversely, the sample complexity n should increase as ε and δ

decrease (which strengthens the privacy guarantee).

The sample complexity of achieving pure differential privacy is well-understood

for many settings (e.g. [HT10]). The more general case of approximate differential

privacy is less well understood. However, for the interesting special case of one-way

marginals we are able to provide bounds that are tight up to constant (or, in some

cases, log log) factors for almost all choices of parameters.

Specifically, we consider algorithms that compute an extremely simple and

fundamental family of queries, namely the one-way marginals of the dataset. For

a dataset x ∈ {±1}n×d, the d one-way marginals are simply the mean of the bits

in each of the d columns: x := 1
n ∑n

i=1 xi ∈ [±1]d, where xi ∈ {±1}d is the i-th

element or row of x. A mechanism M is accurate if, on input x, its output is close

to x. Accuracy may be measured in a worst-case sense—i.e. ‖M(x)− x‖∞ ≤ α,

meaning every one-way marginal is answered with accuracy α—or in an average-case

sense—i.e. ‖M(x)− x‖1 ≤ αd, meaning the marginals are answered with average

accuracy α.

Some of the earliest results in differential privacy [DN03, DN04, BDMN05,
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DMNS06] give a simple (ε, δ)-differentially private algorithm—the Laplace mecha-

nism—that computes the one-way marginals of x ∈ {±1}n×d with average error α

as long as

n ≥ O

(
min

{√
d log(1/δ)

εα
,

d
εα

})
. (1.2)

The previous best lower bounds are n ≥ Ω(d/εα) [HT10] for pure differential

privacy and n ≥ Ω̃(
√

d/εα) for approximate differential privacy with δ = o(1/n)

[BUV14]. We prove an optimal lower bound that combines the previous lower

bounds:

Theorem 1.1.2 (Main Theorem). For every ε, δ, α ∈ (0, 0.1) and n, d ∈ N the fol-

lowing holds. Let M : {±1}n×d → [±1]d be (ε, δ)-differentially private. Suppose

E
M
[‖M(x)− x‖1] ≤ αd for all x ∈ {±1}n×d. If e−αεn/5 ≤ δ ≤ ε/(250n)1.1„ then

n ≥ Ω

(√
d log(1/δ)

εα

)
.

Although there has been a long line of work developing methods to prove lower

bounds in differential privacy (see [DN03, DMT07, DY08, KRSU10, HT10, NTZ13,

BUV14] for a representative, but not exhaustive, sample), our result is the first to

show that the sample complexity must grow by a multiplicative factor of
√

log(1/δ).

The proof of our lower bound draws techniques from the literature on finger-

printing codes [BS98, Tar08] (which are a recurring theme in this thesis). The key to

the proof is showing that the output of any accurate mechanism must have high

“correlation” with its input for a suitably-chosen random input. On the other hand

differential privacy implies that the correlation between the input and output must

be small. Balancing these conflicting constraints yields the lower bound.

Our lower bound holds for mechanisms that bound the average error over

the queries (we denote this as L1 error). Thus, it also holds for algorithms that
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bound the maximum error over the queries (we denote this as L∞ error). The

Laplace mechanism gives a matching upper bound for average error. In many

cases bounds on the maximum error are preferable. For maximum error, the sample

complexity of the best previous mechanisms degrades by an additional polylog(d)

factor compared to (1.2): n ≥ O
(

min
{√

d log(1/δ) log d
εα , d log d

εα

})
Surprisingly, this degradation is not necessary. We present algorithms that

answer every one-way marginal with α accuracy and improve on the sample com-

plexity of the Laplace mechanism by a factor of (log d)Ω(1). Namely we obtain

sample complexity

n = O

(
min

{√
d · log(1/δ) · log log d

εα
,

d
αε

})

These algorithms demonstrate that the widely used technique of adding independent

noise to each query is suboptimal when the goal is to achieve worst-case error

guarantees.

Privacy Attacks (§5, [DSS+15])

An important aspect of motivating differential privacy research is demonstrating

that the definition is not “too restrictive.” That is, we must argue that we cannot

achieve better utility using different techniques whilst providing “adequate” privacy

protections. One concrete way to demonstrate this is to show that lower bounds for

differential privacy are in fact lower bounds for any reasonable notion of privacy.

In other words, we would like to demonstrate that lower bounds for differential

privacy in fact correspond to practical privacy attacks.

A privacy attack takes seemingly innocuous released information and uses it

to reveal the private details of individuals. Thus constructing a privacy attack

demonstrates that releasing such information compromises privacy; a privacy attack
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rules out any “reasonable” notion of privacy (not just differential privacy).

We show that the aforementioned differential privacy lower bounds for one-way

marginals do correspond to a simple privacy attack. Namely we construct a simple

tracing attack: Given a collection of (approximate) summary statistics about a dataset,

the precise data of a single target individual, and a small amount of auxiliary

information, the attack can determine whether or not the target is a member of the

dataset.

Such a tracing attack is a concern in many natural situations where membership

in the dataset is considered sensitive. For example, in a genome-wide association

study, the dataset contains genomic information about a case group of individuals

with a specific medical diagnosis and the released summary statistics are SNP allele

frequencies (i.e. one-way marginals). In this scenario, tracing would compromise

privacy by revealing the medical diagnosis of the target. Homer et al. [HSR+08] sur-

prised the genomics research community by demonstrating that tracing is possible

if exact summary statistics are released.

We show that one can perform a tracing attack even when the one-way marginals

are considerably distorted before being released. The parameter regime where

our attack becomes feasible is close to the setting where is becomes possible to

use differential privacy to provably foil such an attack. Thus our privacy attack

shows that differential privacy is not too restrictive in the one-way marginals setting

– releasing more one-way marginals than is possible under differential privacy

necessarily compromises privacy by permitting our tracing attack.

The analysis of our tracing attack can be viewed as extending the analysis of

fingerprinting codes, which are used in lower bounds for differential privacy in

Chapter 4. In particular, we show that fingerprinting codes “arise naturally” and do

not need to be specially constructed. Cryptographic constructions of fingerprinting
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codes may choose a specific data distribution, whereas our attack is intended to be

applicable to real-world data where the data distribution may even be unknown.

This necessitates a different and more general analysis.

The analysis of our attack requires assuming that the data is drawn from some

unknown product distribution and an independent sample from that distribution is

provided as auxiliary information. Furthermore, we assume that the mechanism

releasing the distorted one-way marginals faces significant uncertainty about this

unknown distribution. (Otherwise, knowledge of the distribution from which

the data is drawn can be used to foil a tracing attack.) This uncertainty about

the distribution is modelled by a “meta distribution.” Our analysis works for a

large, natural class of meta distributions, rather than a single distribution. These

assumptions are considerably weaker than previous analyses of fingerprinting

codes.

1.2 Adaptivity and Generalisation

Data is used to perform statistical analyses or train a machine learning algorithms.

However, the object of interest when doing so is not the data itself, rather the

goal of statistical inference or learning is to understand the population from which

that data was collected. That is, we usually assume that there is some unknown

probability distribution representing the “ground truth” and the data consists of

independent samples from that distribution and the objective of data analysis is

to draw conclusions about the unknown probability distribution from the known

data. Overfitting occurs when data analysis produces a conclusion that accurately

represents the data, but fails to reflect the true population, in which case we say

that the conclusion does not generalise.
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A major concern in empirical sciences and machine learning is preventing

overfitting [GL14, Ioa05]. However, most techniques for ensuring generalisation

(e.g. [Bon36, BH95] are predicated on the assumption that the data analysis occurs all

at once. In particular, it is difficult to handle adaptive data analysis in which there are

multiple rounds of data analysis where each round is informed by the conclusions

of previous rounds. For example, if the same dataset is used to select a model and

then fit that model, then standard hypothesis techniques do not accurately reflect

how well that model fits the population. Likewise, the choice of hyperparameters

(such as regularization weights) can cause overfitting if the same dataset is used at

multiple stages in the model fitting process.

A recent line of work [DFH+15c, HU14, et sequalae] has provided a model in

which to study the problem of ensuring generalisation in adaptive data analysis

and revealed a deep connection to differential privacy. This thesis contributes to

both sides of this connection; we provide tighter results showing how differential

privacy prevents overfitting and strengthen impossibility results for adaptive data

analysis building on techniques used for proving differential privacy lower bounds.

1.2.1 Background

Following Dwork et al. [DFH+15c] and Hardt and Ullman [HU14], we study adap-

tive data analysis in the statistical query model: There is a population P which is

probability distribution on some data universe X and an analyst A who wishes to

study the population. The analyst passes queries to a mechanismM, which must

provide answers to those queries. The analyst specifies queries one-by-one and each

query may depend on the answers returned for previous queries. The mechanism is

given n independent samples x from the population, but otherwise knows nothing

about the population. The mechanism must ensure that all the answers it returns are
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accurate with high probability. For this to be possible, how large does the sample

size n need to be as a function of the type and number of queries and the desired

accuracy guarantee?

For simplicity, consider the case where the analyst asks k statistical queries. That

is, the analyst specifies predicates q1, · · · , qk : X → [0, 1] and the answers a1, · · · , ak

are considered accurate if |aj − E
z∼P

[
qj(z)

]
| ≤ α for all j. In the non-adaptive setting

(where the queries are specified all at once and cannot depend on previous answers)

we can simply use empirical answers — that is, aj =
1
n ∑n

i=1 qj(xi) — and the sample

complexity is n = O(log(k)/α2) by a Chernoff-Hoeffding bound combined with

the union bound. However, this approach does not work if the queries may be

adaptive: Using only k = O(n) queries, the analyst can discern the sample x.3 Once

the analyst knows the sample, it can formulate a query q that evaluates to 1 on the

sample points and 0 elsewhere. This demonstrates that the problem is nontrivial.

A simple and well-known approach is sample splitting: The sample x is split into

k subsamples and each query is evaluated on a “fresh” subsample. Unfortunately,

this requires high sample complexity, namely n = Θ̃(k/α2).

1.2.2 Contributions

Improved Upper Bounds (§3, [BNS+16a])

Dwork et al. [DFH+15c] gave the first improved upper bounds for adaptive data

analysis. They showed that, if the mechanismM satisfies differential privacy and is

empirically accurate (that is, the answers are accurate with respect to the sample

x, but not necessarily with respect to the population P), then the mechanism is

3Uniformly random queries suffice to approximately discern the sample. If answers are returned
with arbitrary precision and X ⊆ N, then the entire sample can be revealed with a single query:
q(x) = n−x.
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accurate with respect to the population. In other words, they showed that differential

privacy ensures generalisation. Applying this connection to known differentially

private algorithms (namely, the Laplace or Gaussian mechanism), they obtain sample

complexity n = Θ̃(
√

k/α2.5) for k statistical queries with accuracy α.

We give a simpler proof of the reduction of Dwork et al., which also achieves

better parameters and applies to more general families of queries. In particular, for

k low-sensitivity queries (which are a generalisation of statistical queries), we obtain

sample complexity n = Θ̃(
√

k/α2). We also show that the definition of differential

privacy can be relaxed while still providing meaningful generalisation guarantees.

Improved Lower Bounds (§6, [SU15b])

Hardt and Ullman [HU14] gave the first lower bounds for adaptive data analysis.

They showed that, if the analyst and population are both chosen adversarially,

then the mechanism needs n = Ω̃( 3
√

k/α) samples to answer k statistical queries to

accuracy α. This holds under one of two assumptions: Either the the dimension

d = log |X | of the data satisfies d ≥ k or the mechanism is computationally bounded

so that it cannot break cryptographic encryption with d-bit keys.

We extend the proof of Hardt and Ullman to obtain the lower bound n =

Ω(
√

k/α), which is tight up to constants in its dependence on k. This requires

the construction of an object we call interactive fingerprinting codes, which are a

generalisation of fingerprinting codes. Our construction of interactive fingerprinting

codes uses many of the same techniques we have used in proving lower bounds

for differential privacy (§4) and for analysing privacy attacks (§5). However, our

construction of interactive fingerprinting codes extends the fingerprinting analysis

in a different direction: we provide optimal “robustness” – that is, we are able to

perform the fingerprinting attack even if, say, 99% of the answers are arbitrarily
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corrupted, whereas previously it was only known how to withstand less than 2%

corrupted answers [BUV14].

The Power of Adaptivity in Differential Privacy (§7, [BSU16])

Our results and those of Dwork et al. [DFH+15c] show that differentially private

mechanisms which can answer adaptive queries are useful for generalisation. Not

all mechanisms in the differential privacy literature are suited to adaptive queries

(e.g. [BLR13]). However, most mechanisms can handle adaptive queries. Moreover,

almost all lower bounds for differential privacy use a set of queries that is provided

up front. Hence, in the cases where the adaptive upper bounds and non-adaptive

lower bounds match, we see that there is no difference between adaptive and non

adaptive queries. Thus we ask whether this is always the case — is the sample

complexity needed to accurately answer adaptive queries subject to differential

privacy always the same as when the queries are provided all at once?

We answer this question negatively by showing an exponential separation be-

tween the adaptive and non-adaptive cases. In fact we separate three cases – the

adaptive setting where queries are provided one at a time and may depend on

previous answers, the online setting where the queries are provided one at a time

but may not depend on previous answers, and the offline setting where the queries

are provided all at once. We construct a class of statistical queries for which the

sample complexity is maximal in the online setting, but, in the offline setting, the

sample complexity is exponentially smaller. We also construct a class of “search

queries” that separate the online and adaptive settings.
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Chapter 2

Concentrated Differential Privacy

2.1 Introduction

Differential privacy [DMNS06] is a formal mathematical standard for protecting

individual-level privacy in statistical data analysis. In its simplest form, (pure)

differential privacy is parameterised by a real number ε > 0, which controls how

much “privacy loss”1 an individual can suffer when a computation (i.e., a statistical

data analysis task) is performed involving his or her data.

One particular hallmark of differential privacy is that it degrades smoothly and

predictably under the composition of multiple computations. In particular, if one

performs k computational tasks that are each ε-differentially private and combines

the results of those tasks, then the computation as a whole is kε-differentially private.

This property makes differential privacy amenable to the type of modular reasoning

used in the design and analysis of algorithms: When a sophisticated algorithm is

1The privacy loss is a random variable that quantifies how much information is revealed about
an individual by a computation involving their data; it depends on the outcome of the computation,
the way the computation was performed, and the information that the individual wants to hide. We
discuss it informally in this introduction and define it precisely in Definition 2.1.2 on page 19.
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comprised of a sequence of differentially private steps, one can establish that the

algorithm as a whole remains differentially private.

A widely-used relaxation of pure differential privacy is approximate or (ε, δ)-

differential privacy [DKM+06], which essentially guarantees that the probability

that any individual suffers privacy loss exceeding ε is bounded by δ. For sufficiently

small δ, approximate (ε, δ)-differential privacy provides a comparable standard of

privacy protection as pure ε-differential privacy, while often permitting substantially

more useful analyses to be performed.

Unfortunately, there are situations where, unlike pure differential privacy, ap-

proximate differential privacy is not a very elegant abstraction for mathematical

analysis, particularly the analysis of composition. The “advanced composition

theorem” of Dwork, Rothblum, and Vadhan [DRV10] (subsequently improved

by [KOV15, MV16]) shows that the composition of k tasks which are each (ε, δ)-

differentially private is (≈
√

kε,≈kδ)-differentially private. However, these bounds

can be unwieldy; computing the tightest possible privacy guarantee for the composi-

tion of k arbitrary mechanisms with differing (εi, δi)-differential privacy guarantees

is #P-hard [MV16]! Furthermore, these bounds are not tight even for simple and

natural privacy-preserving computations. For instance, consider the mechanism

which approximately answers k statistical queries on a given database by adding

independent Gaussian noise to each answer. Even for this basic computation, the

advanced composition theorem does not yield a tight analysis.2

Dwork and Rothblum [DR16] recently put forth a different relaxation of differen-

2In particular, consider answering k statistical queries on a dataset of n individuals by adding
noise drawn from N (0, (σ/n)2) independently for each query. Each individual query satisfies
(O(

√
log(1/δ)/σ), δ)-differential privacy for any δ > 0. Applying the advanced composition theorem

shows that the composition of all k queries satisfies (O(
√

k log(1/δ)/σ), (k + 1)δ)-differential privacy
for any δ > 0. However, it is well-known that this bound can be improved to (O(

√
k log(1/δ)/σ), δ)-

differential privacy.
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tial privacy called concentrated differential privacy. Roughly, a randomised mechanism

satisfies concentrated differentially privacy if the privacy loss has small mean and

is subgaussian. Concentrated differential privacy behaves in a qualitatively similar

way as approximate (ε, δ)-differential privacy under composition. However, it per-

mits sharper analyses of basic computational tasks, including a tight analysis of the

aforementioned Gaussian mechanism.

Using the work of Dwork and Rothblum [DR16] as a starting point, we introduce

an alternative formulation of the concept of concentrated differential privacy that

we call “zero-concentrated differential privacy” (zCDP for short). To distinguish

our definition from that of Dwork and Rothblum, we refer to their definition as

“mean-concentrated differential privacy” (mCDP for short). Our definition uses

the Rényi divergence between probability distributions as a different method of

capturing the requirement that the privacy loss random variable is subgaussian.

2.1.1 Our Reformulation: Zero-Concentrated Differential Privacy

As is typical in the literature, we model a dataset as a multiset or tuple of n elements

(or “rows”) in X n, for some “data universe” X , where each element represents

one individual’s information. A (privacy-preserving) computation is a randomised

algorithm M : X n → Y , where Y represents the space of all possible outcomes of

the computation.

Definition 2.1.1 (Zero-Concentrated Differential Privacy (zCDP)). A randomised

mechanism M : X n → Y is (ξ, ρ)-zero-concentrated differentially private (henceforth

(ξ, ρ)-zCDP) if, for all x, x′ ∈ X n differing on a single entry and all α ∈ (1, ∞),

Dα

(
M(x)

∥∥M(x′)
)
≤ ξ + ρα, (2.1)
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where Dα (M(x)‖M(x′)) is the Rényi divergence3 of order α between the distribution of

M(x) and the distribution of M(x′).

We define ρ-zCDP to be (0, ρ)-zCDP.4

Equivalently, we can replace (2.1) with

E
[
e(α−1)Z

]
≤ e(α−1)(ξ+ρα), (2.2)

where Z = PrivLoss (M(x)‖M(x′)) is the privacy loss random variable:

Definition 2.1.2 (Privacy Loss Random Variable). Let Y and Y′ be random vari-

ables on Ω. We define the privacy loss random variable between Y and Y′ – de-

noted Z = PrivLoss (Y‖Y′) – as follows. Define a function f : Ω → R by f (y) =

log(P [Y = y] /P [Y′ = y]).5 Then Z is distributed according to f (Y).

Intuitively, the value of the privacy loss Z = PrivLoss (M(x)‖M(x′)) represents

how well we can distinguish x from x′ given only the output M(x) or M(x′). If

Z > 0, then the observed output of M is more likely to have occurred if the input

was x than if x′ was the input. Moreover, the larger Z is, the bigger this likelihood

ratio is. Likewise, Z < 0 indicates that the output is more likely if x′ is the input. If

Z = 0, both x and x′ “explain” the output of M equally well.

3Rényi divergence has a parameter α ∈ (1, ∞) which allows it to interpolate between KL-
divergence (α→1) and max-divergence (α→∞). It should be thought of as a measure of dissimilarity
between distributions. We define it formally in Section 2.2. Throughout, we assume that all
logarithms are natural unless specified otherwise — that is, base e ≈ 2.718. This includes logarithms
in information theoretic quantities like entropy, divergence, and mutual information, whence these
quantities are measured in nats rather than in bits.

4For clarity of exposition, we consider only ρ-zCDP in the introduction and give more general
statements for (ξ, ρ)-zCDP later. We also believe that having a one-parameter definition is desirable.

5Throughout we abuse notation by letting P [Y = y] represent either the probability mass function

or the probability density function of Y evaluated at y. Formally, P [Y = y] /P [Y′ = y] denotes the

Radon-Nikodym derivative of the measure Y with respect to the measure Y′ evaluated at y, where
we require Y to be absolutely continuous with respect to Y′, i.e. Y � Y′.
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A mechanism M : X n → Y is ε-differentially private if and only if P [Z > ε] = 0,

where Z = PrivLoss (M(x)‖M(x′)) is the privacy loss of M on arbitrary inputs

x, x′ ∈ X n differing in one entry. On the other hand, M being (ε, δ)-differentially

private is equivalent, up to a small loss in parameters, to the requirement that

P [Z > ε] ≤ δ.

In contrast, zCDP entails a bound on the moment generating function of the privacy

loss Z — that is, E
[
e(α−1)Z

]
as a function of α− 1. The bound (2.2) implies that Z

is a subgaussian random variable6 with small mean. Intuitively, this means that Z

resembles a Gaussian distribution with mean ξ + ρ and variance 2ρ. In particular,

we obtain strong tail bounds on Z. Namely (2.2) implies that

P [Z > λ + ξ + ρ] ≤ e−λ2/4ρ

for all λ > 0.7

Thus zCDP requires that the privacy loss random variable is concentrated

around zero (hence the name). That is, Z is “small” with high probability, with

larger deviations from zero becoming increasingly unlikely. Hence we are unlikely

to be able to distinguish x from x′ given the output of M(x) or M(x′). Note that the

randomness of the privacy loss random variable is taken only over the randomness

of the mechanism M.

6A random variable X being subgaussian is characterised by the following four equivalent

conditions [Riv12]. (i) P
[
|X−E [X] | > λ

]
≤ e−Ω(λ2) for all λ > 0. (ii) E

[
e

t(X−E[X])
]
≤ eO(t2) for all

t ∈ R. (iii) E
[
(X−E [X])2k

]
≤ O(k)k for all k ∈N. (iv) E

[
e

c(X−E[X])2
]
≤ 2 for some c > 0.

7We only discuss bounds on the upper tail of Z. We can obtain similar bounds on the lower tail
of Z = PrivLoss (M(x)‖M(x′)) by considering Z′ = PrivLoss (M(x′)‖M(x)).
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Comparison to the Definition of Dwork and Rothblum

For comparison, Dwork and Rothblum [DR16] define (µ, τ)-concentrated differential

privacy for a randomised mechanism M : X n → Y as the requirement that, if

Z = PrivLoss (M(x)‖M(x′)) is the privacy loss for x, x′ ∈ X n differing on one entry,

then

E [Z] ≤ µ and E
[
e
(α−1)(Z−E[Z])

]
≤ e(α−1)2 1

2 τ2

for all α ∈ R. That is, they require both a bound on the mean of the privacy loss

and that the privacy loss is tightly concentrated around its mean. To distinguish

our definitions, we refer to their definition as mean-concentrated differential privacy (or

mCDP).

Our definition, zCDP, is a relaxation of mCDP. In particular, a (µ, τ)-mCDP mech-

anism is also (µ− τ2/2, τ2/2)-zCDP (which is tight for the Gaussian mechanism

example), whereas the converse is not true. (However, a partial converse holds; see

Lemma 2.4.3.)

2.1.2 Results

Relationship between zCDP and Differential Privacy

Like Dwork and Rothblum’s formulation of concentrated differential privacy, zCDP

can be thought of as providing guarantees of (ε, δ)-differential privacy for all values

of δ > 0:

Proposition 2.1.3. If M provides ρ-zCDP, then M is (ρ + 2
√

ρ log(1/δ), δ)-differentially

private for any δ > 0.

We also prove a slight strengthening of this result (Lemma 2.3.7). Moreover,

there is a partial converse, which shows that, up to a loss in parameters, zCDP is
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equivalent to differential privacy with this ∀δ > 0 quantification (see Lemma 2.3.9).

There is also a direct link from pure differential privacy to zCDP:

Proposition 2.1.4. If M satisfies ε-differential privacy, then M satisfies (1
2 ε2)-zCDP.

Dwork and Rothblum [DR16, Theorem 3.5] give a slightly weaker version of

Proposition 2.1.4, which implies that ε-differential privacy yields (1
2 ε(eε − 1))-zCDP;

this improves on an earlier bound [DRV10] by the factor 1
2 .

We give proofs of these and other properties using properties of Rényi divergence

in Sections 2.2 and 2.3.

Propositions 2.1.3 and 2.1.4 show that zCDP is an intermediate notion between

pure differential privacy and approximate differential privacy. Indeed, many algo-

rithms satisfying approximate differential privacy do in fact also satisfy zCDP.

Gaussian Mechanism

Just as with mCDP, the prototypical example of a mechanism satisfying zCDP is the

Gaussian mechanism, which answers a real-valued query on a database by perturbing

the true answer with Gaussian noise.

Definition 2.1.5 (Sensitivity). A function q : X n → R has sensitivity ∆ if for all

x, x′ ∈ X n differing in a single entry, we have |q(x)− q(x′)| ≤ ∆.

Proposition 2.1.6 (Gaussian Mechanism). Let q : X n → R be a sensitivity-∆ query.

Consider the mechanism M : X n → R that on input x, releases a sample from N (q(x), σ2).

Then M satisfies (∆2/2σ2)-zCDP.

We remark that either inequality defining zCDP — (2.1) or (2.2) — is exactly

tight for the Gaussian mechanism for all values of α. Thus the definition of zCDP

seems tailored to the Gaussian mechanism.
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Basic Properties of zCDP

Our definition of zCDP satisfies the key basic properties of differential privacy.

Foremost, these properties include smooth degradation under composition, and

invariance under postprocessing:

Lemma 2.1.7 (Composition). Let M : X n → Y and M′ : X n → Z be randomised

algorithms. Suppose M satisfies ρ-zCDP and M′ satisfies ρ′-zCDP. Define M′′ : X n →

Y ×Z by M′′(x) = (M(x), M′(x)). Then M′′ satisfies (ρ + ρ′)-zCDP.

Lemma 2.1.8 (Postprocessing). Let M : X n → Y and f : Y → Z be randomised

algorithms. Suppose M satisfies ρ-zCDP. Define M′ : X n → Z by M′(x) = f (M(x)).

Then M′ satisfies ρ-zCDP.

These properties follow immediately from corresponding properties of the Rényi

divergence outlined in Lemma 2.2.2.

We remark that Dwork and Rothblum’s definition of mCDP is not closed under

postprocessing; we provide a counterexample in Section 2.4.1. (However, an arbitrary

amount of postprocessing can worsen the guarantees of mCDP by at most constant

factors.)

Group Privacy

A mechanism M guarantees group privacy if no small group of individuals has a

significant effect on the outcome of a computation (whereas the definition of zCDP

only refers to individuals, which are groups of size 1). That is, group privacy for

groups of size k guarantees that, if x and x′ are inputs differing on k entries (rather

than a single entry), then the outputs M(x) and M(x′) are close.

Dwork and Rothblum [DR16, Theorem 4.1] gave nearly tight bounds on the group

privacy guarantees of concentrated differential privacy, showing that a (µ = τ2/2, τ)-
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concentrated differentially private mechanism affords (k2µ · (1 + o(1)), kτ · (1 +

o(1)))-concentrated differential privacy for groups of size k = o(1/τ). We are able

to show a group privacy guarantee for zCDP that is exactly tight and works for a

wider range of parameters:

Proposition 2.1.9. Let M : X n → Y satisfy ρ-zCDP. Then M guarantees (k2ρ)-zCDP

for groups of size k — i.e. for every x, x′ ∈ X n differing in up to k entries and every

α ∈ (1, ∞), we have

Dα

(
M(x)

∥∥M(x′)
)
≤ (k2ρ) · α.

In particular, this bound is achieved (simultaneously for all values α) by the

Gaussian mechanism. Our proof is also simpler than that of Dwork and Rothblum;

see Section 2.5.

Lower Bounds

The strong group privacy guarantees of zCDP yield, as an unfortunate consequence,

strong lower bounds as well. We show that, as with pure differential privacy, zCDP

is susceptible to information-based lower bounds, as well as to so-called packing

arguments [HT10, MMP+10, De12]:

Theorem 2.1.10. Let M : X n → Y satisfy ρ-zCDP. Let X be a random variable on X n.

Then

I (X; M(X)) ≤ ρ · n2,

where I(·; ·) denotes the mutual information between the random variables (in nats, rather

than bits). Furthermore, if the entries of X are independent, then I(X; M(X)) ≤ ρ · n.

Theorem 2.1.10 yields strong lower bounds for zCDP mechanisms, as we can

construct distributions X such that, for any accurate mechanism M, M(X) reveals a

lot of information about X (i.e. I(X; M(X)) is large for any accurate M).
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In particular, we obtain a strong separation between approximate differential

privacy and zCDP. For example, we can show that releasing an accurate approximate

histogram (or, equivalently, accurately answering all point queries) on a data domain

of size k requires an input with at least n = Θ(
√

log k) entries to satisfy zCDP.

In contrast, under approximate differential privacy, n can be independent of the

domain size k [BNS13]! In particular, our lower bounds show that “stability-based”

techniques (such as those in the propose-test-release framework [DL09]) are not

compatible with zCDP.

Our lower bound exploits the strong group privacy guarantee afforded by zCDP.

Group privacy has been used to prove tight lower bounds for pure differential

privacy [HT10, De12] and approximate differential privacy [§4]. These results

highlight the fact that group privacy is often the limiting factor for private data

analysis. For (ε, δ)-differential privacy, group privacy becomes vacuous for groups

of size k = Θ(log(1/δ)/ε). Indeed, stability-based techniques exploit precisely this

breakdown in group privacy.

As a result of this strong lower bound, we show that any mechanism for an-

swering statistical queries that satisfies zCDP can be converted into a mechanism

satisfying pure differential privacy with only a quadratic blowup in its sample

complexity. More precisely, the following theorem illustrates a more general result

we prove in Section 2.7.

Theorem 2.1.11. Let n ∈ N and α ≥ 1/n be arbitrary. Set ε = α and ρ = α2. Let

q : X → [0, 1]k be an arbitrary family of statistical queries. Suppose M : X n → [0, 1]k

satisfies ρ-zCDP and

E
M
[‖M(x)− q(x)‖∞] ≤ α

for all x ∈ X n. Then there exists M′ : X n′ → [0, 1]k for n′ = 5n2 satisfying ε-differential
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privacy and

E
M′

[
‖M′(x)− q(x)‖∞

]
≤ 10α

for all x ∈ X n′ .

For some classes of queries, this reduction is essentially tight. For example,

for k one-way marginals, the Gaussian mechanism achieves sample complexity

n = Θ(
√

k) subject to zCDP, whereas the Laplace mechanism achieves sample

complexity n = Θ(k) subject to pure differential privacy, which is known to be

optimal.

For more details, see Sections 2.6 and 2.7.

Approximate zCDP

To circumvent these strong lower bounds for zCDP, we consider a relaxation of zCDP

in the spirit of approximate differential privacy that permits a small probability δ of

(catastrophic) failure:

Definition 2.1.12 (Approximate Zero-Concentrated Differential Privacy (Approxi-

mate zCDP)). A randomised mechanism M : X n → Y is δ-approximately (ξ, ρ)-zCDP if,

for all x, x′ ∈ X n differing on a single entry, there exist events E (depending on M(x)) and

E′ (depending on M(x′)) such that P [E] ≥ 1− δ, P [E′] ≥ 1− δ, and for all α ∈ (1, ∞),

Dα

(
M(x)|E

∥∥M(x′)|E′
)
≤ ξ + ρ · α ∧ Dα

(
M(x′)|E′

∥∥M(x)|E
)
≤ ξ + ρ · α,

where M(x)|E denotes the distribution of M(x) conditioned on the event E. We further

define δ-approximate ρ-zCDP to be δ-approximate (0, ρ)-zCDP.

In particular, setting δ = 0 gives the original definition of zCDP. However, this

definition unifies zCDP with approximate differential privacy:
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Proposition 2.1.13. If M satisfies (ε, δ)-differential privacy, then M satisfies δ-approximate

1
2 ε2-zCDP.

Approximate zCDP retains most of the desirable properties of zCDP, but allows

us to incorporate stability-based techniques and bypass the above lower bounds.

This also presents a unified tool to analyse a composition of zCDP with approximate

differential privacy; see Section 2.8.

2.1.3 Related Work

Our work builds on the aforementioned prior work of Dwork and Rothblum

[DR16].8 We view our definition of concentrated differential privacy as being

“morally equivalent” to their definition of concentrated differential privacy, in the

sense that both definitions formalise the same concept.9 (The formal relationship

between the two definitions is discussed in Section 2.4.) However, the definition of

zCDP generally seems to be easier to work with than that of mCDP. In particular,

our formulation in terms of Rényi divergence simplifies many analyses.

Dwork and Rothblum prove several results about concentrated differential pri-

vacy that are similar to ours. Namely, they prove analogous properties of mCDP

as we prove for zCDP (cf. Sections 2.1.2, 2.1.2, 2.1.2, and 2.1.2). However, as noted,

some of their bounds are weaker than ours; also, they do not explore lower bounds.

Note that our lower bounds apply equally to their definition of mCDP. The main

technical contribution of our work is to prove stark lower bounds for the power of

8Although Dwork and Rothblum’s work only appeared publicly in March 2016, they shared a
preliminary draft of their paper with us before we commenced this work. As such, our ideas are
heavily inspired by theirs.

9We refer to our definition as “zero-concentrated differential privacy” (zCDP) and their definition
as “mean-concentrated differential privacy” (mCDP). We use “concentrated differential privacy”
(CDP) to refer to the underlying concept formalised by both definitions.
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CDP.

Several of the ideas underlying concentrated differential privacy are implicit

in earlier works. In particular, the proof of the advanced composition theorem of

Dwork, Rothblum, and Vadhan [DRV10] essentially uses the ideas of concentrated

differential privacy. Their proof contains analogs of Propositions 2.1.7, 2.1.3, and

2.1.4.

We also remark that Tardos [Tar08] used Rényi divergence to prove lower bounds

for cryptographic objects called fingerprinting codes. Fingerprinting codes turn out

to be closely related to differential privacy [Ull13, BUV14, §4], and Tardos’ lower

bound can be (loosely) viewed as a kind of privacy-preserving algorithm.

2.1.4 Further Work

We believe that concentrated differential privacy is a useful tool for analysing private

computations, as it provides both simpler and tighter bounds. We hope that CDP

will be prove useful in both the theory and practice of differential privacy.

Furthermore, our lower bounds show that CDP can really be a much more

stringent condition than approximate differential privacy. Thus CDP defines a

“subclass” of all (ε, δ)-differentially private algorithms. This subclass includes most

differentially private algorithms in the literature, but not all — the most notable

exceptions being algorithms that use the propose-test-release approach [DL09] to

exploit low local sensitivity.

This “CDP subclass” warrants further exploration. In particular, is there a “com-

plete” mechanism for this class of algorithms, in the same sense that the exponential

mechanism [MT07, BLR13] is complete for pure differential privacy? Namely, any

purely differentially private algorithm can be viewed as an instantiation of the

exponential mechanism. We would like to obtain a similarly general paradigm for
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constructing CDP algorithms. Alternatively, can we obtain a simple (combinatorial

or geometric) characterisation of the sample complexity needed to satisfy CDP? The

ability to prove stronger and simpler lower bounds for CDP than for approximate

DP may be useful for showing the limitations of certain algorithmic paradigms.

For example, any differentially private algorithm that only uses the Laplace mecha-

nism, the exponential mechanism, the Gaussian mechanism, and the “sparse vector”

technique, along with composition and postprocessing will be subject to the lower

bounds for CDP.

There is also room to examine how to interpret the zCDP privacy guarantee.

In particular, we leave it as an open question to understand the extent to which

ρ-zCDP provides a stronger privacy guarantee than the implied (ε, δ)-DP guarantees

(cf. Proposition 2.1.3).

In general, much of the literature on differential privacy can be re-examined

through the lens of CDP, which may yield new insights and results.

2.2 Rényi Divergence

Recall the definition of Rényi divergence:

Definition 2.2.1 (Rényi Divergence [Rén61, Equation (3.3)]). Let P and Q be probability

distributions on Ω. For α ∈ (1, ∞), we define the Rényi divergence of order α between

P and Q as

Dα (P‖Q) =
1

α− 1
log
(∫

Ω
P(x)αQ(x)1−αdx

)
=

1
α− 1

log
(

E
x∼Q

[(
P(x)
Q(x)

)α])
=

1
α− 1

log

(
E

x∼P

[(
P(x)
Q(x)

)α−1
])

,
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where P(·) and Q(·) are the probability mass/density functions of P and Q respectively or,

more generally, P(·)/Q(·) is the Radon-Nikodym derivative of P with respect to Q.10 We

also define the KL-divergence

D1 (P‖Q) = lim
α→1

Dα (P‖Q) =
∫

Ω
P(x) log

(
P(x)
Q(x)

)
dx

and the max-divergence

D∞ (P‖Q) = lim
α→∞

Dα (P‖Q) = sup
x∈Ω

log
(

P(x)
Q(x)

)
.

Alternatively, Rényi divergence can be defined in terms of the privacy loss

(Definition 2.1.2) between P and Q:

e(α−1)Dα(P‖Q) = E
Z∼PrivLoss(P‖Q)

[
e(α−1)Z

]
for all α ∈ (1, ∞). Moreover, D1 (P‖Q) = E

Z∼PrivLoss(P‖Q)
[Z].

We record several useful and well-known properties of Rényi divergence. We

refer the reader to [vEH14] for further discussion of these (and many other) proper-

ties.

Lemma 2.2.2. Let P and Q be probability distributions and α ∈ [1, ∞].

• Non-negativity: Dα (P‖Q) ≥ 0 with equality if and only if P = Q.

• Composition: Suppose P and Q are distributions on Ω×Θ. Let P′ and Q′ denote

the marginal distributions on Ω induced by P and Q respectively. For x ∈ Ω, let P′x

and Q′x denote the conditional distributions on Θ induced by P and Q respectively,

where x specifies the first coordinate. Then

Dα

(
P′
∥∥Q′

)
+ min

x∈Ω
Dα

(
P′x
∥∥Q′x

)
≤ Dα (P‖Q) ≤ Dα

(
P′
∥∥Q′

)
+ max

x∈Ω
Dα

(
P′x
∥∥Q′x

)
.

10If P is not absolutely continuous with respect to Q (i.e. it is not the case that P� Q), we define
Dα (P‖Q) = ∞ for all α ∈ [1, ∞].
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In particular if P and Q are product distributions, then the Rényi divergence between

P and Q is just the sum of the Rényi divergences of the marginals.

• Quasi-Convexity: Let P0, P1 and Q0, Q1 be distributions on Ω, and let P =

tP0 + (1 − t)P1 and Q = tQ0 + (1 − t)Q1 for t ∈ [0, 1]. Then Dα (P‖Q) ≤

max{Dα (P0‖Q0) , Dα (P1‖Q1)}. Moreover, KL divergence is convex:

D1 (P‖Q) ≤ tD1 (P0‖Q0) + (1− t)D1 (P1‖Q1) .

• Postprocessing: Let P and Q be distributions on Ω and let f : Ω→ Θ be a function.

Let f (P) and f (Q) denote the distributions on Θ induced by applying f to P or Q

respectively. Then Dα ( f (P)‖ f (Q)) ≤ Dα (P‖Q).

Note that quasi-convexity allows us to extend this guarantee to the case where f is a

randomised mapping.

• Monotonicity: For 1 ≤ α ≤ α′ ≤ ∞, Dα (P‖Q) ≤ Dα′ (P‖Q).

Proof of Non-Negativity. Let h(t) = tα. Then h′′(t) = α(α− 1)tα−2 > 0 for all t > 0

and α > 1. Thus h is strictly convex. Hence e(α−1)Dα(P‖Q)) = E
x∼Q

[h(P(x)/Q(x))] ≥

h( E
x∼Q

[P(x)/Q(x)]) = h(1) = 1, as required.

Proof of Composition.

e(α−1)Dα(P‖Q) =
∫

Ω×Θ
P(x, y)αQ(x, y)1−αd(x, y)

=
∫

Ω
P′(x)αQ′(x)1−α

∫
Θ

P′x(y)
αQ′x(y)

1−αdydx

=
∫

Ω
P′(x)αQ′(x)1−αe(α−1)Dα(P′x‖Q′x)dx

≤
∫

Ω
P′(x)αQ′(x)1−αdx ·max

x
e(α−1)Dα(P′x‖Q′x)

=e(α−1)Dα(P′‖Q′) · e(α−1)maxx Dα(P′x‖Q′x).
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The other side of the inequality is symmetric.

Proof of Quasi-Convexity. Unfortunately Rényi divergence is not convex for α > 1.

(Although KL-divergence is.) However, the following property implies that Rényi

divergence is quasi-convex.

Lemma 2.2.3. Let P0, P1, Q0, Q1 be distributions on Ω. For t ∈ [0, 1], define Pt =

tP1 + (1− t)P0 and Qt = tQ1 + (1− t)Q0 to be the convex combinations specified by t.

Then

e(α−1)Dα(Pt‖Qt) ≤ te(α−1)Dα(P1‖Q1) + (1− t)e(α−1)Dα(P0‖Q0).

Moreover, the limit as α→ 1+ gives

D1 (Pt‖Qt) ≤ tD1 (P1‖Q1) + (1− t)D1 (P0‖Q0) .

Proof of Lemma 2.2.3. Let f (t) = e(α−1)Dα(Pt‖Qt). Since the equality is clearly true for
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t = 0 and t = 1, it suffices to show that f ′′(t) ≥ 0 for all t ∈ [0, 1]. We have

f (t)=
∫

Ω
Pt(x)αQt(x)1−αdx,

f ′(t)=
∫

Ω

d
dt

Pt(x)αQt(x)1−αdx

=
∫

Ω
αPt(x)α−1

(
d
dt

Pt(x)
)

Qt(x)1−α + (1− α)Pt(x)αQt(x)−α

(
d
dt

Qt(x)
)

dx

=
∫

Ω
αPt(x)α−1(P1(x)−P0(x))Qt(x)1−α+(1−α)Pt(x)αQt(x)−α(Q1(x)−Q0(x))dx,

f ′′(t)=
∫

Ω
α(α− 1)Pt(x)α−2 (P1(x)− P0(x))2 Qt(x)1−α

+ α(1− α)Pt(x)α−1 (P1(x)− P0(x)) Qt(x)−α (Q1(x)−Q0(x))

+ (1− α)αPt(x)α−1 (P1(x)− P0(x)) Qt(x)−α (Q1(x)−Q0(x))

+ (1− α)(−α)Pt(x)αQt(x)−α−1 (Q1(x)−Q0(x))2 dx

=α(α− 1)
∫

Ω

 √
Pt(x)α−2Qt(x)1−α (P1(x)− P0(x))

−
√

Pt(x)αQt(x)−α−1 (Q1(x)−Q0(x))


2

dx

≥0.

Proof of Postprocessing. Let h(x) = xα. Note that h is convex. Let f−1(y) = {x ∈

Ω : f (x) = y}. Let Qy be the conditional distribution on x ∼ Q conditioned on
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f (x) = y. By Jensen’s inequality,

e(α−1)Dα(P‖Q) = E
x∼Q

[(
P(x)
Q(x)

)α]
= E

y∼ f (Q)

[
E

x∼Qy

[
h
(

P(x)
Q(x)

)]]
≥ E

y∼ f (Q)

[
h
(

E
x∼Qy

[
P(x)
Q(x)

])]
= E

y∼ f (Q)

[
h
(∫

f−1(y)

Q(x)
Q( f−1(y))

P(x)
Q(x)

dx
)]

= E
y∼ f (Q)

[
h
(

P( f−1(y))
Q( f−1(y))

)]
=e(α−1)Dα( f (P)‖ f (Q)).

Proof of Monotonicity. Let 1 < α ≤ α′ < ∞. Let h(x) = x
α′−1
α−1 . Then

h′′(x) =
α′ − 1
α− 1

(
α′ − 1
α− 1

− 1
)

x
α′−1
α−1 −2 ≥ 0,

so h is convex on (0, ∞). Thus

e(α
′−1)Dα(P‖Q) =h

(
e(α−1)Dα(P‖Q)

)
= h

(
E

x∼P

[(
P(x)
Q(x)

)α−1
])

≤ E
x∼P

[
h

((
P(x)
Q(x)

)α−1
)]

= e(α
′−1)Dα′ (P‖Q),

which gives the result.

2.2.1 Composition and Postprocessing

The following lemma gives the postprocessing and (adaptive) composition bounds

(extending Lemmas 2.1.7 and 2.1.8).

Lemma 2.2.4 (Composition & Postprocessing). Let M : X n → Y and M′ : X n ×Y →
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Z . Suppose M satisfies (ξ, ρ)-zCDP and M′ satisfies (ξ ′, ρ′)-zCDP (as a function of its

first argument). Define M′′ : X n → Z by M′′(x) = M′(x, M(x)). Then M′′ satisfies

(ξ + ξ ′, ρ + ρ′)-zCDP.

The proof is immediate from Lemma 2.2.2. Note that, while Lemma 2.2.4 is

only stated for the composition of two mechanisms, it can be inductively applied to

analyse the composition of arbitrarily many mechanisms.

2.2.2 Gaussian Mechanism

The following lemma gives the Rényi divergence between two Gaussian distributions

with the same variance.

Lemma 2.2.5. Let µ, ν, σ ∈ R and α ∈ [1, ∞). Then

Dα

(
N (µ, σ2)

∥∥∥N (ν, σ2)
)
=

α(µ− ν)2

2σ2

Consequently, the Gaussian mechanism, which answers a sensitivity-∆ query by

adding noise drawn from N (0, σ2), satisfies
(

∆2

2σ2

)
-zCDP (Proposition 2.1.6).

Proof. We calculate

exp
(
(α− 1)Dα

(
N (µ, σ2)

∥∥∥N (ν, σ2)
))

=
1√

2πσ2

∫
R

exp
(
−α

(x− µ)2

2σ2 − (1− α)
(x− ν)2

2σ2

)
dx

=
1√

2πσ2

∫
R

exp
(
− (x−(αµ+(1−α)ν))2−(αµ+(1−α)ν)2+αµ2+(1−α)ν2

2σ2

)
dx

= E
x∼N (αµ+(1−α)ν,σ2)

[
exp

(
−−(αµ + (1− α)ν)2 + αµ2 + (1− α)ν2

2σ2

)]
= exp

(
α(α− 1)(µ− ν)2

2σ2

)
.
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For the multivariate Gaussian mechanism, Lemma 2.2.5 generalises to the fol-

lowing.

Lemma 2.2.6. Let µ, ν ∈ Rd, σ ∈ R, and α ∈ [1, ∞). Then

Dα

(
N (µ, σ2 Id)

∥∥∥N (ν, σ2 Id)
)
=

α‖µ− ν‖2
2

2σ2

Thus, if M : X n → Rd is the mechanism that, on input x, releases a sample from

N (q(x), σ2 Id) for some function q : X n → Rd, then M satisfies ρ-zCDP for

ρ =
1

2σ2 sup
x,x′∈X n

differing in one entry

‖q(x)− q(x′)‖2
2. (2.3)

2.3 Relation to Differential Privacy

We now discuss the relationship between zCDP and the traditional definitions of

pure and approximate differential privacy. There is a close relationship between the

notions, but not an exact characterisation.

2.3.1 Pure DP versus zCDP

Pure differential privacy is exactly characterised by (ξ, 0)-zCDP:

Lemma 2.3.1. A mechanism M : X n → Y satisfies ε-DP if and only if it satisfies (ε, 0)-

zCDP.

Proof. Let x, x′ ∈ X n be neighbouring. Suppose M satisfies ε-DP. Then

D∞ (M(x)‖M(x′)) ≤ ε. By monotonicity,

Dα

(
M(x)

∥∥M(x′)
)
≤ D∞

(
M(x)

∥∥M(x′)
)
≤ ε = ε + 0 · α

for all α. So M satisfies (ε, 0)-zCDP. Conversely, suppose M satisfies (ε, 0)-zCDP.
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Then

D∞
(

M(x)
∥∥M(x′)

)
= lim

α→∞
Dα

(
M(x)

∥∥M(x′)
)
≤ lim

α→∞
ε + 0 · α = ε.

Thus M satisfies ε-DP.

We now show that ε-differential privacy implies (1
2 ε2)-zCDP (Proposition 2.1.4).

Proposition 2.3.2. Let P and Q be probability distributions on Ω satisfying D∞ (P‖Q) ≤ ε

and D∞ (Q‖P) ≤ ε. Then Dα (P‖Q) ≤ 1
2 ε2α for all α > 1.

Remark 2.3.3. In particular, Proposition 2.3.2 shows that the KL-divergence D1 (P‖Q) ≤
1
2 ε2. A bound on the KL-divergence between random variables in terms of their max-

divergence is an important ingredient in the analysis of the advanced composition theorem

[DRV10]. Our bound sharpens (up to lower order terms) and, in our opinion, simplifies the

previous bound of D1 (P‖Q) ≤ 1
2 ε(eε − 1) proved by Dwork and Rothblum [DR16].

In particular, taking α→ 1 we have the following corollary.

Corollary 2.3.4. If D∞ (P‖Q) ≤ ε and D∞ (Q‖P) ≤ ε, then D1 (P‖Q) ≤ 1
2 ε2.

Proof of Proposition 2.3.2. We may assume 1
2 εα ≤ 1, as otherwise 1

2 ε2α > ε, whence

the result follows from monotonicity. We must show that

e(α−1)Dα(P‖Q) = E
x∼Q

[(
P(x)
Q(x)

)α]
≤ e

1
2 α(α−1)ε2

.

We know that e−ε ≤ P(x)
Q(x) ≤ eε for all x. Define a random function A : Ω→ {e−ε, eε}

by E
A
[A(x)] = P(x)

Q(x) for all x. By Jensen’s inequality,

E
x∼Q

[(
P(x)
Q(x)

)α]
= E

x∼Q

[(
E
A
[A(x)]

)α]
≤ E

x∼Q

[
E
A
[A(x)α]

]
= E

A
[Aα] ,

where A denotes A(x) for a random x ∼ Q. We also have E
A
[A] = E

x∼Q

[
P(x)
Q(x)

]
= 1.
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From this equation, we can conclude that

P
A

[
A = e−ε

]
=

eε − 1
eε − e−ε

and P
A
[A = eε] =

1− e−ε

eε − e−ε
.

Thus

e(α−1)Dα(P‖Q) ≤E
A
[Aα]

=
eε − 1

eε − e−ε
· e−αε +

1− e−ε

eε − e−ε
· eαε

=
(eαε − e−αε)− (e(α−1)ε − e−(α−1)ε)

eε − e−ε

=
sinh(αε)− sinh((α− 1)ε)

sinh(ε)
.

The result now follows from Lemma 2.3.5.

Lemma 2.3.5.

0 ≤ y < x ≤ 2 =⇒ sinh(x)− sinh(y)
sinh(x− y)

≤ e
1
2 xy.

This technical lemma may be “verified” numerically by inspecting a plot of

z = e
1
2 xy · sinh(x− y)− (sinh(x)− sinh(y)) for (x, y) ∈ [0, 2]2.

For intuition, consider the third-order Taylor approximation to sinh(x) about 0:

sinh(x) = x +
1
6

x3 ±O(x5).

Then we can approximate

sinh(x)− sinh(y)
sinh(x− y)

≈
x + 1

6 x3 − (y + 1
6 y3)

(x− y) + 1
6(x− y)3

= 1 +
3xy(x− y)

6(x− y) + (x− y)3

≤ 1 +
1
2

xy

≤ e
1
2 xy.

Unfortunately, turning this intuition into an actual proof is quite involved. We
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instead provide a proof from [hh]:

Proof. We need the following hyperbolic trigonometric identities.

cosh (w + z) = cosh(w) cosh(z) + sinh(w) sinh(z)

= cosh(w) cosh(z) (1 + tanh(w) tanh(z)) ,

sinh(x− y) =
1
2

(
ex−y + 1− 1− e−(x−y)

)
=

1
2

(
e(x−y)/2 − e−(x−y)/2

) (
e(x−y)/2 + e−(x−y)/2

)
=2 sinh

(
x− y

2

)
cosh

(
x− y

2

)
=2 sinh

(
x−y

2

)
cosh

(x
2

)
cosh

(
−y
2

)(
1+tanh

(x
2

)
tanh

(
−y
2

))
=2 sinh

(
x− y

2

)
cosh

(x
2

)
cosh

(y
2

) (
1− tanh

(x
2

)
tanh

(y
2

))
,

sinh(x)−sinh(y)=
1
2
(
ex − e−x − ey + e−y)

=
1
2

(
e(x−y)/2 − e−(x−y)/2

) (
e(x+y)/2 + e−(x+y)/2

)
=2 sinh

(
x− y

2

)
cosh

(
x + y

2

)
=2 sinh

(
x− y

2

)
cosh

(x
2

)
cosh

(y
2

) (
1 + tanh

(x
2

)
tanh

(y
2

))
.

We also use the fact that 0 ≤ tanh(z) < min{z, 1} for all z > 0. Thus

sinh(x)− sinh(y)
sinh(x− y)

=
1 + tanh

( x
2

)
tanh

( y
2

)
1− tanh

( x
2

)
tanh

( y
2

) =
1 + t
1− t

,

where t = tanh
( x

2

)
tanh

( y
2

)
< 1. Now

1 + t
1− t

≤ exy/2 ⇐⇒ 1 + t ≤ (1− t)exy/2 ⇐⇒ (exy/2 + 1)t ≤ exy/2 − 1

⇐⇒ t ≤ exy/2 − 1
exy/2 + 1

=
exy/4 − e−xy/4

exy/4 + e−xy/4 = tanh
(xy

4

)
.
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So it only remains to show that tanh
( x

2

)
tanh

( y
2

)
≤ tanh

( xy
4

)
. This is clearly true

when y = 0. Now

∂

∂y
tanh

(x
2

)
tanh

(y
2

)
= tanh

(x
2

)
cosh−2

(y
2

) 1
2
≤ cosh−2

(y
2

) x
4

and
∂

∂y
tanh

(xy
4

)
= cosh−2

(xy
4

) x
4

.

Since 0 ≤ y < x ≤ 2, we have 0 ≤ xy/4 ≤ y/2 and, hence, cosh(y/2) ≥ cosh(xy/4).

Thus
∂

∂y
tanh

(x
2

)
tanh

(y
2

)
≤ ∂

∂y
tanh

(xy
4

)
.

The inequality now follows by integration of the inequality on the derivatives.

2.3.2 Approximate DP versus zCDP

The statements in this section show that, up to some loss in parameters, zCDP is

equivalent to a family of (ε, δ)-DP guarantees for all δ > 0.

Lemma 2.3.6. Let M : X n → Y satisfy (ξ, ρ)-zCDP. Then M satisfies (ε, δ)-DP for all

δ > 0 and

ε = ξ + ρ +
√

4ρ log(1/δ).

Thus to achieve a given (ε, δ)-DP guarantee it suffices to satisfy (ξ, ρ)-zCDP with

ρ =

(√
ε− ξ + log(1/δ)−

√
log(1/δ)

)2

≈ (ε− ξ)2

4 log(1/δ)
.

Proof. Let x, x′ ∈ X n be neighbouring. Define

f (y) = log

(
P [M(x) = y]

P [M(x′) = y]

)
.

Let Y ∼ M(x) and Z = f (Y). That is, Z = PrivLoss (M(x)‖M(x′)) is the privacy
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loss random variable. Fix α ∈ (1, ∞) to be chosen later. Then

E
[
e(α−1)Z

]
= E

Y∼M(x)

( P [M(x) = Y]

P [M(x′) = Y]

)α−1 = e(α−1)Dα(M(x)‖M(x′)) ≤ e(α−1)(ξ+ρα).

By Markov’s inequality

P [Z > ε] = P
[
e(α−1)Z > e(α−1)ε

]
≤

E
[
e(α−1)Z

]
e(α−1)ε

≤ e(α−1)(ξ+ρα−ε).

Choosing α = (ε− ξ + ρ)/2ρ > 1 gives

P [Z > ε] ≤ e−(ε−ξ−ρ)2/4ρ ≤ δ.

Now, for any measurable S ⊂ Y ,

P [M(x) ∈ S] =P [Y ∈ S]

≤P [Y ∈ S ∧ Z ≤ ε] + P [Z > ε]

≤P [Y ∈ S ∧ Z ≤ ε] + δ

=
∫
Y

P [M(x) = y] · I(y ∈ S) · I( f (y) ≤ ε) dy + δ

≤
∫
Y

eεP
[
M(x′) = y

]
· I(y ∈ S) dy + δ

=eεP
[
M(x′) ∈ S

]
+ δ.

Lemma 2.3.6 is not tight. In particular, we have the following refinement of

Lemma 2.3.6.

Lemma 2.3.7. Let M : X n → Y satisfy (ξ, ρ)-zCDP. Then M satisfies (ε, δ)-DP for all

δ > 0 and

ε = ξ + ρ +
√

4ρ · log(
√

π · ρ/δ).
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Alternatively M satisfies (ε, δ)-DP for all ε ≥ ξ + ρ and

δ = e−(ε−ξ−ρ)2/4ρ ·min



√
π · ρ

1
1+(ε−ξ−ρ)/2ρ

2

1+ ε−ξ−ρ
2ρ +

√(
1+ ε−ξ−ρ

2ρ

)2
+ 4

πρ

.

Note that the last of three options in the minimum dominates the first two

options. We have included the first two options as they are simpler.

More generally, we have the following result.

Lemma 2.3.8. Let P and Q be probability distributions on Y with Dα (P‖Q) ≤ ξ + ρ · α

for all α ∈ (1, ∞). Then, for any ε ≥ ξ + ρ and

δ = e−(ε−ξ−ρ)2/4ρ ·min



1
√

π · ρ
1

1+(ε−ξ−ρ)/2ρ

2

1+ ε−ξ−ρ
2ρ +

√(
1+ ε−ξ−ρ

2ρ

)2
+ 4

πρ

,

we have

P(S) ≤ eεQ(S) + δ

for all (measurable) S.

Proof. Define f : Y → R by f (y) = log(P(y)/Q(y)). Let Y ∼ P, Y′ ∼ Q and let

Z = f (Y) be the privacy loss random variable. That is, Z = PrivLoss (P‖Q). For any
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measurable S ⊂ Y ,

P(S) =P [Y ∈ S]

=P [Y ∈ S ∧ f (Y) ≤ ε] + P [Y ∈ S ∧ f (Y) > ε]

=
∫

S
P(y)I[ f (y) ≤ ε]dy + P [Y ∈ S ∧ f (Y) > ε]

=
∫

S
P(y)I[P(y) ≤ eεQ(y)]dy + P [Y ∈ S ∧ f (Y) > ε]

≤
∫

S
eεQ(y)I[ f (y) ≤ ε]dy + P [Y ∈ S ∧ f (Y) > ε]

=eεP
[
Y′ ∈ S ∧ f (Y′) ≤ ε

]
+ P [Y ∈ S ∧ f (Y) > ε]

=eεP
[
Y′ ∈ S

]
− eεP

[
Y′ ∈ S ∧ f (Y′) > ε

]
+ P [Y ∈ S ∧ f (Y) > ε]

≤eεP
[
Y′ ∈ S

]
+
(

P [ f (Y) > ε]− eεP
[

f (Y′) > ε
])

.

Thus we want to bound

δ =P [ f (Y) > ε]− eεP
[

f (Y′) > ε
]

=E
Y
[I[ f (Y) > ε]]−E

Y′

[
eεI[ f (Y′) > ε]

]
=E

Y
[I[ f (Y) > ε]]−

∫
Y

eεI[ f (y) > ε]Q(y)dy

=E
Y
[I[ f (Y) > ε]]−

∫
Y

eεI[ f (y) > ε]
Q(y)
P(y)

P(y)dy

=E
Y
[I[ f (Y) > ε]]−E

Y

[
eεI[ f (Y) > ε]e− f (Y)

]
=E

Z

[
I[Z > ε]

(
1− eε−Z

)]
=E

Z

[
max

{
0, 1− eε−Z

}]
=
∫ ∞

ε

(
1− eε−z)P [Z = z]dz.

In particular,

δ ≤ E
Z
[I[Z > ε]] = P [Z > ε] .
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Alternatively, by integration by parts,

δ =
∫ ∞

ε
eε−zP [Z > z]dz.

Now it remains to bound P [Z > z].

As in Lemma 2.3.6, by Markov’s inequality, for all α > 1 and λ > ξ + ρ,

P [Z > λ] ≤
E
[
e(α−1)Z

]
e(α−1)λ

≤ e(α−1)Dα(M(x)‖M(x′))

e(α−1)λ
≤ e(α−1)(ξ+ρα−λ).

Choosing α = (λ− ξ + ρ)/2ρ > 1 gives

P [Z > λ] ≤ e−(λ−ξ−ρ)2/4ρ.

Thus δ ≤ P [Z > ε] ≤ e−(ε−ξ−ρ)2/4ρ. Furthermore,

δ =
∫ ∞

ε
eε−zP [Z > z]dz

≤
∫ ∞

ε
eε−ze−(z−ξ−ρ)2/4ρdz

=
∫ ∞

ε
e−(z−ξ+ρ)2/4ρ−ξ+εdz

=
eε−ξ ·

√
2π · 2ρ√

2π · 2ρ

∫ ∞

ε
e−(z−ξ+ρ)2/4ρdz

=eε−ξ ·
√

2π · 2ρ ·P [N (ξ − ρ, 2ρ) > ε]

=eε−ξ · 2√π · ρ ·P
[
N (0, 1) >

ε + ρ− ξ√
2ρ

]
.

Define h(x) = P [N (0, 1) > x] ·
√

2π · ex2/2. Then

δ ≤ eε−ξ · 2√π · ρ ·
h
(

ε+ρ−ξ√
2ρ

)
√

2π · e

(
ε+ρ−ξ√

2ρ

)2
/2

=
√

2ρ · e−(ε−ξ−ρ)2/4ρ · h
(√

2ρ +
ε− ξ − ρ√

2ρ

)
.

Now we can substitute upper bounds on h to obtain the desired results.
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First we use P [N (0, 1) > x] ≤ 1
2 e−x2/2, which holds for all x ≥ 0. That is,

h(x) ≤
√

π/2, whence

δ ≤
√

2ρ · e−(ε−ξ−ρ)2/4ρ ·
√

π

2
.

This rearranges to

ε ≤ ξ + ρ +
√

4ρ · log(
√

π · ρ/δ).

Alternatively, we can use P [N (0, 1) > x] ≤ e−x2/2/
√

2πx, which holds for all

x > 0. That is, h(x) ≤ 1/x and

δ≤
√

2ρ·e−(ε−ξ−ρ)2/4ρ·h
(

ε−ξ+ρ√
2ρ

)
=

2ρ

ε+ρ−ξ
·e−(ε−ξ−ρ)2/4ρ=

e−(ε−ξ−ρ)2/4ρ

1 + (ε− ξ − ρ)/2ρ
· .

Finally, we can use P [N (0, 1) > x] ≤ e−x2/2 · 2/(
√

x2 + 8/π + x)
√

2π, which

holds for all x ≥ 0 [Due10, Equation (4)][Coo09, Equation (7)][AS64, Equation

7.1.13]. That is, h(x) ≤ 2/(
√

x2 + 8/π + x) and

δ ≤
√

2ρ · e−(ε−ξ−ρ)2/4ρ · h
(

ε− ξ + ρ√
2ρ

)
=

2 · e−(ε−ξ−ρ)2/4ρ

1 + ε−ξ−ρ
2ρ +

√(
1 + ε−ξ−ρ

2ρ

)2
+ 4

πρ

.

Now we show a partial converse to Lemma 2.3.6.

Lemma 2.3.9. Let M : X n → Y satisfy (ε, δ)-DP for all δ > 0 and

ε = ξ̂ +
√

ρ̂ log(1/δ) (2.4)

for some constants ξ̂, ρ̂ ∈ [0, 1]. Then M is
(

ξ̂ − 1
4 ρ̂ + 5 4

√
ρ̂, 1

4 ρ̂
)

-zCDP.

Thus zCDP and DP are equivalent up to a (potentially substantial) loss in

parameters and the quantification over all δ.
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Proof. Let x, x′ ∈ X n be neighbouring. Define

f (y) = log

(
P [M(x) = y]

P [M(x′) = y]

)
.

Let Y ∼ M(x) and Z = f (Y). That is, Z = PrivLoss (M(x)‖M(x′)) is the privacy

loss random variable. Let Y′ ∼ M(x′) and Z′ = f (Y′). That is, −Z′ is the privacy

loss random variable if we swap x and x′.

Let ε, δ > 0 satisfy (1.1). By postprocessing, for all t ∈ R,

P [Z > t] =P [ f (M(x)) > t]

≤eεP
[

f (M(x′)) > t
]
+ δ

=eε
∫
Y

P
[
M(x′) = y

]
· I(P [M(x) = y] > etP

[
M(x′) = y

]
)dy + δ

<eε
∫
Y

P [M(x) = y] · e−t · I(P [M(x) = y] > etP
[
M(x′) = y

]
)dy + δ

=eε−tP [Z > t] + δ,

whence P [Z > t] ≤ δ
1−eε−t . Then we can set ε = ξ̂ + λ and δ = e−λ2/ρ̂ to obtain

∀t > 0 P
[
Z > ξ̂ + t

]
≤ inf

0<λ<t

e−λ2/ρ̂

1− eλ−t .

In particular, for all t ≥ 0,

P
[

Z > ξ̂ + 4
√

ρ̂ + t
]
≤ e−t2/ρ̂

1− e−
4
√

ρ̂
≤ 2

4
√

ρ̂
e−t2/ρ̂.
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We use the inequality 1 + xeξ ≤ ex+ξ for all x, ξ ≥ 0. We have

E
[
e(α−1)Z

]
=
∫ ∞

0
P
[
e(α−1)Z > t

]
dt

=
∫ ∞

0
P

[
Z >

log t
α− 1

]
dt

=
∫ ∞

−∞
P [Z > z]

dt
dz

dz

=
∫ ∞

−∞
(α− 1)e(α−1)z ·P [Z > z]dz

≤
∫ ξ̂+ 4
√

ρ̂

−∞
(α−1)e(α−1)z · 1dz +

∫ ∞

0
(α− 1)e(α−1)(t+ξ̂+ 4

√
ρ̂) · 2

4
√

ρ̂
e−t2/ρ̂dt

=e(α−1)(ξ̂+ 4
√

ρ̂) + (α− 1)e(α−1)(ξ̂+ 4
√

ρ̂) 2
4
√

ρ̂

∫ ∞

0
e(α−1)t · e−t2/ρ̂dt

≤e(α−1)(ξ̂+ 4
√

ρ̂)+(α−1)e(α−1)(ξ̂+ 4
√

ρ̂) 2
4
√

ρ̂

∫ ∞

−∞
e−(t−

1
2 (α−1)ρ̂)2/ρ̂+ 1

4 (α−1)2ρ̂dt

=e(α−1)(ξ̂+ 4
√

ρ̂) + (α− 1)e(α−1)(ξ̂+ 4
√

ρ̂) 2
4
√

ρ̂
e

1
4 (α−1)2ρ̂

√
πρ̂

=e(α−1)(ξ̂+ 4
√

ρ̂)
(

1 + (α− 1)2
√

π 4
√

ρ̂e
1
4 (α−1)2ρ̂

)
≤e(α−1)(ξ̂+ 4

√
ρ̂)e(α−1)2

√
π 4
√

ρ̂+ 1
4 (α−1)2ρ̂

=e(α−1)(ξ̂+ 4
√

ρ̂+2
√

π 4
√

ρ̂+ 1
4 (α−1)ρ̂)

=e(α−1)
(

ξ̂+(1+2
√

π) 4
√

ρ̂− ρ̂
4+

ρ̂
4 α
)
.

Since E
[
e(α−1)Z

]
= e(α−1)Dα(M(x)‖M(x′)), this completes the proof.

2.4 Zero- versus Mean-Concentrated

Differential Privacy

We begin by stating the definition of mean-concentrated differential privacy:

Definition 2.4.1 (Mean-Concentrated Differential Privacy (mCDP) [DR16]). A ran-

domised mechanism M : X n → Y satisfies (µ, τ)-mean-concentrated differential privacy if,
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for all x, x′ ∈ X n differing in one entry, and letting Z = PrivLoss (M(x)‖M(x′)), we have

E [Z] ≤ µ

and

E

[
e

λ
(

Z−E[Z]
)]
≤ eλ2·τ2/2

for all λ ∈ R.

In contrast (ξ, ρ)-zCDP requires that, for all α ∈ (1, ∞), E
[
e(α−1)Z

]
≤ e(α−1)(ξ+ρα),

where Z ∼ PrivLoss (M(x)‖M(x′)) is the privacy loss random variable. We now

show that these definitions are equivalent up to a (potentially significant) loss in

parameters.

Lemma 2.4.2. If M : X n → Y satisfies (µ, τ)-mCDP, then M satisfies (µ− τ2/2, τ2/2)-

zCDP.

Proof. For all α ∈ (1, ∞),

E
[
e(α−1)Z

]
=E

[
e
(α−1)(Z−E[Z])

]
·e(α−1)E[Z]≤ e(α−1)2τ2/2·e(α−1)µ= e(α−1)(µ−τ2/2+τ2/2·α).

Lemma 2.4.3. If M : X n → Y satisfies (ξ, ρ)-zCDP,

then M satisfies (ξ + ρ, O(
√

ξ + 2ρ))-mCDP.

Thus we can convert (µ, τ)-mCDP into (µ− τ2/2, τ2/2)-zCDP and then back to

(µ, O(
√

µ + τ2/2))-mCDP. This may result in a large loss in parameters, which is

why, for example, pure DP can be characterised in terms of zCDP, but not in terms

of mCDP.

We view zCDP as a relaxation of mCDP; mCDP requires the privacy loss to

be “tightly” concentrated about its mean and that the mean is close to the origin.
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The triangle inequality then implies that the privacy loss is “weakly” concentrated

about the origin. (The difference between “tightly” and “weakly” accounts for the

use of the triangle inequality.) On the other hand, zCDP directly requires that the

privacy loss is weakly concentrated about the origin. That is to say, zCDP gives

a subgaussian bound on the privacy loss that is centered at zero, whereas mCDP

gives a subgaussian bound that is centered at the mean and separately bounds the

mean.

There may be some advantage to the stronger requirement of mCDP, either in

terms of what kind of privacy guarantee it affords, or how it can be used as an

analytic tool. However, it seems that for most applications, we only need what

zCDP provides.

To prove Lemma 2.4.2 make use of the following technical lemma.

Lemma 2.4.4. Let X be a random variable. Then

E
[
e

X−E[X]
]
≤ 1

2
E
[
e2X
]
+

1
2

E
[
e−2X

]
.

Proof. Let X′ be an independent copy of X and let Y ∈ {0, 1} be uniformly random

and independent from X and X′. By Jensen’s inequality,

E
[
e

X−E[X]
]
=E

X

[
e

E
X′
[X−X′]

]
≤ E

X,X′

[
eX−X′

]
= E

X,X′

[
e

2E
Y
[YX−(1−Y)X′]

]
≤ E

X,X′,Y

[
e2YX−2(1−Y)X′

]
=

1
2

E
X,X′

[
e2X−0

]
+

1
2

E
X,X′

[
e0−2X′

]
=

1
2

E
[
e2X
]
+

1
2

E
[
e−2X

]
.
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Proof of Lemma 2.4.3. Let x and x′ be neighbouring databases and

Z ∼ PrivLoss (M(x)‖M(x′)) the privacy loss random variable We have E [Z] =

D1 (M(x)‖M(x′)) ∈ [0, ξ + ρ] by non-negativity and zCDP. By zCDP, for all α ∈

(1, ∞), we have

E
[
e(α−1)Z

]
= e(α−1)Dα(M(x)‖M(x′)) ≤ e(α−1)(ξ+ρα)

and

E
[
e−αZ

]
= E

Y∼M(x)

( P [M(x) = Y]

P [M(x′) = Y]

)−α


= E
Y∼M(x)

(P [M(x′) = Y]

P [M(x) = Y]

)α


=e(α−1)Dα(M(x′)‖M(x))

≤e(α−1)(ξ+ρα).

By Lemma 2.4.4, for λ ≥ 1/2,

E
[
e

λ(Z−E[Z])
]
≤1

2
E
[
e2λZ

]
+

1
2

E
[
e−2λZ

]
≤1

2
e2λ(ξ+ρ(2λ+1)) +

1
2

e(2λ−1)(ξ+2ρλ)

≤e4(ξ+2ρ)λ2

and, for λ ≤ −1/2,

E
[
e

λ(Z−E[Z])
]
≤1

2
E
[
e2λZ

]
+

1
2

E
[
e−2λZ

]
≤1

2
e(−2λ−1)(ξ−2ρλ) +

1
2

e−2λ(ξ+ρ(1−2λ))

≤e4(ξ+2ρ)λ2
.
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Now suppose |λ| < 1/2. Then

E
[
e

λ(Z−E[Z])
]
≤1

2
E
[
e2λZ

]
+

1
2

E
[
e−2λZ

]
=1 +

∞

∑
k=1

(2λ)2k

(2k)!
E
[

Z2k
]

≤1 + (2λ)2
∞

∑
k=1

1
(2k)!

E
[

Z2k
]

=1 + 4λ2
(

1
2

E
[
eZ
]
+

1
2

E
[
e−Z

]
− 1
)

≤1 + 4λ2
(

eξ+2ρ − 1
)

≤eλ2O(ξ+2ρ).

2.4.1 Postprocessing and mCDP

We now give a family of counterexamples showing that mCDP is not closed under

postprocessing (unlike zCDP).

Fix a parameter σ > 0, and consider the Gaussian mechanism for a single bit

M : {−1, 1} → R, where M(x) samples from N (x, σ2). The mechanism M satisfies

(2/σ2, 2/σ)-mCDP (and also (2/σ2)-zCDP).

Now consider the postprocessing function T : R→ {−1, 0, 1} defined as follows:

T(y) =


1 if y > t

−1 if y < −t

0 if − t ≤ y ≤ t.

We examine the mCDP guarantees of the postprocessed mechanism

M′ : {−1, 1} → {−1, 0, 1} defined by M′(x) = T(M(x)):
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Proposition 2.4.5. Let σ ≥ 1 and let t ≥ 6σ3 + 1. Then while the mechanism M is

(2/σ2, 2/σ)-mCDP, the postprocessed mechanism M′ is not (2/σ2, 2/σ)-mCDP.

Proof. For each x ∈ {−1, 1}, let

p = P
[
M′(x) = x

]
= P

[
N (0, σ2) > t− 1

]
,

q = P
[
M′(x) = −x

]
= P

[
N (0, σ2) > t + 1

]
.

Note that p > q. Hence, for each x ∈ {−1, 1},

P
[
M′(x) = 0

]
= P

[
N (0, σ2) ∈ [−t− 1, t− 1]

]
= 1− p− q.

Let f (y) = log(P [M(1) = y] /P [M(−1) = y]), and observe that

f (1) = log
p
q

, f (−1) = log
q
p

, f (0) = 0.

Now consider the privacy loss random variable Z = PrivLoss (M(1)‖M(−1)) =

f (M(1)). Then Z is distributed according to

Z =


log p

q w.p. p

log q
p w.p. q

0 w.p. 1− p− q

.

This gives E [Z] = (p− q) log(p/q) ≥ 0. For λ ∈ R, we have

E
[
e

λ(Z−E[Z])
]
=

(
p
(

p
q

)λ

+ q
(

q
p

)λ

+ 1− p− q

)
·
(

p
q

)−λ(p−q)
.

If M′ were to satisfy (2/σ2, 2/σ)-mCDP, we would have E
[
e

λ(Z−E[Z])
]
≤ e2λ2/σ2

for all λ > 0. We will show that this does not hold for any setting of parameters
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σ ≥ 1 and t ≥ 6σ3 + 1, which shows that mCDP is not closed under postprocessing.11

Lemma 2.4.6. The values p, q satisfy the following inequalities:

1.
√

1
2π ·

σ
t+σ−1 · e−(t−1)2/2σ2 ≤ p ≤

√
1

2π ·
σ

t−1 · e−(t−1)2/2σ2

2. p
q ≥ e2t/σ2

Proof. We have [Coo09, Equation (5)]√
2
π e−x2/2 · x
x2 + 1

≤ P [N (0, 1) > x] ≤

√
2
π e−x2/2

x

for all x ≥ 0. Thus√
2
π e−(t−1)2/2σ2 · (t− 1)

σ · ((t− 1)2/σ2 + 1)
≤ p = P

[
N (0, 1) >

t− 1
σ

]
≤

√
2
π e−(t−1)2/2σ2 · σ

t− 1
.

The first part now follows from the fact that σ ≤ t− 1.

To establish the second inequality, we write

p =
1√

2πσ2

∫ ∞

t−1
e−x2/2σ2

dx

=
1√

2πσ2

∫ ∞

t+1
e−(u−2)2/2σ2

du

=
1√

2πσ2

∫ ∞

t+1
e(4u−4)/2σ2 · e−u2/2σ2

du

≥ e2t/σ2 1√
2πσ2

∫ ∞

t+1
e−u2/2σ2

du

= e2t/σ2 · q.

11For specific settings of parameters, this can be verified numerically. (For example, with the
values σ = 1, t = 3, and λ = 2.)
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By Lemma 2.4.6,

E
[
e

λ(Z−E[Z])
]
=

(
p
(

p
q

)λ

+ q
(

q
p

)λ

+ 1− p− q

)
·
(

p
q

)−λ(p−q)

≥ p
(

p
q

)λ(1−(p−q))

≥
√

1
2π
· σ

t + σ− 1
· e−(t−1)2/2σ2 · (e2t/σ2

)λ(1−p).

Now set λ = t
2 . Then this quantity becomes√

1
2π
· σ

t+σ−1
·e−(t−1)2/2σ2·et2(1−p)/σ2

= et2/2σ2·
√

1
2π
· σ

t+σ−1
·exp

(
t

σ2−
pt2

σ2 −
1

2σ2

)
. (2.5)

We now examine the term

pt2 ≤
√

1
2π

σt2e−(t−1)2/2σ2

t− 1
by Lemma 2.4.6

≤
√

1
4π

t5/2e−(t−1)

t− 1
for t ≥ 2σ2 + 1

≤ 1
2

for t ≥ 3.

We may thus bound (2.5) from below by

et2/2σ2 ·
√

1
2π
· σ

t + σ− 1
· exp

(
t− 1
2σ2

)
≥ et2/2σ2 ·

√
1

2π
· 1

2t
· exp

(
t− 1
2σ2

)

The expression exp((t− 1)/2σ2)/2t is monotone increasing for t ≥ 2σ2. Thus, it is

strictly larger than
√

2π as long as t ≥ 6σ3 + 1.

2.5 Group Privacy

In this section we show that zCDP provides privacy protections to small groups of

individuals.
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Definition 2.5.1 (zCDP for Groups). We say that a mechanism M : X n → Y provides

(ξ, ρ)-zCDP for groups of size k if, for every x, x′ ∈ X n differing in at most k entries, we

have

∀α ∈ (1, ∞) Dα

(
M(x)

∥∥M(x′)
)
≤ ξ + ρ · α.

The usual definition of zCDP only applies to groups of size 1. Here we show

that it implies bounds for all group sizes. We begin with a technical lemma.

Lemma 2.5.2 (Triangle-like Inequality for Rényi Divergence). Let P, Q, and R be

probability distributions. Then

Dα (P‖Q) ≤ kα

kα− 1
D kα−1

k−1
(P‖R) + Dkα (R‖Q) (2.6)

for all k, α ∈ (1, ∞).

Proof. Let p = kα−1
α(k−1) and q = kα−1

α−1 . Then 1
p + 1

q = α(k−1)+(α−1)
kα−1 = 1. By Hölder’s

inequality,

e(α−1)Dα(P‖Q) =
∫

Ω
P(x)αQ(x)1−αdx

=
∫

Ω
P(x)αR(x)−α · R(x)α−1Q(x)1−α · R(x)dx

= E
x∼R

[(
P(x)
R(x)

)α

·
(

R(x)
Q(x)

)α−1
]

≤ E
x∼R

[(
P(x)
R(x)

)pα]1/p

· E
x∼R

[(
R(x)
Q(x)

)q(α−1)
]1/q

=e(pα−1)Dpα(P‖R)/p · eq(α−1)Dq(α−1)+1(R‖Q)/q.

Taking logarithms and rearranging gives

Dα (P‖Q) ≤ pα− 1
p(α− 1)

Dpα (P‖R) + Dq(α−1)+1 (R‖Q) .

55



Now pα = kα−1
k−1 , q(α− 1) + 1 = kα, and

pα−1
p(α−1)

kα
kα−1

=
pα− 1

pα
· kα− 1

k(α− 1)
=

kα−1
k−1 − 1

kα−1
k−1

· kα− 1
k(α− 1)

=
kα− 1− k + 1

kα− 1
· kα− 1

k(α− 1)
=1,

as required.

Proposition 2.5.3. If M : X n → Y satisfies (ξ, ρ)-zCDP, then M gives (ξ · k ∑k
i=1

1
i , ρ ·

k2)-zCDP for groups of size k.

Note that

k

∑
i=1

1
i
= 1 +

∫ k

1

1
dxedx ≤ 1 +

∫ k

1

1
x

dx = 1 + log k.

Thus (ξ, ρ)-zCDP implies (ξ ·O(k log k), ρ · k2)-zCDP for groups of size k.

The Gaussian mechanism shows that k2ρ is the optimal dependence on ρ. How-

ever, O(k log k)ξ is not the optimal dependence on ξ: (ξ, 0)-zCDP implies (kξ, 0)-

zCDP for groups of size k.

Proof. We show this by induction on k. The statement is clearly true for groups of

size 1. We now assume the statement holds for groups of size k− 1 and will verify

it for groups of size k.

Let x, x′ ∈ X n differ in k entries. Let x̂ ∈ X n be such that x and x̂ differ in k− 1

entries and x′ and x̂ differ in one entry.

Then, by the induction hypothesis,

Dα (M(x)‖M(x̂)) ≤ ξ · (k− 1)
k−1

∑
i=1

1
i
+ ρ · (k− 1)2 · α

and, by zCDP,

Dα

(
M(x̂)

∥∥M(x′)
)
≤ ξ + ρ · α

for all α ∈ (1, ∞).
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By (2.6), for any α ∈ (1, ∞),

Dα

(
M(x)

∥∥M(x′)
)
≤ kα

kα− 1
D kα−1

k−1
(M(x)‖M(x̂)) + Dkα

(
M(x̂)

∥∥M(x′)
)

≤ kα

kα− 1

(
ξ · (k− 1)

k−1

∑
i=1

1
i
+ ρ · (k− 1)2 · kα− 1

k− 1

)
+ ξ + ρ · kα

=ξ ·
(

1+
kα

kα−1
(k−1)

k−1

∑
i=1

1
i

)
+ρ·

(
kα

kα−1
(k−1)2 kα−1

k−1
+kα

)

=ξ ·
(

1 +
kα

kα− 1
(k− 1)

k−1

∑
i=1

1
i

)
+ ρ · k2 · α

≤ξ ·
(

1 +
k

k− 1
(k− 1)

k−1

∑
i=1

1
i

)
+ ρ · k2 · α

=ξ · k
k

∑
i=1

1
i
+ ρ · k2 · α,

where the last inequality follows from the fact that kα
kα−1 is a decreasing function of

α for α > 1.

2.6 Lower Bounds

In this section we develop tools to prove lower bounds for zCDP. We will use group

privacy to bound the mutual information between the input and the output of a

mechanism satisfying zCDP. Thus, if we are able to construct a distribution on

inputs such that any accurate mechanism must reveal a high amount of information

about its input, we obtain a lower bound showing that no accurate mechanism

satisfying zCDP can be accurate for this data distribution.

We begin with the simplest form of our mutual information bound, which is an

analogue of the bound of [MMP+10] for pure differential privacy:

Proposition 2.6.1. Let M : X n → Y satisfy (ξ, ρ)-zCDP. Let X be a random variable in
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X n. Then

I(X; M(X)) ≤ ξ · n(1 + log n) + ρ · n2,

where I denotes mutual information (measured in nats, rather than bits).

Proof. By Proposition 2.5.3, M provides (ξ · n ∑n
i=1

1
i , ρ · n2)-zCDP for groups of size

n. Thus

D1
(

M(x)
∥∥M(x′)

)
≤ ξ · n

n

∑
i=1

1
i
+ ρ · n2 ≤ ξ · n(1 + log n) + ρ · n2

for all x, x′ ∈ X n. Since KL-divergence is convex,

I(X; M(X)) = E
x←X

[D1 (M(x)‖M(X))]

≤ E
x←X

[
E

x′←X

[
D1
(

M(x)
∥∥M(x′)

)]]
≤ E

x←X

[
E

x′←X

[
ξ · n(1 + log n) + ρ · n2

]]
=ξ · n(1 + log n) + ρ · n2.

The reason this lower bound works is the strong group privacy guarantee —

even for groups of size n, we obtain nontrivial privacy guarantees. While this is

good for privacy it is bad for usefulness, as it implies that even information that is

“global” (rather than specific to a individual or a small group) is protected. These

lower bounds reinforce the connection between group privacy and lower bounds

[HT10, De12, §4].

In contrast, (ε, δ)-DP is not susceptible to such a lower bound because it gives a

vacuous privacy guarantee for groups of size k = O(log(1/δ)/ε). This helps explain

the power of the propose-test-release paradigm.

Furthermore, we obtain even stronger mutual information bounds when the
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entries of the distribution are independent:

Lemma 2.6.2. Let M : Xm → Y satisfy (ξ, ρ)-zCDP. Let X be a random variable in Xm

with independent entries. Then

I (X; M(X)) ≤ (ξ + ρ) ·m,

where I denotes mutual information (measured in nats, rather than bits).

Proof. First, by the chain rule for mutual information,

I(X; M(X)) = ∑
i∈[m]

I(Xi; M(X)|X1···i−1),

where

I(Xi; M(X)|X1···i−1) = E
x←X1···i−1

[I(Xi|X1···i−1 = x; M(X)|X1···i−1 = x)]

= E
x←X1···i−1

[I(Xi; M(x, Xi···m))] ,

by independence of the Xis.

We can define mutual information in terms of KL-divergence:

I(Xi; M(x, Xi···m)) = E
y←Xi

[D1 (M(x, Xi···m)|Xi = y‖M(x, Xi···m))]

= E
y←Xi

[D1 (M(x, y, Xi+1···m)‖M(x, Xi···m))] .

By zCDP, we know that for all x ∈ X i−1, y, y′ ∈ X , and z ∈ Xm−i, we have

D1
(

M(x, y, z)
∥∥M(x, y′, z)

)
≤ ξ + ρ.

Thus, by the convexity of KL-divergence,

D1 (M(x, y, Xi+1···m)‖M(x, Xi···m)) ≤ ξ + ρ
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for all x and y. The result follows.

More generally, we can combine dependent and independent entries as follows.

Theorem 2.6.3. Let M : X n → Y satisfy (ξ, ρ)-zCDP. Take n = m · `. Let X1, · · · , Xm

be independent random variables on X `. Denote X = (X1, · · · , Xm) ∈ X n. Then

I (X; M(X)) ≤ m ·
(

ξ · `(1 + log `) + ρ · `2
)

,

where I denotes the mutual information (measured in nats, rather than bits).

Proof. By Proposition 2.5.3, M provides (ξ · `∑`
i=1

1
i , ρ · `2)-zCDP for groups of size

`. Thus

D1
(

M(x1,· · ·, xi,· · ·, xm)
∥∥M(x1,· · ·, x′i,· · ·, xm)

)
≤ ξ ·`

`

∑
i=1

1
i
+ρ·`2≤ ξ ·`(1+log `)+ρ·`2

(2.7)

for all x1, · · · , xm, x′i ∈ X `.

By the chain rule for mutual information,

I(X; M(X)) = ∑
i∈[m]

I(Xi; M(X)|X1···i−1),

where

I(Xi; M(X)|X1···i−1) = E
x←X1···i−1

[I(Xi|X1···i−1 = x; M(X)|X1···i−1 = x)]

= E
x←X1···i−1

[I(Xi; M(x, Xi···m))] ,

by independence of the Xis.
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We can define mutual information in terms of KL-divergence:

I(Xi; M(x, Xi···m)) = E
y←Xi

[D1 (M(x, Xi···m)|Xi = y‖M(x, Xi···m))]

= E
y←Xi

[D1 (M(x, y, Xi+1···m)‖M(x, Xi···m))] .

By (2.7) and the convexity of KL-divergence,

D1 (M(x, y, Xi+1···m)‖M(x, Xi···m)) ≤ ξ · `(1 + log `) + ρ · `2

for all x and y. The result follows.

2.6.1 Example Applications of the Lower Bound

We informally discuss a few applications of our information-based lower bounds to

some simple and well-studied problems in differential privacy.

One-Way Marginals Consider M : X n → Y where X = {0, 1}d and Y = [0, 1]d.

The goal of M is to estimate the attribute means, or one-way marginals, of its input

database x:

M(x) ≈ x =
1
n ∑

i∈[n]
xi.

It is known that this is possible subject to ε-DP if and only if n = Θ(d/ε) [HT10,

§4]. This is possible subject to (ε, δ)-DP if and only if n = Θ̃(
√

d log(1/δ)/ε),

assuming δ� 1/n [BUV14, §4].

We now analyse what can be accomplished with zCDP. Adding independent

noise drawn from N (0, d/2n2ρ) to each of the d coordinates of x satisfies ρ-zCDP.

This gives accurate answers as long as n�
√

d/ρ.

For a lower bound, consider sampling X1 ∈ {0, 1}d uniformly at random. Set

61



Xi = X1 for all i ∈ [n]. By Proposition 2.6.1,

I(X; M(X)) ≤ n2ρ

for any ρ-zCDP M : ({0, 1}d)n → [0, 1]d. However, if M is accurate, we can recover

(most of) X1 from M(X), whence I(X; M(X)) ≥ Ω(d). This yields a lower bound of

n ≥ Ω(
√

d/ρ), which is tight up to constant factors.

Histograms (a.k.a. Point Queries) Consider M : X n → Y , where X = [T] and

Y = RT. The goal of M is to estimate the histogram of its input:

M(x)t ≈ ht(x) = |{i ∈ [n] : xi = t}|

For ε-DP it is possible to do this if and only if n = Θ(log(T)/ε)); the optimal

algorithm is to independently sample

M(x)t ∼ ht(x) + Laplace(2/ε).

However, for (ε, δ)-DP, it is possible to attain sample complexity n = O(log(1/δ)/ε)

[BNS13, BNS16b, Theorem 3.13]. Interestingly, for zCDP we can show that n =

Θ(
√

log(T)/ρ) is sufficient and necessary:

Sampling

M(x)t ∼ ht(x) +N (0, 1/ρ)

independently for t ∈ [T] satisfies ρ-zCDP. Moreover,

P

[
max
t∈[T]
|M(x)t − ht(x)| ≥ λ

]
≤ T ·P [|N (0, 1/ρ)| > λ] ≤ T · e−λ2ρ/2.

In particular P
[
maxt∈[T] |M(x)t − ht(x)| ≥

√
log(T/β)/ρ

]
≤ β for all β > 0. Thus

this algorithm is accurate if n�
√

log(T)/ρ.

On the other hand, if we sample X1 ∈ [T] uniformly at random and set Xi = X1
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for all i ∈ [n], then I(X; M(X)) ≥ Ω(log T) for any accurate M, as we can recover X1

from M(X) if M is accurate. Proposition 2.6.1 thus implies that n ≥ Ω(
√

log(T)/ρ)

is necessary to obtain accuracy.

This gives a strong separation between approximate DP and zCDP.

Approximate Maximisation Consider M : {±1}n → {±1}n where the goal is to

maximise 〈x, M(x)〉 subject to ρ-zCDP.

One solution is randomised response [War65]: Each output bit i of M is chosen

independently with

P [M(x)i = xi] =
eε

eε + 1
.

This satisfies ε-DP and, hence, 1
2 ε2-zCDP. And E [〈x, M(x)〉] = n(eε − 1)/(eε + 1) =

Θ(nε). Alternatively, we can independently choose the output bits i according to

M(x)i = sign
(
N (xi,

√
2/ρ)

)
,

which satisfies ρ-zCDP.

It is known that these approaches are essentially optimal [DN03]. The mutual

information bound for independent entries (Lemma 2.6.2) can be used to give a

lower bound for zCDP:

Let X ∈ {±1}n be uniformly random. By Lemma 2.6.2, since the bits of X are

independent, we have I(X; M(X)) ≤ ρ · n for any ρ-zCDP M. However, if M is

accurate, we can recover part of X from M(X) [DN03, §2], whence I(X; M(X)) ≥

Ω(n).

Lower Bounds with Accuracy The above examples can be easily discussed in

terms of a more formal and quantitative definition of accuracy. In particular, we

consider the histogram example again:
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Proposition 2.6.4. If M : [T]n → RT satisfies ρ-zCDP and

∀x ∈ [T]n E
M

[
max
t∈[T]

∣∣M(x)t − ht(x)
∣∣] ≤ αn,

then n ≥ Ω(
√

log(α2T)/ρα2).

Proof. Let m = 1/10α and ` = n/m. For simplicity, assume that both m and n are

integral.

Let X1, X2, · · · , Xm ∈ [T]` be independent, where each Xi is ` copies of a uni-

formly random element of [T]. By Theorem 2.6.3,

I(X; M(X)) ≤ ρ ·m · `2 = 10ραn2, (2.8)

where X = (X1, · · · , Xm) ∈ X n. However,

I(X; M(X)) ≥I( f (X); g(M(X)))

=H( f (X))− H( f (X)|g(M(X)))

=H(X)− H(X| f (X))− H( f (X)|g(M(X)))

for any functions f and g, where H is the entropy (in nats). In particular, we let

f (x) = {t ∈ T : ∃i ∈ [n] xi = t} and g(y) = {t ∈ T : yt ≥ 5αn}.

Clearly H(X) = m log T. Furthermore, H(X| f (X)) ≤ m log m, since X can be

specified by naming m elements of f (X), which is a set of at most m elements.

If

max
t∈[T]

∣∣M(X)t − ht(X)
∣∣ < 5α, (2.9)

then g(M(X)) contains exactly all the values in X — i.e. f (X) = g(M(X)). By

Markov’s inequality, (2.9) holds with probability at least 4/5.

Now we can upper bound H( f (X)|g(M(X))) by giving a scheme for specifying
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f (X) given g(M(X)). If (2.9) holds, we simply need one bit to say so. If (2.9) does

not hold, we need one bit to say this and m log2 T bits to describe f (X). This gives

H( f (X)|g(M(X))) ≤ log 2 + P [ f (X) 6= g(M(X))] ·m log T.

Combining these inequalities gives

I(X;M(X))≥m logT−m logm−log2−1
5

m logT≥4
5

m log(Tm−5/4)−1≥Ω(log(α1.25T)/α).

Combining this with (2.8) completes the proof.

We remark that our lower bounds for zCDP can be converted to lower bounds

for mCDP using Lemma 2.4.2.

2.7 Obtaining Pure DP Mechanisms from zCDP

We now establish limits on what more can be achieved with zCDP over pure

differential privacy. In particular, we will prove that any mechanism satisfying zCDP

can be converted into a mechanism satisfying pure DP with at most a quadratic

blowup in sample complexity. Formally, we show the following theorem.

Theorem 2.7.1. Fix n ∈ N, n′ ∈ N, k ∈ N α > 0, and ε > 0. Let q : X → Rk and let

‖ · ‖ be a norm on Rk. Assume maxx∈X ‖q(x)‖ ≤ 1.

Suppose there exists a (ξ, ρ)-zCDP mechanism M : X n → Rk such that for all x ∈ X n,

E
M
[‖M(x)− q(x)‖] ≤ α.

Assume ξ ≤ α2, ρ ≤ α2, and

n′ ≥ 4
εα

(
ρ · n2 + ξ · n · (1 + log n) + 1

)
.
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Then there exists a (ε, 0)-differentially private M′ : X n′ → Rk satisfying

E
M′

[
‖M′(x)− q(x)‖

]
≤ 10α

and

P
M′

[
‖M′(x)− q(x)‖ > 10α +

4
εn′

log
(

1
β

)]
≤ β

for all x ∈ X n′ and β > 0.

Before discussing the proof of Theorem 2.7.1, we make some remarks about its

statement:

• Unfortunately, the theorem only works for families of statistical queries q :

X → Rk. However, it works equally well for ‖ · ‖∞ and ‖ · ‖1 error bounds.

• If ξ = 0, we have n′ = O(n2ρ/εα). So, if ρ, ε, and α are all constants, we

have n′ = O(n2). This justifies our informal statement that we can convert

any mechanism satisfying zCDP into one satisfying pure DP with a quadratic

blowup in sample complexity.

• Suppose M : X n → Rk is the Gaussian mechanism scaled to satisfy ρ-zCDP

and ‖ · ‖ = ‖ · ‖1/k. Then

α = E [‖M(x)− q(x)‖] = Θ

(√
k

ρn2

)
.

In particular, n = Θ(
√

k/ρα2). The theorem then gives us a ε-DP M′ : X n′ →

Rk with E [‖M′(x)− q(x)‖] ≤ O(α) for

n′ = Θ
(

n2ρ

εα

)
= Θ

(
k

α3ε

)
.

However, the Laplace mechanism achieves ε-DP and E [‖M′(x)− q(x)‖] ≤ α

with n = Θ(k/αε).
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This example illustrates that the theorem is not tight in terms of α; it loses a

1/α2 factor here. However, the other parameters are tight.

• The requirement that ξ, ρ ≤ α2 is only used to show that

max
x∈X n′

min
x̂∈X n

‖q(x)− q(x̂)‖ ≤ 2α (2.10)

using Lemma 2.7.5. However, in many situations (2.10) holds even when

ξ, ρ � α2. For example, if n ≥ O(log(k)/α2) or even n ≥ O(VC(q)/α2) then

(2.10) is automatically satisfied.

The technical condition (2.10) is needed to relate the part of the proof with

inputs of size n to the part with inputs of size n′.

Thus we can restate Theorem 2.7.1 with the condition ξ, ρ ≤ α2 replaced by

(2.10). This would be more general, but also more mysterious.

Alas, the proof of Theorem 2.7.1 is not constructive. Rather than directly constructing

a mechanism satisfying pure DP from any mechanism satisfying zCDP, we show

the contrapositive statement: any lower bound for pure DP can be converted into a

lower bound for zCDP. Pure DP is characterised by so-called packing lower bounds

and the exponential mechanism.

We begin by giving a technical lemma showing that for any output space and

any desired accuracy we have a “packing” and a “net:”

Lemma 2.7.2. Let (Y , d) be a metric space. Fix α > 0. Then there exists a countable

T ⊂ Y such that both of the following hold.

• (Net:) Either T is infinite or for all y′ ∈ Y there exists y ∈ T with d(y, y′) ≤ α.

• (Packing:) For all y, y′ ∈ T, if y 6= y′, then d(y, y′) > α.

Proof. Consider the following procedure for producing T.
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• Initialize A← Y and T ← ∅.

• Repeat:

– If A = ∅, terminate.

– Pick some y ∈ A.

– Update T ← T ∪ {y}.

– Update A← {y′ ∈ A : d(y′, y) > α}.

This procedure either terminates giving a finite T or runs forever enumerating a

countably infinite T.

(Net:) If T is infinite, we immediately can dispense the first condition, so suppose

the procedure terminates and T is finite. Fix y′ ∈ Y . Since the procedure terminates,

A = ∅ at the end, which means y′ was removed from A at some point. This means

some y ∈ T was added such that d(y′, y) ≤ α, as required.

(Packing:) Fix y 6= y′ ∈ T. We assume, without loss of generality, that y was

added to T before y′. This means y′ was not removed from A when y was added to

T. In particular, this means d(y′, y) > α.

It is well-known that a net yields a pure DP algorithm:

Lemma 2.7.3 (Exponential Mechanism [MT07, BLR13]). Let ` : X n × T → R satisfy

|`(x, y)− `(x′, y)| ≤ ∆ for all x, x′ ∈ X n differing in one entry and all y ∈ T. Then, for

all ε > 0, there exists an ε-differentially private M : X n → T such that

P
M

[
`(x, M(x)) ≤ min

y∈T
`(x, y) +

2∆
ε

log
(
|T|
β

)]
≥ 1− β

and

E
M
[`(x, M(x))] ≤ min

y∈T
`(x, y) +

2∆
ε

log |T|

for all x ∈ X n and β > 0.
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Proof. The mechanism is defined by

P
M
[M(x) = y] =

e−`(x,y)ε/2∆

∑y′∈T e−`(x,y)ε/2∆
.

The analysis can be found in [DR14, Theorems 3.10 and 3.11] and Lemma 3.7.1.

We also show that a packing yields a lower bound for zCDP:

Lemma 2.7.4. Let (Y , d) be a metric space and q : X n → Y a function. Let M : X n → Y

be a (ξ, ρ)-zCDP mechanism satisfying

P
M
[d(M(x), q(x)) > α/2] ≤ β

for all x ∈ X n. Let T ⊂ Y be such that d(y, y′) > α, for all y, y′ ∈ T with y 6= y′. Assume

that for all y ∈ T there exists x ∈ X n with q(x) = y. Then

(1− β) log |T| − log 2 ≤ ξ · n(1 + log n) + ρ · n2.

In particular, if ξ = 0, we have

n ≥

√
(1− β) log |T| − log 2

ρ
= Ω(

√
log |T|/ρ).

Proof. Let q−1 : T → X n be a function such that q(q−1(y)) = y for all y ∈ T. Define

f : Y → T by

f (y) = argmin
y′∈T

d(y, y′)

(breaking ties arbitrarily). Then

P
M

[
f (M(q−1(y))) = y

]
≥ 1− β

for all y ∈ T, as P
M

[
d(M(q−1(y)), y) > α/2

]
≤ β and d(y′, y) > α for all y′ ∈ T \ {y}.

Let Y be a uniformly random element of T and let X = q−1(Y). By the data
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processing inequality and Proposition 2.6.1,

I(Y; f (M(q−1(Y)))) = I(q(X); f (M(X))) ≤ I(X; M(X)) ≤ ξ · n(1 + log n) + ρ · n2.

However, P
[

f (M(q−1(Y))) = Y
]
≥ 1− β. Denote Z = f (M(q−1(Y))) and let E be

the indicator of the event that Z = Y. We have

I(Y; Z) = H(Y)− H(Y|Z) = H(Y)− H(Y, E|Z) = H(Y)− H(Y|E, Z)− H(E|Z).

Clearly H(Y) = log |T| and H(E|Z) ≤ H(E) ≤ log 2. Moreover,

H(Y|E, Z) = E
e←E

[H(Y|Z, E = e)]

=P [Y = Z] · 0 + P [Y 6= Z] · H(Y|Z, Y 6= Z)

≤β · H(Y).

Thus

I(Y; Z) ≥ log |T| − log 2− β log |T|.

The result now follows by combining inequalities.

We need one final technical lemma:

Lemma 2.7.5. Let q : X → Rk satisfy maxx∈X ‖q(x)‖ ≤ 1, where ‖ · ‖ is some norm.

Let M : X n → Rk satisfy (ξ, ρ)-zCDP and

E
M
[‖M(x)− q(x)‖] ≤ α

for all x ∈ X n. For all n′,

max
x∈X n′

min
x̂∈X n

‖q(x̂)− q(x)‖ ≤ 2α +
√

2(ξ + ρ).

Before proving Lemma 2.7.5, we complete the proof of Theorem 2.7.1 by combin-

ing Lemmas 2.7.2, 2.7.3, 2.7.4, and 2.7.5
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Proof of Theorem 2.7.1. Apply Lemma 2.7.2 with Y=
{

q(x)= 1
n ∑i∈[n]q(xi) : x∈X n

}
⊂

Rk and d being the metric induced by the norm to obtain T ⊂ Y :

• (Net:) Either T is infinite or for all y′ ∈ {q(x) : x ∈ X n} ⊂ Rk there exists

y ∈ T with ‖y− y′‖ ≤ 4α.

• (Packing:) For all y, y′ ∈ T, if y 6= y′, then ‖y− y′‖ > 4α.

By Markov’s inequality

P
M
[‖M(x)− q(x)‖ > 2α] ≤ 1

2
.

Thus, by Lemma 2.7.4,

1
2

log |T| − log 2 ≤ ξ · n(1 + log n) + ρ · n2.

This gives an upper bound on |T|. In particular, T must be finite.

Let M′ : X n′ → Rk be the exponential mechanism (Lemma 2.7.3) instantiated

with T and `(x, y) = ‖y− q(x)‖. We have

P
M

[
‖M(x)− q(x)‖ ≤ min

y∈T
‖y− q(x)‖+ 4

εn′
log
(
|T|
β

)]
≥ 1− β

and

E
M
[‖M(x)− q(x)‖] ≤ min

y∈T
‖y− q(x)‖+ 4

εn′
log |T|
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for all x ∈ X n′ . For x ∈ X n′ , by the Net property and Lemma 2.7.5,

min
y∈T
‖y− q(x)‖ ≤min

y∈T
min
y′∈Y
‖y− y′‖+ ‖y′ − q(x)‖

=min
y′∈Y

((
min
y∈T
‖y− y′‖

)
+ ‖y′ − q(x)‖

)
≤min

y′∈Y

(
4α + ‖y′ − q(x)‖

)
= min

x̂∈X n
(4α + ‖q(x̂)− q(x)‖)

≤4α + 2α +
√

2(ξ + ρ).

Furthermore,

4
εn′

log |T| ≤ 8
εn′
(

ξ · n(1 + log n) + ρ · n2 + log 2
)
≤ 2α.

The theorem now follows by combining inequalities.

Finally we prove the technical Lemma 2.7.5. Essentially we show that if a private

mechanism can accurately answer a set of queries with a given sample complexity,

then those queries can be approximated on an unknown distribution with the same

sample complexity. This is related to lower bounds on private sample complexity

using Vapnik-Chervonenkis dimension e.g. [DR14, Theorem 4.8] and [BNSV15,

Theorem 5.5].

First we state Pinsker’s inequality [vEH14, Theorem 31].

Lemma 2.7.6 (Pinsker’s Inequality). Let X and Y be random variables on [−1, 1]. Then∣∣∣E [X]−E [Y]
∣∣∣ ≤ √2D1 (X‖Y)

We can also generalise Pinsker’s inequality using Rényi divergence:
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Lemma 2.7.7. Let P and Q be distributions on Ω and f : Ω→ R. Then∣∣∣∣ E
x∼P

[ f (x)]− E
x∼Q

[ f (x)]
∣∣∣∣ ≤ √ E

x∼Q
[ f (x)2] ·

√
eD2(P‖Q) − 1.

In particular, if M : X n → Y satisfies (ξ, ρ)-zCDP. Then, for any f : Y → R and

all neighbouring x, x′ ∈ X n,∣∣∣E [ f (M(x′))
]
−E [ f (M(x))]

∣∣∣ ≤ √E [ f (M(x))2] ·
√

eξ+2ρ − 1.

Proof. By Cauchy-Schwartz,

E
x∼P

[ f (x)]− E
x∼Q

[ f (x)] = E
x∼Q

[
f (x)

(
P(x)
Q(x)

− 1
)]

≤
√

E
x∼Q

[ f (x)2] ·

√√√√ E
x∼Q

[(
P(x)
Q(x)

− 1
)2
]

.

Now

E
x∼Q

[(
P(x)
Q(x)

− 1
)2
]
= E

x∼Q

[(
P(x)
Q(x)

)2

− 2
P(x)
Q(x)

+ 1

]

= E
x∼Q

[(
P(x)
Q(x)

)2
]
− 2 + 1

=eD2(P‖Q) − 1.

Proposition 2.7.8. Let q : X → Rk satisfy maxx∈X ‖q(x)‖ ≤ 1, where ‖ · ‖ is some

norm. Let M : X n → Rk satisfy (ξ, ρ)-zCDP and

E
M
[‖M(x)− q(x)‖] ≤ α

for all x ∈ X n. Then, for any distribution D on X ,

E
x∼Dn,M

[‖M(x)− q(D)‖] ≤ α +
√

2(ξ + ρ)
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and

E
x∼Dn

[‖q(x)− q(D)‖] ≤ 2α +
√

2(ξ + ρ),

where q(D) = E
z∼D

[q(z)].

Proof. First define the dual norm: For x ∈ Rk,

‖x‖∗ := max
y∈Rk :‖y‖=1

〈x, y〉.

By definition, 〈x, y〉 = 〈y, x〉 ≤ ‖x‖∗ · ‖y‖ for all x, y ∈ Rk. Moreover, ‖z‖ =

maxy∈Rk :‖y‖∗=1〈z, y〉 for all z ∈ Rk.

Fix a distribution D. Define W : X n → Rk ×Rk as follows. On input x ∈ X n,

compute a = M(x) and

s = argmax
v∈Rk :‖v‖∗=1

〈a− q(D), v〉,

and output (a, s).

By postprocessing, W satisfies (ξ, ρ)-zCDP and

E
W
[〈a−q(x), s〉|(a, s)=W(x)]≤E

W
[‖a−q(x)‖·‖s‖∗|(a, s)=W(x)]=E

M
[‖M(x)−q(x)‖]≤α

(2.11)

for all x ∈ X n.

The following is similar to Lemma 3.3.1. Let x ∼ Dn and y ∼ D. Now

E
x,W

[〈q(x), s〉 | (a, s) = W(x)] =
1
n ∑

i∈[n]
E

x,W
[〈q(xi), s〉 | (a, s) = W(x)] (2.12)

=
1
n ∑

i∈[n]
E

x,W
[ f (xi, W(x))]
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(letting f : X ×Rk ×Rk → [−1, 1] be f (z, a, s) = 〈q(z), s〉/‖s‖∗)

≤ 1
n ∑

i∈[n]
E

x,y,W
[ f (xi, W(x1, · · · , xi−1, y, xi+1, · · · , xn))]

+
√

2D1(f(xi,W(x))‖f(xi,W(x1,· · ·, xi−1, y, xi+1,· · ·, xn)))

(by Pinsker’s inequality)

≤ 1
n ∑

i∈[n]
E

x,y,W
[ f (y, W(x1, · · · , xi−1, xi, xi+1, · · · , xn))]

+
√

2D1 (W(x)‖W(x1, · · · , xi−1, y, xi+1, · · · , xn))

(by postprocessing and convexity and the fact that xi and y are interchangeable)

≤ 1
n ∑

i∈[n]
E

x,y,W
[〈q(y), s〉 | (j, s, a) = W(x)]

+
√

2(ξ + ρ)

(by zCDP)

= E
x,W

[〈q(D), s〉 | (a, s) = W(x)] +
√

2(ξ + ρ).

Combining (2.11) and (2.12) gives

E
x,M

[‖M(x)− q(D)‖] = E
x,W

[〈a− q(D), s〉 | (a, s) = W(x)] ≤ α +
√

2(ξ + ρ). (2.13)
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Finally, combining (2.13) and (2.11) gives

E
x
[‖q(x)− q(D)‖] ≤ E

x,M
[‖M(x)− q(x)‖]+ E

x,M
[‖M(x)− q(D)‖] ≤ 2α+

√
2(ξ + ρ).

Proof of Lemma 2.7.5. Fix x ∈ X n′ . Let D be the uniform distribution on elements of

x so that q(D) = q(x). By Proposition 2.7.8,

E
x̂∼Dn

[‖q(x̂)− q(D)‖] ≤ 2α +
√

2(ξ + ρ).

In particular, there must exist x̂ ∼ Dn such that ‖q(x̂)− q(D)‖ ≤ 2α +
√

2(ξ + ρ),

as required.

2.8 Approximate zCDP

In the spirit of approximate DP, we propose a relaxation of zCDP:

Definition 2.8.1 (Approximate zCDP). A randomised mechanism M : X n → Y is

δ-approximately (ξ, ρ)-zCDP if, for all x, x′ ∈ X n differing on a single entry, there exist

events E = E(M(x)) and E′ = E′(M(x′)) such that, for all α ∈ (1, ∞),

Dα

(
M(x)|E

∥∥M(x′)|E′
)
≤ ξ + ρ · α and Dα

(
M(x′)|E′

∥∥M(x)|E
)
≤ ξ + ρ · α

and P
M(x)

[E] ≥ 1− δ and P
M(x′)

[E′] ≥ 1− δ.

Clearly 0-approximate zCDP is simply zCDP. Hence we have a generalisation of

zCDP. As we will show later in this section, δ-approximate (ε, 0)-zCDP is equivalent

to (ε, δ)-DP. Thus we have also generalised approximate DP. Hence, this definition

unifies both relaxations of pure DP.
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Approximate zCDP is a three-parameter definition which allows us to capture

many different aspects of differential privacy. However, three parameters is quite

overwhelming. We believe that use of the one-parameter ρ-zCDP (or the two-

parameter δ-approximate ρ-zCDP if necessary) is sufficient for most purposes.

It is easy to verify that the definition of approximate zCDP satisfies the following

basic properties.

Lemma 2.8.2 (Composition & Postprocessing). Let M : X n → Y and M′ : X n ×Y →

Z be randomised algorithms. Suppose M satisfies δ-approximate (ξ, ρ)-zCDP and, for all

y ∈ Y , M′(·, y) : X n → Z satisfies δ′-approximate (ξ ′, ρ′)-zCDP. Define M′′ : X n → Z

by M′′(x) = M′(x, M(x)). Then M′′ satisfies (δ+ δ′− δ · δ′)-approximate (ξ + ξ ′, ρ+ ρ′)-

zCDP.

Lemma 2.8.3 (Tradeoff). Suppose M : X n → Y satisfies δ-approximate (ξ, 0)-zCDP.

Then M satisfies δ-approximate ξ-zCDP and δ-approximate 1
2 ξ2-zCDP.

However, the strong group privacy guarantees of Section 2.5 no longer apply to

approximate zCDP and, hence, the strong lower bounds of Section 2.6 also no longer

hold. Circumventing these lower bounds is part of the motivation for considering

approximate zCDP. However, approximate zCDP is not necessarily the only way to

relax zCDP that circumvents our lower bounds:

Proving the group privacy bound requires “inflating” the parameter α: Sup-

pose M : X n → Y satisfies ρ-zCDP and x, x′ ∈ X n differ on k entries. To prove

Dα (M(x)‖M(x′)) ≤ k2ρα, the proof of Proposition 2.5.3 requires a bound on

Dkα (M(x′′)‖M(x′′′)) for x′′, x′′′ ∈ X n differing on a single entry.

Consider relaxing the definition of zCDP to only require the bound (2.1) or (2.2)

to hold when α ≤ m:
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Definition 2.8.4 (Bounded zCDP). We say that M : X n → Y satisfies m-bounded

(ξ, ρ)-zCDP if, for all x, x′ ∈ X n differing in only one entry and all α ∈ (1, m),

Dα (M(x)‖M(x′)) ≤ ξ + ρ · α.

This relaxed definition may also be able to circumvent the group privacy-based

lower bounds, as our group privacy proof would no longer work for groups of size

larger than m. We do not know what group privacy guarantees Definition 2.8.4

provides for groups of size k� m. This relaxed definition may be worth exploring,

but is beyond the scope of our work.

2.8.1 Approximate DP Implies Approximate zCDP

We can convert approximate DP to approximate zCDP using the following lemma.

First we define a approximate DP version of the randomised response mecha-

nism:

Definition 2.8.5. For ε ≥ 0 and δ ∈ [0, 1], define M̃ε,δ : {0, 1} → {0, 1} × {⊥,>} by

P
[
M̃ε,δ(b) = (b,>)

]
=δ, P

[
M̃ε,δ(b) = (1− b,>)

]
=0,

P
[
M̃ε,δ(b) = (b,⊥)

]
=(1− δ)

eε

1 + eε
, P

[
M̃ε,δ(b) = (1− b,⊥)

]
=(1− δ)

1
1 + eε

for both b ∈ {0, 1}.

The above mechanism is “complete” for approximate DP:

Lemma 2.8.6 ([KOV15], [MV16, Lemma 3.2]). For every (ε, δ)-DP M : X n → Y and

all x0, x1 ∈ X n differing in one entry, there exists a randomised T : {0, 1} × {⊥,>} → Y

such that T(M̃ε,δ(b)) has the same distribution as M(xb) for both b ∈ {0, 1}.

Corollary 2.8.7. If M : X n → Y satisfies (ε, δ)-DP, then M satisfies δ-approximate

(ε, 0)-zCDP, which, in turn, implies δ-approximate (0, 1
2 ε2)-zCDP.
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Proof. Fix neighbouring x0, x1 ∈ X n. Let T : {0, 1} × {⊥,>} → Y be as in Lemma

2.8.6.

Now we can write M(xb) = T(M̃ε,δ(b)) for b ∈ {0, 1}. Define events E0 and E1

by

Eb ≡
[
M̃ε,δ(b) ∈ {0, 1} × {⊥}

]
.

By definition, for both b ∈ {0, 1}, P
M̃ε,δ(b)

[Eb] = 1− δ and

M(xb)|Eb = T
(

M̃ε,δ(b)|M̃ε,δ(b)∈{0,1}×{⊥}

)
= T(M̃ε,0(b)).

We have D∞
(

M̃ε,0(b)
∥∥M̃ε,0(1− b)

)
≤ ε for both b ∈ {0, 1}. By postprocessing

and monotonicity, this implies

Dα

(
M(xb)|Eb

∥∥M(x1−b)|E1−b

)
≤ ε

for both b ∈ {0, 1} and all α ∈ (1, ∞). Thus we have satisfied the definition of

δ-approximate (ε, 0)-zCDP.

Applying Proposition 2.3.2 shows that this also implies δ-approximate (0, 1
2 ε2)-

zCDP.

2.8.2 Approximate zCDP Implies Approximate DP

Lemma 2.8.8. Suppose M : X n → Y satisfies δ-approximate (ξ, ρ)-zCDP. If ρ = 0, then

M satisfies (ξ, δ)-DP. In general, M satisfies (ε, δ + (1− δ)δ′)-DP for all ε ≥ ξ + ρ, where

δ′ = e−(ε−ξ−ρ)2/4ρ ·min



1
√

π · ρ
1

1+(ε−ξ−ρ)/2ρ

2

1+ ε−ξ−ρ
2ρ +

√(
1+ ε−ξ−ρ

2ρ

)2
+ 4

πρ

.

79



Proof. Fix neighbouring x, x′ ∈ X n and let E and E′ be the events promised by

definition 2.8.1. We can assume, without loss of generality that P [E] = P [E′] =

1− δ.

Fix S ⊂ Y . Then

P [M(x) ∈ S] =P [M(x) ∈ S | E] ·P [E] + P [M(x) ∈ S | ¬E] ·P [¬E]

≤P [M(x) ∈ S | E] · (1− δ) + δ,

P
[
M(x′) ∈ S

]
=P

[
M(x′) ∈ S | E′

]
·P
[
E′
]
+ P

[
M(x′) ∈ S | ¬E′

]
·P
[
¬E′

]
≥P

[
M(x′) ∈ S | E′

]
· (1− δ).

Firstly, if ρ = 0, then

P [M(x) ∈ S | E] ≤ eξP
[
M(x′) ∈ S | E′

]
and

P [M(x) ∈ S] ≤P [M(x) ∈ S | E] · (1− δ) + δ

≤eξP
[
M(x′) ∈ S | E′

]
· (1− δ) + δ ≤ eξP

[
M(x′) ∈ S

]
+ δ,

which proves the first half of the lemma.

Secondly, by Lemma 2.3.8 (cf. Lemma 2.3.6), for all ε ≥ ξ + ρ,

P [M(x)∈S |E]≤ eεP
[
M(x′)∈S |E′

]
+e−(ε−ξ−ρ)2/4ρ·min



1
√

π · ρ
1

1+(ε−ξ−ρ)/2ρ

2

1+ε−ξ−ρ
2ρ +

√(
1+ ε−ξ−ρ

2ρ

)2
+ 4

πρ

.
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Thus

P [M(x)∈S]≤ eεP
[
M(x′)∈S

]
+δ+(1−δ)·e−(ε−ξ−ρ)2/4ρ·min



1
√

π · ρ
1

1+(ε−ξ−ρ)/2ρ

2

1+ε−ξ−ρ
2ρ +

√(
1+ ε−ξ−ρ

2ρ

)2
+ 4

πρ

.

2.8.3 Application of Approximate zCDP

Approximate zCDP subsumes approximate DP. A result of this is that we can apply

our tightened lemmas to give a tighter version of the so-called advanced composition

theorem [DRV10].

Note that the following results are subsumed by the bounds of Kairouz, Oh,

and Viswanath [KOV15] and Murtagh and Vadhan [MV16]. However, these bounds

may be extended to analyse the composition of mechanisms satisfying CDP with

mechanisms satisfying approximate DP. We believe that such a “unified” analysis of

composition will be useful.

Applying Corollary 2.8.7, Lemma 2.8.2, and Lemma 2.8.8 yields the following

result.

Corollary 2.8.9. Let M1, · · · , Mk : X n → Y and let M : X n → Y k be their composition.

Suppose each Mi satisfies (εi, δi)-DP. Set ρ = 1
2 ∑k

i ε2
i . Then M satisfies(

ε, 1− (1− δ′)
k

∏
i
(1− δi)

)
-DP
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for all ε ≥ ρ and

δ′ = e−(ε−ρ)2/4ρ ·min



1
√

π · ρ
1

1+(ε−ρ)/2ρ

2

1+ ε−ρ
2ρ +

√(
1+ ε−ρ

2ρ

)2
+ 4

πρ

.

A slight restatement is the following

Corollary 2.8.10. Let M1, · · · , Mk : X n → Y and let M : X n → Y k be their composition.

Suppose each Mi satisfies (εi, δi)-DP. Set ε2 = 1
2 ∑k

i ε2
i . Then M satisfies(

ε2 + 2λε, 1− (1− δ′)
k

∏
i
(1− δi)

)
-DP

for all λ ≥ 0 and

δ′ = e−λ2 ·min



1
√

π · ε
1

1+λ/ε

2

1+ λ
ε +

√
(1+ λ

ε )
2
+ 4

πε2

.

Finally, by picking the second term in the minimum and using 1−∏i(1− δi) ≤

∑i δi, we have the following simpler form of the lemma.

Corollary 2.8.11. Let M1, · · · , Mk : X n → Y and let M : X n → Y k be their composition.

Suppose each Mi satisfies (εi, δi)-DP. Then M satisfies(
1
2
‖ε‖2

2 +
√

2λ‖ε‖2,
√

π

2
· ‖ε‖2 · e−λ2

+ ‖δ‖1

)
-DP

for all λ ≥ 0. Alternatively M satisfies(
1
2
‖ε‖2

2 +
√

2 log(
√

π/2 · ‖ε‖2/δ′) · ‖ε‖2, δ′ + ‖δ‖1

)
-DP
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for all δ′ ≥ 0.

In comparison to the composition theorem of [DRV10], we save modestly by

a constant factor in the first term and, in most cases
√

π/2‖ε‖2 < 1, whence the

logarithmic term is an improvement over the usual advanced composition theorem.
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Chapter 3

Adaptive Data Analysis

3.1 Introduction

Multiple hypothesis testing is a ubiquitous task in empirical research. A finite

sample of data is drawn from some unknown population, and several analyses are

performed on that sample. The outcome of an analysis is deemed significant if

it is unlikely to have occurred by chance alone, and a “false discovery” occurs if

the analyst incorrectly declares an outcome to be significant. False discovery has

been identified as a substantial problem in the scientific community (see e.g. [Ioa05,

GL14]). This problem persists despite decades of research by statisticians on methods

for preventing false discovery, such as the widely used Bonferroni Correction [Bon36,

Dun61] and the Benjamini-Hochberg Procedure [BH95].

False discovery is often attributed to misuse of statistics. An alternative explana-

tion is that the prevalence of false discovery arises from the inherent adaptivity in

the data analysis process—the fact that the choice of analyses to perform depends

on previous interactions with the data (see e.g. [GL14]). Adaptivity is essentially

unavoidable when a sequence of research groups publish research papers based on
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overlapping data sets. Adaptivity also arises naturally in other settings, for exam-

ple: in multistage inference algorithms where data are preprocessed (say, to select

features or restrict to a principal subspace) before the main analysis is performed;

in scoring data-based competitions [BH15]; and in the re-use of holdout or test

data [DFH+15b, DFH+15a].

The general problem of adaptive data analysis was formally modeled and studied

in recent papers by Dwork, Feldman, Hardt, Pitassi, Reingold, and Roth [DFH+15c]

and by Hardt and Ullman [HU14]. The striking results of Dwork et al. [DFH+15c]

gave the first nontrivial algorithms for provably ensuring statistical validity in

adaptive data analysis, allowing for even an exponential number of tests against the

same sample. In contrast, Chapter 6 and Hardt and Ullman [HU14] show inherent

statistical and computational barriers to preventing false discovery in adaptive

settings.

The key ingredient in Dwork et al. is a notion of “algorithmic stability” that is

suitable for adaptive analysis. Informally, changing one input to a stable algorithm

does not change it’s output “too much.” Traditionally, stability was measured via

the change in the generalisation error of an algorithm’s output, and algorithms

stable according to such a criterion have long been known to ensure statistical

validity in nonadaptive analysis [DW79a, DW79b, KR99, BE02, SSSS10]. Following

a connection first suggested by McSherry,1 Dwork et al. showed that differential

privacy guarantees statistical validity in adaptive data analysis. This allowed them

to repurpose known DP algorithms to prevent false discovery. A crucial difference

from traditional notions of stability is that DP requires a change in one input lead to

a small change in the probability distribution on the outputs. In this chapter, we refer

1See, e.g., [McS14], although the observation itself dates back at least to 2008 (personal communi-
cation).
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to differential privacy as DP stability, to emphasise the relation to the literature on

algorithmic stability and other notions of stability we study (KL- and TV-stability,

in particular).

In this chapter, we extend the results of Dwork et al. along two axes. First,

we give an optimal analysis of the statistical validity of DP-stable algorithms. As a

consequence, we immediately obtain the best known bounds on the sample complexity

(equivalently, the convergence rate) of adaptive data analysis. Second, we generalise

the connection between DP stability and statistical validity to a much larger family

of statistics. Our proofs are also significantly simpler than those of Dwork et al.,

and clarify the role of different stability notions in the adaptive setting.

3.1.1 Overview of Results

Adaptivity and Statistical Queries. Following the previous work on this subject

[DFH+15c], we formalise the problem of adaptive data analysis as follows. There

is a distribution P over some finite universe X , and a mechanismM that does not

know P , but is given a set x consisting of n samples from P . Using its sample, the

mechanism must answer queries on P . Here, a query q, coming from some family Q,

maps a distribution P to a real-valued answer. The mechanism’s answer a to a query

q is α-accurate if |a− q(P)| ≤ α with high probability. Importantly, the mechanism’s

goal is to provide answers that “generalise” to the underlying distribution, rather

than answers that are specific to its sample.

We model adaptivity by allowing a data analyst to ask a sequence of queries

q1, q2, . . . , qk ∈ Q to the mechanism, which responds with answers a1, a2, . . . , ak. In

the adaptive setting, the query qj may depend on the previous queries and answers

q1, a1, . . . , qj−1, aj−1 arbitrarily. We say the mechanism is α-accurate given n samples

for k adaptively chosen queries if, with high probability, when given a vector x of n
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samples from an arbitrary distribution P , the mechanism accurately responds to

any adaptive analyst that makes at most k queries.

Dwork et al. [DFH+15c] considered the family of statistical queries [Kea93]. A

statistical query q asks for the expected value of some function on random draws

from the distribution. That is, the query is specified by a function p : X → [0, 1] and

its answer is q(P) = Ez←RP [p(z)].

The most natural way to answer a statistical query is to compute the empirical

answer Ez←Rx[p(z)], which is just the average value of the function on the given

sample x.2 It is simple to show that when k queries are specified nonadaptively

(i.e. independent of previous answers), then the empirical answer is within q(P)± α

(henceforth, “α-accurate”) with high probability so long as the sample has size

n & log(k)/α2. 3 However, when the queries can be chosen adaptively, the empirical

average performs much worse. In particular, there is an algorithm (based on [DN03])

that, after seeing the empirical answer to k = O(α2n) random queries, can find a

query such that the empirical answer and the correct answer differ by α. Thus, the

empirical average cannot be guaranteed to be accurate unless n & k/α2, and so

exponentially more samples are required to guarantee accuracy when the queries

may be adaptive.

Answering Adaptive Statistical Queries. Surprisingly, Dwork et al. [DFH+15c],

showed there are mechanisms that are much more effective than naïvely outputting

the empirical answer. They show that empirically accurate differentially private

2For convenience, we will often use x as shorthand for the empirical distribution over x (viewed
as a multiset). We use z←R x to mean a random element chosen from the uniform distribution over
the elements of x.

3This guarantee follows from bounding the error of each query using a Chernoff bound and then
taking a union bound over all queries. The log k term corresponds to the Bonferroni correction in
classical statistics.
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mechanisms are accurate on the population and, by applying the Gausssian mecha-

nism, they obtain a mechanisms that are accurate given only n &
√

k/α2.5 samples,

which is a significant improvement over the naïve mechanism when α is not too

small. (See Table 3.1 for more detailed statements of their results, including results

that achieve an exponential improvement in the sample complexity when |X | is

bounded.)

Our first contribution is to give a simpler and quantitatively optimal analysis

of the generalisation properties of stable algorithms, which immediately yields

new accuracy bounds for adaptive statistical queries. In particular, we show that

n &
√

k/α2 samples suffice. Since 1/α2 samples are required to answer a single

nonadaptive query, our dependence on α is optimal. In Chapter 6, we will see

that the
√

k dependence is also optimal. (In particular, there is a lower bound of

n &
√

k/α + 1/α2, but proving n &
√

k/α2 remains open.)

Beyond Statistical Queries. Although statistical queries are surprisingly gen-

eral [Kea93], we would like to be able to ask more general queries on the distribution

P that capture a wider variety of machine learning and data mining tasks. To this

end, we give the first bounds on the sample complexity required to answer large

numbers of adaptively chosen low-sensitivity queries and optimisation queries, which

we now describe.

Low-sensitivity queries are a generalisation of statistical queries. A query is

specified by an arbitrary function p : X n → R satisfying |p(x) − p(x′)| ≤ 1/n

for every x, x′ ∈ X n differing on exactly one element. The query applied to the

population is defined to be q(P) = Ex←RPn [p(x)]. Examples include distance queries

(e.g. “How far is the sample from being well-clustered?”) and maxima of statistical

queries (e.g. “What is the classification error of the best k-node decision tree?”)
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Optimisation queries are a broad generalisation of low-sensitivity queries to

arbitrary output domains. The query is specified by a loss function L : X n ×Θ→ R

that is low-sensitivity in its first parameter, and the goal is to output θ ∈ Θ that

is “best” in the sense that it minimises the average loss. Specifically, q(P) =

argminθ∈ΘEz←RPn [L(z; θ)]. An important special case is when Θ ⊆ Rd is convex

and L is convex in θ, which captures many fundamental regression and classification

problems.

Our sample complexity bounds are summarised in Table 3.1.

.

Query Type
Sample Complexity

Time per Query
[DFH+15c] This Work

Statistical (k�n2) Õ

(√
k

α2.5

)
Õ

(√
k

α2

)
poly(n, log |X |)

Statistical (k�n2) Õ

(√
log |X |·log3/2k

α3.5

)
Õ

(√
log |X | · log k

α3

)
poly(n, |X |)

Low Sens. (k�n2) — Õ

(√
k

α2

)
poly(n, log |X |)

Low Sens. (k�n2) — Õ
(

log |X | · log k
α3

)
poly(|X |n)

Conv. Min. (k�n2) — Õ

(√
dk

α2

)
poly(n, d, log |X |)

Conv. Min. (k�n2) — Õ

(
(
√

d+log k)·
√

log |X |
α3

)
poly(n, d, |X |)

Table 3.1: Summary of Results. Here k = number of queries, n = number of samples, α = desired
accuracy, X = universe of possible samples, d = dimension of parameter space Θ.

3.1.2 Overview of Techniques

Our main result is a new proof, with optimal parameters, that a stable algorithm

that provides answers to adaptive queries that are close to the empirical value on the

sample gives answers that generalise to the underlying distribution. In particular,
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we prove:

Theorem 3.1.1 (Main “Transfer Theorem”). LetM be a mechanism that takes a sample

x ∈ X n and answers k adaptively-chosen low-sensitivity queries. Suppose thatM satisfies

the following:

1. For every sample x,M’s answers are (α, αβ)-accuratewith respect to the sample x —

which we define to mean P
[
maxj∈k

∣∣qj(x)− aj
∣∣ ≤ α

]
≥ 1− αβ, where q1, · · · , qk :

X n → R are the low-sensitivity queries that are asked and a1, · · · , ak ∈ R are the

answers given. The probability is taken only overM’s random coins.

2. M satisfies (α, αβ)-DP stability.

Then, if x consists of n samples from an arbitrary distribution P over X ,M’s answers are

(O(α), O(β))-accurate with respect to the population P . That is,

P
[
maxj∈k

∣∣qj(P)− aj
∣∣ ≤ O(α)

]
≥ 1−O(β),

where the probability is taken only over the choice of x ←R Pn andM’s random coins.

Our actual result is somewhat more general than Theorem 3.1.1. We show that

the population-level error of a stable algorithm is close to its error on the sample,

whether or not that error is low. Put glibly: stable algorithms cannot be wrong

without realising it.

Compared to the results of [DFH+15c], Theorem 3.1.1 requires a quantitatively

weaker stability guarantee—(α, αβ)-stability, instead of (α, (β/k)1/α)-stability. It

also applies to arbitrary low-sensitivity queries as opposed to the special case of

statistical queries.

Our analysis differs from that of Dwork et al. in two key ways. First, we give a

better bound on the probability with which a single low-sensitivity query output by
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a DP-stable algorithm has good generalisation error. Second, we show a reduction

from the case of many queries to the case of a single query that has no loss in

parameters (in contrast, previous work took a union bound over queries, leading to

a dependence on k, the number of queries).

Both steps rely on a thought experiment in which several “real” executions of

a stable algorithm are simulated inside another algorithm, called a monitor, which

outputs a function of the “real” transcripts. Because stability is closed under post-

processing, the monitor is itself stable. Because it exists only as a thought experiment,

the monitor can be given knowledge of the true distribution from which the data

are drawn, and can use this knowledge to process the outputs of the simulated

“real” runs. The monitor technique allows us to start from a basic guarantee, which

states that a single query has good generalisation error with constant probability,

and amplify the guarantee so that

• the generalisation error holds with very high probability, and

• the guarantee holds simultaneously over all queries in a sequence.

The proof of the basic guarantee follows the lines of existing proofs using algorithmic

stability (e.g., [DW79a]), while the monitor technique and the resulting amplification

statements are new.

The amplification of success probability is the more technically sophisticated

of the two key steps. The idea is to run many (about 1/β, using the notation of

Theorem 3.1.1) copies of a stable mechanism on independently selected data sets.

Each of these interactions results in a sequence of queries and answers. The monitor

then selects the the query and answer pair from amongst all of the sequences that

has the largest error. It then outputs this query as well as the index of the interaction

that produced it. Our main technical lemma shows that the monitor will find a “bad”
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query/dataset pair (one where the true and empirical values of the query differ)

with at most constant probability. This implies that the each of the real executions

outputs a bad query with probability O(β). Relative to previous work, the resulting

argument yields better bounds, applies to more general classes of queries, and even

generalises to other notions of stability.

Optimality. In general, we cannot prove that our bounds are optimal. Even for

nonadaptive statistical queries, n & log(k)/α2 samples are necessary, and in Chapter

6 we show that that n & min{
√

k,
√

log |X |}/α samples are necessary to answer

adaptively chosen statistical queries. However, there remains a gap between the

upper and lower bounds.

However, we can show that our connection between DP stability and gener-

alisation is optimal (see Section 3.7 for details). Moreover, for every family of

queries we consider, no DP-stable algorithm can achieve better sample complex-

ity [BUV14, BST14]. Thus, any significant improvement to our bounds must come

from using a weaker notion of stability or some entirely different approach.

Computational Complexity. Throughout, we will assume that the analyst only

issues queries q such that the empirical answer q(x) can be evaluated in time

poly(n, log |X |). When k� n2 our algorithms have similar running time. However,

when answering k � n2 queries, our algorithms suffer running time at least

poly(n, |X |). Since the mechanism’s input is of size n · log |X |, these algorithms

cannot be considered computationally efficient. For example, if X = {0, 1}d for

some dimension d, then in the non adaptive setting poly(n, d) running time would

suffice, whereas our algorithms require poly(n, 2d) running time. Unfortunately,

this running time is known to be optimal, as Chapter 6 (building on an earlier
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impossibility result [HU14] and hardness results in privacy [Ull13]) shows that,

assuming exponentially hard one-way functions exist, there is no poly(n, 2o(d))-time

mechanism that accurately answers k = ω(n2) statistical queries.

Stable / Differentially Private Mechanisms. Each of our results requires instanti-

ating the mechanism with a suitable stable / differentially private algorithm. For

statistical queries, the optimal mechanisms are the well known Gaussian and Laplace

Mechanisms (slightly refined in Chapter 4) when k is small and the Private Multi-

plicative Weights Mechanism [HR10] when k is large. For arbitrary low-sensitivity

queries, the Gaussian or Laplace Mechanism is again optimal when k is small, and

for large k we can use the Median Mechanism [RR10].

When considering arbitrary search queries over an arbitrary finite range, the

optimal algorithm is the Exponential Mechanism [MT07]. For the special case of

convex minimisation queries over an infinite domain, we use the optimal algorithm

of [BST14] when k is small, and when k is large, we use an algorithm of [Ull15] that

accurately answers exponentially many such queries.

Other Notions of Stability Our techniques applies to notions of distributional

stability other than differential privacy. In particular, defining stability in terms of

total variation (TV) or KL divergence (KL) leads to bounds on the generalisation error

that have polynomially, rather than exponentially, decreasing tails. See Section 3.4

for details.
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3.2 Preliminaries

3.2.1 Queries

Given a distribution P over X or a sample x = (x1, · · · , xn) ∈ X n, we would like to

answer queries about P or x from some family Q. We will often want to bound the

“sensitivity” of the queries with respect to changing one element of the sample. To

this end, we use x ∼ x′ to denote that x, x′ ∈ X n differ on at most one entry. We

will consider several different families of queries:

• Statistical Queries: These queries are specified by a function q : X → [0, 1],

and (abusing notation) are defined as

q(P) = E
z←RP

[q(z)] and q(x) =
1
n ∑

i∈[n]
q(xi).

The error of an answer a to a statistical query q with respect to P or x is

defined to be

errx (q, a) = a− q(x) and errP (q, a) = a− q(P).

• ∆-Sensitive Queries: For ∆ ∈ [0, 1], n ∈ N, these queries are specified by a

function q : X n → R satisfying |q(x)− q(x′)| ≤ ∆ for every pair x, x′ ∈ X n

differing in only one entry. Abusing notation, let

q(P) = E
z←RPn

[q(z)] .

The error of an answer a to a ∆-sensitive query q with respect to P or x is

defined to be

errx (q, a) = a− q(x) and errP (q, a) = E
z←RPn

[errz (q, a)] = a− q(P).
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We denote the set of all ∆-sensitive queries by Q∆. If ∆ = O(1/n) we say the

query is low sensitivity. Note that 1/n-sensitive queries are a strict generalisa-

tion of statistical queries.

• Minimisation Queries: These queries are specified by a loss function L :

X n × Θ → R. We require that L has sensitivity ∆ with respect to its first

parameter, that is,

sup
θ∈Θ, x,x′∈X n, x∼x′

|L(x; θ)− L(x′; θ)| ≤ ∆ .

Here Θ is an arbitrary set of items (sometimes called “parameter values”)

among which we aim to chose the item (“parameter”) with minimal loss, either

with respect to a particular input data set x, or with respect to expectation

over a distribution P .

The error of an answer θ ∈ Θ to a minimisation query L : X n ×Θ→ R with

respect to x is defined to be

errx (L, θ) = L(x, θ)− min
θ∗∈Θ

L(x, θ∗)

and, with respect to P , is

errP (L, θ) = E
z←RPn

[errz (L, θ)] = E
z←RPn

[L(z, θ)]− E
z←RPn

[
min
θ∗∈Θ

L(z, θ∗)

]
.

Note that minθ∗∈Θ E
z←RPn

[L(z, θ∗)] ≥ E
z←RPn

[minθ∗∈Θ L(z, θ∗)], whence

E
z←RPn

[L(z, θ)]− min
θ∗∈Θ

E
z←RPn

[L(z, θ∗)] ≤ errP (L, θ) .

Note that minimisation queries (with Θ = R) generalise low-sensitivity queries:

Given a ∆-sensitive q : X n → R, we can define L(x; θ) = |θ − q(x)| to obtain a

minimisation query with the same answer.
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We denote the set of minimisation queries by Qmin. We highlight two special

cases:

– Minimisation for Finite Sets: We denote by Qmin,D the set of minimisation

queries where Θ is finite with size at most D.

– Convex Minimisation Queries: If Θ ⊂ Rd is closed and convex and L(x; ·)

is convex on Θ for every data set x, then the query can be answered

nonprivately up to any desired error α, in time polynomial in d and α.

We denote the set of all convex minimisation queries by QCM.

3.2.2 Mechanisms for Adaptive Queries

Our goal is to design a mechanismM that answers queries on P using only indepen-

dent samples x1, . . . , xn ←R P . Our focus is the case where the queries are chosen

adaptively and adversarially.

Specifically,M is a stateful algorithm that holds a collection of samples x1, . . . , xn

from the data universe X , takes a query q from some family Q as input, and returns

an answer a. We require that when x1, . . . , xn are independent samples from P , the

answer a is “close” to q(P) in a sense that is appropriate for the family of queries.

Moreover we require that this condition holds for every query in an adaptively

chosen sequence q1, . . . , qk. Formally, we define an accuracy game between a

mechanismM and a stateful data analyst A in Figure 3.1.

Definition 3.2.1 (Accuracy). A mechanismM is (α, β)-accurate with respect to the

population for k adaptively chosen queries from Q given n samples in X if for every

adversary A,

P
Accn,k,Q[M,A]

[
max
j∈[k]

∣∣∣errP
(
qj, aj

)∣∣∣ ≤ α

]
≥ 1− β.

96



A chooses a distribution P over X .
Sample x1, . . . , xn ←R P , let x = (x1, . . . , xn). (Note that A does not know x.)
For j = 1, . . . , k
A outputs a query qj ∈ Q.
M(x, qj) outputs aj.
(As A and M are stateful, qj and aj may depend on the history

q1, a1, . . . , qj−1, aj−1.)

Figure 3.1: The Accuracy Game Accn,k,Q[M,A]

We will also use a definition of accuracy relative to the sample given to the

mechanism, described in Figure 3.2.

A chooses x = (x1, . . . , xn) ∈ X n.
For j = 1, . . . , k
A outputs a query qj ∈ Q.
M(x, qj) outputs aj.
(qj and aj may depend on the history q1, a1, . . . , qj−1, aj−1 and on x.)

Figure 3.2: The Sample Accuracy Game SampAccn,k,Q[M,A]

Definition 3.2.2 (Sample Accuracy). A mechanismM is (α, β)-accurate with respect

to samples of size n from X for k adaptively chosen queries from Q if for every

adversary A,

P
SampAccn,k,Q[M,A]

[
max
j∈[k]

∣∣errx
(
qj, aj

)∣∣ ≤ α

]
≥ 1− β.

3.2.3 DP Stability

In this context we choose the term “DP stability” rather than “differential privacy”

to emphasise the conceptual relationship between this notion and other notions of

algorithmic stability that have been studied in machine learning. We also emphasise

that our work has a very different motivation to the motivation of differential privacy
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— stable algorithms are desirable even when privacy is not a concern, such as when

the data does not concern humans.

In our analysis, we will make crucial use of the fact that DP-stability (as well as

the other notions of stability discussed in Section 3.4.1) is closed under post-processing.

Lemma 3.2.1 (Post-Processing). Let W : X n → R and f : R → R′ be a pair of

randomised algorithms. IfW is (ε, δ)-DP-stable then the algorithm f (W(x)) is (ε, δ)-DP-

stable.

Stability for Interactive Mechanisms

The definition of differential privacy does not immediately apply to algorithms that

interact with a data analyst to answer adaptively chosen queries. Such a mechanism

does not simply take a sample x as input and produce an output. Instead, in the

interactive setting, there is a mechanism M that holds a sample x and interacts

with some algorithm A. We can view this entire interaction betweenM and A as a

single noninteractive meta algorithm that outputs the transcript of the interaction

and define stability with respect to that meta algorithm. Specifically, we define the

algorithm W [M,A](x) that simulates the interaction between M(x) and A and

outputs the messages sent between them. The simulation is also parameterised by

n, k, Q, although we will frequently omit these parameters when they are clear from

context.

Input: A sample x ∈ X n

For j = 1, . . . , k
Feed aj−1 to A and get a query qj ∈ Q.
Feed qj toM(x) and get an answer aj ∈ R.

Output ((q1, a1), . . . , (qk, ak)).

Figure 3.3: Wn,k,Q[M,A] : X n → (Q×R)k
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Note that W [M,A] is a noninteractive mechanism, and its output is just the

query-answer pairs ofM and A in the sample accuracy game, subject to the mecha-

nism being given the sample x. Now we can define the stability of an interactive

mechanismM usingW .

Definition 3.2.3 (Stability of for Interactive Mechanisms). We say an interactive

mechanism M is (ε, δ)-DP-stable for k queries from Q if for every adversary A, the

algorithmWn,k,Q[M,A](x) : X n → (Q×R)k is (ε, δ)-DP-stable.

Composition of DP Stability

The definition above allows for adaptive composition. This follows directly from

composition results of (ε, δ)-differentially private algorithms. A mechanism that is

(ε, δ)-DP-stable for 1 query is (≈ ε
√

k,≈ δk)-stable for k adaptively chosen queries.

See Chapter 2 for appropriate composition bounds.

3.3 From DP Stability to Accuracy

for Low-Sensitivity Queries

In this section we prove our main result that any mechanism that is both accurate

with respect to the sample and satisfies DP stability (with suitable parameters) is

also accurate with respect to the population. The proof proceeds in two mains steps.

First, we prove a lemma that says that there is no DP-stable mechanism that takes

several independent sets of samples from the distribution and finds a query and

a set of samples such that the answer to that query on that set of samples is very

different from the answer to that query on the population. In Section 3.3.2 we prove

this lemma for the simpler case of statistical queries and then in 3.3.3 we extend the
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proof to the more general case of low-sensitivity queries.

The second step is to introduce a monitoring algorithm. This monitoring algorithm

will simulate the interaction between the mechanism and the adversary on multiple

independent sets of samples.

It will then output the least accurate query across all the different interactions.

We show that if the mechanism is stable then the monitoring algorithm is also stable.

By choosing the number of sets of samples appropriately, we ensure that if the

mechanism has even a small probability of being inaccurate in a given interaction,

then the monitor will have a constant probability of finding an inaccurate query in

one of the interactions. By the lemma proven in the first step, no such monitoring

algorithm can satisfy DP stability, therefore every stable mechanism must be accurate

with high probability.

3.3.1 Warmup: A Single-Sample De-Correlated Expectation

Lemma for Statistical Queries

As a warmup, in this section we give a simpler version of our main lemma for the

case of statistical queries and a single sample. Although these results follow from

the results of Section 3.3.3 on general low-sensitivity queries, we include the simpler

version to introduce the main ideas in the cleanest possible setting.

Lemma 3.3.1. LetW : X n → Q be (ε, δ)-DP-stable where Q is the class statistical queries

q : X → [0, 1]. Let P be a distribution on X and let x ←R Pn. Then4

∣∣∣∣ E
x,W

[q(P) | q =W(x)]− E
X,W

[q(x) | q =W(x)]
∣∣∣∣ ≤ eε − 1 + δ.

4The notation E
x,W

[q(P) | q =W(x)] should be read as “the expectation of q(P), where q denotes

the output ofW(x).” That is, the “event” being conditioned on is simply a definition of the random
variable q.
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Proof of Lemma 3.3.1. Before giving the proof, we set up some notation. Let x =

(x1, . . . , xn). For a single element x′ ∈ X , and an index i ∈ [n], we use xi→x′ to

denote the new sample where the i-th element of x has been replaced by the element

x′. Let x′ ←R P be independent from x.

We can now calculate

E
x,W

[q(x) | q =W(x)]

=
1
n

n

∑
i=1

E
x,W

[q(xi) | q =W(x)]

=
1
n

n

∑
i=1

∫ 1

0
P

x,W
[q(xi) > z| q =W(x)]dz

Now we can apply DP stability:

≤ 1
n

n

∑
i=1

∫ 1

0
eε P

x,W
[q(xi) > z| q =W(xi→x′)] + δdz (by (ε, δ)-DP stability)

=
1
n

n

∑
i=1

(
eε · E

x′,x,W
[q(xi) | q =W(xi→x′)] + δ

)
=

1
n

n

∑
i=1

(
eε · E

x′,x,W

[
q(x′)

∣∣ q =W(x)
]
+ δ

)
(the pairs (xi, xi→x′) and (x′, x) are identically distributed)

= eε · E
x′,x,W

[
q(x′)

∣∣ q =W(x)
]
+ δ

= eε · E
x,W

[q(P) | q =W(x)] + δ

An identical argument shows that

E
x,W

[q(x) | q =W(x)] ≥ e−ε ·
(

E
x,W

[q(P) | q =W(x)]− δ

)
.

Therefore, using the fact that |q(P)| ≤ 1 for any statistical query q and distribu-
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tion P , we have∣∣∣∣ E
x,W

[q(P) | q =W(x)]− E
x,W

[q(x) | q =W(x)]
∣∣∣∣ ≤ eε − 1 + δ,

as desired.

3.3.2 Warmup: A Multi-Sample De-Correlated Expectation

Lemma for Statistical Queries

As a second warmup, in this section we give a simpler version of our main lemma

for the case of statistical queries and multiple samples. That is, we consider a setting

where there are many subsamples available to the algorithm. The multi-sample

de-correlated expectation lemma says that a DP-stable algorithm cannot take a

collection of samples x1, . . . , xT and output a pair (q, t) such that q(P) and q(xt)

differ significantly in expectation.

Lemma 3.3.2. Let W : (X n)T → Q × [T] be (ε, δ)-DP-stable where Q is the class

statistical queries q : X → [0, 1]. Let P be a distribution on X and let X = (x1, . . . , xT)←R

(Pn)T. Then∣∣∣∣ E
X,W

[q(P) | (q, t) =W(X)]− E
X,W

[q(xt) | (q, t) =W(X)]
∣∣∣∣ ≤ eε − 1 + Tδ.

Proof of Lemma 3.3.2. Before giving the proof, we set up some notation. Let X =

(x1, . . . , xT) be a set of T samples where each sample xt = (xt,1, . . . , xt,n). For a

single element x′ ∈ X , and a pair of indices (m, i) ∈ [T]× [n], we use X(m,i)→x′ to

denote the new set of T samples where the i-th element of the m-th sample of X has

been replaced by the element x′.
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We can now calculate

E
X,W

[q(xt) | (q, t) =W(X)]

=
T

∑
m=1

E
X,W

[
1{t=m} · q(xm)

∣∣∣ (q, t) =W(X)
]

=
1
n

n

∑
i=1

T

∑
m=1

E
X,W

[
1{t=m} · q(xm,i)

∣∣∣ (q, t) =W(X)
]

=
1
n

n

∑
i=1

T

∑
m=1

∫ 1

0
P

X,W

[
1{t=m} · q(xm,i) ≥ z

∣∣∣ (q, t) =W(X)
]

dz

Now we can apply (ε, δ)-DP stability.

≤ 1
n

n

∑
i=1

T

∑
m=1

(∫ 1

0
eε P

X,W

[
1{t=m} · q(xm,i) ≥ z

∣∣∣ (q, t) =W(X(m,i)→x′)
]
+ δ

)
dz

(by (ε, δ)-DP stability)

=
1
n

n

∑
i=1

T

∑
m=1

(
eε · E

x′,X,W

[
1{t=m} · q(xm,i)

∣∣∣ (q, t) =W(X(m,i)→x′)
]
+ δ

)
=

1
n

n

∑
i=1

T

∑
m=1

(
eε · E

x′,X,W

[
1{t=m} · q(x′)

∣∣∣ (q, t) =W(X)
]
+ δ

)
(the pairs (xm,i, X(m,i)→x′) and (x′, X) are identically distributed)

= eε · E
x′,X,W

[
q(x′)

∣∣ (q, t) =W(X)
]
+ Tδ

= eε · E
X,W

[q(P) | (q, t) =W(X)] + Tδ

≤ E
X,W

[q(P) | (q, t) =W(X)] + eε − 1 + Tδ (since q(P) ∈ [0, 1])

An identical argument shows that

E
X,W

[q(xt) | (q, t) =W(X)] ≥ E
X,W

[q(P) | (q, t) =W(X)] + (e−ε − 1)− Tδ.
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3.3.3 A Multi-Sample De-Correlated Expectation Lemma

Here, we give the most general de-correlated expectation lemma that considers

multiple samples and applies to the more general class of low-sensitivity queries.

Lemma 3.3.3 (Main Technical Lemma). LetW : (X n)T → Q∆× [T] be (ε, δ)-DP-stable

where Q∆ is the class of ∆-sensitive queries q : X n → R. Let P be a distribution on X and

let X = (x1, . . . , xT)←R (Pn)T. Then∣∣∣∣ E
X,W

[q(P) | (q, t) =W(X)]− E
X,W

[q(xt) | (q, t) =W(X)]
∣∣∣∣ ≤ 2(eε − 1 + Tδ)∆n.

We remark that if we use the weaker assumption thatW is (eε− 1+ δ)-TV stable,

(defined in Section 3.4.1), then we would obtain the same conclusion but with the

weaker bound of 2T(eε − 1 + δ)∆n. The advantage of using the stronger definition

of DP stability is that we only have to decrease δ with T and not ε. This advantage

is crucial because algorithms satisfying (ε, δ)-DP stability necessarily have a linear

dependence on 1/ε but only a polylogarithmic dependence on 1/δ

Proof of Lemma 3.3.3. Let X′ = (x′1, . . . , x′T) ←R (Pn)T be independent of X. Recall

that each element xt of X is itself a vector (xt,1, . . . , xt,n), and the same is true for each

element x′t of X′. We will sometimes refer to the vectors x1, . . . , xT as the subsamples

of X.

We define a sequence of intermediate samples that allow us to interpolate

between X and X′ using a series of neighbouring samples. Formally, for ` ∈

{0, 1, . . . , n} and m ∈ {0, 1, . . . , T}, define X`,m = (x`,m
1 , . . . , x`,m

T ) ∈ (X n)T by

x`,m
t,i =

 xt,i (t > m) or (t = m and i > `)

x′t,i (t < m) or (t = m and i ≤ `)

By construction we have X0,1 = Xn,0 = X and Xn,T = X′. Also X0,m = Xn,m−1 for
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m ∈ [T]. Moreover, pairs (X`,t, X`−1,t) are neighboring in the sense that there is a

single subsample, xt such that x`,t
t and x`−1,T

t are neighbors and for every t′ 6= t,

x`,t
t′ = x`−1,t

t′ .

For ` ∈ [n] and m ∈ [T], define a randomised function B`,m : (X n)T × (X n)T →

R by

B`,m(X, Z) =

 q(zt)− q(zt,−`) + ∆ t = m

0 t 6= m
where (q, t) =W(X),

where zt,−` is the t-th subsample of Z with its `-th element replaced by some

arbitrary fixed element of X .

We can now expand
∣∣∣∣ E
X,W

[q(P)− q(xt) | (q, t) =W(X)]
∣∣∣∣ in terms of these inter-

mediate samples and the functions B`,m:∣∣∣∣ E
X,W

[q(P)− q(xt) | (q, t) =W(X)]
∣∣∣∣

=

∣∣∣∣ E
X,X′,W

[
q(x′t)− q(xt) | (q, t) =W(X)

]∣∣∣∣
=

∣∣∣∣∣∣ ∑
`∈[n]

∑
m∈[T]

E
X,X′,W

[
q(x`,m

t )− q(x`−1,m
t )

∣∣∣ (q, t) =W(X)
]∣∣∣∣∣∣

≤ ∑
`∈[n]

∣∣∣∣∣∣ ∑
m∈[T]

E
X,X′,W

[
q(x`,m

t )− q(x`−1,m
t )

∣∣∣ (q, t) =W(X)
]∣∣∣∣∣∣

= ∑
`∈[n]

∣∣∣∣∣∣∣ ∑
m∈[T]

E
X,X′,W


(

q(x`,m
t )− q(x`,m

t,−`) + ∆
)

−
(

q(x`−1,m
t )− q(x`−1,m

t,−` ) + ∆
)
∣∣∣∣∣∣∣ (q, t) =W(X)


∣∣∣∣∣∣∣

(By construction, x`,m
t,−` = x`−1,m

t,−` )

= ∑
`∈[n]

∣∣∣∣∣∣ ∑
m∈[T]

E
X,X′,W

[
B`,m(X, X`,m)− B`,m(X, X`−1,m)

]∣∣∣∣∣∣ (Definition of B`,m.)

Thus, it suffices to show that
∣∣∣∑m∈[T] E

[
B`,m(X, X`,m)− B`,m(X, X`−1,m)

]∣∣∣ ≤ 2(eε −

1 + Tδ)∆ for all ` ∈ [n]. To this end, we make a few observations.
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1. Since q is ∆-sensitive, for every `, m, X, Z, we have 0 ≤ B`,m(X, Z) ≤ 2∆.

Moreover, since B`,m(X, Z) = 0 wheneverW(X) outputs (q, t) with t 6= m, we

have ∑m∈[T] E
[
B`,m(x, x`,m)

]
≤ 2∆.

2. By construction, B`,m(X, Z) is (ε, δ)-DP-stable as a function of its first parameter

X. Stability follows by the post-processing lemma (Lemma 3.2.1) since B`,m is a

post-processing of the output ofW(X), which is assumed to be (ε, δ)-DP-stable.

3. Lastly, observe that the random variables X`,m are identically distributed

(although they are not independent). Namely, each one consists of nT in-

dependent samples from P . Moreover, for every ` and m, the pair (X`,m, X)

has the same distribution as (X, X`,m). Specifically, the first component is nT

independent samples from P and the second component is equal to the first

component with a subset of the entries replaced by fresh independent samples

from P .

Consider the random variables B`,m(X, X`,m) and B`,m(X, X`−1,m) for some ` ∈ [n]

and m ∈ [T]. Using observations 2 and 3, we have

B`,m(X, X`,m) ∼ B`,m(X`,m, X) ∼(ε,δ) B`,m(X`−1,m, X) ∼ B`,m(X, X`−1,m),

where ∼ denotes having the same distribution and ∼(ε,δ) denotes having (ε, δ)-DP

close distributions.5 Thus B`,m(X, X`−1,m) and B`,m(X, X`,m) are (ε, δ)-DP close.

5In the spirit of (ε, δ)-DP stability, we say that distributions A and B over R are (ε, δ)-DP close if
for every R ⊆ R, P [A ∈ R] ≤ eε ·P [B ∈ R] + δ and vice versa.
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Now we can calculate

E
X,X′,W

[
B`,m(X, X`−1,m)

]
=
∫ 2∆

0
P

X,X′,W

[
B`,m(X, X`−1,m) ≥ z

]
dz

≤
∫ 2∆

0

(
eε · P

X,X′,W

[
B`,m(X, X`,m) ≥ z

]
+ δ

)
dz

= eε ·
∫ 2∆

0
P

X,X′,W

[
B`,m(X, X`,m) ≥ z

]
dz + 2δ∆

= eε · E
X,X′,W

[
B`,m(X, X`,m)

]
+ 2δ∆.

Thus we have

∑
m∈[T]

E
X,X′,W

[
B`,m(X, X`−1,m)

]
≤ eε ·

 ∑
m∈[T]

E
X,X,W

[
B`,m(X, X`,m)

]+ 2Tδ∆

≤ ∑
m∈[T]

E
X,X′,W

[
B`,m(X, X`,m)

]
+ 2(eε − 1)∆ + 2∆Tδ.

Thus we have the desired upper bound on the expectation of

∑
m∈[T]

E
[

B`,m(X, X`,m)− B`,m(X, X`−1,m)
]

.

The corresponding lower bound follows from an analogous argument. This com-

pletes the proof.

3.3.4 From Multi-Sample De-Correlated Expectation to Accuracy

Now that we have Lemma 3.3.3, we can prove the following result that DP-stable

mechanisms that are also accurate with respect to their sample are also accurate

with respect to the population from which that sample was drawn.

Theorem 3.3.4 (Main Transfer Theorem). Let Q be a family of ∆-sensitive queries on X .

Assume that, for some α, β ∈ (0, .1),M is

1. (ε = α/64∆n, δ = αβ/32∆n)-DP-stable for k adaptively chosen queries from Q and
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2. (α′ = α/8, β′ = αβ/16∆n)-accurate with respect to its sample for n samples from X

for k adaptively chosen queries from Q.

ThenM is (α, β)-accurate with respect to the population for k adaptively chosen queries

from Q given n samples from X .

The key step in the proof is to define a monitoring algorithm that takes T

separate samples X = (x1, . . . , xT) and for each sample xt, simulates an independent

interaction between M(xt) and A. This monitoring algorithm then outputs the

query with the largest error across all of the queries and interactions (kT queries

in total). Since changing one input to X only affects one of the simulations, the

monitoring algorithm will be stable so long as M is stable, without any loss in

the stability parameter. On the other hand, if M has even a small chance β of

answering a query with large error, then if we simulate T ≈ 1/β independent

interactions, there is a constant probability that at least one of the simulations results

in a query with large error. Thus, the monitor will be a stable algorithm that outputs

a query with large error in expectation. By the multi-sample de-correlated expectation

lemma, such a monitor is impossible, which implies thatM has probability ≤ β of

answering any query with large error.

Proof of Theorem 3.3.4. Let M be an interactive mechanism. Let A be an analyst

and let P be the distribution chosen by A. We define the following monitoring

algorithm.

IfM is stable then so isW , and this fact follows easily from the post-processing

lemma (Lemma 3.2.1):

Claim 3.3.5. For every ε, δ ≥ 0, if the mechanismM is (ε, δ)-DP-stable for k adaptively

chosen queries from Q, then for every P and A, the monitorWP ,k,Q[M,A] is (ε, δ)-DP-

stable.
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Input: X = (x1, . . . , xT) ∈ (X n)T

For t = 1, . . . , T :
SimulateM(xt) and A interacting, let qt,1, . . . , qt,k ∈ Q be the queries of

A and let
at,1, . . . , at,k ∈ R be the corresponding answers ofM.

Let
(j∗, t∗) = argmaxj∈[k], t∈[T]

∣∣∣errP
(
qt,j, at,j

)∣∣∣ .

If at∗,j∗ − qt∗,j∗(P) ≥ 0, let q∗ = qt∗,j∗ , otherwise let q∗ = −qt∗,j∗ . (Q∆ is
closed under negation.)
Output: (q∗, t∗).

Figure 3.4: W(X) =WP [M,A](X) :

Proof. If M is (ε, δ)-DP-stable for k adaptively chosen queries from Q then for

every analyst A who asks k queries from Q, and every t the algorithmW ′(xt) that

simulates the interaction betweenM(xt) and A and outputs the resulting query-

answer pairs is (ε, δ)-DP-stable. From this, it follows that the algorithm W ′(X)

that simulates the interactions between M(xt) and A for every t = 1, . . . , T and

outputs the resulting query-answer pairs is (ε, δ)-DP-stable. To see this, observe

that if X, X′ differ only on one subsample xt, then for every t′ 6= t, xt′ = x′t′ and thus

the query-answer pairs corresponding to subsample t′ are identically distributed

regardless of whether we use X or X′ as input toW .

Observe that the algorithmW defined above is simply a post-processing of these

kT query-answer pairs. That is, (q∗, t∗) depends only on {(qt,j, at,j}t∈[T],j∈[k] and P ,

and not on X. Thus, by Lemma 3.2.1,W is (ε, δ)-DP-stable.

We will use theW with T = b1/βc . In light of Claim 3.3.5 and our assumption
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thatM is (ε, δ)-DP-stable, we can apply Lemma 3.3.3 to obtain∣∣∣∣ E
X,W

[q∗(P)− q∗(xt∗) | (q∗, t∗) =W(X)]
∣∣∣∣ ≤ 2

(
eα/64∆n−1+T

(
αβ

32∆n

))
∆n ≤ α

8
.

(3.1)

To complete the proof, we show that ifM is not (α, β)-accurate with respect to the

population P , then (3.1) cannot hold. To do so, we need the following natural claim

about the output of the monitor.

Claim 3.3.6. P
X,W

[
q∗(P)− aq∗ > α

]
> 1− (1− β)T, and q∗(P)− aq∗ ≥ 0, where aq∗ is

the answer to q∗ produced during the simulation.

Proof. SinceM fails to be (α, β)-accurate, for every t ∈ [T],

P
xt,M

[
max
j∈[k]

∣∣qt,j(P)− at,j
∣∣ > α

]
> β. (3.2)

We obtain the claim from (3.2) by using the fact that the T sets of query-answer

pairs corresponding to different subsamples x1, . . . , xT are independent. That is, the

random variables maxj∈[k]
∣∣qt,j(P)− at,j

∣∣ indexed by t ∈ [T] are independent. Since

q∗(P)− aq∗ is simply the maximum of these independent random variables, the

first part of the claim follows. Also, by construction,W ensures that

q∗(P)− aq∗ ≥ 0. (3.3)

Claim 3.3.7. If M is (α′, β′)-accurate for the sample but not (α, β)-accurate for the

population, then ∣∣∣∣ E
X,W

[q∗(P)− q∗(xt∗) | (q∗, t∗) =W(X)]
∣∣∣∣ ≥ α/4.
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Proof. Now we can calculate∣∣∣∣ E
X,W

[q∗(P)− q∗(xt∗) | (q∗, t∗) =W(X)]
∣∣∣∣

=

∣∣∣∣ E
X,W

[
q∗(P)− aq∗ | (q∗, t∗) =W(X)

]
+ E

X,W

[
aq∗ − q∗(xt∗) | (q∗, t∗) =W(X)

]∣∣∣∣
≥
∣∣∣∣ E
X,W

[
q∗(P)− aq∗ | (q∗, t∗) =W(x)

]∣∣∣∣− ∣∣∣∣ E
X,W

[
aq∗ − q∗(xt∗) | q∗ =W(x)

]∣∣∣∣
≥ α(1− (1− β)T)−

∣∣∣∣ E
X,W

[
aq∗ − q∗(xt∗) | (q∗, t∗) =W(X)

]∣∣∣∣ (Claim 3.3.6)

≥ α(1− (1− β)T)−
(

α/8 + 2T
(

αβ

16∆n

)
∆n
)

(3.4)

≥ α/2− (α/8 + α/8) = α/4 (T = b1/βc.)

Line (3.4) follows from two observations. First, sinceM is assumed to be

(α/8, αβ/16∆n)-accurate for one sample, by a union bound, it is simultaneously

(α/8, T(αβ/16∆n))-accurate for all of the T samples. Thus, we have aq∗ − q∗(xt∗) ≤

α′ except with probability at most T(αβ/16∆n). Second, since q∗ is a ∆-sensitive

query, we always have aq∗ − q∗(xt∗) ≤ 2∆n.6

Thus, ifM is not (α, β)-accurate for the population, we will obtain a contradiction

to (3.1). This completes the proof.

3.4 Other Notions of Stability and

Accuracy on Average

Definition 3.4.2 gives one notion of stability, namely DP stability. However, this is

by no means the only way to formalise stability for our purposes. In this section we

consider other notions of stability and the advantages they have.

6Without loss of generality, the answers ofM can be truncated to an interval of width 2∆n that
contains the correct answer q∗(xt∗). Doing so will ensure |aq∗ − q∗(xt∗)| ≤ 2∆n.
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3.4.1 Other Notions of Algorithmic Stability

We will define here other notions of algorithmic stability, and in Section 3.4.2, we

will show that such notions can provide expected guarantees for generalisation error

which can be used to achieve accuracy on average.

Definition 3.4.1 (TV-Stability). Let W : X n → R be a randomised algorithm. We say

thatW is ε-TV stable if for every pair of samples that differ on exactly one element,

dTV(W(x),W(x′)) = sup
R⊆R

∣∣∣P [W(x) ∈ R]−P
[
W(x′) ∈ R

]∣∣∣ ≤ ε.

Definition 3.4.2 (KL-Stability). Let W : X n → R be a randomised algorithm. We say

thatW is ε-KL-stable if for every pair of samples x, x′ that differ on exactly one element,

E
r←RW(x)

[
log

(
P [W(x) = r]

P [W(x′) = r]

)]
≤ 2ε2

The post-processing property of DP stability (Lemma 3.2.1 in Section 3.2.3) also

applies to the two stability notions above.

Lemma 3.4.1 (Stability Notions Preserved under Post-Processing). LetW : X n → R

and f : R → R′ be a pair of randomised algorithms. IfW is {ε-TV, ε-KL, (ε, δ)-DP}-stable

then the algorithm f (W(x)) is {ε-TV, ε-KL, (ε, δ)-DP}-stable.

Relationships Between Stability Notions ε-KL stability implies ε-TV stability by

Pinsker’s inequality. The relationship between DP stability defined in Section 3.2.3

and the above notions is more subtle. When ε ≤ 1, (ε, 0)-DP stability implies ε-KL

stability and thus also ε-TV stability. When ε ≤ 1 and δ > 0, (ε, δ)-DP stability

implies (2ε + δ)-TV stability. It also implies thatM is “close” to satisfying 2ε-KL

stability (cf. [DRV10] for more discussion of these notions).

As in Section 3.2.3, we define TV-stability and KL-stability of an interactive
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mechanismM through a noninteractive mechanism that simulates the interaction

between M and an adversary A. The definition for these notions of stability is

precisely analogous to Definition 3.2.3 for DP stability.

As with DP stability, both notions above allow for adaptive composition. In fact,

ε-TV stability composes linearly—a mechanism that is ε-TV stable for 1 query is

εk-stable for k queries. The advantage of the stronger notions of KL and DP stability

is that they have a stronger composition. A mechanism that is ε-KL stable for 1

query is (ε
√

k)-stable for k queries.

3.4.2 From TV Stability to Accuracy on Average

In this section we show that TV stable algorithms guarantee a weaker notion of

accuracy on average for adaptively chosen queries.

3.4.3 Accuracy on Average

In Section 3.2.2 we defined accurate mechanisms to be those that answer accurately

(either with respect to the population or the sample) with probability close to 1. In

this section we define a relaxed notion of accuracy that only requires low error in

expectation over the coins ofM and A.

Definition 3.4.3 (Average Accuracy). A mechanismM is α-accurate on average with

respect to the population for k adaptively chosen queries from Q given n samples in

X if for every adversary A,

E
Accn,k,Q[M,A]

[
max
j∈[k]

∣∣∣errP
(
qj, aj

)∣∣∣] ≤ α.

We will also use a definition of accuracy relative to the sample given to the

mechanism:
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Definition 3.4.4 (Sample Accuracy on Average). A mechanismM is α-accurate on

average with respect to samples of size n from X for k adaptively chosen queries

from Q if for every adversary A,

E
SampAccn,k,Q[M,A]

[
max
j∈[k]

∣∣errx
(
qj, aj

)∣∣] ≤ α.

A De-Correlated Expectation Lemma

Towards our goal of proving that TV stability implies accuracy on average in the

adaptive setting, we first prove a lemma saying that TV stable algorithms cannot

output a low-sensitivity query such that the sample has large error for that query.

In the next section we will show how this lemma implies accuracy on average in the

adaptive setting.

Lemma 3.4.5. Let W : X n → Q∆ be an ε-TV stable randomised algorithm. Recall Q∆

is the family of ∆-sensitive queries q : X n → R. Let P be a distribution on X and let

x ←R Pn. Then∣∣∣∣ E
x,W

[q(P) | q =W(x)]− E
x,W

[q(x) | q =W(x)]
∣∣∣∣ ≤ 2ε∆n.

Proof. The proof proceeds via a sequence of intermediate samples. Let x′ ←R Pn be

independent of x. For ` ∈ {0, 1, . . . , n}, we define x` = (x`1, . . . , x`n) ∈ X n by

x`i =

 xi i > `

x′i i ≤ `

By construction, x0 = x and xn = x′, and intermediate samples x` interpolate

between x and x′. Moreover, x` and x`+1 differ in at most one entry, so that we can

use the stability condition to relateW(x`) andW(x`+1).
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For every ` ∈ [n], we define B` : X n ×X n → R by

B`(x, z) = q(z)− q(z−`) + ∆, where q =W(x).

Here, z−` is z with the `-th element replaced by some arbitrary fixed element of X .

Now we can write∣∣∣∣ E
x,W

[q(P)− q(x) | q =W(x)]
∣∣∣∣

=

∣∣∣∣ E
x,x′,W

[
q(x′)− q(x) | q =W(x)

]∣∣∣∣
=

∣∣∣∣∣ n

∑
`=1

E
x,x′,W

[
q(x`)− q(x`−1) | q =W(x)

]∣∣∣∣∣
≤

n

∑
`=1

∣∣∣∣ E
x,x′,W

[
q(x`)− q(x`−1) | q =W(x)

]∣∣∣∣
= ∑

`∈[n]

∣∣∣∣ E
x,x′,W

[(
q(x`)− q(x`−`) + ∆

)
−
(

q(x`−1)− q(x`−1
−` ) + ∆

) ∣∣∣ q =W(x)
]∣∣∣∣

(Since x`−` = x`−1
−` )

= ∑
`∈[n]

∣∣∣∣ E
x,x′,W

[
B`(x, x`)− B`(x, x`−1)

]∣∣∣∣ . (Definition of B)

Thus, to prove the lemma, it suffices to show that for every ` ∈ [n],∣∣∣∣ E
x,x′,W

[
B`(x, x`)− B`(x, x`−1)

]∣∣∣∣ ≤ 2∆ε

To complete the proof, we will need a few observations. First, since q is ∆-

sensitive, for every `, x, z, we have 0 ≤ B`(x, z) ≤ 2∆.

Second, observe that sinceW is assumed to be ε-TV stable, by the post-processing

lemma (Lemma 3.2.1) B`(x, z) is ε-TV stable with respect to its first parameter x.

Finally, observe that the random variables x0, . . . , xn are identically distributed

(although not independent). That is, every x` consists of n independent draws from

P . Moreover, for every `, the pairs (x, x`) and (x`, x) are identically distributed.
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Specifically, the first component is n independent samples from P and the second

component is equal to the first component with a subset of the entries replaced by

new independent samples from P .

Combining, the second and third observation with the triangle inequality, we

have

dTV

(
B`(x, x`), B`(x, x`−1)

)
≤ dTV

(
B`(x, x`), B`(x`, x)

)
+ dTV

(
B`(x`, x), B`(x`−1, x)

)
+ dTV

(
B`(x`−1, x), B`(x, x`−1)

)
≤ 0 + ε + 0 = ε.

Using the observations above, for every ` ∈ [n] we have

E
x,x′,W

[
B`(x, x`)− B`(x, x`−1)

]
≤ 2∆ · dTV

(
B`(x, x`), B`(x, x`−1)

)
≤ 2∆ε.

Thus we have the desired upper bound on the expectation of B`(x, x`)− B`(x, x`−1).

The corresponding lower bound follows from an analogous argument. This com-

pletes the proof.

From De-Correlated Expectation to Accuracy on Average

Theorem 3.4.6. Let Q∆ be the family of ∆-sensitive queries on X . Assume thatM is

1. (ε = α/4∆n)-TV stable for k adaptively chosen queries from Q = Q∆ and

2. (α′ = α/2)-accurate on average with respect to its sample for n samples from X for k

adaptively chosen queries from Q.

Then M is α-accurate on average with respect to the population for k adaptively chosen

queries from Q given n samples from X .
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The high level approach of the proof is to apply the Lemma 3.4.5 to a “monitoring

algorithm” that watches the interaction between the mechanism M(x) and the

analyst A and then outputs the least accurate query. Since M(x) is stable, the

de-correlated expectation lemma says that the query output by the monitor will

satisfy q(P) ≈ q(x) in expectation, this implies that even for the least accurate query

in the interaction betweenM(x) and A, q(P) ≈ q(x) in expectation Thus, ifM is

accurate with respect to the sample x, it is also accurate with respect to P .

Proof of Theorem 3.4.6. LetM be an interactive mechanism and A be an analyst that

chooses the distribution P . We define the following monitoring algorithm. IfM

Input: x ∈ X n

SimulateM(x) and A interacting, let q1, . . . , qk ∈ Q be the queries of A and
let

a1, . . . , ak ∈ R be the corresponding answers ofM.
Let j = argmaxj=1,...,k

∣∣errP
(
qj, aj

)∣∣ .
If aj − qj(P) ≥ 0, let q∗ = qj, otherwise let q∗ = −qj. (Q∆ is closed under

negation.)
Output: q∗.

Figure 3.5: W(x) =WP [M,A](x) :

is stable then so isW , and this fact follows easily from the post-processing lemma

(Lemma 3.2.1).

Claim 3.4.7. For every ε ≥ 0, if the mechanismM is ε-TV stable for k adaptively chosen

queries from Q, then for every P and A, the monitorWP [M,A] is ε-TV stable.

Proof of Claim 3.4.7. The assumption thatM is ε-TV stable for k adaptively chosen

queries from Q means that for every analyst A who asks k queries from Q, the

algorithmW ′(x) that simulates the interaction betweenM(x) and A and outputs

the resulting query-answer pairs is ε-TV stable. Observe that the algorithm W
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defined above is simply a post-processing of these query-answer pairs. That is, q∗

depends only on q1, a1, . . . , qk, ak and P , and not on x. Thus, by Lemma 3.2.1, for

every P and A, the monitorWP [M,A] is ε-TV stable.

In light of Claim 3.4.7 and our assumption thatM is (α/4∆n)-TV stable, we can

apply Lemma 3.4.5 to obtain∣∣∣∣ E
x,W

[q∗(P)− q∗(x) | q∗ =W(x)]
∣∣∣∣ ≤ 2

( α

4∆n

)
∆n ≤ α/2. (3.5)

To complete the proof, we show that ifM is not α-accurate on average with respect

to the population P , then (3.5) cannot hold.

Claim 3.4.8. IfM is (α/2)-accurate for the sample but not α-accurate for the population,

then ∣∣∣∣ E
x,W

[q∗(P)− q∗(x) | q∗ =W(x)]
∣∣∣∣ ≥ α/2.

Proof of Claim 3.4.8. Using our assumptions, we can calculate as follows.∣∣∣∣ E
x,W

[q∗(P)− q∗(x) | q∗ =W(x)]
∣∣∣∣

=

∣∣∣∣ E
x,W

[
q∗(P)− aq∗ | q∗ =W(x)

]
+ E

x,W

[
aq∗ − q∗(x) | q∗ =W(x)

]∣∣∣∣
≥
∣∣∣∣ E
x,W

[
q∗(P)− aq∗ | q∗ =W(x)

]∣∣∣∣− ∣∣∣∣ E
x,W

[
aq∗ − q∗(x) | q∗ =W(x)

]∣∣∣∣
> α−

∣∣∣∣ E
x,W

[
aq∗ − q∗(x) | q∗ =W(x)

]∣∣∣∣ (3.6)

≥ α− α/2 (3.7)

= α/2.

Line (3.6) follows from two observations. First, by construction of W , we always

have q∗(P)− aq∗ ≤ 0. Second, sinceM is assumed not to be α-accurate on average

for the population, the expected value of |q∗(P) − aq∗ | > α. Since W ensures

118



that aq∗ − q∗(P) ≥ 0, we also have that the absolute value of the expectation of

q∗(P) − aq∗ is greater than α. Line (3.7) follows from the assumption that M is

(α/2)-accurate on average for the sample.

Thus, if M is not α-accurate on average for the population, we will obtain a

contradiction to (3.5). This completes the proof.

3.5 From Low-Sensitivity Queries to

Optimisation Queries

In this section, we extend our results for low-sensitivity queries to the more general

family of minimisation queries. To do so, we design a suitable monitoring algorithm

for minimisation queries. As in our analysis of low-sensitivity queries, we will have

the monitoring algorithm take as input many independent samples and simulate

the interaction betweenM and A on each of those samples. Thus, ifM has even a

small probability of being inaccurate, then with constant probability the monitor

will find a minimisation query thatM has answered inaccurately. Previously, we

had monitor simply output this query and applied Lemma 3.3.3 to arrive at a

contradiction. However, since Lemma 3.3.3 only applies to algorithms that output a

low-sensitivity query, we can’t apply it to the monitor that outputs a minimisation

query. We address this by having the monitor output the error function associated

with the loss function and answer it selects, which is a low-sensitivity query. If we

assume that the mechanism is accurate for its sample but not for the population,

then the monitor will find a loss function and an answer with low error on the

sample but large error on the population. Thus the error function will be a low-

sensitivity query with very different answers on the sample and the population,
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which is a contradiction. To summarise, we have the following theorem.

Theorem 3.5.1 (Transfer Theorem for Minimisation Queries). Let Q = Qmin be the

family of ∆-sensitive minimisation queries on X . Assume that, for some α, β ≥ 0,M is

1. (ε = α/128∆n, δ = αβ/64∆n)-DP-stable for k adaptively chosen queries from Q

and

2. (α′ = α/8, β′ = αβ/32∆n)-accurate with respect to its sample for n samples from X

for k adaptively chosen queries from Q.

ThenM is (α, β)-accurate with respect to the population for k adaptively chosen queries

from Q given n samples from X .

The formal proof is nearly identical to that of Theorem 3.3.4, so we omit the full

proof. Instead, we will simply describe the modified monitoring algorithm.

Input: X = (x1, . . . , xT) ∈ (X n)T

For t = 1, . . . , T :
SimulateM(xt) and A interacting, let Lt,1, . . . , Lt,k ∈ Q be the queries of

A and let
θt,1, . . . , θt,k ∈ R be the corresponding answers ofM.

Let (t∗, j∗) be

(t∗, j∗) = argmaxj∈[k], t∈[T]

∣∣∣errP
(

Lt,j, θt,j
)∣∣∣ .

Let q∗(x) = errx(Lt∗,j∗ , θt∗,j∗) (note, by construction, q∗ ∈ Q2∆, i.e. q∗ is
2∆-sensitive)
Output: (q∗, t∗).

Figure 3.6: W(X) =WP [M,A](X) :
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3.6 Applications

3.6.1 Low-Sensitivity and Statistical Queries

We now plug known stable mechanisms (designed in the context of differential pri-

vacy) in to Theorem 3.3.4 to obtain mechanisms that provide strong error guarantees

with high probability for both low-sensitivity and statistical queries.

Corollary 3.6.1 (Theorem 3.3.4 and Theorem 4.4.1). There is a mechanismM that is

(α, β)-accurate with respect to the population for k adaptively chosen queries from Q∆ where

∆ = O(1/n) given n samples from X for

n ≥ O

(√
k · log log k · log3/2(1/αβ)

α2

)

The mechanism runs in time poly(n, log |X |, log(1/β)) per query.

Corollary 3.6.2 (Theorem 3.3.4 and [RR10]). There is a mechanism M that is (α, β)-

accurate with respect to the population for k adaptively chosen queries from Q∆ where

∆ = O(1/n) given n samples from X for

n = O

(
log |X | · log k · log3/2(1/αβ)

α3

)

The mechanism runs in time poly(|X |n) per query. The case where ∆ is not O(1/n) can

be handled by rescaling the output of the query.

Corollary 3.6.3 (Theorem 3.3.4 and [HR10]). There is a mechanismM that is α-accurate

on average with respect to the population for k adaptively chosen queries from QSQ given n

samples from X for

n = O

(√
log |X | · log k · log3/2(1/αβ)

α3

)

The mechanism runs in time poly(n, |X |) per query.
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3.6.2 Optimisation Queries

The results of the Section 3.5 can be combined with existing differentially private

algorithms for minimising “empirical risk” (that is, loss with respect to the sample

x) to obtain algorithms for answering adaptive sequences of minimisation queries.

We provide a few specific instantiations here, based on known differentially private

mechanisms.

Minimisation Over Arbitrary Finite Sets

Corollary 3.6.4 (Theorem 3.5.1 and [MT07]). Let Θ be a finite set of size at most D. Let

Q ⊂ Qmin be the set of sensitivity-1/n loss functions bounded between 0 and C. Then there

is a mechanismM that is (α, β)-accurate with respect to the population for k adaptively

chosen queries from Qmin given

n ≥ O

(
log(DC/α) ·

√
k · log3/2(1/αβ)

α2

)

samples from X . The running time of the mechanism is dominated by O((k+ log(1/β)) ·D)

evaluations of the loss function.

Convex Minimisation

We state bounds for convex minimisation queries for some of the most common

parameter regimes in applications. In the first two corollaries, we consider 1-

Lipschitz7 loss functions over a bounded domain.

Corollary 3.6.5 (Theorem 3.5.1 and [BST14]). Let Θ be a closed, convex subset of Rd set

such that maxθ∈Θ ‖θ‖2 ≤ 1. Let Q ⊂ Qmin be the set of convex 1-Lipschitz loss functions

7A loss function L : X ×Rd → R is 1-Lipschitz if for every θ, θ′ ∈ Rd, x ∈ X , |L(θ, x)− L(θ′, x)| ≤
‖θ − θ′‖2.
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that are 1/n-sensitive. Then there is a mechanismM that is (α, β)-accurate with respect to

the population for k adaptively chosen queries from Q given

n = Õ

(√
dk · log2 (1/αβ)

α2

)

samples from Q. The running time of the mechanism is dominated by k · n2 evaluations of

the gradient ∇L.

Corollary 3.6.6 (Theorem 3.5.1 and [Ull15]). Let Θ be a closed, convex subset of Rd set

such that maxθ∈Θ ‖θ‖2 ≤ 1. Let Q ⊂ Qmin be the set of convex 1-Lipschitz loss functions

that are 1/n-sensitive. Then there is a mechanismM that is (α, β)-accurate with respect to

the population for k adaptively chosen queries from Q given

n = Õ

(√
log |X | · (

√
d + log k) · log3/2(1/αβ)

α3

)

samples from X . The running time of the mechanism is dominated by poly(n, |X |) and

k · n2 evaluations of the gradient ∇L.

In the next two corollaries, we consider 1-strongly convex8, Lipschitz loss func-

tions over a bounded domain.

Corollary 3.6.7 (Theorem 3.5.1 and [BST14]). Let Θ be a closed, convex subset of Rd set

such that maxθ∈Θ ‖θ‖2 ≤ 1. Let Q ⊂ Qmin be the set of 1-strongly convex, 1-Lipschitz loss

functions that are 1/n-sensitive. Then there is a mechanismM that is (α, β)-accurate with

respect to the population for k adaptively chosen queries from Q given

n = Õ

(√
dk · log3/2(1/αβ)

α3/2

)

8A loss function L : X ×Rd → R is 1-strongly convex if for every θ, θ′ ∈ Rd, x ∈ X ,

L(θ′, x) ≥ L(θ, x) + 〈∇L(θ, x), θ′ − θ〉+ (1/2) · ‖θ − θ′‖2
2,

where the (sub)gradient ∇L(θ, x) is taken with respect to θ.
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samples from X . The running time of the mechanism is dominated by k · n2 evaluations of

the gradient ∇L.

Corollary 3.6.8 (Theorem 3.5.1 and [Ull15]). Let Θ be a closed, convex subset of Rd set

such that maxθ∈Θ ‖θ‖2 ≤ 1. Let Q ⊂ Qmin be the set of 1-strongly convex 1-Lipschitz loss

functions that are 1/n-sensitive. Then there is a mechanismM that is (α, β)-accurate with

respect to the population for k adaptively chosen queries from Q given

n = Õ

(√
log |X | ·

( √
d

α5/2 +
log k

α3

)
· log3/2(1/αβ)

)

samples from X . The running time of the mechanism is dominated by poly(n, |X |) and

k · n2 evaluations of the gradient ∇L.

3.7 An Alternative Form of Generalisation

and Tightness of Our Results

We now provide an alternative form of our generalisation bounds. The following

Theorem is more general than Theorem 3.3.4 because it says that no DP-stable

procedure that outputs a low-sensitivity can output a query that distinguishes the

sample from the population (not just DP-stable procedures that are accurate for the

sample).

First we prove the following technical lemma.

Lemma 3.7.1. Let F be a finite set, f : F → R a function, and η > 0. Define a random

variable X on F by

P [X = x] =
eη f (x)

C
, where C = ∑

x∈F
eη f (x).
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Then

E [ f (X)] ≥ max
x∈F

f (x)− 1
η

log |F|.

Proof. We have

f (x) =
1
η

(
log C + log P [X = x]

)
.

Thus

E [ f (X)] = ∑
x∈F

P [X = x] f (x)

= ∑
x∈F

P [X = x]
1
η

(
log C + log P [X = x]

)
=

1
η
(log C− H(X)) ,

where H(X) is the Shannon entropy of the distribution of X (measured in nats,

rather than bits). In particular,

H(X) ≤ log |support(X)| = log |F|,

as the uniform distribution maximises entropy. Moreover, C ≥ maxx∈F eη f (x),

whence 1
η log C ≥ maxx∈F f (x). The result now follows from these two inequalities.

Theorem 3.7.2. Let ε ∈ (0, 1/3), δ ∈ (0, ε/4), and n ≥ 1
ε2 log(4ε

δ ). LetM : X n → Q∆

be (ε, δ)-DP-stable where Q∆ is the class of ∆-sensitive queries q : X n → R. Let P be a

distribution on X , let x ←R Pn, and let q←R M(x). Then

P
x,M

[|q(P)− q(x)| ≥ 18ε∆n] <
δ

ε
.

Intuitively, Theorem 3.7.2 says that “stability prevents overfitting.” It says that

no stable algorithm can output a low-sensitivity function that distinguishes its input

from the population the input was drawn from (i.e. “overfits” its sample).
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In particular, Theorem 3.7.2 implies that, if a mechanismM is stable and outputs

q that “fits” its data, then q also “fits” the population. This gives a learning theory

perspective on our results.

Proof. Consider the following monitor algorithmW .

Input: X = (x1, . . . , xT) ∈ (X n)T

Set F = ∅.
For t = 1, . . . , T :

Let qt ←M(xt), and set F = F ∪ {(qt, t), (−qt, t)}.
Sample (q∗, t∗) from F with probability proportional to

exp
(

ε
∆ (q∗(xt∗)− q∗(P))

)
.

Output: (q∗, t∗).

Figure 3.7: W(X) =WP [M](X) :

We will use the monitor W with T = bε/δc. Observe that W only access its

input throughM (which is (ε, δ)-DP-stable) and the exponential mechanism (which

is (ε, 0)-DP-stable). Thus, by composition and postprocessing,W is (2ε, δ)-DP-stable.

We can hence apply Lemma 3.3.3 to obtain

E
X,W

[q∗(xt∗)− q∗(P) | (q∗, t∗) =W(X)] ≤ 2
(

e2ε − 1 + Tδ
)

∆n < 8ε∆n. (3.8)

Now we can apply Lemma 3.7.1 with f (q, t) = q(xt)− q(P) and η = ε
∆ to get

E
q∗,t∗

[ f (q∗, t∗)] ≥ max
(q,t)∈F

f (q, t)− ∆
ε

log |F| = max
t∈[T]
|qt(xt)− qt(P)| −

∆
ε

log(2T). (3.9)

Combining (3.8) and (3.9) gives

E
X,W

[
max
t∈[T]
|qt(xt)−qt(P)|

]
−∆

ε
log(2T)≤ E

X,W
[q∗(xt∗)−q∗(P) | (q∗, t∗)=W(X)]<8ε∆n.

(3.10)

To complete the proof, we assume, for the sake of contradiction, thatM has a

high enough probability of outputting a query q such that |q(P)− q(x)| is large. To
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obtain a contradiction from this assumption, we need the following natural claim

(analogous to Claim 3.3.6) about the output of the monitor.

Claim 3.7.3. If

P
x,M

[|q(P)− q(x)| ≥ 18ε∆n] ≥ δ

ε
,

then

P
X,W

[
max
t∈[T]
|qt(xt)− qt(P)| ≥ 18ε∆n

]
≥ 1−

(
1− δ

ε

)T
≥ 1

2
.

Thus

E
X,W

[
max
t∈[T]
|qt(xt)− qt(P)|

]
≥ 9ε∆n. (3.11)

Combining (3.10) and (3.11) gives

9ε∆n− ∆
ε

log(2T) ≤ 8ε∆n,

which simplifies to

log(2ε/δ) ≥ log(2T) ≥ ε2n.

This contradicts the assumption that n ≥ 1
ε2 log(4ε

δ ) and hence completes the proof.

3.7.1 Optimality

We now show that our connection between DP stability and generalisation (Theo-

rem 3.7.2 and Theorem 3.3.4) is optimal.

Lemma 3.7.1. Let α > δ > 0, let n ≥ 1
α , and let ∆ ∈ [0, 1]. Let U be the uniform

distribution over [0, 1]. There exists a (0, δ)-DP-stable algorithm A : [0, 1]n → Q∆ such

that if X←R Un and if q←R A(X) then

Pr[q(X)− q(U ) ≥ α∆n] ≥ δ

2α
.
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Proof. Consider the following simple algorithm, denoted as B. On input a database

x, output x with probability δ, and otherwise output the empty database. Clearly, B

is (0, δ)-DP-stable. Now construct the following algorithm A.

Input: A database X ∈ [0, 1]n. We think of X as 1
α databases of size αn each:

X = (x1, . . . , x1/α).
For 1 ≤ i ≤ 1/α let x̂i = B(xi).
Let p : [0, 1]→ {0, 1} where p(x) = 1 iff ∃i s.t. x ∈ x̂i.
Define qp : [0, 1]n → R where qp(x) = ∆ ∑x∈x p(x) (note that qp is a ∆-

sensitive query, and that it is a statistical query if ∆ = 1/n).
Output: qp.

Figure 3.8: A : [0, 1]n → Q∆

As B is (0, δ)-DP-stable, and as A only applies B on disjoint databases, we get

that A is also (0, δ)-DP-stable.

Suppose X = (x1, . . . , x1/α) contains i.i.d. samples from U , and consider the

execution of A on X. Observe that the predicate p evaluates to 1 only on a finite

number of points from [0, 1], and hence, we have that qp(U ) = 0. Next note that

qp(X) = α∆n · |{i : x̂i = xi}|. Therefore, if there exists an i s.t. x̂i = xi then

q(X)− q(U ) ≥ α∆n. The probability that this is not the case is at most

(1− δ)1/α ≤ e−δ/α ≤ 1− δ

2α
,

ans thus, with probability at least δ
2α , algorithm A outputs a ∆-sensitive query q s.t.

q(X)− q(U ) ≥ α∆n.

In particular, using Lemma 3.7.1 with α = ε shows that the parameters in

Theorem 3.7.2 are tight.

128



Chapter 4

Bounds for Differential Privacy

4.1 Introduction

In this chapter we consider the tradeoff between privacy and utility when answering

simple queries about a sensitive dataset. Specifically, we consider the sample complex-

ity of differential private answers for one-way marginals—the minimum number of

records n that is sufficient in order to publicly release a given set of statistics about

the dataset, while achieving both differential privacy and accuracy.

The sample complexity of achieving pure differential privacy is well known

for many settings (e.g. [HT10]). The more general setting of approximate differential

privacy is less well understood. Recently, Bun, Ullman, and Vadhan [BUV14] showed

how to prove strong lower bounds for approximate differential privacy that are

optimal up to polylogarithmic factors for δ ≈ 1/n, which is essentially the weakest

privacy guarantee that is still meaningful.1 Since δ bounds the probability of a

complete privacy breach, we would like δ to be very small. Thus we would like

1When δ ≥ 1/n there are algorithms that are intuitively not private, yet satisfy (0, δ)-differential
privacy.
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to quantify the cost (in terms of sample complexity) as δ → 0. In this chapter

we give lower bounds for approximately differentially private algorithms that are

nearly optimal for every choice of δ, and smoothly interpolate between pure and

approximate differential privacy.

In particular, we consider algorithms that compute the one-way marginals of the

dataset—an extremely simple and fundamental family of queries. For a dataset

x ∈ {±1}n×d, the d one-way marginals are simply the mean of the bits in each of

the d columns. Formally, we define

x :=
1
n

n

∑
i=1

xi ∈ [±1]d

where xi ∈ {±1}d is the i-th row of x. A mechanism M is said to be accurate if, on

input x, its output is “close to” x. Accuracy may be measured in a worst-case sense—

i.e. ‖M(x)− x‖∞ ≤ α, meaning every one-way marginal is answered with accuracy

α—or in an average-case sense—i.e. ‖M(x)− x‖1 ≤ αd, meaning the marginals are

answered with average accuracy α.

Some of the earliest results in differential privacy [DN03, DN04, BDMN05,

DMNS06] give a simple (ε, δ)-differentially private algorithm—the Laplace mecha-

nism—that computes the one-way marginals of x ∈ {±1}n×d with average error α

as long as

n ≥ O

(
min

{√
d log(1/δ)

εα
,

d
εα

})
. (4.1)

The previous best lower bounds are n ≥ Ω(d/εα) [HT10] for pure differential

privacy and n ≥ Ω̃(
√

d/εα) for approximate differential privacy with δ = o(1/n)

[BUV14]. Our main result is an optimal lower bound that combines the previous

lower bounds.

Theorem 4.1.1 (Main Theorem). For every ε, δ, α ∈ (0, 0.1) and n, d ∈ N the fol-
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lowing holds. Let M : {±1}n×d → [±1]d be (ε, δ)-differentially private. Suppose

E
M
[‖M(x)− x‖1] ≤ αd for all x ∈ {±1}n×d. If e−αεn/5 ≤ δ ≤ ε/(250n)1.1„ then

n ≥ Ω

(√
d log(1/δ)

εα

)
.

Although there has been a long line of work developing methods to prove lower

bounds in differential privacy (see [DN03, DMT07, DY08, KRSU10, HT10, NTZ13,

BUV14] for a representative, but not exhaustive, sample), our result is the first to

show that the sample complexity must grow by a multiplicative factor of
√

log(1/δ).

We also remark that the assumption on the range of δ is necessary: The

Laplace mechanism gives accuracy α and satisfies (ε, 0)-differential privacy when

n ≥ O(d/εα). When δ = 2−Θ(d), our lower bound matches, up to constants, the

upper bound of the Laplace mechanism for δ = 0. So the lower bound cannot

be strengthened for smaller values of δ. On the other hand, randomly sampling

O(1/α2) rows from the dataset and outputting the average of those rows gives

accuracy α and satisfies (0, O(1/nα2))-differential privacy. So for δ ≈ 1/n we cannot

hope to prove lower bounds that grow with d or 1/ε.

Lower bounds for answering one-way marginals have been shown to imply

lower bounds for fundamental problems such as private convex empirical risk

minimisation [BST14] and private principle component analysis [DTTZ14]. Our

new lower bound for one-way marginals thus implies similar new lower bounds for

these problems.

Finally, our techniques yield a simple alternative proof that n ≥ Ω(d/εα) is

necessary to achieve pure differential privacy while satisfying the accuracy condition

in Theorem 4.1.1. We present this proof as a warmup in Section 4.3.1.
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4.1.1 New Algorithms for Maximum Error

Our lower bound holds for mechanisms that bound the average error over the

queries (we denote this as L1 error). Thus, it also holds for algorithms that bound

the maximum error over the queries (we denote this as L∞ error). The Laplace

mechanism gives a matching upper bound for average error. In many cases bounds

on the maximum error are preferable. For maximum error, the sample complexity of

the best previous mechanisms degrades by an additional (log d)Ω(1) factor compared

to (4.1).

Surprisingly, this degradation is not necessary. We present algorithms that

answer every one-way marginal with α accuracy and improve on the sample com-

plexity of the Laplace mechanism by roughly a log d factor. These algorithms

demonstrate that the widely used technique of adding independent noise to each

query is suboptimal when the goal is to achieve worst-case error guarantees.

Our algorithm for pure differential privacy satisfies the following.

Theorem 4.1.2. For every ε, α > 0, d ≥ 1, and n ≥ 4d/εα, there exists an efficient

mechanism M : {±1}n×d → [±1]d that is (ε, 0)-differentially private and

∀x ∈ {±1}n×d P
M
[‖M(x)− x‖∞ ≥ α] ≤ (2e)−d.

In fact, the algorithm promised by Theorem 4.1.2 is oblivious, perturbing the

answers with noise from a fixed distribution2 and our algorithm is applicable to any

set of d queries of sensitivity at most 2/n, rather than just one-way marginals.

And our algorithm for approximate differential privacy is as follows.

2That is, M(x) is simply x +Y (truncated to [±1]d), where Y is a single distribution and does not
depend on x.
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Theorem 4.1.3. For every ε, δ, α > 0, d ≥ 1, and

n ≥ O

(√
d · log(1/δ) · log log d

εα

)
,

there exists an efficient mechanism M : {±1}n×d → [±1]d that is (ε, δ)-differentially

private and

∀x ∈ {±1}n×d P
M
[‖M(x)− x‖∞ ≥ α] ≤ 1

dω(1)
.

The algorithm stipulated by Theorem 4.1.3 is also oblivious and is applicable to

arbitrary low-sensitivity queries. The algorithm also satisfies concentrated differen-

tial privacy — in this setting there is no stark separation between the approximate

and concentrated versions of differential privacy.

These algorithms improve over the sample complexity of the best known mecha-

nisms for each privacy and accuracy guarantee by a factor of (log d)Ω(1). Namely,

the Laplace mechanism requires n ≥ O(d · log d/εα) samples for pure differen-

tial privacy and the Gaussian mechanism requires n ≥ O(
√

d · log(1/δ) · log d/εα)

samples for approximate differential privacy. We conjecture that the Algorithm in

Theorem 4.1.3 can be improved to match our lower bound — that is, we believe that

the
√

log log d factor is unnecessary.

4.1.2 Techniques

Lower Bounds: Our lower bound relies on techniques from the literature on

fingerprinting codes [BS98]. Fingerprinting codes were originally developed in the

cryptography literature for watermarking digital content, but several recent works

have shown they are intimately connected to lower bounds for differential privacy

and related learning problems [Ull13, BUV14, HU14, §6]. In particular, Bun et

al. [BUV14] showed that fingerprinting codes can be used to construct an attack
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Privacy Accuracy Type Previous bound (n) This work (n)

(ε, δ) L1 or L∞ Lower Ω̃
(√

d
αε

)
[BUV14] Ω

(√
d log(1/δ)

αε

)
(ε, δ) L1 Upper O

(√
d·log(1/δ)

αε

)
Gaussian

(ε, δ) L∞ Upper O
(√

d·log(1/δ)·log d
αε

)
Gaussian O

(√
d·log(1/δ)·log log d

εα

)
(ε, 0) L1 or L∞ Lower Ω

(
d
αε

)
[HT10]

(ε, 0) L1 Upper O
(

d
αε

)
Laplace

(ε, 0) L∞ Upper O
(

d·log d
αε

)
Laplace O

(
d
αε

)
Table 4.1: Summary of sample complexity upper and lower bounds for privately answering d
one-way marginals with L1 error αd or L∞ error α.

demonstrating that any mechanism that accurately answers one-way marginals is

not differentially private.

We do not use fingerprinting codes directly in our proof, but rather we extract

some key ideas from their analysis. Fingerprinting codes are discussed in more detail

in Chapter 6. The lower bounds in this Chapter can be viewed as a construction of a

“weak” fingerprinting code.

The heart of our lower bound is a “correlation analysis,” which we now describe.

For the special case of pure differential privacy, the proof proceeds as fol-

lows. First, we sample x1, x′1 ∈ {±1}d independently and uniformly at random

and then set x1 = x2 = · · · = xn and x′1 = x′2 = · · · = x′n. For a mecha-

nism M : {±1}n×d → [−1, 1]d, we consider the quantities Z := 〈M(x), x1〉 and

Ẑ := 〈M(x), x′1〉. If M is accurate, then E [Z] ≥ Ω(d). On the other hand, since

M(x) and x′1 are independent, we have that E
[
Ẑ
]
= 0. By Hoeffding’s inequality,

we also have that P
[
Ẑ > λ

]
≤ 2−Ω(λ2/d) for all λ > 0. If M is (ε, 0)-differentially

private, then, by group privacy, P [Z > λ] ≤ enεP
[
Ẑ > λ

]
– that is, since x and x′
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differ in n elements, repeatedly applying the differential privacy guarantee yields

the enε multiplicative bound (rather than eε, which would apply if x and x′ differ

in only one element). Appropriately combining these three facts yields the lower

bound for pure differential privacy.

Now we describe the lower bound for approximate differential privacy, which

uses ideas from the analysis of fingerprinting codes: First pick a random dataset

x1, · · · , xn ∈ {±1}d. Specifically, pick p ∈ [−1, 1]d uniformly at random and

then, conditioned on p, pick x1, · · · , xn ∈ {±1}d independently with E [xi] = p

for all i ∈ [n]. Then we argue that, if M : {±1}n×d → [−1, 1]d is an accurate

mechanism, there must be correlation between its input and output. Namely,

defining Zi := 〈M(x), xi − p〉, we have

∑
i∈[n]

E [Zi] = ∑
i∈[n]

E [〈M(x), xi − p〉] ≥ Ω(d). (4.2)

On the other hand, if the ith element of x is removed or replaced — the result of

which we denote by xi — then M(xi) is independent of xi (conditioned on p). Hence

E
[
〈M(xi), xi − p〉

]
= 0. We name this quantity Ẑi := 〈M(xi), xi − p〉. In fact, by a

Chernoff-Hoeffding bound, we can argue that, for each i ∈ [n] and λ > 0,

P
[
Ẑi > λ

]
= P

[
〈M(xi), xi − p〉 > λ

]
≤ e−Ω(λ2/d). (4.3)

Thus we have conflicting bounds: Ẑi is small with high probability, while Zi is large

in expectation (for a random i ∈ [n]). Now the punchline: If M is (ε, δ)-differentially

private, then M(x) and M(xi) must be “close” and, hence, so must Zi and Ẑi.

Namely,

∀λ P [Zi > λ] ≤ eεP
[
Ẑi > λ

]
+ δ. (4.4)

Combining (4.2), (4.3), and (4.4) with some straightforward calculations yields the
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lower bound n ≥ Ω(
√

d/ε) for δ ≈ 1/n.

The final step is to interpolate between the lower bound for pure differential

privacy (δ = 0) and the “fingerprinting” lower bound (δ ≈ 1/n). To do so, we

apply group privacy. For pure differential privacy we used group size n and for the

fingerprinting lower bound we used group size 1. To interpolate, we use group size

k = Θ(log(1/nδ)). We will sample x1, · · · , xn/k ∈ {±1}d as in the fingerprinting

lower bound bound. Then we repeat each item k times to obtain n items. Now we

apply the same analysis as for the fingerprinting lower bound except now xi will

differ from x on k entries and we must apply group privacy in (4.4). When k = n or

k = 1 this reduces to the analyses described above and when 1 < k < n it provides

intermediate lower bounds.

The key to the δ dependence in the lower bound is that smaller values of δ allow

group privacy to be applied to larger group sizes while maintaining a strong enough

privacy guarantee for the fingerprinting analysis to carry through.

Upper Bounds: Our algorithm for pure differential privacy and worst-case error is

an instantiation of the exponential mechanism [MT07] using the L∞ norm. That is,

the mechanism samples y ∈ Rd with probability proportional to exp(−η ‖y‖∞) and

outputs M(x) = x + y. In contrast, adding independent Laplace noise corresponds

to using the exponential mechanism with the L1 norm and adding independent

Gaussian noise corresponds to using the exponential mechanism with the L2 norm

squared. Using this distribution turns out to give better tail bounds than adding

independent noise.

For approximate differential privacy, we use a completely different algorithm. We

start by adding independent Gaussian noise to each marginal. However, rather than

using a union bound to show that each Gaussian error is small with high probability,
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we argue that “most” errors are small. Namely, with the sample complexity that we

allow M, we can ensure that all but a 1/polylog(d) fraction of the errors are small

with high probability. Now we “fix” the d/polylog(d) marginals that are bad. We

repeatedly use the exponential mechanism [MT07] to find one bad error and the

correct it by sampling fresh Gaussian noise. The key is that we only need to run this

procedure d/polylog(d) times, which means we can afford the necessary sample

complexity.

4.2 Preliminaries

A well known fact about differential privacy is that it generalises smoothly to

datasets that differ on more than a single row. We say that two datasets x, x′ ∈

{±1}n×d are k-adjacent if they differ by at most k rows, and we denote this by x ∼k x′.

The following statement is essentially folklore, and we refer the reader to [DR14]

for a textbook proof.

Fact 4.2.1 (Group Differential Privacy). For every k ≥ 1, if M : {±1}n×d → R is

(ε, δ)-differentially private, then for every two k-adjacent datasets x ∼k x′, and every subset

S ⊆ R,

P [M(x) ∈ S] ≤ ekε ·P
[
M(x′) ∈ S

]
+

ekε − 1
eε − 1

· δ.

All of the upper and lower bounds for one-way marginals have a multiplicative

1/αε dependence on the accuracy α and the privacy loss ε. This is no coincidence,

and follows from the following general statement, which is folklore.

Fact 4.2.2 (Dependence on α and ε). Let α, εδ ∈ (0, 1/10]. Fix some norm ‖·‖.

Suppose there exists a (ε, δ)-differentially private mechanism M : {±1}n×d → [±1]d
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such that for every dataset x ∈ {±1}n×d,

E
M
[‖M(x)− x‖] ≤ α

∥∥∥~1∥∥∥ .

Then there exists a (1, δ/ε)-differentially private mechanism M′ : {±1}n′×d → [±1]d

for n′ = d20αεne such that for every dataset x′ ∈ {±1}n′×d,

E
M′

[
‖M′(x′)− x′‖

]
≤ 1

10

∥∥∥~1∥∥∥ .

This fact allows us to suppress the accuracy parameter α and the privacy

loss ε when proving our lower bounds. Namely, if we prove a lower bound

of n′ ≥ n∗ for all (1, δ)-differentially private mechanisms M′ : {±1}n′×d →

[±1]d with E
M′

[
‖M′(x′)− x′‖p

]
≤ d1/p/10, then we obtain a lower bound of

n ≥ Ω(n∗/αε) for all (ε, εδ)-differentially private mechanisms M : {±1}n×d → [±1]d

with E
M

[
‖M(x)− x‖p

]
≤ αd1/p. So we will simply fix the parameters α = 1/10 and

ε = 1 in our lower bounds.

Proof. Let k = blog(2)/εc. Given x′ ∈ {±1}n′×d, define x ∈ {±1}n×d to be k copies

of x′ followed by n− kn′ rows of all 1 entries. Then

nx = n′x′ · k + (n− kn′)~1 and x′ =
n

kn′
x− n− kn′

kn′
~1.

Define M′ by

M′(x′) =
n

kn′
M(x)− n− kn′

kn′
~1.

Then

E
M′

[∥∥∥M′(x′)− x′
∥∥∥] = n

kn′
E
M
[‖M(x)− x‖] ≤ αn

kn′
∥∥∥~1∥∥∥ .

Thus, if n′ ≥ 20αεn, we have E
M′

[∥∥∥M′(x′)− x′
∥∥∥] ≤ 1

10

∥∥∥~1∥∥∥, as k ≥ 1/2ε. By Fact 4.2.1,

M′ is
(

kε, ekε−1
eε−1 · δ

)
-differentially private. By our choice of k, we have kε ≤ log 2 ≤ 1

and ekε−1
eε−1 δ ≤ elog 2−1

ε δ = δ/ε, as required.
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4.3 Lower Bounds for Differential Privacy

4.3.1 Warmup: Lower Bound for Pure Differential Privacy

It is known [HT10] that any ε-differentially private mechanism that answers d one-

way marginals requires n ≥ Ω(d/ε) samples. We provide an alternative simple

proof of this fact, which also serves as a warmup to our main proof.

Theorem 4.3.1. Let M : {±1}n×d → [±1]d be a ε-differentially private mechanism.

Suppose

∀x ∈ {±1}n×d E
M
[‖M(x)− x‖1] ≤ 0.9d

Then n ≥ Ω(d/ε).

The proof uses a special case of Hoeffding’s Inequality:

Lemma 4.3.2 (Hoeffding’s Inequality). Let X ∈ {±1}n be uniformly random and

a ∈ Rn fixed. Then

P
X
[〈a, X〉 > λ ‖a‖2] ≤ e−λ2/2

for all λ ≥ 0.

Proof of Theorem 4.3.1. Let x1, x′1 ∈ {±1}d be independent and uniform. Let x ∈

{±1}n×d be n copies of x1 and, likewise, let x′ ∈ {±1}n×d be n copies of x′1. Let

Z = 〈M(x), x1〉 and Ẑ = 〈M(x′), x1〉.

Now we give conflicting tail bounds for Z and Ẑ, which we can relate by privacy.
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By our hypothesis and Markov’s inequality,

P [Z ≤ d/20] =P [〈M(x), x1〉 ≤ 0.05d]

=P [〈x, x1〉 − 〈x−M(x), x1〉 ≤ 0.05d]

=P [〈x−M(x), x1〉 ≥ 0.95d]

≤P [‖x−M(x)‖1 ≥ 0.95d]

≤
E [‖x−M(x)‖1]

0.95d

≤ 0.9
0.95

< 0.95.

Since M(x′) is independent from x1, we have

∀λ ≥ 0 P
[

Ẑ > λ
√

d
]
≤ P

[
〈M(x′), x1〉 > λ

∥∥M(x′)
∥∥

2

]
≤ e−λ2/2,

by Lemma 4.3.2. In particular, setting λ =
√

d/20 gives P [Z′ > d/20] ≤ e−d/800.

Now x and x′ are datasets that differ in n rows, so group privacy implies that

P [M(x) ∈ S] ≤ enεP
[
M(x′) ∈ S

]
for all S. Thus

1
20

<P

[
Z>

d
20

]
=P [M(x)∈Sx]≤ enεP

[
M(x′)∈Sx

]
= enεP

[
Ẑ>

d
20

]
≤ enεe−d/800,

where

Sx =

{
y ∈ [±1]d : 〈y, x1〉 >

d
20

}
.

Rearranging 1/20 < enεe−d/800, gives

n >
d

800ε
− log(20)

ε
,

as required.
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4.3.2 Basic Lower Bound for Approximate Differential Privacy

We first show the basic version of the lower bound for approximate differential

privacy:

Theorem 4.3.3. Let M : {±1}n×d → [±1]d be a (ε = 1, δ = 1/30n)-differentially private

mechanism. Suppose

∀x ∈ {±1}n×d E
M
[‖M(x)− x‖1] ≤

d
10

.

Then n ≥
√

d/41.

The key technical lemma is the fingerprinting lemma, which we prove in the

next section.

Lemma 4.3.4 (Fingerprinting Lemma). Let f : {±1}n → [±1]. Then

E
p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p) + 2 | f (x)− x|

 ≥ 1
3

.

Proof of Theorem 4.3.3. First we define the input distribution: Sample p ∈ [±1]d

uniformly at random. Then sample x ∈ {±1}n×d from the product distribution

with E
[
xi,j
]
= p for all i ∈ [n] and j ∈ [d]. For i ∈ [n] define xi ∈ {±1}n×d to be

x with the ith row resampled. Thus x and xi are neighbouring and have identical

marginal distributions. Define

Zi = 〈M(x), xi − p〉 and Z =
1
n ∑

i∈[n]
Zi = 〈M(x), x− p〉,

where xi is the ith row of x. Also, define

Ẑi = 〈M(xi), xi − p〉.

First we show that privacy gives an upper bound on the expectation of Z:
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Claim 4.3.5. For all i ∈ [n], E [|Zi|] ≤ eε
√

d + δ2d.

Proof. Differential privacy implies that the distribution of Zi is close to the distribu-

tion of Ẑi. In particular, since |Zi| ≤ 2d,

E [|Zi|] =
∫ 2d

0
P [|Zi| > z]dz ≤

∫ 2d

0
eεP

[
|Ẑi| > z

]
+ δdz = eεE

[
|Ẑi|
]
+ δ2d.

Thus we need only show that E
[
|Ẑi|
]
≤
√

d. Consider a fixed value of p. Then

M(xi) and xi − p are independent and E [xi − p] = 0, whence E
[
Ẑi
]
= 0. For all

j ∈ [d], we have E
[
(xi,j − pj)

2] ≤ 1. Since the entries of xi are independent, we

conclude that Var
[
Ẑi
]
≤ d. Thus

E
[
|Ẑi|
]
≤
√

E
[
Ẑ2

i
]
=

√
Var

[
Ẑi
]
+ E

[
Ẑi
]2 ≤ √d.

Now accuracy will give us a lower bound on the expectation of Z:

Claim 4.3.6.

nE [Z] + 2E [‖M(x)− x‖1] ≥
d
3

.

Proof. By linearity of expectations, it suffices to show that, for all j ∈ [d],

E
[
nM(x)j(xj − pj) + 2|M(x)j − xj|

]
≥ 1

3
.

We condition on the randomness of M and the values of pj′ and xi′,j′ for all i and

j′ 6= j. Now the only randomness left is the choice of pj and the jth column of x.

So (noting that M does not have access to pj) we can write M(x)j = f (x1,j, · · · , xn,j)

for some f : {±1}n → [−1, 1]. Now we can apply the fingerprinting lemma to f to

obtain the desired result.
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Since nE [Z] = ∑i∈[n] Zi, we can combine the two claims to obtain

n
(

eε
√

d + δ2d
)
+ 2E [‖M(x)− x‖1] ≥

d
3

.

Substituting E [‖M(x)− x‖1] ≤ d/10, ε = 1, and δ = 1/30n gives n ≥
√

d/15e, as

required.

4.3.3 The Fingerprinting Lemma

In this section we prove the fingerprinting lemma. This section contains the key

techniques that underlie fingerprinting codes [Tar08]. These ideas will appear again

in Chapters 5 and 6.

The proof is broken into several lemmas. The first statement is somewhat

mysterious but extremely powerful.

Lemma 4.3.7. Let f : {±1}n → R. Define g : [±1]→ R by

g(p) = E
x1···n∼p

[ f (x)] .

Then

E
x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p)

 = g′(p) · (1− p2).

How should we interpret this statement? Firstly E
x1···n∼p

[
f (x) ·∑i∈[n](xi − p)

]
is the correlation between the input and output of f , which is the quantity we

want to understand. The function g is a “symmetrisation” of f ; it captures the

interesting aspects (for our purposes) of f . In particular, g(1) = f (1, 1, · · · , 1) and

g(−1) = f (−1,−1, · · · ,−1). So as p varies from −1 to 1, g(p) captures how f

varies over inputs of varying Hamming weight. The derivative g′(p) captures how

rapidly f responds to a change in its input. Namely, g′(p) represents how sensitive

f is when a −1 is changed to a +1 on an input where the average of the bits is
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about p. The Lemma statement is thus simply equating the correlation with this

measure of the sensitivity of f .

Proof. Since x2 = 1 for x ∈ {±1}, we have the identity

d
dp

1 + xp
2

=
x
2
=

1 + xp
2

x− p
1− p2

for all x ∈ {±1} and p ∈ (−1, 1). By the product rule, we have

d
dp ∏

i∈[n]

1 + xi p
2

= ∑
i∈[n]

(
d

dp
1 + xi p

2

)
∏

k∈[n]\{i}

1 + xk p
2

= ∑
i∈[n]

xi − p
1− p2 ∏

k∈[n]

1 + xk p
2

for all x ∈ {±1}n and p ∈ (−1, 1). Sampling x ∼ p samples each x ∈ {±1}

with probability 1+xp
2 . Thus sampling x1···n ∼ p, samples each x ∈ {±1}n with

probability ∏i∈[n]
1+xi p

2 .

Now we can write

g(p) = E
x1···n∼p

[ f (x)] = ∑
x∈{±1}n

f (x) ∏
i∈[n]

1 + xi p
2

.

Using the above identities gives

g′(p) = ∑
x∈{±1}n

f (x)
d

dp ∏
i∈[n]

1 + xi p
2

= ∑
x∈{±1}n

f (x) ∑
i∈[n]

xi − p
1− p2 ∏

k∈[n]

1 + xk p
2

= E
x1···n∼p

 f (x) ∑
i∈[n]

xi − p
1− p2



The previous lemma considers a fixed value of p, whereas the next lemma

takes an average over p. In particular, it gives an expression for the average of the
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derivative g′(p).

Lemma 4.3.8. Let g : [±1]→ R be a polynomial. Then

E
p∈[±1]

[
g′(p) · (1− p2)

]
= 2 E

p∈[±1]
[g(p) · p] . (4.5)

If we discard the factor (1− p2), we would have

E
p∈[±1]

[
g′(p)

]
=

1
2

∫ +1

−1
g′(p)dp =

g(1)− g(−1)
2

(4.6)

by the fundamental theorem of calculus. The factor (1 − p2) simply yields a

“smoothed” version of this simpler bound: the right hand side of (4.5) is the function

g(p) · p averaged over the interval [−1, 1], whereas without the (1− p2) factor the

right hand side of (4.6) is the average of the function g(p) · p over the endpoints

{−1, 1}.

Proof. Let u(p) = 1− p2. By integration by parts and the fundamental theorem of

calculus,

E
p∈[±1]

[
g′(p) · (1− p2)

]
=

1
2

∫ 1

−1
g′(p)(1− p2)dp

=
1
2

∫ 1

−1
g′(p)u(p)dp

=
1
2

∫ 1

−1

(
d

dp
g(p)u(p)

)
− g(p)u′(p)dp

=
1
2
(g(1)u(1)− g(−1)u(−1))− 1

2

∫ 1

−1
g(p)(−2p)dp

=0 +
∫ 1

−1
g(p)pdp

=2 E
p∈[±1]

[g(p) · p] .

Combining Lemmas 4.3.7 and 4.3.8 yields the following version of the finger-
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printing lemma.

Proposition 4.3.9. Let f : {±1}n → R. Then

E
p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p) + ( f (x)− p)2

 ≥ 1
3

.

Proof. Define g : [±1]→ R by

g(p) = E
x1···n∼p

[ f (x)] .

By Lemmas 4.3.7 and 4.3.8,

E
p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p)

 = E
p∈[±1]

[2g(p)p] .

Moreover,

E
p∈[±1],x1···n∼p

[
( f (x)−p)2

]
= E

p∈[±1],x1···n∼p

[
f (x)2−2g(p)p+p2

]
≥0− E

p∈[±1]
[2g(p)p]+

1
3

.

An additional application of Jensen’s inequality yields a slightly different state-

ment:

Proposition 4.3.10. Let f : {±1}n → R. Then

E
p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p) + ( f (x)− x)2

 ≥ 1
3

.

Proof. Define g : [±1]→ R by

g(p) = E
x1···n∼p

[ f (x)] .
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By Lemmas 4.3.7 and 4.3.8,

E
p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p)

 = E
p∈[±1]

[2g(p)p] .

Moreover, by Jensen’s inequality

E
p∈[±1],x1···n∼p

[
( f (x)− x)2

]
≥ E

p∈[±1]

[(
E

x1···n∼p
[ f (x)− x]

)2
]

= E
p∈[±1]

[
(g(p)− p)2

]
= E

p∈[±1]

[
g(p)2 − 2g(p)p + p2

]
= E

p∈[±1]

[
g(p)2

]
− E

p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p)

+
1
3

.

Thus

E
p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p) + ( f (x)− x)2

 ≥ E
p∈[±1]

[
g(p)2

]
+

1
3
≥ 1

3
.

Finally it remains to replace `2 error with `1 error to obtain the desired statement:

Corollary 4.3.11 (Fingerprinting Lemma). Let f : {±1}n → [±1]. Then

E
p∈[±1],x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p) + 2 | f (x)− x|

 ≥ 1
3

.

Proof. Since | f (x)− x| ≤ 2, we have | f (x)− x|2 ≤ 2 | f (x)− x|, which implies the

result.

4.3.4 The Full Lower Bound for Approximate Differential Privacy

First we prove a technical lemma similar to Claim 4.3.5.
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Lemma 4.3.12. Let M :
(
{±1}d)n → [±1]d be (ε, δ)-differentially private. Let p ∈ [±1]d

and let x1···n ∼ p. Then, for all i ∈ [n],

E
x
[〈M(x), xi − p〉] ≤

√
2d log(1/δ) + 2d · (eε + 1)δ.

Proof. Let x′ be x with xi resampled. Then M(x′) and xi are independent. By

Hoeffding’s inequality,

P
x′

[
〈M(x′), xi − p〉 ≥ λ

]
≤ e−λ2/2d

for all λ > 0. Since x and x′ are neighbouring,

P
x
[〈M(x), xi − p〉 ≥ λ] ≤ eε−λ2/2d + δ

for all λ > 0. Setting λ =
√

2d log(1/δ) and using the fact that 〈M(x), xi − p〉 ≤ 2d,

we have

E
x
[〈M(x), xi − p〉] ≤ λ+ 2d ·P

x
[〈M(x), xi − p〉 ≥ λ] ≤

√
2d log(1/δ)+ 2d · (eε + 1)δ.

Now we prove an intermediate version of our main lower bound.

Theorem 4.3.13. Let M :
(
{±1}d)n → [±1]d be (ε, δ)-differentially private. Suppose

that, for all x ∈
(
{±1}d)n, we have

E
[
‖M(x)− x‖2

2

]
≤ α2d.

If α2 ≤ 1/4 and (eε + 1)nδ ≤ 1/50, then

n ≥
√

d
25
√

2 log(1/δ)
.

Proof. Let p ∈ [±1]d be uniformly random and let x1···n ∼ p. By Lemma 4.3.12 and
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linearity of expectations,

E
x

〈M(x), ∑
i∈[n]

xi − p

〉 ≤ n ·
(√

2d log(1/δ) + 2d · (eε + 1)δ
)

.

On the other hand, by Proposition 4.3.10 and linearity of expectations,

E
p,x

〈M(x), ∑
i∈[n]

xi − p

〉
+ ‖M(x)− x‖2

2

 ≥ d
3

.

Thus
d
3
− α2d ≤ n ·

(√
2d log(1/δ) + 2d · (eε + 1)δ

)
.

rearranging and dividing by
√

d gives

√
d ·
(

1
3
− α2 − 2(eε + 1)nδ

)
≤ n ·

√
2 log(1/δ).

By our assumptions, 1/3− α2 − 2(eε + 1)nδ ≥ 1/25. The result follows.

Now we prove the main lower bound. Note that, by Fact 4.2.2, it suffices to

consider a fixed value of α and ε.

Theorem 4.3.14. Let M :
(
{±1}d)n → [±1]d be (1, δ)-differentially private. Suppose

that, for all x ∈
(
{±1}d)n, we have

E [‖M(x)− x‖1] ≤
d

10
.

If e−n/100 ≤ δ ≤ (1/250n)1.1, then

n ≥
√

d log(1/δ)

800
.

Proof. Let M : {±1}n×d → [±1]d be a (1, δ)-differentially private mechanism such

that

∀x ∈ {±1}n×d E
M
[‖M(x)− x‖1] ≤

d
10

. (4.7)
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Let k be an integer parameter to be chosen later. Let nk = bn/kc. Let Mk :

{±1}nk×d → [±1]d be the following mechanism. On input x∗ ∈ {±1}nk×d, Mk

creates x ∈ {±1}n×d by taking k copies of x∗ and filling the remaining entries with

1s. Then Mk runs M on x and outputs M(x).

By group privacy (Fact 4.2.1), Mk is a
(

εk = k, δk =
ek−1
e−1 δ

)
-differentially private

mechanism. By the triangle inequality,

∥∥Mk(x∗)− x∗
∥∥

1 ≤ ‖M(x)− x‖1 +
∥∥x− x∗

∥∥
1 . (4.8)

Now

xj =
k · nk

n
x∗j +

n− k · nk
n

1.

Thus∣∣∣xj − x∗j
∣∣∣ = ∣∣∣∣(k · nk

n
− 1
)

x∗j +
n− k · nk

n

∣∣∣∣ = n− k · nk
n

∣∣∣1− x∗j
∣∣∣ ≤ 2

n− k · nk
n

.

We have
n− k · nk

n
=

n− kbn/kc
n

≤ n− k(n/k− 1)
n

=
k
n

.

Thus
∥∥x− x∗

∥∥
1 ≤ 2dk/n. Assume k ≤ n/200. Thus

∥∥x− x∗
∥∥

1 ≤ d/100. By (4.7),

(4.8), and Hölder’s inequality,

E
Mk

[∥∥Mk(x∗)−x∗
∥∥2

2

]
≤ E

Mk

[∥∥Mk(x∗)−x∗
∥∥

1·
∥∥Mk(x∗)− x∗

∥∥
∞

]
≤
(

d
10

+
d

100

)
·2≤ d

4
.

(4.9)

Now we can apply Theorem 4.3.13 to Mk: If

(eεk + 1)nδk = (ek + 1)n
ek − 1
e− 1

δ ≤ 1
50

, (4.10)

then
n
k
≥ nk ≥

√
d

25
√

2 log(1/δ)
. (4.11)

Now we pick the largest value of k satisfying (4.10) (and the assumption k ≤ n/200)
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and obtain a lower bound on n from (4.11).

Rearranging (4.10) gives e2k − 1 ≤ e−1
50nδ . We set

k =

⌊
min

{
n

200
,

1
2

log
(

1 +
e− 1
50nδ

)}⌋
.

Assuming δ ≥ e−n/100 implies that the second term in the minimum dominates and

k ≥ blog((e− 1)/50nδ)/2c ≥ 1
2 log(1/δ)− 1

2 log(250n). Assuming δ ≤ (1/250n)1.1

implies that k ≥ 1
22 log(1/δ). Thus (4.11) yields

n ≥ k
√

d
25
√

2 log(1/δ)
≥
√

d log(1/δ)

800
.

Now we can prove the main theorem with the dependence on ε and α:

Proof Theorem 4.1.1. Fix a (ε, δ)-differentially private mechanism M : {±1}n×d →

[±1]d such that for every dataset x ∈ {±1}n×d,

E
M
[‖M(x)− x‖1] ≤ αd.

By Fact 4.2.2, there exists a (1, δ/ε)-differentially private mechanism

M′ : {±1}n′×d → [±1]d for n′ = d20αεne such that for every dataset x′ ∈ {±1}n′×d,

E
M′

[
‖M′(x′)− x′‖1

]
≤ d

10
.

Applying Theorem 4.3.14 to M′ implies that, if e−n′/100 ≤ δ/ε ≤ (1/250n′)1.1, then

n′ = d20αεne ≥
√

d log(1/δ)

800
.

Thus, if e−αεn/5 ≤ δ ≤ ε/(250n)1.1, then n ≥
√

d log(1/δ)/16000αε− 1/20αε. Note

that the requirement e−αεn/5 ≤ δ only becomes tight when nαε = Θ(d), so we can

substitute e−Ω(d) ≤ δ in place of this requirement.
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4.4 New Mechanisms for L∞ Error

Adding independent noise seems very natural for one-way marginals, but it is

suboptimal if one is interested in worst-case (i.e. L∞) error bounds, rather than

average-case (i.e. L1) error bounds.

4.4.1 Pure Differential Privacy

Theorem 4.1.2 follows from Theorem 4.4.1. In particular, the mechanism M :

{±1}n×d → [±1]d in Theorem 4.1.2 is given by M(x) = x + Y, where Y ∼ D and D

is the distribution from Theorem 4.4.1 with ∆ = 2/n.3

Theorem 4.4.1. For all ε > 0, d ≥ 1, and ∆ > 0, there exists a continuous distribution D

on Rd with the following properties.

• Privacy: If x, x′ ∈ Rd with ‖x− x′‖∞ ≤ ∆, then

P
Y∼D

[x + Y ∈ S] ≤ eε P
Y∼D

[
x′ + Y ∈ S

]
for all measurable S ⊆ Rd.

• Accuracy: For all α > 0,

P
Y∼D

[‖Y‖∞ ≥ α] ≤
(

∆d
εα

)d
ed−αε/∆.

In particular, if d ≤ εα/2∆, then P
Y∼D

[‖Y‖∞ ≥ α] ≤ (2e)−d.

• Efficiency: D can be efficiently sampled.

Proof. The distribution D is simply an instantiation of the exponential mechanism

3Note that we must truncate the output of M to ensure that M(x) is always in [±1]d.
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[MT07]. In particular, the probability density function is given by

pdfD(y) ∝ exp
(
− ε

∆
‖y‖∞

)
.

Formally, for every measurable S ⊆ Rd,

P
Y∼D

[Y ∈ S] =

∫
S exp

(
− ε

∆ ‖y‖∞
)

dy∫
Rd exp

(
− ε

∆ ‖y‖∞
)

dy
.

Firstly, this is clearly a well-defined distribution as long as ε/∆ > 0.

Privacy is easy to verify: It suffices to bound the ratio of the probability densities

for the shifted distributions. For x, x′ ∈ Rd with ‖x′ − x‖∞ ≤ ∆, by the triangle

inequality,

pdfD(x + y)
pdfD(x′ + y)

=
exp

(
− ε

∆ ‖x + y‖∞
)

exp
(
− ε

∆ ‖x′ + y‖∞
) = exp

( ε

∆
(∥∥x′ + y

∥∥
∞ − ‖x + y‖∞

))
≤ exp

( ε

∆
∥∥x′ − x

∥∥
∞

)
≤ eε.

Define a distribution D∗ on [0, ∞) to by Z ∼ D∗ meaning Z = ‖Y‖∞ for Y ∼ D.

To prove accuracy, we must give a tail bound on D∗. The probability density function

of D∗ is given by

pdfD∗(z) ∝ zd−1 · exp
(
− ε

∆
z
)

,

which is obtained by integrating the probability density function of D over the

infinity-ball of radius z, which has surface area d2dzd−1 ∝ zd−1. Thus D∗ is precisely

the gamma distribution with shape d and mean d∆/ε. The moment generating

function is therefore

E
Z∼D∗

[
etZ
]
=

(
1− ∆

ε
t
)−d

for all t < ε/∆. By Markov’s inequality

P
Z∼D∗

[Z ≥ α] ≤
E

Z∼D∗
[
etZ]

etα =

(
1− ∆

ε
t
)−d

e−tα.
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Setting t = ε/∆− d/α gives the required bound.

It is easy to verify that Y ∼ D can be sampled by first sampling a radius R from

a gamma distribution with shape d + 1 and mean (d + 1)∆/ε and then sampling

Y ∈ [±R]d uniformly at random. To sample R we can set R = ∆
ε ∑d

i=0 log Ui, where

each Ui ∈ (0, 1] is uniform and independent. This gives an algorithm (in the form

of an explicit circuit) to sample D that uses only O(d) real arithmetic operations,

d + 1 logarithms, and 2d + 1 independent uniform samples from [0, 1].

We remark that the noise distribution in Theorem 4.4.1 is better than the Laplace

mechanism even for L1 error by a constant factor. In particular, the expected L1

norm of the noise distribution in Theorem 4.4.1 is smaller than that of the Laplace

mechanism with the same privacy level by a factor of (2− od(1)). Moreover, the L1

noise of the noise distribution in Theorem 4.4.1 stochastically dominates that of the

Laplace mechanism:

Remark 4.4.2. Fix ε > 0, d ≥ 1, and ∆ > 0. Let D be the distribution on Rd from

Theorem 4.4.1. Let D′ be the distribution on Rd consisting of d independent samples from

the Laplace distribution with scale 2d/εn. Both distributions provide ε-differential privacy

when used to answer d one-way marginals. However

E
Y∼D

[‖Y‖1] =
1 + 1/d

2
· E

Y′∼D′
[∥∥Y′

∥∥
1

]
and

P
Y∼D

[‖Y‖1 > αd] ≤ P
Y′∼D′

[∥∥Y′
∥∥

1 > αd
]

for all α.

4.4.2 Approximate Differential Privacy

We now describe our approximately differentially private mechanism in Figure 4.1.
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Parameters: α ∈ (0, 1).
Input: x ∈ {±1}n×d.
Let

T =

⌊
2d

log4 d

⌋
, σ2

0 =
α2

32 log log d
, σ2

1 =
α2

8 log2 d
, η =

2
α

log2 d.

For j ∈ [d], sample a0
j from N (xj, σ2

0 ).
For t ∈ [T] do:

Sample kt ∈ [d] with

P [kt = k] =
exp(η|at−1

k − xk|)
∑j∈[d] exp(η|at−1

j − xj|)
.

Sample at
kt

from N (xj, σ2
1 ).

For j ∈ [d] \ {kt}, at
j = at−1

j .
Output aT

1 , · · · , aT
d .

Figure 4.1: Approximately DP Mechanism M : {±1}n×d → [±1]d

Proof of Theorem 4.1.3. Firstly, we consider the privacy of M: The data is used in d

applications of the Gaussian mechanism with variance σ2
0 and sensitivity 2/n, T

applications of the Gaussian mechanism with variance σ2
1 , and T applications of

the exponential mechanism each satisfying (4η/n)-differential privacy. Thus, by

Lemmas 2.2.5 and 2.2.4 and Proposition 2.3.2 it satisfies ρ-zCDP for

ρ =d · (2/n)2

2σ2
0

+ T · (2/n)2

2σ2
1

+ T · 1
2
(4η/n)2

≤64d log log d
α2n2 +

2d
log4 d

· 16 log2 d
α2n2 +

2d
log4 d

· 32 log4 d
α2n2

=
d

α2n2

(
64 log log d +

32
log2 d

+ 64

)

=(64 + o(1))
d log log d

α2n2 .
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By Lemma 2.3.6 M satisfies (ε, δ)-differential privacy for all δ > 0 and ε = ρ +√
4ρ log(1/δ).

Now we turn our attention to the accuracy of M: For j ∈ [d], t ∈ {0, 1, · · · , T},

and α̂ > 0, let Xt
j(α̂) ∈ {0, 1} be indicator of the event that |at

j − xj| > α̂ and let

Xt(α̂) = ∑j∈[d] Xt
j(α̂). That is, Xt

j(α̂) indicates whether the answer to the jth marginal

is α̂-accurate in the tth round and Xt(α̂) represents the number of α̂-incaccurate

answers in the tth round.

The final answers are α-accurate if and only if XT(α) = 0. Thus we must show

that P
[
XT(α) > 0

]
≤ β, where

β = e−2d/ log8 d +
d(d + 1)

dlog d =
1

dω(1)
.

This follows from the following three claims:

(i) All but T of the initial answers are α
2 -accurate. i.e. P

[
X0(α/2) > T

]
≤

e−2d/ log8 d.

(ii) In each of the T “fixing rounds,” the exponential mechanism finds a α/2-bad

answer. i.e. P
[

Xt−1
kt

(α/2) = 0 | Xt−1(α) > 0
]
≤ 1

dlog d−1 .

(iii) Each of the T resampled answers is α/2-accurate. i.e. P
[

Xt
kt
(α/2) = 1

]
≤

1
dlog d .

Claim (i) says that, with high probability, X0(α/2) ≤ T. Claims (ii) and (iii) imply

that, with high probability, Xt(α/2) strictly decreases in each round, as long as

Xt(α) > 0. Thus either Xt(α) = 0 for some t ∈ [T] or XT(α/2) = 0. Claim (iii)

implies that if Xt(α) = 0 at some point, then it remains 0 for the rest of the execution

and XT(α) = 0 with high probability. So, as long as all the good events in claims

(i-iii) happen, the final answers are α-accurate. A union bound shows that this

happens with probability 1− β.
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(i) Firstly, the random variables X0
1(α/2), X0

2(α/2), · · · , X0
d(α/2) are independent.

For each j ∈ [d],

E
[

X0
j (α/2)

]
= P

G∼N (0,σ2
0 )
[|G| > α/2] ≤ e−α2/8σ2

0 ≤ 1
log4 d

.

Thus E
[
X0(α/2)

]
≤ d/ log4 d. By Hoeffding’s inequality,

P
[

X0(α/2) ≥ E [X0(α/2)] + λ
]
≤ e−2λ2/d

for all λ > 0. Setting λ = d/ log4 d verifies the first claim.

(ii) Now we must verify that, in each round, the exponential mechanism finds a

bad query with high probability. We have

P
[

Xt−1
kt

(α/2) = 0
]
=

∑k∈[d] exp(η|at−1
k − xk|) · I(|at−1

k − xk| ≤ α/2)

∑j∈[d] exp(η|at−1
j − xj|)

≤ exp(ηα/2) · d
exp(ηα) · Xt−1(α)

≤d1−log d,

assuming Xt−1(α) > 0.

(iii) Finally, we have

P
[

Xt
kt
(α/2) = 1

]
= P

G∼N (0,σ2
1 )
[|G| > α/2] ≤ e−α2/8σ2

1 ≤ d− log d.
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Chapter 5

Privacy Attacks

5.1 Introduction

Given a collection of (approximate) summary statistics about a dataset, and the

precise data of a single target individual, under what conditions is it possible to

determine whether or not the target is a member of the dataset? This tracing problem

is the focus of this chapter.

Questions of this type arise in many natural situations in which membership in

the dataset is considered sensitive; indeed, this is typically the reason for choosing

to publish summary statistics, as opposed to releasing the raw data. In a scenario

that is prominent in the literature, the dataset contains genomic information about

a case group of individuals with a specific medical diagnosis, as in a genome-wide

association study (GWAS), and the summary statistics are SNP allele frequencies, i.e.

one-way marginals. Specifically, if each person’s data consists of d binary attributes,

we consider a mechanism that releases (an approximation to) the average value

of the each of the d attributes. Homer et al. [HSR+08] demonstrated the privacy

risks inherent in this scenario, presenting and analyzing a tracing algorithm for
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membership in a GWAS case group, provided the attacker also has access to allele

frequencies for a reference group of similar ancestral make-up as that of the case

group.

It came as a surprise to the genomics research community that the trace amount

of DNA contributed by an individual is enough to determine membership in the

case group with high statistical confidence. The result had a major practical impact

in the form of very restrictive policies governing access to allele frequency statistics

in studies funded by the US National Institutes of Health and the Wellcome Trust.

Follow-up analytical works provide alternative tests and asymptotic analyses of

tradeoffs between the size of the test set, the size of a reference dataset, power,

confidence, and number of measurements [SOJH09].

As in the follow-up works, the analysis in Homer et al. assumes that exact

statistics are released, leaving open the possibility that the attack may be foiled if

the statistics are distorted, for example, due to measurement error (which can be

highly correlated across the statistics), or because noise is intentionally introduced

in order to protect privacy.

In this chapter, we show that one can test if an individual is present in the case

group even when the one-way marginals are considerably distorted before being

released. We give a single tracing attack that applies to all mechanisms that produce

sufficiently accurate estimates of the statistics in question, rather than to just the

single mechanism that outputs exact statistics.

A line of work initiated by Dinur and Nissim [DN03] provides attacks of this

flavor for certain kinds of statistics, showing that all mechanisms that release “too

many” answers that are “too accurate” are subject to devastating “reconstruction

attacks,” which allow an adversary to determine the private data of almost all

individuals in a dataset. These attacks, which immediately give lower bounds
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on noise needed to avoid blatant non-privacy, have been extended in numerous

works [DMT07, DY08, KRSU10, De12, KRS13, MN12, FMN13, NTZ13].

These reconstruction attacks do not generally apply in the setting of Homer et

al., since they either require that the amount of noise introduced for privacy is very

small (less than the sampling error), or require an exponential number of statistics,

or do not apply to statistics that are as simple (namely, attribute frequencies), or

require that the adversary have a significant amount of auxiliary information about

the other individuals in the dataset.

Of course, complete reconstruction is an extreme privacy failure: the privacy

of essentially every member of the dataset is lost! Conversely, protection from

complete reconstruction is a very low barrier for a privacy mechanism. What if we

are more demanding, and ask that an attacker not be able to determine whether

an individual is present or absent from the dataset, that is, to trace? This in/out

protection is the essence of differential privacy, and the question of how much

noise is needed to ensure differential privacy, first studied in [HT10], has seen many

recent developments [Ull13, BUV14, DNT14, HU14, §4,§6]. By shifting the goal from

reconstructing to tracing, these works obtain lower bounds on noise for settings

where reconstruction is impossible.

In particular, Chapter 4 and fingerprinting codes [BS98, Tar08, BUV14] can be

viewed as providing tracing attacks that operate given attribute frequencies of

the dataset.However, they require that the attribute frequencies of the underlying

population are drawn from a particular (somewhat unnatural) distribution, and that

the attacker has very accurate knowledge of these frequencies. We remark that such

knowledge is the “moral equivalent,” in this literature, to having a large reference

population, in the genomics literature.

In this chapter, we generalise the attacks based on fingerprinting codes in several

160



ways to considerably broaden their applicability:

• The population’s attribute frequencies can be drawn from any distribution on

[0, 1] that is sufficiently smooth and spread out, including, for example, the

uniform distribution on [0, 1] or a large subinterval. The tracing algorithm

does not depend on the distribution.

• Instead of knowing the population attribute frequencies, it suffices for the

attacker to have a single reference sample from the population.

• We show that similar attacks can be applied to Gaussian data (rather than

binary data) for mechanisms that release too many attribute averages with

nontrivial accuracy.

Our results provide a common generalisation of the fingerprinting results and

the results of Homer et al., showing they are special cases of a much broader

phenomenon.

Like the fingerprinting attacks of Chapter 4 and Bun et al. [BUV14], the lower

bounds on noise implied by our attacks nearly match the upper bounds on noise

sufficient to ensure the strong guarantees of differential privacy, for example, via the

Gaussian or Laplace mechanisms [DN03, BDMN05, DMNS06, DKM+06, DRV10]).

Thus, the cost in utility for avoiding our attacks is nearly the same as the cost for

avoiding the much larger class of attacks that differential privacy prevents, where

the dataset can be arbitrary and the attacker can know everything about it, except

whether or not the target individual is present in the dataset.

5.1.1 Model and Assumptions

Distributional Assumption. The dataset consists of n independent samples from

a population, which is given by a product distribution Pp on {±1}d. The vector
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p ∈ [−1, 1]d specifies the expectation of a sample from Pp. That is, to sample

x ∼ Pp, we set xj = 1 with probability (1 + pj)/2 and set xj = −1 with probability

(1− pj)/2, independently for each j.

The vector p represents unknown parameters of the population; p is unknown to

both the mechanism and the privacy attacker.1 The vector p is itself drawn from the

product distribution D on [−1, 1]d with the jth marginal having probability density

function ρj : [−1, 1]→ R. In the case of genomics, we can think of the distribution

D as capturing, for example, differences between populations (although of course

in reality this would not be a product distribution). Our attacks will succeed even if

the mechanism knows D but the attacker does not, provided each ρj is sufficiently

smooth and spread out e.g., if ρj is uniform on a large enough subinterval of [0, 1]).

Accuracy of the Mechanism. The (possibly randomized) mechanismM receives n

independent samples x1, · · · , xn ∈ {±1}d drawn from Pp (after p is initially drawn

from D), and outputs a vector q ∈ [−1, 1]d with q ≈ x̄ = 1
n ∑i∈[n] xi ≈ p. That is,M

provides approximate one-way marginals. We sayM is α-accurate if for all j ∈ [d]

we have ‖q− p‖∞ ≤ α. For simplicity, we assume this holds with probability 1; if

this is not the case, then this failure probability can be absorbed into the failure

probability of our attack.

The Attacker. The privacy attacker A receives two samples in {±1}d, the target

y and the reference z, where z is drawn independently from the population Pp,

together with the output q ofM on a dataset x1, . . . , xn, and produces an answer,

either IN or OUT. The attacker’s answer indicates whether or not it believes y is

among the x1, · · · , xn given to M. The attacker is guaranteed that the reference

1If the mechanism knows p then the problem becomes vacuous: it could simply ignore the data
and publish p.
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sample z is drawn from Pp independent from everything else. The attacker must

satisfy two properties:

• Soundness: If y is drawn from Pp independent from the view of M (i.e.

independent from q), then A should output IN with probability at most s.

• Completeness: Choose i uniformly from [n] and set y = xi. Then A should

output IN with probability at least c. The probability is over all the random

choices: i, x, z, and the coin flips of A andM.

These conditions are interesting when c � s, as when c ≤ s they are trivially

satisfied by having A always output IN with probability c. To interpret this, think of

y as the data of a member of the population and A wants to determine whether or

not y is in the dataset (case group) given toM. For A to be considered successful

we require that it can identify a random member of the dataset with reasonably

high probability (given by the completeness parameter c), whilst, if y is not in the

dataset, it is erroneously claimed otherwise with negligible probability (given by

the (un)soundness parameter s). The reference sample z is some minimal auxiliary

information about the population that A can use.

5.1.2 Our Results

Theorem 5.1.1 (Main – Informal). There is a universal constant α > 0 such that for every

δ > 0, n ∈N, and d ≥ O(n2 log(1/δ)), there exists an attacker A : {±1}d × [−1, 1]d ×

{±1}d → {IN, OUT} such that the following holds.

Let D be a product distribution on [−1, 1]d such that each marginal satisfies a technical

smoothness condition (Definition 5.2.4). LetM : {±1}n×d → [−1, 1]d be α-accurate. Let
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p ∼ D and x1, · · · , xn, y, z ∼ Pp. Let q ∼M(x1, · · · , xn). Then

P [A(y, q, z) = IN] ≤ δ and P [∃ i ∈ [n] A(xi, q, z) = IN] ≥ 1− δ.

Thus, if the first input (y) to A is a random independent element of the pop-

ulation, then A will accept with probability at most s = δ (the probability space

includes the selection of y), but the first input is a random element of the dataset

(xi for a random i), A will accept with probability at least c = (1− δ)/n. Thus, the

result is nontrivial when δ < (1− δ)/n (e.g. δ = o(1/n)).

We discuss a number of features and extensions of the result.

Dimensionality Needed. The dimensionality d of the data needed for the attack

is d = Õ(n2) for δ = 1/2n, which is tight up to polylogarithmic factors for achieving

constant accuracy α. Indeed, it is possible to answer d = Ω̃(n2) one-way marginals

with accuracy α = o(1), while satisfying the strong guarantee of (o(1), 1/nω(1))-

differential privacy [DN03, BDMN05, DKM+06, DMNS06, DRV10].2 (Our tracing

attack implies that no mechanism satisfying the above conditions can be (0.1, 1/4n)

differentially private.) For the one-way marginals we consider, the number of

statistics released equals the dimensionality d of the data, but for richer families

of statistics, the dimensionality is the more significant parameter. Indeed, many

more than n2 statistics can be released if the dimensionality d of the data is smaller

than n2—the algorithms of [BLR13, HR10, RR10, DRV10] can release a number of

statistics that is nearly exponential in n/
√

d.

2An algorithm that operates on datasets is (ε, δ)-differentially private if for all datasets S, S′

differing in the data of a single individual and every event E, the probability of E when the dataset
is S is at most δ plus eε times the probability of E when the dataset is S′.
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Beyond the d = Θ(n2) Barrier. The price for our very weak assumptions – weakly

accurate answers and only a single reference sample – is that we (provably) need

d = Ω(n2) and can only trace a single individual. With more accurate answers and

a larger reference pool, a slightly modified version of our attacker can trace with

smaller d, and can trace many individuals in the dataset: if the mechanism is α-

accurate (for some α ≥ n−1/2), and we are given roughly 1/α2 independent reference

samples from the distribution, then we trace when the dataset has dimension only

O(α2n2). Moreover, we can successfully trace Ω(1/α2) individuals in the dataset,

yielding a completeness probability of c = Ω(1/α2n) (Section 5.3).

Weaker Soundness Conditions. The soundness of our attack does not rely on any

properties of the distribution D, the accuracy ofM, the relation between d, n, and

δ, or even the distribution of the rows x1, . . . , xn. It only requires that, conditioned

on q, y and z are sampled independently from the same product distribution. Thus,

the attack can be carried out under only the latter assumption, and if it says IN, one

can safely conclude y ∈ {x1, . . . , xn}.

Higher-Power Attacks. Our completeness probability of c = Θ(1/α2n) is essen-

tially tight, as a mechanism M that outputs the averages on a subsample of size

O(1/α2) will be accurate but only allows tracing at most an O(1/α2n) fraction of

individuals in the dataset

However, if we assume that M is symmetric, then we can get around this.

That is, if we assume that M can be written as M(x1, · · · , xn) = M′(x) (where

x = 1
n ∑i∈[n] xi ∈ [−1, 1]d is the average of the sample), then we can prove that

∀i ∈ [n] P [A(xi, q, z) = IN] ≥ 1− δ.
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Note that with this high-power guarantee (c ≥ 1− δ), it is meaningful to take δ to

be a fixed constant (e.g. the standard significance level of .05).

The Distribution D. As noted above, we impose a technical regularity condition

on the distribution D, requiring that its marginals ρj are sufficiently smooth and

spread out. This includes distributions such as the uniform distribution on a large

subinterval and the family of Beta distributions.

Some assumptions on D are necessary. For example, if each marginal ρj were

supported on a subinterval of length at most α/2 � 1/
√

n, then the mechanism

could give accurate answers by just producing a vector q ∈ [−1, 1]d in the support

of D and not using the dataset at all. This shows that the ρj need to be sufficiently

“spread out”. To see why “smoothness” is necessary, suppose that ρj were concen-

trated on two points p∗ and p∗∗ that are reasonably far apart (farther than 2α). Then

the mechanism can simply test whether the average of the data elements exceeds

(p∗ + p∗∗)/2 and, if so, output max{p∗, p∗∗}; otherwise output min{p∗, p∗∗}. While

this mechanism is not differentially private (a guarantee against tracing in the

worst case), with high probability over the choice of the dataset this mechanism is

insensitive to small changes in the dataset, i.e., changing one row will not change

the output. This makes tracing impossible.

5.1.3 Description of The Attack

Like the attacks in previous tracing work for the genomic setting [HSR+08, SOJH09,

BRS+09, JYW+09, ZPL+11] and in the fingerprinting setting [Tar08, §4,§6], our

attack uses a simple scoring function to make its decision. The scoring function

works incrementally, with each marginal (SNP) making a separate contribution.

The attack is described in full in Figure 5.1.
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Input: y, z ∈ {±1}d and q ∈ [−1, 1]d.
Compute 〈y, q〉 = ∑j∈[d] yj · qj and 〈z, q〉 = ∑j∈[d] zj · qj.
If 〈y, q〉 − 〈z, q〉 > τ :=

√
8d ln(1/δ), output IN; otherwise output OUT.

Figure 5.1: Our Privacy Attack Aδ,d(y, q, z)

The key features of the adversary are that it only sees the data of the user y being

traced, plus a reference sample z (in addition, of course, to seeing the output q), and

does not depend on the mechanismM, the feature vector p, or the distribution D

on p.

5.1.4 Comparison with Previous Work

As mentioned above, our model and results provide a common generalisation of

lines of work from several fields.

1. Work in the genomics community [HSR+08, BRS+09, VH09, SOJH09, JYW+09]

has so far focused on the case where exact statistics are available to the attacker

(α = 0 in our formalism). With a reference sample of Ω(n) individuals, they

showed that d = Θ(n) attributes are necessary and sufficient, while with a

constant-sized reference pool, d = Θ(n2) is required [SOJH09]). Our first

attack uses Θ(n2 · log n) statistics with a reference pool of size 1, and makes

only a minimal accuracy assumption (a constant bound α on the bias).

Our second attack requires only d = Õ(α2n2) statistics if the mechanism is

α-accurate (for some α ≥ n−1/2) and the reference pool is of size O(log(n)/α2),

in which case it can also successfully trace Ω(1/α2) individuals in the dataset.

Im et al. [IGNC12] use (exact) regression coefficients instead of marginals as

the basis of an attack, with similar results to the case of marginals.
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2. Work on fingerprinting attacks [BUV14, §4] corresponds to our setting of a

constant α, but assumes that p is drawn from a specific distribution D, and

the attacker A knows p exactly (essentially, an infinite reference pool). The

dimensions required in their attacks are similar to ours (d = Θ(n2)).

We note that previous work has focused on categorical data, but our results extend

to the setting of normally-distributed real-valued data.

Other Work on Genetic Privacy. The literature contains attacks based on various

types of published aggregate statistics, e.g., allele frequencies, genetic frequencies,

and various quantitative phenotypes such as cholesterol levels [HSR+08, JYW+09,

WLW+09, IGNC12]; see [EN14] for a survey. Particularly exciting (or troubling) is

the work of Wang et al. [WLW+09] that exploits correlations among different SNPs.

Not only do their attacks require relatively few SNPs, but they go beyond in/out

privacy compromise, actually reconstructing SNPs of members of the case group. In

our view, the message of these works and ours, taken as a whole, is that information

combines in surprising ways, aggregation should not be assumed to provide privacy

on its own, and rigorous approaches to controlling privacy risk are necessary.

5.2 Tracing with a Single Reference Sample

Now we analyse our attack (given in Figure 5.1) and thereby prove Theorem 5.1.1.
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5.2.1 Soundness Analysis

Proposition 5.2.1 (Soundness). Let q, p ∈ [−1, 1]d. Suppose y, z ∼ Pp are independent

from each other and from q. Then

P [Aδ,d(y, q, z) = IN] ≤ δ.

Proof. We can view p and q as fixed. Since y and z are identically distributed,

E [〈y, q〉 − 〈z, q〉] = 0. Since y and z are independent samples from a product distri-

bution, we have that 〈y, q〉 − 〈z, q〉 = ∑i∈[d](yj − zj) · qj is the sum of 2d independent

random variables each of which is bounded by max{‖y‖∞ , ‖z‖∞} · ‖q‖∞ ≤ 1. Thus,

by a Hoeffding’s inequality,

P [〈y, q〉 − 〈z, q〉 > τ] ≤ e−τ2/4d = δ,

as required.

Remark 5.2.2. Proposition 5.2.1 makes no assumptions about q. Thus soundness holds

even ifM is not accurate or if y, z are not sampled from the true population - they need

only be sampled from the same product distribution.

5.2.2 Correlation Analysis

To prove completeness we must show that 〈xi, q〉 − 〈z, q〉 > τ with good probability

for a random i ∈ [n] when the mechanism’s output is α-accurate. First we give a

formal definition of accuracy:

Definition 5.2.3 (Accuracy). We sayM : {±1}n×d → [−1, 1]d is α-accurate if

‖M(x)− x‖∞ ≤ α

for all x ∈ {±1}n×d, where x ∈ [−1, 1]d is the average of the rows of x.
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For simplicity we assume that the accuracy bound holds with probability 1. In

many situations this may only hold with high probability, in which case we can

absorb the failure probability into that of the attack.

We begin by showing that, under our regularity assumption on D,

E

 ∑
i∈[n]

(〈xi, q〉 − 〈z, q〉)

 ≥ Cnτ

for an appropriate constant C > 1.

Intuitively, ∑i∈[n]〈xi, q〉 measures how much the output q ∈ [−1, 1]d ofM corre-

lates with the input x1, · · · , xn ∈ {±1}d ofM, whereas 〈z, q〉 measures how much

a random member of the population correlates with q. Thus we are proving that

the output ofM is more correlated with the input ofM than with an independent

sample from the population.

By linearity of expectations it suffices to show that E
[
∑i∈[n] xj

iq
j − zjqj

]
≥ Cnτ/d

for each j ∈ [d]. We now focus on a fixed j ∈ [d] and, for clarity, omit the superscript.

First some notation: Let p ∼ ρ denote that p ∈ R is drawn according to

the probability distribution given by ρ (e.g. ρ is a probability density function

ρ : R→ R). For p ∈ [−1, 1], let x ∼ p denote that x ∈ {±1} is drawn with E [x] = p.

Let x1···n ∼ ρ denote that x1, · · · xn ∈ {±1}n are drawn independently with xi ∼ ρ

for each i ∈ [n].

The regularity condition we need is the following.

Definition 5.2.4 (Strong Distribution). Let ρ be a probability distribution on [−1, 1].

Define hρ
n : {−n− 1,−n + 1, · · · , n + 1} → R by

hρ
n(t) =

(n + 1 + t)(n + 1− t)
2(n + 1)

· P
p∼ρ,x1···n+1∼p

 ∑
i∈[n+1]

xi = t

 .
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We say ρ is (ξ, n)-strong if

∑
t∈{−n,−n+2,··· ,n}

∣∣hρ
n(t− 1)− hρ

n(t + 1)
∣∣ ≤ ξ.

We say ρ is ξ-strong if ρ is (ξ, n)-strong for all n.

First let us unpack this definition: The definition bounds the total variation of

the function hρ
n. So we require hρ

n to be smooth. The function hρ
n is the product of

two terms. The first term is large (at most (n + 1)/2) in the middle of the range

and smoothly decreases towards zero at the ends of the range. The second term

can be viewed as the probability mass function of a discretisation of the continuous

distribution ρ: There are n+ 2 buckets {−n− 1,−n+ 1, · · · , n+ 1}. A sample p ∼ ρ

is thrown into one of the n + 2 buckets in a random fashion. The most likely bucket

is the one closest to (n + 1) · p and the probability of landing in a given bucket

decays rapidly as we move away from the most likely bucket. Intuitively, being

a strong distribution simply means that neighbouring buckets should contain a

similar amount of probability mass.

We give some meaning to this definition in Section 5.2.4. Intuitively, it suffices

for a distribution to have a “smooth” probability density function that is sufficiently

“spread out.” In particular, the uniform distribution on [−1, 1] is 1-strong.

Now we relate the definition of a strong distribution to the correlation quantity

of interest:

Lemma 5.2.5. Let ρ be a (ξ, n)-strong probability distribution on [−1, 1]. Let f : {±1}n →

[−1, 1]. Then ∣∣∣∣∣∣ E
p∼ρ,x1···n∼p,z∼p

 f (x) ∑
i∈[n]

(xi − z)

∣∣∣∣∣∣ ≤ ξ.

Furthermore, the above inequality holds for all such f only if ρ is a (ξ, n)-strong distribution.
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Proof. Define a random variable Sρ
n on {−n− 1,−n + 1, · · · , n− 1, n + 1} as follows.

First sample p ∼ ρ. Then sample x1···n+1 ∼ p and let Sρ
n = ∑n+1

i=1 xi.

Firstly, by symmetry the following are equivalent ways of sampling random

variables x1, · · · , xn, z.

• Sample p ∼ ρ. Then sample x1···n ∼ p and z ∼ p.

• Sample s ∼ Sρ
n. Then sample x1, · · · , xn, z ∈ {±1} uniformly at random

conditioned on z + ∑i∈[n] xi = s.

• Sample s ∼ Sρ
n. Then sample z ∈ {±1} with E [z] = s

n+1 . Then sample

x1, · · · , xn ∈ {±1} uniformly at random conditioned on ∑i∈[n] xi = s− z.

Thus we can rewrite the expectation using Sρ
n:

E
p∼ρ,x1···n∼p,z∼p

 f (x) ∑
i∈[n]

(xi − z)


= E

s∼Sρ
n

 E
z∼ s

n+1

 E
x∈{±1}n :∑i∈[n] xi=s−z

 f (x) ∑
i∈[n]

(xi − z)


= E

s∼Sρ
n

[
E

z∼ s
n+1

[
E

x∈{±1}n :∑i∈[n] xi=s−z
[ f (x)] (s− z− nz)

]]

= E
s∼Sρ

n

[
E

z∼ s
n+1

[g(s− z)(s− z− nz)]

]
,

where g : {−n, · · · , n} → [−1, 1] given by

g(t) := E
x∈{±1}n :∑i∈[n] xi=t

[ f (x)]
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is the symmetrisation of f . Now we expand the expectations as sums:

E
s∼Sρ

n

[
E

z∼ s
n+1

[g(s− z)(s− z− nz)]

]

= E
s∼Sρ

n

 P
z∼ s

n+1

[z = 1] · g(s− 1)(s− 1− n)

P
z∼ s

n+1

[z = −1] · g(s + 1)(s + 1 + n)


= E

s∼Sρ
n

 n+1+s
2(n+1) · g(s− 1)(s− 1− n)

n+1−s
2(n+1) · g(s + 1)(s + 1 + n)


= E

s∼Sρ
n

[
(n + 1 + s)(n + 1− s)

2(n + 1)
· (g(s + 1)− g(s− 1))

]
=

1
2(n + 1) ∑

s∈{−n+1,−n+3,··· ,n−1}
P
[
Sρ

n = s
]
·(n+1+s)(n+1−s)·(g(s+1)−g(s−1))

=
1

2(n + 1) ∑
t∈{−n+2,−n+4,··· ,n}

P
[
Sρ

n = t− 1
]
· (n + t)(n− t + 2) · g(t)

− 1
2(n + 1) ∑

t∈{−n,−n+2··· ,n−2}
P
[
Sρ

n = t + 1
]
· (n + t + 2)(n− t) · g(t)

=
1

2(n + 1) ∑
t∈{−n,−n+2,··· ,n}

g(t) ·

 P
[
Sρ

n = t− 1
]
· (n + t)(n− t + 2)

−P
[
Sρ

n = t + 1
]
· (n + t + 2)(n− t)


= ∑

t∈{−n,−n+2,··· ,n}
g(t) · (h(t− 1)− h(t + 1)),

where h is as in Definition 5.2.4. Now we can apply Hölder’s inequality with the
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definition of a strong distribution and g to conclude:∣∣∣∣∣∣ E
p∼ρ,x1···n∼p,z∼p

 f (x) ∑
i∈[n]

(xi − z)

∣∣∣∣∣∣
=

∣∣∣∣∣ E
s∼Sρ

n

[
E

z∼ s
n+1

[g(s− z)(s− z− nz)]

]∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
t∈{−n,−n+2,··· ,n}

g(t) · (h(t− 1)− h(t + 1))

∣∣∣∣∣∣
≤ ‖g‖∞ ∑

t∈{−n,−n+2,··· ,n}
|h(t− 1)− h(t + 1)|

≤ ξ.

Note that there exists a g that makes this inequality tight, namely

gtight(t) = sign (h(t− 1)− h(t + 1)) .

Setting ftight(x) = gtight

(
∑i∈[n] xi

)
shows that the lemma is tight.

Now we translate Lemma 5.2.5 into the form we will use:

Corollary 5.2.6. Let ρ be a (ξ, n)-strong probability distribution on [−1, 1]. Let M :

{±1}n → R satisfy |M(x)− x| ≤ α for all x ∈ {±1}n. Then

E
p∼ρ,x1···n∼p,z∼p

M(x) ∑
i∈[n]

(xi − z)

 ≥ E
p∼ρ

[
1− p2

]
− αξ.

This result should be compared to the fingerprinting lemma (Lemma 4.3.7) of the

previous chapter. The key difference is that it is not specific to a single distribution

ρ (Lemma 4.3.7 only holds for the uniform distribution, but is also “robust” in that

it only requires a bound on the expected error, rather than the worst-case error.).
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Proof. Write M(x) = x− α · f (x) for some f : {±1}n → [−1, 1]. Now

E
p∼ρ,x1···n∼p,z∼p

M(x) ∑
i∈[n]

(xi − z)


= E

p∼ρ,x1···n∼p,z∼p

x ∑
i∈[n]

(xi − z)

− α · E
p∼ρ,x1···n∼p,z∼p

 f (x) ∑
i∈[n]

(xi − z)


≥ E

p∼ρ,x1···n∼p,z∼p

x ∑
i∈[n]

(xi − z)

− α · ξ,

by Lemma 5.2.5. All that remains is the following calculation:

E
p∼ρ,x1···n∼p,z∼p

x ∑
i∈[n]

(xi − z)


= E

p∼ρ,x1···n∼p
[x · (x− p) · n] (since E [z] = p)

= E
p∼ρ,x1···n∼p

[(x− p) · (x− p) · n] (since E [p · (x− p)] = 0)

= E
p∼ρ

[
Var

x1···n∼p
[x] · n

]
= E

p∼ρ

[
Var
x∼p

[x]
]

= E
p∼ρ

[
1− p2

]
.

We now make an observation that will allow the construction of a high-power

attack for symmetric M. Suppose f : {±1}n → [−1, 1] can be written as f (x) =

f∗
(

1
n ∑i∈[n] xi

)
for some f∗ : [−1, 1]→ [−1, 1]. Then, by symmetry, the conclusion

of Corollary 5.2.6 can be altered to

∀i ∈ [n] E
p∼ρ,x1···xn∼p,z∼p

[ f (x) · (xi − z)] ≥
E

p∼ρ

[
1− p2]− αξ

n
.

Formally, we have the following definition and Lemma.
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Definition 5.2.7. A function f : Vn → Y (where V is a vector space) is symmetric if

there exists a function f∗ : V → Y such that f (x) = f∗
(

1
n ∑i∈[n] xi

)
for all x ∈ {±1}n.

Lemma 5.2.8. Let f : Rn → R be symmetric and let X1, · · · , Xn ∈ R be independent and

identically distributed. Then

E
X

[
f (X)(Xk −E [Xk])

]
=

1
n

E
X

 f (X) ∑
i∈[n]

(Xi −E [Xi])


for all k ∈ [n].

Proof. By Definition 5.2.7,

E
X

 f (X) ∑
i∈[n]

(Xi −E [Xi])

 = ∑
i∈[n]

E
X

 f∗

 1
n ∑

k∈[n]
Xk

 (Xi −E [Xi])

 (5.1)

Since X1, · · · , Xn are independent and identically distributed, the pair (∑i∈[n] Xi, Xk)

is identically distributed for all k. Thus f∗
(

1
n ∑i∈[n] Xi

)
(Xk − E [Xk]), being a

function of (∑i∈[n] Xi, Xk), is identically distributed for each k. Consequently, all the

terms in (5.1) are the same, which implies the lemma.

We can summarise our expectation bounds as follows:

Proposition 5.2.9. Suppose the distribution D is a product distribution in which each

marginal ρ is (ξ, n)-strong and satisfies E
p∼ρ

[
1− p2] ≥ γ + α · ξ. Suppose the mechanism

M : {±1}n×d → [−1, 1]d is α-accurate. Let x1, · · · xn, z ∼ Pp and q ∼M(x1, · · · , xn).

1. Then we have

∀j ∈ [d] E
p,x1,··· ,xn,z

 ∑
i∈[n]

(
〈xj

i , qj〉 − 〈zj, qj〉
) ≥ γ.

Moreover, this bound holds even when conditioned on all the randomness in columns

other than j. That is, the bound holds when we condition on any values of p−j,

{x−j
i }i=1,...,n, z−j, and q−j and the expectation is only over the remaining variables.

176



2. If, in addition,M is symmetric, then

∀j ∈ [d] ∀i ∈ [n] E
p,x1,··· ,xn,z

[
〈xj

i , qj〉 − 〈zj, qj〉
]
≥ γ

n

and hence

∀i ∈ [n] E
p,x1,··· ,xn,z,M

[〈xi, q〉 − 〈z, q〉] ≥ γd
n

.

Proof. We view z−j, q−j, x−j
i as fixed and we average over the coins ofM. Now the

only randomness is the choice of pj and zj, xj
1 · · · x

j
n ∼ pj. SinceM does not see pj

or zj, we can write qj = f (xj) for some f : {±1}n → [−1, 1]. By the assumption

thatM is α-accurate, | f (x)− x| ≤ α for all x ∈ {±1}n. The result now follows from

Corollary 5.2.6 and Lemma 5.2.8.

5.2.3 Completeness Analysis

Now that we have shown that E
[
∑i∈[n] (〈xi, q〉 − 〈z, q〉)

]
is large, we can turn this

into a high probability statement.

Lemma 5.2.10. Suppose the distribution D is a product distribution in which each marginal

ρ is (ξ, n)-strong and satisfies E
p∼ρ

[
1− p2] ≥ γ + α · ξ. Suppose the mechanism M :

{±1}n×d → [−1, 1]d is α-accurate. Assume d > O(n2 log(1/δ)/γ2). Let x1, · · · xn, z ∼

Pp and q ∼M(x1, · · · , xn). Then

P
p,x1···n,z,M

 ∑
i∈[n]

(〈xi, q〉 − 〈z, q〉) < γ

2d

 ≤ δ.

Moreover, ifM is symmetric, then

∀i ∈ [n] P
p,x1···n,z,M

[
〈xi, q〉 − 〈z, q〉 < γd

2n

]
≤ δ.

The formal proof of this Lemma is quite involved, but unenlightening. To
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preserve flow, we defer it to a later section (page 199) and give a proof sketch here

instead.

Proof Sketch. Write

∑
i∈[n]

(〈xi, q〉 − 〈z, q〉) = ∑
j∈[d]

qj · ∑
i∈[n]

(xj
i − zj) =: ∑

j∈[d]
Aj.

We have E
[
Aj
]
≥ γ for all j ∈ [d]. Suppose the Aj random variables were indepen-

dent. Then we could apply a Chernoff bound. Using |Aj| ≤ 2n, gives

P

∣∣∣∣∣∣ ∑
j∈[d]

Aj

∣∣∣∣∣∣ > 1
2

γd

 ≤ exp
(
− (γd/2)2

(4n)2d

)
≤ δ,

as required. The second half of the lemma is similar.

The Aj variables are not independent, but it turns out their sum concentrates

nonetheless. The key observation is that E
[
Aj
]
≥ γ even if we condition on

A1, · · · , Aj−1, Aj+1, · · · , Ad. Namely

E
[
Aj | A1 = a1, · · · , Aj−1 = aj−1, Aj+1 = aj+1, · · · , Ad = ad

]
≥ γ

for all j ∈ [d] and a ∈ Rd.

Now we can finally prove completeness.

Proposition 5.2.11 (Completeness). Suppose the distribution D is a product distribution

in which each marginal ρ is (ξ, n)-strong and satisfies E
p∼ρ

[
1− p2] ≥ γ + α · ξ. Assume

d > O(n2 log(1/δ)/γ2). Suppose the mechanismM : {±1}n×d → [−1, 1]d is α-accurate.

Let x1, · · · , xn, z ∼ Pp and q =M(x1, · · · , xn). Then

P
p,x1···n,z,M

[∃i ∈ [n] Aδ,d(xi, q, z) = IN] ≥ 1− δ.

Proof. By Lemma 5.2.10, ∑i∈[n] (〈xi, q〉 − 〈z, q〉) ≥ γ
2d > n · τ = n · 2

√
d log(1/δ)
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with high probability. Thus, with high probability, we have 〈xi, q〉 − 〈z, q〉 > τ for at

least one i ∈ [n].

We also state the high-power completeness we get from assuming that M is

symmetric.

Proposition 5.2.12 (High-Power Completeness). Suppose the distribution D is a product

distribution in which each marginal ρ is (ξ, n)-strong and satisfies E
p∼ρ

[
1− p2] ≥ γ+ α · ξ.

Assume d > O(n2 log(1/δ)/γ2). Suppose the mechanismM : {±1}n×d → [−1, 1]d is

α-accurate and symmetric. Let x1, · · · xn, z ∼ Pp and q ∼M(x1, · · · , xn). Then

∀i ∈ [n] P
p,x1,··· ,xn,z,M

[Aδ,d(xi, q, z) = IN] ≥ 1− δ.

Proof. By Lemma 5.2.10, for all i ∈ [n] we have 〈xi, q〉 − 〈z, q〉 ≥ γd
2n > τ =

2
√

d log(1/δ) with high probability. Thus, for all i ∈ [n], we have 〈xi, q〉 − 〈z, q〉 > τ

with high probability.

5.2.4 Interpreting Strong Distributions

The notion of strong distributions is critical in the completeness analysis of our

attack—it ensures that the output of M correlates with its input. In this section

we show that this condition is met by a large class of distributions and give some

intuition for its meaning. First we restate Definition 5.2.4.

Definition 5.2.4. Let ρ be a probability distribution on [−1, 1]. Define hρ
n : {−n− 1,−n +

1, · · · , n + 1} → R by

hρ
n(t) =

(n + 1 + t)(n + 1− t)
2(n + 1)

· P
p∼ρ,x1···n+1∼p

 ∑
i∈[n+1]

xi = t

 .
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We say ρ is (ξ, n)-strong if

∑
t∈{−n,−n+2,··· ,n}

∣∣hρ
n(t− 1)− hρ

n(t + 1)
∣∣ ≤ ξ.

We say ρ is ξ-strong if ρ is (ξ, n)-strong for all n.

To gain some intuition for the meaning of the definition, we consider some

example distributions that do not satisfy the strong distribution assumption.

(i) Suppose ρ is a point mass on p∗. Then Sρ
n is a (shifted and scaled) binomial

distribution and hρ
n has high total variation. In this situation a simple mecha-

nismM can prevent tracing: simply outputting q = p∗ will be accurate with

high probability, but this allows the output ofM to be (almost) independent

from its input. Tracing is thus impossible, as there is almost no difference

between the IN and OUT cases.

(ii) Example (i) can be generalised: Any distribution supported on a short interval

is not strong. s

(iii) Suppose ρ is supported on two points p∗ and p∗∗ that are far apart. Then Sρ
n is

a convex combination of shifted and scaled binomial distributions.

This corresponds to a mechanismM that knows p∗ and p∗∗ and returns one

of the two if they are sufficiently accurate. Again, with high probability, the

output ofM is not sensitive to changes in the input. That means the output of

M does not contain much information that is specific to its input. This makes

tracing impossible.

(iv) Example (iii) can be generalised to any distribution supported on a small

number of points. This can be generalised further to distributions supported

on many short intervals.
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The above examples demonstrate what a strong distribution avoids. Instead a strong

distribution is “spread out” and “smooth.”

The function hρ
n in Definintion 5.2.4 is somewhat unintuitive. We can give an

alternative definition:

Lemma 5.2.13. Let U1, · · · , Un+1 ∈ [−1, 1] be independent uniformly random variables

and let P ∼ ρ be independent from U1, U2, · · · , Un+1. Let U(1) ≥ U(2) ≥ · · · ≥ U(n)

denote the random variables in sorted order. Set U(0) = +1 and U(n+2) = −1. Then

P
p∼ρ,x1···n+1∼p

 ∑
i∈[n+1]

xi = 2k− n− 1

 = P
U0,··· ,Un,P

[
U(k) ≥ P > U(k+1)

]
for all k ∈ {0, 1, · · · , n + 1}.

Thus the function hρ
n from Definition 5.2.4 can be defined as

hρ
n(t) =

(n + 1 + t)(n + 1− t)
2(n + 1)

· P
U0,··· ,Un,P

[
U( t+n+1

2 ) ≥ P > U( t+n+3
2 )

]
.

Intuitively, U(0) ≤ U(1) ≤ · · · ≤ U(n+2) partition the interval [−1, 1] into n + 2

subintervals. Now hρ
n captures the amount of probability mass from ρ falling

into each of these subintervals. However, the partitioning is itself random, so

the probability mass at a particular point does not fall into a single subintervale.

However, U(k) ≈ n+2−2k
n+2 , so this random partitioning approximately partitions the

interval evenly.

Proof of Lemma 5.2.13. Let U1, U2, · · · , Un+1 and P be sampled as in the lemma state-

ment. Now define random variables x1, · · · , xn+1 ∈ {±1} by

xi = 1 ⇐⇒ Ui ≥ P.

If we view P as fixed, then P [xi = 1] = (P + 1)/2 and E [xi] = P for each i.

Moreover, the distribution of x1, · · · , xn+1 is n + 1 independent conditioned on P.

181



We claim that, for any k ∈ {0, 1, · · · , n + 1}.,

∑
i∈[n+1]

xi = 2k− n− 1 ⇐⇒ U(k) ≤ P ≤ U(k+1).

The lemma follows from this claim, as we have shown a coupling between the two

probability spaces under which the two events coincide.

To see the claim, note that ∑i∈[n+1] xi = 2k− n− 1 if and only if k of the xis are

set to +1, which happens if and only if there are k choices of i ∈ [n + 1] with Ui ≥ P.

In turn this is equivalent to saying that the kth largest Ui is greater than or equal to

P, but the (k + 1)th largest Ui is not — i.e. U(k) ≥ P > U(k+1).

We can also characterise the limiting case (i.e. n→ ∞ rather than fixed n):

Proposition 5.2.14. Let ρ : [−1, 1] → R be a continuously differentiable probability

density function. Then ρ is a ξ-strong distribution if and only if

∫ +1

−1

∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣dp ≤ ξ. (5.2)

Proposition 5.2.14 shows that ρ being a strong probability density function is

equivalent to a bound on the total variation of (1− p2)ρ(p). This function should

be contrasted with hρ
n in Definition 5.2.4. Indeed, Proposition 5.2.14 is simply the

result of taking n→ ∞ in Definition 5.2.4.

Proof of Proposition 5.2.14. Lemma 5.2.5 provides an exact characterisation of (ξ, n)-

strong distributions. Namely, ρ is (ξ, n)-strong if and only if∣∣∣∣∣∣ E
p∼ρ,x1···n∼p,z∼p

 f (x) ∑
i∈[n]

(xi − z)

∣∣∣∣∣∣ ≤ ξ (5.3)

for all f : {±1}n → [−1, 1]. To show that ρ is ξ-strong we must show that (5.3) holds

for all n and all f .
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Fix n and f : {±1}n → [−1, 1]. Define g : [−1, 1]→ [−1, 1] by

g(p) = E
x1···n∼p

[ f (x)] .

By Lemma 4.3.7, for any p ∈ [−1, 1],

E
x1···n∼p

 f (x) · ∑
i∈[n]

(xi − p)

 = g′(p) · (1− p2).

Thus

E
p∼ρ,x1···n∼p,z∼p

 f (x) ∑
i∈[n]

(xi − z)

 = E
p∼ρ

[
g′(p)(1− p2)

]
=
∫ +1

−1
g′(p)(1− p2)ρ(p)dp.

Now we apply integration by parts — that is, we integrate both sides of an applica-

tion of the differentiation product rule:

d
dp

g(p)(1− p2)ρ(p) =g′(p)(1− p2)ρ(p) + g(p)
d

dp
(1− p2)ρ(p).∫ +1

−1

d
dp

g(p)(1−p2)ρ(p)dp =
∫ +1

−1
g′(p)(1−p2)ρ(p)dp +

∫ +1

−1
g(p)

d
dp

(1−p2)ρ(p)dp.∫ +1

−1
g′(p)(1− p2)ρ(p)dp =

(
g(1)(1− 12)ρ(1)− g(−1)(1− (−1)2)ρ(−1)

)
−
∫ +1

−1
g(p)

d
dp

(1− p2)ρ(p)dp.
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Finally, we can apply Hölder’s inequality:∣∣∣∣∣∣ E
p∼ρ,x1···n∼p,z∼p

 f (x) ∑
i∈[n]

(xi − z)

∣∣∣∣∣∣ =
∣∣∣∣∫ +1

−1
g′(p)(1− p2)ρ(p)dp

∣∣∣∣
=

∣∣∣∣∫ +1

−1
g(p)

d
dp

(1− p2)ρ(p)dp
∣∣∣∣

≤‖g‖∞ ·
∫ +1

−1

∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣dp

≤
∫ +1

−1

∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣dp.

This proves one side of the equivalence. The other side of the equivalence follows

from the tightness of Hölder’s inequality and the fact that, by choosing n large

enough, we can make g : [−1, 1] → [−1, 1] arbitrarily close to the function that

makes the inequality tight.

Using the differentiation product rule and the triangle inequality, we can show

that

∫ +1

−1

∣∣∣∣ d
dp

(1− p2)ρ(p)
∣∣∣∣dp =

∫ +1

−1

∣∣∣(1− p2)ρ′(p)− 2pρ(p)
∣∣∣dp

≤
∫ +1

−1
(1− p2)

∣∣ρ′(p)
∣∣dp +

∫ +1

−1
|2pρ(p)|dp

≤
∫ +1

−1

∣∣ρ′(p)
∣∣dp + 2.

Thus, rather than bounding the total variation of (1− p2)ρ(p), it suffices to bound

the total variation of ρ.

A bound on the total variation of the probability density function is a very natural

“smoothness” condition. In particular, the uniform distribution, whose probability

density function is the constant 1
2 , has zero total variation. Thus Proposition 5.2.14

justifies our assertion that strong distributions correspond to a smoothness condition.

Using Proposition 5.2.14 we can give some examples of strong distributions:
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• The uniform distribution on [−1, 1] is 1-strong.

• The uniform distribution on [a, b] is ξ-strong for

ξ =
2− a2 − b2 +

∫ b
a |2x|dx

b− a
≤ 2

b− a
+ 2.

• The (scaled) Beta distribution, with ρ(p) ∝ (1 + p)u−1(1− p)v−1 (where u > 0

and v > 0 and the support is [−1, 1]), is (4uv/(u + v))-strong.

5.3 Tracing from Fewer Statistics

In the previous section we focused on tracing from very weak assumptions—weakly

accurate answers and only a single reference sample. The price of these weak

assumptions is that we (provably) need d = Ω(n2) and can only trace a single

individual. In this section we show that if the mechanism gives more accurate

answers, then we can trace with smaller d, and can trace many individuals in the

dataset. In exchange, we require a larger reference sample. More precisely, we show

that if the mechanism is α-accurate (for some α ≥ n−1/2), and we are given roughly

1/α2 independent reference samples from the distribution, then we can trace when

the dataset has dimension only O(α2n2), and we can successfully trace Ω(1/α2)

individuals in the dataset. We summarise our results in the following informal

theorem, which effectively generalises Theorem 5.1.1 from the introduction.

Theorem 5.3.1 (Informal). For every δ > 0, n ∈N, α ≥ 1/n1/2, d ≥ O(α2n2 log(1/δ)),

m ≥ O(log(n)/α2), and t ≤ Ω(1/α2), there exists an attacker A∗ : {±1}d × [±1]d ×

({±1}d)m+1 → {IN, OUT} the following holds.

Let D be a product distribution on [−1, 1]d such that each marginal satisfies a technical

smoothness condition (Definition 5.2.4). LetM : {±1}n×d → [−1, 1]d be α-accurate. Let
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p ∼ D and x1, · · · , xn, y, z0, z1, . . . , zm ∼ Pp. Let q ∼M(x1, · · · , xn). Then

P [A∗(y, q, (z0, z1, . . . , zm)) = IN] ≤ δ, and

P [|{ i ∈ [n] | A∗(xi, q, (z0, z1, . . . , zm)) = IN}| ≥ t] ≥ 1− δ.

The modified attack is described below. In the attack, y represents the targeted

individual, q is a vector of the mechanism’s answers, and z0, z1, . . . , zm represent

m + 1 independent reference samples from the distribution. The first reference

sample z0 is used exactly as before as an unbiased estimate of p. The remaining m

samples z1, . . . , zm will be averaged to form an independent unbiased estimate of p

with much lower variance. We will set m ≈ 1/α2 so that this estimate is α-accurate.

Input: y, z0, z1, . . . , zm ∈ {±1}d, and q ∈ [±1]d.
Let z = z0 and w = (1/m)∑m

i=1 zi.
Let η := 2α and let bq− weη ∈ [−η, η]d be the entrywise truncation of q− w,
to [−η, η]. (We believe that this truncation is unnecessary, but it is needed for
our analysis.)
Compute

〈y− z, bq− weη〉 = ∑
j∈[d]

(yj − zj) ·
⌊

qj − wj
⌉

η
.

If 〈y− z, bq− weη〉 > τ := 4α
√

d log(1/δ), output IN; otherwise output OUT.

Figure 5.2: Attack with a Large Reference Sample A∗δ,α,d,m(y, q,~z)

5.3.1 Soundness

Proposition 5.3.2 (Soundness). Fix any q, z1, . . . , zm, p ∈ [−1, 1]d. Suppose y, z0 ∼ Pp

are independent from each other and from q, z1, . . . , zm. Then

P
[
A∗δ,α,d,m(y, q,~z) = IN

]
≤ δ.
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Proof. Since y and z0 are identically distributed, and q, z1, . . . , zm are fixed

E
[
〈y− z, bq− weη〉

]
= 0

(recall z = z0 and w = (1/m)∑m
i=1 zi). Since y and z0 are independent samples from

a product distribution, we have that 〈y− z, bq− weη〉 = ∑i∈[d](yj − zj) · bq− wej
η is

the sum of 2d independent random variables, each of which is bounded by η = 2α.

Thus, by Hoeffding’s inequality,

P
[
〈y− z, bq− weη〉 > τ

]
≤ e−τ2/16dα2 ≤ δ.

This completes the proof.

5.3.2 Correlation Analysis

We have the following proposition, analogous to Proposition 5.2.9 in Section 5.2.2.

Lemma 5.3.3. Let M : {±1}n×d → [−1, 1]d be α-accurate, let η = 2α, and let the

distribution D be a product distribution where every marginal ρ is (ξ, n)-strong and

satisfies E
p∼ρ

[
1− p2] ≥ γ + αξ. Consider the following experiment. Let p ∼ D, let

x1, . . . , xn, z0, z1, . . . , zm ∼ Pp, and q ∼M(x1, . . . , xn). Then for every j ∈ [d],

E

 ∑
i∈[n]

(xj
i − zj) bq− wej

η

 ≥ γ− 4n · e−α2m/2,

where z = z0 and w = (1/m)∑m
i=1 wi.

Moreover, this statement holds even when we condition on everything pertaining to

columns other than j. That is, the bound on the expectation holds when we condition on any

value of p−j, {x−j
i }i=1,...,n, {z−j

i }j=0,1,...,m, and q−j and the randomness is taken only over

the remaining variables.

Proof. Since M is α-accurate and the distribution is (ξ, n)-strong, by Proposition
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5.2.9

E

 ∑
i∈[n]

(xj
i − zj) · (qj − wj)

 ≥ γ.

So it remains to show that

E

 ∑
i∈[n]

(xj
i − zj)(qj − wj − bq− wej

η)

 ≤ 4ne−α2m/2.

Since
∣∣∣∑i∈[n](xj

i − zj) · (qj − wj −
⌊
qj − wj⌉

η
)
∣∣∣ ≤ 4n and ∑i∈[n](xj

i − zj)(qj − wj −⌊
qj − wj⌉

η
) = 0 when |qj − wj| ≤ η, it suffices to show that P

[
|qj − wj| > η

]
≤

e−α2m/2. By accuracy, we have |qj − pj| ≤ α, and by a Chernoff bound, we have

P
[
|pj − wj| > α

]
≤ e−α2m/2. This completes the proof.

Proposition 5.3.4. Suppose the distribution D is a product distribution in which each

marginal ρ is (ξ, n)-strong and satisfies E
p∼ρ

[
1− p2] ≥ γ+ αξ. SupposeM : {±1}n×d →

[−1, 1]d is α-accurate. Let d > O(α2n2 log(1/δ)/γ2) and m ≥ 2 log(24n/γ)/α2. Let

x1, . . . , xn, z0, z1, . . . , zm ∼ Pp. Let q ∼M(x1, . . . , xn) Then

P

 ∑
i∈[n]

(
〈xi − z, bq− weη〉

)
<

γd
2

 ≤ δ

(recall z = z0, w = (1/m)∑m
i=1 zi, and η = 2α).

The proof of Proposition 5.3.4 is analogous to that of Lemma 5.2.10 and is

presented in Section 5.4.2.

Proposition 5.3.4 establishes a lower bound on the sum of the expected scores.

Next we will upper bound the 2-norm of the expected scores. Upper bounding

the 2-norm will establish that the scores are “spread out,” so there must be many

(roughly 1/α2) expected scores that are large (larger than the threshold τ).

Our analysis relies on the following technical lemma.
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Lemma 5.3.5. Let X1, · · · , Xn ∈ R be independent random variables such that E [Xi] = 0

and E
[
X2

i
]
≤ 1 for every i ∈ [n]. Let Y ∈ R be another (not necessarily independent)

random variable. Then

∑
i∈[n]

E [XiY]
2 ≤ E

[
Y2
]

.

Proof. For i ∈ [n], let ci = E [XiY]. Define h : Rn → R by h(x) = ∑i∈[n] cixi. Then

E
[

h(X)2
]
= ∑

i,j∈[n]
cicjE

[
XiXj

]
≤ ∑

i∈[n]
c2

i

and

E [h(X)Y] = ∑
i∈[n]

ciE [XiY] = ∑
i∈[n]

c2
i .

Thus

0≤E
[
(h(X)−Y)2

]
=E

[
h(X)2

]
−2E [h(X)Y]+E

[
Y2
]
≤ ∑

i∈[n]
c2

i −2 ∑
i∈[n]

c2
i +E

[
Y2
]

.

Rearranging gives

∑
i∈[n]

c2
i ≤ E

[
Y2
]

,

as required.

Lemma 5.3.6. Fix p ∈ [−1, 1]d and letM : {±1}n×d → [−1, 1]d be any mechanism. Fix

any w and let x1, · · · , xn, z0 ∼ Pp and q ∼M(x1, · · · , xn). Then for every j ∈ [d],√
∑

i∈[n]
E
[
〈xj

i − zj,
⌊
qj − wj

⌉
η
〉
]2
≤ η
√

2

(recall z = z0). Moreover, this statement holds even when we condition on everything

pertaining to columns other than j. That is, the bound holds when we condition the

expectations on any value of {x−j
i }i=1,...,n, z−j

0 , and q−j and the randomness is taken only

over the remaining variables.

Proof. We apply Lemma 5.3.5 with Xi = xj
i − zj and Y =

⌊
qj − wj⌉

η
.
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Once again, we would like to apply a concentration result to turn our bound on

the sum of the squares of the expected scores into a high confidence bound on the

sum of the squares of the scores themselves. Once again, this issue is complicated by

a lack of independence. Nonetheless, we prove a suitable concentration bound for

the sum of the squares of the scores in Proposition 5.4.11. Using this concentration

bound we can prove the following.

Proposition 5.3.7. Fix p ∈ [−1, 1]d and letM : {±1}n×d → [−1, 1]d be any mechaniam.

Assume d ≥ 64(n +
√

log(1/δ)). Let x1, · · · , xn, z0, z1, · · · , zm ∼ Pp, and let q ∼

M(x1, · · · , xn). Then

P

√ ∑
i∈[n]
〈xi − z, bq− weη〉

2 ≤ 2ηd

 ≥ 1− δ

(recall z0 = z and w = (1/m)∑n
i=1 zi).

Proof. By applying the triangle inequality to Lemma 5.3.6, we have√
∑

i∈[n]
E
[
〈xi − z, bq− weη〉

]2
≤ dη

√
2.

By Theorem 5.4.11, for any λ > 0,

P

√ ∑
i∈[n]
〈xi − z, bq− weη〉

2 > λ + dη
√

2

 ≤ exp
(

nd
2
− λ2

16η2

)
.

The theorem follows by setting λ = 4η
√

nd
2 + log(1/δ) ≤ ηd

2 .

Combining Proposition 5.3.4 with Proposition 5.3.7, we can show that, with high

probability, the attack says IN for many target individuals xi. To do so, we need the

following elementary lemma.
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Lemma 5.3.8. Let σ ∈ Rn satisfy ∑i∈[n] σi ≥ A and ∑i∈[n] σ2
i ≤ B2. Then∣∣∣∣{i ∈ [n] : σi >

A
2n

}∣∣∣∣ ≥ ( A
2B

)2

.

Proof. Let τ = A/2n and S = {i ∈ [n] : σi > τ}. Let σS ∈ R|S| denote the restriction

of σ onto the coordinates indexed by S. Then

A ≤ ∑
i∈[n]

σi = ∑
i∈[n]\S

σi + ∑
i∈S

σi

≤(n− |S|)τ + ‖σS‖1

≤nτ +
√
|S| · ‖σS‖2

≤nτ +
√
|S| · ‖σ‖2

≤nτ +
√
|S| · B.

Rearranging gives

|S| ≥
(

A− nτ

B

)2

=

(
A
2B

)2

,

as required.

Proposition 5.3.9 (Completeness with a Large Reference Sample). Suppose the distri-

bution D is a product distribution in which each marginal ρ is (ξ, n)-strong and satisfies

E
p∼ρ

[
1− p2] ≥ γ + αξ. SupposeM : {±1}n×d → [−1, 1]d is α-accurate. Let d >

O(α2n2 log(1/δ)/γ2) and m ≥ 2 log(24n/γ)/α2. Let x1, . . . , xn, z0, z1, . . . , zn ∼ Pp.

Let q ∼M(x1, . . . , xn). Then

P

[∣∣{i ∈ [n] : A∗δ,α,d,m(xi, q,~z) = IN
}∣∣ ≥ γ2

256α2

]
≥ 1− 2δ.

Proof. By Proposition 5.3.4, with probability at least 1− δ,

∑
i∈[n]

(
〈xi − z, bq− weη〉

)
≥ γd

2
=: A.
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By Proposition 5.3.7, with probability at least 1− δ,√
∑

i∈[n]
〈xi − z, bq− weη〉

2 ≤ 2ηd =: B.

By a union bound, both of these events occur with probability at least 1 − 2δ.

Assuming they both occur, Lemma 5.3.8 implies∣∣∣∣{i ∈ [n] : 〈xi − z, bq− weη〉 ≥
A
2n

}∣∣∣∣ ≥ ( A
2B

)2

=
( γ

16α

)2
.

We have A/2n = γd/4n ≥ τ = 4α
√

d log(1/δ), which implies the result.

5.4 Concentration Bounds

The following concentration result implies the concentration results we use in the

earlier sections.

Theorem 5.4.1. Let X ∈ Rn×d be a random matrix such that the columns are independent—

that is, X1, X2, · · · , Xd ∈ Rn are independent random variables. Let Y ∈ Rd be a random

variable that possibly depends on X. Suppose that E
X

[
etXi,j

]
≤ ect2

for all t ∈ R, i ∈ [n],

and j ∈ [d]. Assume ‖Y‖∞ ≤ α with certainty. Let a ∈ Rn. Define

Zj = (aTX)jYj ∈ R and Z = ∑
j∈[d]

Zj = aTXY ∈ R.

Suppose E
[
Zj | Zj+1 = zj+1, · · · , Zd = zd

]
≥ γj for all j ∈ [d] and z ∈ Rd. Let γ =

∑j∈[d] γj. Then

P
Z
[Z < γ− λ] ≤ exp

(
−λ2

16cdα2 ‖a‖2
1

)
for all λ > 0.

In Lemma 5.2.10, Xi,j = xj
i − zj, Y = q = M(x). The vector a specifies which

subset of scores we are interested in (either a =~1n for the sum of all scores or a = ei
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for a single score).

Note that if X has bounded entries, it satisfies the condition of Theorem 5.4.1:

Lemma 5.4.2 (Hoeffding’s Lemma). Let X ∈ [a, b] be a random variable. Then

E
[
e

t(X−E[X])
]
≤ et2(b−a)2/8

for all t ∈ R.

Likewise, if X has Gaussian entries, we can apply Theorem 5.4.1:

Lemma 5.4.3. Let g be a standard Gaussian. Then, for all t ∈ R, E
g

[
etg] = et2/2 and, if

0 ≤ t < 1/2, E
g

[
etg2
]
= 1/

√
1− 2t.

To prove Theorem 5.4.1 we need the following lemmas.

Lemma 5.4.4 (Hölder’s Inequality). Let X1, · · · , Xn ∈ R be (possibly dependent) random

variables. Let α∗, α1, · · · , αn ∈ [1, ∞] with 1/α∗ = ∑i∈[n] 1/αi. Then

E
X

[
eα∗ ∑i∈[n] Xi

]1/α∗
≤ ∏

i∈[n]
E
Xi

[
eαiXi

]1/αi
.

Lemma 5.4.5. Let X, Y ∈ R be (possibly dependent) random variables. Suppose |Y| ≤ 1.

Then

E
X,Y

[
e

XY− E
X,Y

[XY]
]
≤ E

X,ξ

[
e2ξX

]
,

where ξ ∈ {±1} is uniform and independent of X and Y.

Proof. By Lemma 2.4.4,

E
X,Y

[
e

XY− E
X,Y

[XY]
]
≤ E

X,Y,ξ

[
e2ξXY

]
= E

X,Y,ξ

[
e2ξX|Y|

]
.

Define ζ ∈ {0, 1} to be a “randomised rounding” of |Y|, namely E
ζ
[ζ | Y] = |Y|. By

Jensen’s inequality,

E
X,Y

[
e

XY− E
X,Y

[XY]
]
≤ E

X,Y,ξ

[
e2ξX|Y|

]
= E

X,Y,ξ

[
e

E
ζ
[2ξXζ]

]
≤ E

X,Y,ξ,ζ

[
e2ξXζ

]
.
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By Jensen’s inequality e0 = e
E
ξ
[2ξX]

≤ E
ξ

[
e2ξX]. Thus

E
X,Y

[
e

XY− E
X,Y

[XY]
]
≤ E

X,Y,ξ,ζ

[
e2ξXζ

]
= E

X,Y

[
P
ζ
[ζ = 0] e0 + P

ζ
[ζ = 1]E

ξ

[
e2ξX

]]
≤ E

X,Y

[
E
ξ

[
e2ξX

]]
= E

X,ξ

[
e2ξX

]
,

as required.

Lemma 5.4.6. Let X ∈ Rn be a random variable. Suppose E
[
etXi
]
≤ ect2

for all t ∈ R

and i ∈ [n]. Let Y ∈ [−α, α] be a random variable that possibly depends on X . Let a ∈ Rn.

Define

Z = aTXY ∈ R.

Then

E
[
e

t(Z−E[Z])
]
≤ e4cα2t2‖a‖2

1

for all t ∈ R.

Proof. We may assume, without loss of generality, that ‖a‖1 = 1 and α = 1. By

assumption, E
[
etaiXi

]
≤ ect2a2

i for all i ∈ [n] and t ∈ R. Now we apply Lemma 5.4.4

with αi = 1/|ai| ∈ [1, ∞] and α∗ = 1:

E
[
etaT X

]
= E

[
eα∗taT X

]1/α∗
≤ ∏

i∈[n]
E
[
eαitaiXi

]1/αi ≤ ∏
i∈[n]

ecαit2a2
i = ect2‖a‖1 = ect2

for all t ∈ R. By Lemma 5.4.5,

E
Z

[
e

t(Z−E[Z])
]
= E

X,Y

[
e

taT XY− E
X,Y
[taT XY]

]
≤ E

X,ξ

[
e2ξtaT X

]
≤ e4ct2

for all t ∈ R, as required.

Lemma 5.4.7. Let X ∈ Rn×d be a random variable such that the columns are independent.

Suppose that E
[
etXi,j

]
≤ ect2

for all t ∈ R, i ∈ [n], and j ∈ [d]. Let Y ∈ [−α, α]d be a
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random variable that possibly depends on X. Let a ∈ Rn. For j ∈ [d], define

Zj = (aTX)jYj ∈ R and µj(z) = E
[
Zj | Zj+1 = zj+1, · · · , Zd = zd

]
.

Let Z = ∑j∈[d] Zj = aTXY and µ(z) = ∑j∈[d] µj(z). Then

E
[
et(Z−µ(Z))

]
≤ e4cdα2t2‖a‖2

1

for all t ∈ R.

Proof. Firstly, by Lemma 5.4.6,

E
[
et(Zj−µj(z)) | Zj+1 = zj+1, · · · , Zd = zd

]
= E

[
e

t(Zj−E[Zj|Zj+1=zj+1,··· ,Zd=zd]) | Zj+1 = zj+1, · · · , Zd = zd

]
≤ e4cα2t2‖a‖2

1

for all t ∈ R, j ∈ [d], and z ∈ Rd.

Now we prove by induction on k ∈ [d] that

E
[
et ∑j∈[k] Zj−µj(Z) | Zk+1 = zk+1, · · · , Zd = zd

]
≤ e4ckα2t2‖a‖2

1

for all t ∈ R and z ∈ Rd, from which the lemma follows by setting k = d.
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The base case k = 1 is immediate from Lemma 5.4.6. Finally, the induction step:

E
[
et ∑j∈[k] Zj−µj(Z) | Zk+1 = zk+1, · · · , Zd = zd

]
= ∑

z∗k

P [Zk = z∗k ]E
[
et ∑j∈[k−1] Zj−µj(Z) ·et(Zk−µk(Z)) |Zk = z∗k , Zk+1 = zk+1,· · ·, Zd = zd

]
= ∑

z∗k

P [Zk = z∗k ]·et(z∗k−µk(z)) ·E
[
et ∑j∈[k−1] Zj−µj(Z) |Zk = z∗k , Zk+1 = zk+1,· · ·, Zd = zd

]
≤∑

z∗k

P [Zk = z∗k ] · et(z∗k−µk(z)) · e4c(k−1)α2t2‖a‖2
1

= E
[
et(Zk−µk(z)) | Zk+1 = zk+1, · · · , Zd = zd

]
· e4c(k−1)α2t2‖a‖2

1

≤ e4ct2‖a‖2
1 · e4c(k−1)t2‖a‖2

1 ,

as required.

Proof of Theorem 5.4.1. The assumption that E
[
Zj | Zj+1 = zj+1, · · · , Zd = zd

]
≥ γj

for all j ∈ [d] and z ∈ Rd. Implies µj(Z) ≥ γj with certainty. Thus it remains to

show that Z is close to µ(Z).

By Markov’s inequality and Lemma 5.4.7,

P [Z− µ(Z) > λ] ≤
E
[
et(Z−µ(Z))

]
etλ ≤ e4cdα2t2‖a‖2

1

etλ .

Setting t = λ

8cdα2‖a‖2
1

gives

P [Z− µ(Z) > λ] ≤ e−tλ/2 = e
−λ2

16cdα2‖a‖21 ,

as desired.
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5.4.1 Concentration of 2-Norm

Lemma 5.4.8. Let X ∈ Rn be a product distribution. Suppose E
[
etXi
]
≤ ect2

for all t ∈ R

and i ∈ [n]. Let Y ∈ [−α, α] be a random variable that possibly depends on X. Let a ∈ Rn.

Define

Z = aTXY ∈ R.

Then

E
[
e

t(Z−E[Z])
]
≤ e4cα2t2‖a‖2

2

for all t ∈ R.

Proof. We may assume, without loss of generality, that α = 1. By assumption,

E
[
etaiXi

]
≤ ect2a2

i for all i ∈ [n] and t ∈ R. By independence,

E
[
etaT X

]
= ∏

i∈[n]
E
[
etaiXi

]
≤ ∏

i∈[n]
ect2a2

i = ect2‖a‖2
2

for all t ∈ R. By Lemma 5.4.5,

E
Z

[
e

t(Z−E[Z])
]
= E

X

[
e

taT XY−E
X
[taT XY]

]
≤ E

X,ξ

[
e2ξtaT X

]
≤ e4ct2‖a‖2

2

for all t ∈ R, as required.

Lemma 5.4.9. Let X ∈ Rn be a product distribution. Suppose E
[
etXi
]
≤ ect2

for all t ∈ R

and i ∈ [n]. Let Y ∈ [−α, α] be a random variable that possibly depends on X. Define

~V = XY ∈ Rn.

Then

E

[
e

t2
2

∥∥∥~V−E[~V]
∥∥∥2

2

]
≤ e8ncα2t2

for all t ∈ [−1/4
√

cα, 1/4
√

cα].
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Proof. Let g ∈ Rn be a standard multivariate Gaussian and

Z = gT(V −E [V]) ∈ R.

By Lemma 5.4.3,

E
g

[
etZ
]
= ∏

i∈[n]
E
gi

[
e

t(Vi−E[Vi])gi
]
= ∏

i∈[n]
e

t2(~Vi−E[~Vi])2/2
= e

t2
∥∥∥~V−E[~V]

∥∥∥2

2
/2

.

By Lemmas 5.4.8 and 5.4.3,

E
g,V

[
etZ
]
≤ E

g

[
e4cα2t2‖g‖2

2

]
= ∏

i∈[n]
E
g

[
e4cα2t2g2

i

]
=

(
1√

1− 2 · 4cα2t2

)n
,

assuming 0 ≤ 4cα2t2 < 1/2. Thus

E
V

[
e

t2
∥∥∥V−E[V]

∥∥∥2

2
/2
]
≤
(

1√
1− 8cα2t2

)n
≤ e8ncα2t2

,

as 1/
√

1− x ≤ ex for 0 ≤ x ≤ 1/2.

Lemma 5.4.10. Let X ∈ Rn×d be a product distribution. Suppose E
[
etXi,j

]
≤ ect2

for all

t ∈ R, i ∈ [n], and j ∈ [d]. Let Y ∈ [−α, α]d be a random variable that possibly depends on

X. For j ∈ [d], define

~V j = X jY j ∈ Rn and µj(~v1, · · · ,~vd) = E
[
~V j | ~V j+1 = ~vj+1, · · · , ~Vd = ~vd

]
.

Let ~V = ∑j∈[d] ~V j and µ(~v1, · · · ,~vd) = ∑j∈[d] µj(~v1, · · · ,~vd). Then

E

[
e

t2
2 ‖~V−µ(~V1,··· ,~Vd)‖2

2

]
≤ e8ndcα2t2

for all t ∈ [−1/4
√

cα, 1/4
√

cα].

The proof is analogous to that of Lemma 5.4.7.

Theorem 5.4.11. Let X ∈ Rn×d be a random matrix with independent entries. Suppose

E
[
etXi,j

]
≤ ect2

for all t ∈ R, i ∈ [n], and j ∈ [d]. Let Y ∈ [−α, α]d be a random variable
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that possibly depends on X. For j ∈ [d], define

~V j = X jY j ∈ Rn.

Suppose that, for all j ∈ [d] and ~v1, · · · ,~vd ∈ Rn,∥∥∥E
[
~V j | ~V1 = ~v1, · · · , ~V j−1~vj−1, ~V j+1~vj+1, · · · , ~Vd~vd

]∥∥∥
2
≤ β j.

Let ~V = ∑j∈[d] ~V j. Then

P

∥∥∥~V∥∥∥
2
> λ + ∑

j∈[d]
β j

 ≤ e
nd
2 −

λ2

32cα2

for all λ > 0.

Proof. Let

µj(~v1, · · · ,~vd) = E
[
~V j | ~V j+1 = ~vj+1, · · · , ~Vd = ~vd

]
for j ∈ [d] and

µ(~v1, · · · ,~vd) = ∑
j∈[d]

µj(~v1, · · · ,~vd).

By assumption
∥∥µj(~v1, · · · ,~vd)

∥∥
2 ≤ β j for all j ∈ [d]. Thus

∥∥µ(~v1, · · · ,~vd)
∥∥

2 ≤

∑j∈[d] β j by the triangle inequality. By Lemma 5.4.10, E

[
e

t2
2 ‖~V−µ(~V1,··· ,~Vd)‖2

2

]
≤

e8ndcα2t2
for all t ∈ [−1/4

√
cα, 1/4

√
cα]. Thus, by Markov’s inequality,

P
[∥∥∥~V − µ(~V1, · · · , ~Vd)

∥∥∥
2
≥ λ

]
≤

E

[
e

t2
2 ‖~V−µ(~V1,··· ,~Vd)‖2

2

]
e

t2
2 λ2

≤ e(8ndcα2−λ2/2)t2
.

Setting t = 1/4
√

cα gives the result.

5.4.2 Proofs of Concentration Lemmas

Now we prove the various concentration lemmas we need.
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Lemma 5.4.12 (Restating Lemma 5.2.10). Suppose the distribution D is a product

distribution in which each marginal ρ is (ξ, n)-strong and satisfies E
p∼ρ

[
1− p2] ≥ γ +

α · ξ. Suppose the mechanism M : {±1}n×d → [−1, 1]d is α-accurate. Assume d >

O(n2 log(1/δ)/γ2). Let x1, · · · xn, z ∼ Pp and q ∼M(x1, · · · , xn). Then

P
p,x1···n,z,M

 ∑
i∈[n]

(〈xi, q〉 − 〈z, q〉) < γ

2d

 ≤ δ.

Moreover, ifM is symmetric, then

∀i ∈ [n] P
p,x1···n,z,M

[
〈xi, q〉 − 〈z, q〉 < γd

2n

]
≤ δ.

Proof of Lemma 5.2.10. Let a =~1 ∈ Rn, Xi,j = xj
i − zj, and Y = q =M(x). Now we

have

∑
i∈[n]

(〈xi, q〉 − 〈z, q〉) = Z = aTXY.

Lemma 5.4.2 implies E
[
etXi,j

]
≤ et2/2 for all i, j, and t. Let Zj = aTX jY j =

∑i∈[n](xj
i − zj)qj. Proposition 5.2.9 shows that

E
[
Zj | Zj+1 = zj+1, · · · , Zd = zd

]
= E

pj,xj
1,··· ,xj

n,zj

 ∑
i∈[n]

(
〈xj

i , qj〉 − 〈zj, qj〉
) ≥ γ

for all j ∈ [d] and z ∈ Rd. Thus Theorem 5.4.1 shows that

P
Z
[Z < γd− λ] ≤ exp

(
−λ2

16cd ‖a‖2
1

)

for all λ > 0, where c = 1/2. In particular, setting λ = γd/2 gives

P
Z
[Z < γd/2] ≤ exp

(
−(γd/2)2

8dn2

)
= exp

(
−γ2d
32n2

)
≤ δ.

To prove the second part of the lemma, we set a = ~ei instead.

Proposition 5.4.13 (Restating Proposition 5.3.4). Suppose the distribution D is a product
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distribution in which each marginal ρ is (ξ, n)-strong and satisfies E
p∼ρ

[
1− p2] ≥ γ + αξ.

Suppose M : {±1}n×d → [−1, 1]d is α-accurate. Let d > O(α2n2 log(1/δ)/γ2) and

m ≥ 2 log(24n/γ)/α2. Let x1, . . . , xn, z0, z1, . . . , zm ∼ Pp. Let q ∼M(x1, . . . , xn) Then

P

 ∑
i∈[n]

(
〈xi − z, bq− weη〉

)
<

γd
2

 ≤ δ

(recall z = z0, w = (1/m)∑m
i=1 zi, and η = 2α).

Proof of Proposition 5.3.4. Let a = ~1, Xi,j = (xj
i − zj), Yj = bq− wej

η, and Zj =

(aTX)jYj = ∑i∈[n](xj
i − zj) bq− wej

η. By Lemma 5.3.3, the hypotheses of Theorem

5.4.1 are satisfied. Thus we have

P
[

aTXY < d
(

γ− 4ne−α2m/2
)
− λ

]
≤ e

−λ2

8dη2n2

for all λ > 0. Set λ =
√

8dη2n2 log(1/δ) ≤ γd/6. Now 4ne−α2m/2 ≤ γ/6, so the

result follows.
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Chapter 6

Lower Bounds for Adaptive Data

Analysis

6.1 Introduction

Empirical research commonly involves asking multiple “queries” on a finite sample

drawn from some population (e.g., summary statistics, hypothesis tests, or learning

algorithms). The outcome of a query is deemed significant if it is unlikely to have

occurred by chance alone, and a “false discovery” occurs if the analyst incorrectly

declares an observation significant. For decades statisticians have been devising

methods for preventing false discovery, such as the “Bonferroni correction” [Bon36,

Dun61] and the widely used and highly influential method of Benjamini and

Hochberg [BH95] for controlling the “false discovery rate.”

Nevertheless, false discovery persists across all empirical sciences, and both

popular and scientific articles report on an increasing number of invalid research

findings. Typically false discovery is attributed to misuse of statistics. However,

another possible explanation is that methods for preventing false discovery do
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not address the fact that data analysis is inherently adaptive—the choice of queries

depends on previous interactions with the data.

As in Chapter 3 and [DFH+15c, HU14], we formalise the problem of adaptive

data analysis in the statistical query model: there is an algorithm called the mech-

anism that is given n samples from an unknown distribution P over some finite

universe X = {0, 1}d, where the parameter d is the dimensionality of the distribu-

tion. The mechanism must answer statistical queries about P . A statistical query q is

specified by a predicate p : X → {0, 1} and the answer to a statistical query is

q(P) = E
x∼P

[p(x)] .

The mechanism’s answer a to a query q is accurate if |a − q(P)| ≤ α with high

probability (for suitably small α). Importantly, the goal of the mechanism is to

provide answers that “generalise” to the underlying distribution, rather than answers

that are specific to the sample. The latter is easy to achieve by outputting the

empirical average of the query predicate on the sample.

The analyst makes a sequence of queries q1, q2, . . . , qk to the mechanism, which

responds with answers a1, a2, . . . , ak. In the adaptive setting, the query qi may

depend on the previous queries and answers q1, a1, . . . , qi−1, ai−1 arbitrarily. We

say the mechanism is accurate given n samples for k adaptively chosen queries if,

when given n samples from an arbitrary distribution P , the mechanism accurately

responds to any adaptive analyst that makes at most k queries with high probability.

A computationally efficient mechanism answers each query in time polynomial in n

and d.1

When the queries are specified non adaptively (i.e. independent of previous

1We assume that the analyst only asks queries that can be evaluated on the sample in polynomial
time.
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answers), then the empirical average of each query on the sample is accurate

with high probability as long as k ≤ 2o(n). However, the situation turns out to

be very different when the queries are asked adaptively. Using a connection to

differential privacy, Chapter 3 (following Dwork et al. [DFH+15c]) shows that

there is a computationally efficient mechanism that accurately answers Ω̃(n2) many

adaptively chosen queries. Furthermore, there is an exponential-time mechanism

that can answer exponentially in n many queries. Unfortunately, [HU14], building

on hardness results for differential privacy [Ull13, BUV14] showed that, assuming

the existence of one-way functions, there is no computationally efficient algorithm

that answers Õ(n3) queries. In this chapter we improve this result to O(n2):

Theorem 6.1.1 (Informal). Assuming the existence of one-way functions, there is no

computationally efficient mechanism that, given n samples, is accurate on more than O(n2)

adaptively chosen queries.

Conceptually, our result further demonstrates that there is an inherent computa-

tional barrier to preventing false discovery in interactive data analysis. It also shows

that in the worst case, an efficient mechanism for answering adaptively chosen

statistical queries may as well be differentially private. That is, the mechanisms

in Chapter 3 that answer Ω̃(n2) queries are differentially private, and no efficient

mechanism regardless of privacy can answer significantly more arbitrary, adaptively

chosen queries.

As in [HU14], our hardness result applies whenever the dimensionality d of

the data grows with the sample size such that 2d is not polynomial in n.2 This

requirement is both mild and necessary. If n� 2d then the empirical distribution

of the n samples will be close to the underlying distribution in statistical distance,

2This is under the stronger, but still standard, assumption that exponentially-hard one-way
functions exist.
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so every statistical query can be answered accurately given the sample. Thus, the

dimensionality of the data has a major effect on the hardness of the problem. In

fact, we can prove a nearly optimal information theoretic lower bound when the

dimensionality of the data is much larger than n.

Theorem 6.1.2 (Informal). There is no mechanism (even a computationally unbounded one)

that given n samples in dimension d = O(n2) is accurate on more than O(n2) adaptively

chosen queries.

Our result builds on the techniques of [HU14], who use fingerprinting code [BS98,

Tar08] to prove their hardness result. In this work, we identify a variant called

an interactive fingerprinting code [FT01], which abstracts the technique in [HU14]

and gives a more direct way of proving hardness results for adaptive data analysis.

A slightly weaker version of our results can be obtained using the nice recent

construction of interactive fingerprinting codes due to Laarhoven et al. [LDR+13] as

a black box.

Thus, we can summarize the contributions of this work as follows.

1. We identify interactive fingerprinting codes as the key combinatorial object un-

derlying the hardness of preventing false discovery in adaptive environments,

analogous to the way in which (non interactive) fingerprinting codes are the

key combinatorial object underlying the hardness of differential privacy.

2. We use this connection to prove nearly optimal hardness results for preventing

false discovery in interactive data analysis.

3. Our construction of interactive fingerprinting codes are optimally robust. In

this context, optimal robustness means that all of our hardness results apply

even when the mechanism answers only a 1/2 + Ω(1) fraction of the queries
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accurately. Robustness was identified by Bun et al. [BUV14] as an important

property of fingerprinting codes which is necessary to prove their lower

bounds. Bun et al. also constructed robust fingerprinting codes, but they were

only able to tolerate corruption of a 1/75 fraction of answers.

6.1.1 Techniques

The structure of our proof is rather simple, and closely follows the framework

in [HU14]. We will design a challenge distribution P and a computationally efficient

adaptive analyst A who knows P . If any computationally efficient mechanismM

is given n samples S = {x1, . . . , xn} drawn from P , then our analyst A can use the

answers ofM to reconstruct the set S. Using this information, the adversary can

construct a query on which S is not representative of P .

Our adversary A and the distribution P , like that of [HU14], is built from a

combinatorial object with a computational “wrapper.” The computational wrapper

uses queries that cryptographically “hide” information from the mechanism M.

In our work he combinatorial object will be an interactive fingerprinting code (IFPC).

An IFPC is a generalisation of a (standard) fingerprinting code, which was originally

introduced by Boneh and Shaw [BS98] as a way to watermark digital content.

An interactive fingerprinting code F is an efficient interactive algorithm that

defeats any adversary P in the following game (with high probability). The ad-

versary P picks S ⊂ [N] unknown to F . The goal of F is to identify S by making

` interactive queries to P . F specifies each query by a vector c ∈ {±1}N. In

response, the adversary P must simply output a ∈ {±1} such that a = ci for some

i ∈ [N]. However, the adversary P is restricted to only see ci for i ∈ S. At any

time, F may accuse some i ∈ [N]. If i ∈ S is accused, then i is removed from S (i.e.

S← S\{i}), thereby further restricting P . If i /∈ S is accused, then this is referred to
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as a false accusation. To win, the interactive fingerprinting code F must accuse all of

S, without making “too many” false accusations.

In contrast [HU14] use only standard fingerprinting codes. The difference

between interactive and non interactive fingerprinting codes is that a non interactive

fingerprinting code must give all ` queries to P at once, but is (necessarily) only

required to identify one i ∈ S. The suboptimal parameters achieved by [HU14],

as well as some of the additional technical work, are there result of having to

boost non interactive fingerprinting codes to recover all of S. Using this new

perspective of interactive fingerprinting codes, the technique of [HU14] can be seen

as a construction of an interactive fingerprinting code with length ` = Õ(N3) by

concatenating N independent copies of Tardos’ [Tar08] non interactive fingerprinting

code of length ` = Õ(N2).

However, one can construct more clever and shorter interactive fingerprinting

codes. Specifically, Laarhoven et al. [LDR+13] (building on Tardos [Tar08]) give a

construction that would be suitable for our application with ` = Õ(N2). Extending

their results, we give a new analysis of their interactive fingerprinting code as

well as Tardos’ non interactive fingerprinting code that allows us to achieve length

` = O(N2) while still being sufficiently secure for our application.

Theorem 6.1.3 (Informal). For every N, there exists an interactive fingerprinting code

with ` = O(N2) that, except with negligible probability, makes at most N/1000 false

accusations.

This result suffices for the informal statements made above, but our construction

is somewhat more general and has additional parameters and security properties,

which we detail in Section 6.2.
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6.1.2 Additional Related Work

Our work and [HU14] is part of a line of work connecting technology for secure

watermarking to lower bounds for private and interactive data analysis tasks. This

connection first appeared in the work of Dwork, Naor, Reingold, Rothblum, and

Vadhan [DNR+09], who showed that the existence of traitor-tracing schemes implies

hardness of differential privacy. Traitor-tracing schemes were introduced by Chor,

Fiat, and Naor [CFN94], also for the problem of watermarking digital content.

The connection between traitor-tracing and differential privacy was strengthened

in [Ull13], which introduced the use of fingerprinting codes in the context of differ-

ential privacy, and used them to show optimal hardness results for certain settings.

[BUV14] showed that fingerprinting codes can be used to prove nearly-optimal

information-theoretic lower bounds for differential privacy, which established fin-

gerprinting codes as the key information-theoretic object underlying lower bounds

in differential privacy. Chapter 4 proves lower bounds for differential privacy using

the ideas of fingerprinting, although fingerprinting codes are not explicitly used

there.

Since there introduction by Boneh and Shaw [BS98] there has been extensive

work on fingerprinting codes, most of which is beyond the scope of this discussion.

For the standard, non-interactive definition of fingerprinting codes, [Tar08] gave

an essentially optimal construction, which has been very influential in most of the

subsequent work on the topic. The interactive model of fingerprinting codes was

first studied by [FT01] under the name “dynamic traitor-tracing schemes.” Formally

their results are in a significantly different model and cannot be used to prove

hardness of preventing false discovery. [Tas05] gave the first construction in the

model we use, but achieved suboptimal code length. Recently Laarhoven, Doumen,

Roelse, Škorić, and de Wegner [LDR+13], gave a construction with nearly optimal
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length by generalising Tardos’ code to the interactive setting. Their construction is

quite similar to ours, but our analysis is substantively different and leads to sharper

and more general guarantees (and we feel is more intuitive).

6.1.3 Organisation

In Section 6.2 we define and construct interactive fingerprinting codes, the main

technical ingredient we use to establish our results. In Section 6.3 we show how

interactive fingerprinting codes can be used to obtain hardness results for preventing

false discovery. The definition of interactive fingerprinting codes is contained in

Section 6.2.1 and is necessary for Section 6.3, but the remainder of Section 6.2 and

Section 6.3 can be read in either order.

6.2 Interactive Fingerprinting Codes

In order to motivate the definition of interactive fingerprinting codes, it will be

helpful to review the motivation for standard, non interactive fingerprinting codes.

Fingerprinting codes were introduced by Boneh and Shaw [BS98] for the problem

of watermarking digital content (such as a movie or a piece of software). Consider a

company that distributes some content to N users. Some of the users may illegally

distribute copies of the content. To combat this, the company gives each user a

unique version of the content by adding distinctive “watermarks” to it. Thus, if

the company finds an illegal copy, it can be traced back to the user who originally

purchased it. Unfortunately, users may be able to remove the watermarks. In

particular, a coalition of users may combine their copies in a way that mixes or

obfuscates the watermarks. A fingerprinting code ensures that, even if up to n users

collude to combine their codewords, an illegal copy can be still be traced to at least
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one of the users.

Formally, every user i ∈ [N] is given a codeword (c1
i , c2

i , . . . , c`i ) ∈ {±1}` by the

fingerprinting code, which represents the combination of watermarks in that user’s

copy. A subset S ⊂ [N] of at most n users can arbitrarily combine their codewords

to create a “pirate codeword” a = (a1, a2, . . . , a`) ∈ {±1}`. The only constraint is

so-called consistency—for every j ∈ [`], if, for every colluding user i ∈ S, we have

cj
i = b, then aj = b. That is to say, if each of the colluding users receives the same

watermark, then their combined codeword must also have that watermark. Given a,

the fingerprinting code must be able to trace at least one user i ∈ S. Tardos [Tar08]

constructed optimal fingerprinting codes with ` = O(n2 log N).

A key drawback of fingerprinting codes is that we can only guarantee that a

single user i ∈ S is traced. This is inherent, as setting the pirate codeword a to be

the codeword of a single user prevents any other user from being identified. We

will see that this can be circumvented by moving to an interactive setting.

Suppose the company is instead distributing a stream of content (such as a TV

series) to N users—that is, the content is not distributed all at once and the illegal

copies are obtained whilst the content is being distributed (e.g. the episodes of

the TV series appear on the internet before the next episode is shown). Again, the

content is watermarked so that each user receives a unique stream and a subset

S ⊂ [N] of at most n users combine their streams and distribute an illegal stream.

The company obtains the illegal stream and uses this to trace the colluding users S.

As soon as the company can identify a colluding user i ∈ S, that user’s stream is

terminated (e.g. their subscription is cancelled). This process continues until every

i ∈ S has been traced and the distribution of illegal copies ceases.

Another twist on fingerprinting codes is robustness [BUV14]. Suppose that the

consistency constraint only holds for (1− β)` choices of j ∈ [`]. That is to say, the
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colluding users can somehow remove a β fraction of the watermarks. [BUV14]

showed how to modify the Tardos fingerprinting code to be robust to a small

constant fraction of inconsistencies. In this work, we show that robustness to any

β < 1/2 fraction of inconsistencies can be achieved.

6.2.1 Definition and Existence

We are now ready to formally define interactive fingerprinting codes. To do so we

make use of the following game between an adversary P and the fingerprinting

code F . Both P and F may be stateful. For a given execution of F , we let

P selects a subset of users S1 ⊆ [N] of size n, unknown to F .
For j = 1, . . . , `:
F outputs a column vector cj ∈ {±1}N.
Let cj

Sj ∈ {±1}|Sj| be the restriction of cj to coordinates in Sj, which is given
to P .
P outputs aj ∈ {±1}, which is given to F .
F accuses a (possibly empty) set of users I j ⊆ [N]. Let Sj+1 = Sj \ I j.

Figure 6.1: IFPCN,n,`[P ,F ]

C ∈ {±1}N×` be the matrix with columns c1, . . . , c` and let a ∈ {±1}` be the vector

with entries a1, . . . , a`. We want to construct the fingerprinting code so that, if a is

consistent, then the tracer succeeds in recovering every user in S. For convenience,

we will define the notation θ j to be the number of rounds 1, . . . , j in which aj is not

consistent with cj. Formally, for a given execution of F ,

θ j =
∣∣∣{1 ≤ k ≤ j

∣∣∣ 6 ∃ i ∈ [N], ak = ck
i

}∣∣∣ .

Using this notation, a is β-consistent if θ` ≤ β`. We also define the notation ψj to be

the number of users in I1, . . . , I j who are falsely accused (i.e. not in the coalition S1).
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Formally,

ψj =

∣∣∣∣∣∣
 ⋃

1≤k≤j

Ik

 \ S1

∣∣∣∣∣∣ .

Using this notation, we require ψ` ≤ δ(N − |S1|) - that is, the tracing algorithm

does not make too many false accusations. “Too many” is defined as more than a

δ-fraction of innocent users.

Definition 6.2.1 (Interactive Fingerprinting Codes). We say that an algorithm F is an

n-collusion-resilient interactive fingerprinting code of length ` for N users robust to

a β fraction of errors with failure probability ε and false accusation probability δ if

for every adversary P , it holds that

P
IFPCN,n,`[P ,F ]

[(
θ` ≤ β`

)
∨
(

ψ` > δ(N − n)
)]
≤ ε

The length ` may depend on N, n, β, ε, δ.

The constraint ψ` ≤ δN is called soundness—the interactive fingerprinting code

should not make (many) false accusations. The constraint θ` > β` is called com-

pleteness—the interactive fingerprinting code should force the adversary P to be

inconsistent. Although it may seem strange that we make no reference to recovering

the coalition S1, notice that if Sj 6= ∅, then P can easily be consistent. Therefore, if

the pirate cannot be consistent, it must be the case that Sj = ∅ for some j, meaning

all of S1 has been accused.

In the remainder of this section, we give a construction of interactive fingerprint-

ing codes, and establish the following theorem.

Theorem 6.2.2 (Existence of Interactive Fingerprinting Codes). For every 1 ≤ n ≤ N,

0 ≤ β < 1/2, and 0 < δ ≤ 1, there is a n-collusion-resilient interactive fingerprinting code
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of length ` for N users robust to a β fraction of errors with failure probability

ε ≤ min{δ(N − n), 2−Ω(δ(N−n))}+ δΩ(( 1
2−β)n)

and false accusation probability δ for

` = O

n2 log (1/δ)(
1
2 − β

)4

 .

We remark on the parameters of our construction and how they relate to the

literature.

Remark 6.2.3.

• The expression for the failure probability ε is a bit mysterious. To interpret it, we

fix β = 1/2 − Ω(1) and consider two parameter regimes: δ(N − n) � 1 and

δ(N − n)� 1.

In the traditional parameter regime for fingerprinting codes δ(N − n) = ε′ �

1, and so no users are falsely accused. Then our fingerprinting code has length

O(n2 log((N − n)/ε′)) and a failure probability of ε′. This matches the result of

[LDR+13].

However, if we are willing to tolerate falsely accusing a small constant fraction of

users, then we can set, for example, δ(N − n) = .01N, and our fingerprinting code

will have length O(n2) and failure probability 2−Ω(n). To our knowledge, such large

values of δ have not been considered before. It saves a logarithmic factor in our final

result.

• Our construction works for any robustness parameter β < 1/2. Previously [BUV14]

gave a construction for β = 1/75 in the non-interactive setting. Previous construc-

tions in the interactive setting do not achieve any robustness β > 0, even for the
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weaker model of robustness to erasures [BN08].

• Our completeness condition differs subtly from previous work. We require that, with

high probability,

θ` =
∣∣∣{1 ≤ k ≤ `

∣∣∣ 6 ∃ i ∈ [N], ak = ck
i

}∣∣∣ > β`,

rather than the weaker condition∣∣∣{1 ≤ k ≤ `
∣∣∣ 6 ∃ i ∈ S1, ak = ck

i

}∣∣∣ > β`.

While our version is less natural in the watermarking setting, it is important to our

application to false discovery. Our interactive fingerprinting code ensures that the

adversary cannot be consistent with respect to the population, rather than that it

cannot be consistent with respect to the sample.

6.2.2 The Construction

Our construction and analysis is based on the optimal (non interactive) fingerprint-

ing codes of Tardos [Tar08], and the robust variant by Bun et al. [BUV14]. The code

is essentially the same, but columns are generated and shown to the adversary one

at a time, and tracing is modified to identify users interactively.

We begin with some definitions and notation. For 0 ≤ a < b ≤ 1, let Da,b

be the distribution with support (a, b) and probability density function µ(p) =

Ca,b/
√

p(1− p), where Ca,b is a normalising constant.3 For α, ζ ∈ (0, 1/2), let Dα,ζ

be the distribution on [0, 1] that returns a sample from Dα,1−α with probability 1− 2ζ

and 0 or 1 each with probability ζ.

3To sample from Da,b, first sample ϕ ∈ (sin−1(
√

a), sin−1(
√

b)) uniformly, then output sin2(ϕ)
as the sample.
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For p ∈ [0, 1], let c ∼ p denote that c ∈ {±1} is drawn from the distribution with

P [c = 1] = p and P [c = −1] = 1− p. Let c1···n ∼ p denote that c ∈ {±1}n is drawn

from a product distribution in which ci ∼ p independently for all i ∈ [n].

Define φp : {±1} → R by φ0(c) = φ1(c) = 0 and, for p ∈ (0, 1), φp(1) =√
(1− p)/p and φp(−1) = −

√
p/(1− p). The function φp is chosen so that φp(c)

has mean 0 and variance 1 when c ∼ p.

Given parameters 1 ≤ n ≤ N and 0 < δ, β < 1/2
Set parameters:

α =

(
1
2 − β

)
4n

≥ Ω


(

1
2 − β

)
n


ζ =

3
8
+

β

4
=

1
2
− 1

4

(
1
2
− β

)

σ =64 ·


6πn(

1
2 − β

)2

 ·
⌈

loge

(
32
δ

)⌉
≤ O

 n(
1
2 − β

)2 log
(

1
δ

)
` =


6πn(

1
2 − β

)2

 · σ ≤ O

 n2(
1
2 − β

)4 log
(

1
δ

)
Let s0

i = 0 for every i ∈ [N].
For j = 1, . . . , `:

Draw pj ∼ Dα,ζ and cj
1···N ∼ pj.

Issue cj ∈ {±1}N as a challenge and receive aj ∈ {±1} as the response.
For i ∈ [N], let sj

i = sj−1
i + aj · φpj

(cj
i).

Accuse I j =
{

i ∈ [N] | sj
i > σ

}
.

Figure 6.2: The interactive fingerprinting code F = Fn,N,δ,β

The fingerprinting code F is defined in Figure 6.2. In addition to the precise

setting of parameters, we have given asymptotic bounds to help follow the analysis.

We now analyse F and establish Theorem 6.2.2. The proof of Theorem 6.2.2 is split
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into Theorems 6.2.8 and 6.2.19. For convenience, define I =
⋃

j∈[`] I j.

6.2.3 Analysis Overview and Comparison

Comparison to Chapters 4 and 5

The key difference between the analysis we present here and that which appears

in Chapters 4 and 5 is that here we focus on obtaining the strongest possible

fingerprinting code. Namely, rather than assuming that all answers provided

by P are α-accurate as before, we merely assume that all but a β fraction are

consistent. This setting is the “orthodox” setting for fingerprinting codes, whereas

the simplified analysis for α-accurate answers is novel to this thesis. This setting

requires a substantially different analysis.

Scores

Intuitively, the quantity sj
i , which we call the score of user i, measures the “correlation”

between the answers (a1, · · · , aj) of P and the i-th codeword (c1
i , · · · , cj

i), using a

particular measure of correlation that takes into account the choices p1, . . . , pj. If sj
i

ever exceeds the threshold σ, meaning that the answers are significantly correlated

with the i-th codeword, then we accuse user i. Thus, our goal is to show two

things: Soundness, that the score of an innocent user (i.e. i 6∈ S1) never exceeds the

threshold, as the answers cannot be correlated with the unknown i-th codeword.

And completeness, that the score of every guilty user (i.e. i ∈ S1) will at some

point exceed the threshold, meaning that the answers must correlate with the i-th

codeword for every i ∈ S1.
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Soundness

The proof of soundness closely mirrors Tardos’ analysis [Tar08] of the non-interactive

case. If i is innocent, then, since P doesn’t see the codeword (c1
i , · · · , cj

i) of the ith

user, there cannot be too much correlation. In this case, one can show that sj
i is the

sum of j independent random variables, each with mean 0 and variance 1, where

we take the answers a1, . . . , aj as fixed and the randomness is over the choice of the

unknown codeword. By analogy to Gaussian random variables, one would expect

that sj
i ≤ σ = Θ(

√
` log(1/δ)) with probability at least 1− δ. Formally, the fact that

the score in each round is not bounded prevents the use of a Chernoff bound. But

nonetheless, in Section 6.2.4, we prove soundness using a Chernoff-like tail bound

for sj
i .

Completeness

To prove completeness, we must show that, for guilty users i ∈ S1, we have sj
i > σ

for some j ∈ [`] with high probability. In Sections 6.2.5 and 6.2.5, we prove that if P

gives consistent answers in a 1− β fraction of rounds, then the sum of the scores for

each of the guilty users is large. Specifically, in Theorem 6.2.17, we prove that with

high probability

∑
i∈S1

s`i ≥ Θ (`) (6.1)

The constants hidden by the asymptotic notation are set to imply that, for at

least one i ∈ S1, the score s`i is above the threshold σ = Θ (`/n). This step is not

too different from the analysis of Tardos and Bun et al. [Tar08, BUV14] for the

non-interactive case. To show that, for every i ∈ S1, we will have sj
i > σ at some

point, we must depart from the analysis of non-interactive fingerprinting codes. If

sj
i > σ, and user i is accused in round j, then the adversary will not see the suffix of
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codeword (cj+1
i , · · · , c`i ). By the same argument that was used to prove soundness,

the answers will not be correlated with this suffix, so with high probability the score

s`i does not increase much beyond σ. Thus,

∑
i∈S1

s`i ≤ n ·O(σ) = Θ (`) . (6.2)

The hidden constants are set to ensure that Equation (6.2) conflicts with Equation

(6.1). Thus, we can conclude that P cannot give consistent answers for a 1− β

fraction of rounds. That is to say, P is forced to be inconsistent because all of S1 is

accused and eventually P sees none of the codewords and is reduced to guessing

an answer aj.

Establishing Correlation

Proving Equation (6.1) is key to the analysis. Our proof thereof combines and

simplifies the analyses of [Tar08] and [BUV14]. For this high level overview, we

ignore the issue of robustness and fix β = 0.

First we prove that the correlation bound holds in expectation and then we

show that it holds with high probability using an Azuma-like concentration bound.

(Again, as the random variables being summed are not bounded, we are forced

to use a more tailored analysis to prove concentration.) We show that it holds in

expectation for each round. In Proposition 6.2.14, we show that the concentration

grows in expectation in each round. For every j ∈ [`],

E

[
∑

i∈S1

sj
i − sj−1

i

]
= E

[
∑

i∈S1

aj · φpj
(cj

i)

]
≥ Ω(1), (6.3)

where the expectations are taken over the randomness of pj, cj, and aj. Equation (6.3),

combined with a concentration result, implies Equation (6.1).

The intuition behind Equation (6.3) and the choice of pj is as follows. Consistency
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guarantees that, if cj
i = b for all i ∈ S1, then aj = b. This is a weak correlation

guarantee, but it suffices to ensure correlation between aj and ∑i∈S1 cj
i . The affine

scaling φpj
ensures that φpj

(cj
i) has mean zero (i.e. is uncorrelated with a constant)

and and unit variance (i.e. has unit correlation with itself). The expectation of

aj · φpj
(cj

i) can be interpreted as the i-th first-order Fourier coefficient of aj as a

function of cj. To understand first-order Fourier coefficients, consider the “dictator”

function: Suppose aj = cj
i∗ for some i∗ ∈ S1 - that is, P always outputs the i∗-th bit.

Then

E
aj,cj,pj

[
aj ∑

i∈S1

φpj
(cj

i)

]
= E

cj,pj

[
cj

i∗ · φ
pj
(cj

i∗)
]
= E

pj

[
2
√

pj(1− pj)

]
= Θ(1).

This example can be generalised to aj being an arbitrary function of cj
S1 using

Fourier analysis. This calculation also indicates why we choose the probability

density function of pj ∼ Dα,1−α to be proportional to 1/
√

p(1− p).

To handle robustness (β > 0) we use the ideas of [BUV14]. With probability 2ζ

each round is a “special” constant round—i.e. cj = (1)N or cj = (−1)N. Otherwise

it is a “normal” round where cj is sampled as before. Intuitively, the adversary P

cannot distinguish the special rounds from the normal rounds in which c happens

to be constant. If the adversary gives inconsistent answers on normal rounds,

then it must also give inconsistent answers on special rounds. Since there are

many more special rounds than normal rounds, this means that a small number

of inconsistencies in normal rounds implies a large number of inconsistencies on

special rounds. Conversely, inconsistencies are absorbed by the special rounds,

so we can assume there are very few inconsistencies in normal rounds. Thus P

is forced to behave consistently on the normal rounds and the analysis on these

rounds proceeds as before.
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6.2.4 Proof of Soundness

We first show that no user is falsely accused except with probability δ/2. This boils

down to proving a concentration bound. Then another concentration bound shows

that with high probability at most a δ fraction of users are falsely accused.

These concentrations bounds are essentially standard. However, we are showing

concentration of sums of variables of the form φp(c), which may be quite large

if p ≈ 0 or p ≈ 1. This technical problem prevents us from directly applying

standard concentration bounds. Instead we open up the standard proofs and verify

the desired concentration. We take the usual approach of bounding the moment

generating function and using that to give a tail bound.

Lemma 6.2.4. For p ∈ [α, 1− α] ∪ {0, 1} and t ∈ [−
√

α/2,
√

α/2], we have

E
c∼p

[
etφp(c)

]
≤ et2

.

Proof. If p ∈ {0, 1}, φp = 0 and the result is trivial. We have E
c∼p

[φp(c)] = 0,

E
c∼p

[
φp(c)2] = 1, and, for c ∈ {±1}, |φp(c)| ≤ 1/

√
α. In particular, |φp(c) · t| ≤ 1/2.

For u ∈ [−1/2, 1/2], we have eu ≤ 1 + u + u2. Thus

E
c∼p

[
etφp(c)

]
≤ 1 + t E

c∼p
[φp(c)] + t2 E

c∼p

[
φp(c)2

]
= 1 + t2 ≤ et2

.

Lemma 6.2.5. Let p1 · · · pm ∈ [α, 1− α] ∪ {0, 1} and c1 · · · cm drawn independently with

ci ∼ pi. Let a1 · · · am ∈ [−1, 1] be fixed. For all λ ≥ 0, we have

P

 ∑
i∈[m]

aiφ
pi(ci) ≥ λ

 ≤ e−λ2/4m + e−
√

αλ/4.
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Proof. By Lemma 6.2.4, for all t ∈ [−
√

α/2,
√

α/2],

E
c

[
et ∑i∈[m] aiφ

pi (ci)
]
≤ ∏

i∈[m]

E
ci

[
etaiφ

pi (ci)
]
≤ et2m.

By Markov’s inequality,

P

 ∑
i∈[m]

aiφ
pi(ci) ≥ λ

 ≤ E
[
et ∑i∈[m] aiφ

pi (ci)
]

etλ ≤ et2m−tλ.

Set t = min{
√

α/2, λ/2m}. If λ ∈ [0, m
√

α], then

P

 ∑
i∈[m]

aiφ
pi(ci) ≥ λ

 ≤ e−λ2/4m.

On the other hand, if λ ≥ m
√

α, then

P

 ∑
i∈[m]

aiφ
pi(ci) ≥ λ

 ≤ eαm/4−
√

αλ/2 ≤ e−
√

αλ/4.

The result is obtained by adding these expressions.

The following theorem shows how we can beat the union bound for tail bounds

on partial sums.

Theorem 6.2.6 (Etemadi’s Inequality [Ete85]). Let X1 · · ·Xn ∈ R be independent

random variables. For k ∈ [n], define Sk = ∑i∈[k] Xi to be the kth partial sum. Then, for all

λ > 0,

P

[
max
k∈[n]
|Sk| > 4λ

]
≤ 4 ·max

k∈[n]
P [|Sk| > λ] .

Proposition 6.2.7 (Individual Soundness). For all i ∈ [N], we have

P
[
i ∈ I \ S1

]
≤ 8(e−σ2/64` + e−σ

√
α/16) ≤ δ/2,

where the probability is taken over IFPCN,≤N,`[P ,FN,n,δ,β] for an arbitrary P .
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Here IFPCN,≤n,` denotes IFPCN,n,` with the constraint |S1| = n replaced by the

constraint |S1| ≤ n.

Proof. Let i ∈ [N] \ S1. Since the adversary does not see cj
i for any j ∈ [`], we may

treat the answers of the adversary as fixed and analyse sj
i as if cj

i was drawn after

the actions of the adversary are fixed. Thus, by Lemma 6.2.5, for every j ∈ [`],

P
[
sj

i >
σ

4

]
= P

∑
k∈[j]

akφpk
(ck

i ) >
σ

4

 ≤ e−σ2/64` + e−σ
√

α/16.

Likewise P
[
sj

i < −
σ
4

]
≤ e−σ2/64` + e−σ

√
α/16. Thus, by Theorem 6.2.6,

P [i ∈ I] ≤ P

[
max
j∈[`]
|sj

i | > σ

]
≤ 4 max

j∈[`]
P
[
|sj

i | >
σ

4

]
≤ 8(e−σ2/64` + e−σ

√
α/16) ≤ δ

2
.

Theorem 6.2.8 (Soundness). We have

P
[
|I \ S1| > δ(N − |S1|)

]
≤ min

{
δ(N − |S1|), e−δ(N−|S1|)/8

}
,

where the probability is taken over IFPCN,≤N,`[P ,FN,n,δ,β] for an arbitrary P .

Remark 6.2.9. Interestingly, Theorem 6.2.8 does not require |S1| ≤ n – that is, it holds

with respect to IFPCN,≤N,`[P ,FN,n,δ,β], rather than IFPCN,n,`[P ,FN,n,δ,β]. It only requires

that F does not see the codewords of users not in S1.

This is a useful if we are in a setting where |S1| is unknown: if |S1| > n, then the

interactive fingerprinting code will still not make too many false accusations, even if it fails

to identify all of S1.

Proof. Let Ei ∈ {0, 1} be the indicator of the event i ∈ I\S1. The Eis for i ∈ [N]

are independent (conditioned on the choice of S1 and pj for j ∈ [`]). Moreover, by
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Proposition 6.2.7, E [Ei] ≤ δ/2 for all i ∈ [N]. Thus, by a Chernoff bound,

P
[
|I\S1| > δ(N − |S1|)

]
= P

 ∑
i∈[N]\S1

Ei > δ(N − |S1|)

 ≤ e−δ(N−|S1|)/8.

If δ < 1/(N − |S1|), then this is a very poor bound. Instead we use the fact that

the Eis are discrete and Markov’s inequality, which amounts to a union bound. For

δ(N − |S1|) < 1, we have

P
[
|I\S1|>δ(N − |S1|)

]
=P

[
|I\S1|≥1

]
≤E

 ∑
i∈[N]\S1

Ei

≤ δ(N−|S1|)
2

≤δ(N−|S1|).

The following lemma will be useful later.

Lemma 6.2.10. For i ∈ [N], let ji ∈ [`+ 1] be the first j such that i /∈ Sj, where we define

S`+1 = ∅. For any S ⊂ [N],

P

[
∑
i∈S

s`i − sji−1
i > λ

]
≤ e−λ2/4|S|` + e−

√
αλ/4,

where the probability is taken over IFPCN,≤N,`[P ,FN,n,δ,β] for an arbitrary P .

Proof. We have

∑
i∈S

s`i − sji−1
i = ∑

i∈S
∑

j∈[`]
I(j ≥ ji)ajφpj

(cj
i).

Again, since the adversary doesn’t see cj
i for j ≥ ji, the random variables I(j ≥ ji)aj

and φpj
(cj

i) are independent, so we can view I(j ≥ ji)aj ∈ [−1, 1] as fixed. Now the

result follows from Lemma 6.2.5.
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6.2.5 Proof of Completeness

To show that the fingerprinting code identifies guilty users we must lower bound

the scores ∑i∈S1 s`i . First we bound their expectation and then their tails.

Biased Fourier Analysis

For this section, assume that the adversary P is always consistent - that is, we have

no robustness and β = 0. Robustness will be added in Section 6.2.5. Here we

establish that the scores have good expectation, namely

E

[
∑

i∈S1

sj
i − sj−1

i

]
≥ Ω(1)

for all j ∈ [`]. The score s`i computes the ‘correlation’ between the bits given to

user i and the output of the adversary. We must show that that the adversary’s

consistency constraint implies that there exists some correlation on average.

In this section we deviate from the proof in [Tar08]. We use biased Fourier

analysis to give a more intuitive proof of the correlation bound.

We have the following lemma and proposition, which relate the correlation

aj · ∑i∈S1 φpj
(cj

i) to the properties of aj as a function of pj. To interpret these

imagine that f represents the adversary P with one round viewed in isolation – the

fingerprinting code gives the adversary cj and the adversary responds with f (cj
Sj).

Firstly, the following lemma gives an interpretation of the correlation value for a

fixed pj; it is a rescaling of Lemma 4.3.7 with an alternative proof.

Lemma 6.2.11. Let f : {±1}n → R. Define g : [0, 1]→ R by g(p) = E
c1···n∼p

[ f (c)]. For

any p ∈ (0, 1),

E
c1···n∼p

 f (c) · ∑
i∈[n]

φp(ci)

 = g′(p)
√

p(1− p).
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Proof. For p ∈ (0, 1) and s ⊂ [n], define φ
p
s : {±1}n → R by φ

p
s (c) = ∏i∈s φp(ci).

The functions φ
p
s form an orthonormal basis with respect to the product distribution

with bias p – that is,

∀s, t ⊂ [n] E
c1···n∼p

[
φ

p
s (c) · φ

p
t (c)

]
=

 1 s = t

0 s 6= t

 .

Thus, for any p ∈ (0, 1), we can write f in terms of these basis functions:

∀c ∈ {±1}n f (c) = ∑
s⊂[n]

f̃ p(s)φp
s (c),

where

∀s ⊂ [n] f̃ p(s) = E
c1···n∼p

[
f (c)φp

s (c)
]

.

This decomposition is a generalisation of Fourier analysis to biased distributions

[O’D14, §8.4]. For p, q ∈ (0, 1), the expansion of f gives the following expressions
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for g(q), g′(q) and g′(p).

g(q) = E
c1···n∼q

[ f (c)]

= ∑
s⊂[n]

f̃ p(s) E
c1···n∼q

[
φ

p
s (c)

]
= ∑

s⊂[n]
f̃ p(s)∏

i∈s
E

c∼q
[φp(c)]

= ∑
s⊂[n]

f̃ p(s)

(
q

√
1− p

p
− (1− q)

√
p

1− p

)|s|
.

g′(q) = ∑
s⊂[n]:s 6=∅

f̃ p(s)·|s|·
(

q

√
1− p

p
− (1− q)

√
p

1− p

)|s|−1

·
(√

1− p
p

+

√
p

1− p

)
.

g′(p) = ∑
s⊂[n]:s 6=∅

f̃ p(s) · |s| · 0|s|−1 ·
(√

1− p
p

+

√
p

1− p

)

= ∑
i∈[n]

f̃ p({i}) ·
(√

1− p
p

+

√
p

1− p

)
.

Note that f̃ p({i}) = E
c1···n∼p

[ f (c)φp(ci)] and, hence,

E
c1···n∼p

 f (c) · ∑
i∈[n]

φp(ci)

 = ∑
i∈[n]

f̃ p({i}) = g′(p)√
1−p

p +
√

p
1−p

= g′(p)
√

p(1− p).

Now we can interpret the correlation for a random pj ∼ Da,b.

Proposition 6.2.12. Let f : {±1}n → R. Define g : [0, 1]→ R by g(p) = E
c1···n∼p

[ f (c)].

For any 0 ≤ a < b ≤ 1,

E
p∼Da,b

 E
c1···n∼p

 f (c) · ∑
i∈[n]

φp(ci)

 =
g(b)− g(a)

2 sin−1(
√

b)− 2 sin−1(
√

a)
≥ g(b)− g(a)

π
.

This effectively follows by integrating Lemma 6.2.11.
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Proof. Let µ(p) = Ca,b/
√

p(1− p) be the probability density function for the distri-

bution Da,b on the interval (a, b). By Lemma 6.2.11 and the fundamental theorem of

calculus, we have

E
p∼Da,b

 E
c1···n∼p

 f (c) · ∑
i∈[n]

φp(ci)

 = E
p∼Da,b

[
g′(p)

√
p(1− p)

]

=
∫ b

a
g′(p)

√
p(1− p)µ(p)dp

=Ca,b

∫ b

a
g′(p)dp

=Ca,b · (g(b)− g(a)).

It remains to show that Ca,b =
(

2 sin−1(
√

b)− 2 sin−1(
√

a)
)−1
≥ 1/π. This follows

from observing that

C−1
a,b =

∫ b

a

1√
p(1− p)

dp =
∫ b

a

(
d

dp
2 sin−1(

√
p)
)

dp = 2 sin−1(
√

b)− 2 sin−1(
√

a)

and

C−1
a,b ≤ C−1

0,1 = 2 sin−1(1)− 2 sin−1(0) = π.

Now we have a lemma to bring consistency into the picture. If f is consistent,

b ≈ 1, and a ≈ 0, then

g(b)− g(a) ≈ g(1)− g(0) = f ((1)n)− f ((−1)n) = 1− (−1) = 2.

This gives a lower bound on the correlation for consistent f .

Lemma 6.2.13. Let f : {±1}n → {±1}. Define g : [0, 1] → [−1, 1] by g(p) =

E
c1···n∼p

[ f (c)]. Suppose α ∈ [0, 1]. Then |g(1− α)− g(1)| ≤ 2nα and |g(α)− g(0)| ≤

2nα.
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Proof. We have P
c1···n∼1−α

[X = (1)n] = (1− α)n and

g(1−α)−g(1)= f ((1)n)· P
c1···n∼1−α

[c=(1)n]+ E
c1···n∼p

[ f (c)|c 6=(1)n]· P
c1···n∼1−α

[c 6=(1)n]−g(1)

=g(1) · (1− α)n + E
c1···n∼p

[ f (c)|c 6= (1)n] · (1− (1− α)n)− g(1)

=

(
g(1)− E

c1···n∼p
[ f (c)|c 6= (1)n]

)
· ((1− α)n − 1) .

Now
∣∣∣∣g(1)− E

c1···n∼p
[ f (c)|c 6= (1)n]

∣∣∣∣ ≤ 2 and |(1− α)n − 1| ≤ nα,

whence |g(1− α)− g(1)| ≤ 2nα. The other half of the lemma is symmetric.

Robustness

We require the fingerprinting code to be robust to inconsistent answers. We show

that the correlation is still good in the presence of inconsistencies.

For f : {±1}n → {±1}, define a random variable ξα,ζ( f ) by

ξα,ζ( f ) = f (c) · ∑
i∈[n]

φp(ci)+γI (p ∈ {0, 1} ∧ f (c) 6= 2p− 1) , p ∼ Dα,ζ , c1···n ∼ p,

where I is the indicator function and γ ∈ (0, 1/2) satisfies ζγ/2 = (1− 2ζ)/π - that

is,

γ :=
2
π

1− 2ζ

ζ
.

The first term f (c) ·∑i∈[n] φp(ci) measures the correlation as before. The second

term

γI (p ∈ {0, 1} ∧ f (c) 6= 2p− 1) measures inconsistencies. We will lower bound the

expectation of ξα,ζ( f ), which amounts to saying “either there is good correlation

or there is an inconsistency with good probability.” Thus either the fingerprinting

code is able to accuse users or the adversary is forced to be inconsistent.
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The following bounds the expected increase in scores from one round of interac-

tion.

Proposition 6.2.14. Let f : {±1}n → {±1} and α, ζ ∈ (0, 1/2). Then

E
[
ξα,ζ( f )

]
≥ 2

π
(1− 2ζ)(1− 2nα).

Proof. Define g : [0, 1]→ [−1, 1] by g(p) = E
c1···n∼p

[ f (c)]. Now

E
[
ξα,ζ( f )

]
= P

p∼Dα,ζ

[p = 0] · γI( f ((−1)n) = 1) + P
p∼Dα,ζ

[p = 1] · γI( f ((1)n) = −1)

+ P
p∼Dα,ζ

[p ∈ [α, 1− α]] · E
p∼Dα,1−α

 E
c1···n∼p

 f (c) · ∑
i∈[n]

φp(ci)


=ζ · γ (I(g(0) = 1) + I(g(1) = −1))

+ (1− 2ζ) · g(1− α)− g(α)
2 sin−1(

√
1− α)− 2 sin−1(

√
α)

(by Proposition 6.2.12)

≥ζ · γ
(

1 + g(0)
2

+
1− g(1)

2

)
+ (1− 2ζ) · g(1− α)− g(α)

π

=
1− 2ζ

π
(1 + g(0) + 1− g(1) + g(1− α)− g(α))

≥1− 2ζ

π
(2− |g(α)− g(0)| − |g(1− α)− g(1)|)

≥1− 2ζ

π
(2− 4nα)

(by Lemma 6.2.13).

Concentration

So far we have shown that the fingerprinting code achieves good correlation or the

adversary is not consistent in expectation. However, we need this to hold with high
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probability. Thus we now show that sums of ξα,ζ( f ) variables concentrate around

their expectation.

Again, the proofs in this section are standard. However, the ξα,ζ( f ) variables

can be quite unwieldy and we are thus unable to apply standard results directly.

So instead we must open the proofs and verify that the concentration bounds

hold. We proceed by bounding the moment generating function of ξα,ζ( f ) and then

proving an Azuma-like concentration inequality. These calculations are not novel or

insightful.

Proposition 6.2.15. Let f : {±1}n → {±1}, α ∈ (0, 1/2), ζ ∈ [1/4, 1/2), and t ∈

[−
√

α/8,
√

α/8]. Then

E

[
e

t(ξα,ζ( f )−E[ξα,ζ( f )])
]
≤ eCt2

,

where C = 64enα/4

α .

Proof. We have

ξα,ζ( f ) = f (c) · ∑
i∈[n]

φp(ci)+γI (p ∈ {0, 1} ∧ f (c) 6= 2p− 1) , p ∼ Dα,ζ , c1···n ∼ p.

Let Y = ∑i∈[n] φp(ci). By Lemma 6.2.4 and independence,

E
[
etY
]
= E

c1···n∼p

[
et ∑i∈[n] φp(ci)

]
=

(
E

c∼p

[
etφp(c)

])n
≤ et2n

for t ∈ [−
√

α/2,
√

α/2]. Pick t ∈ {±
√

α/2} such that

∞

∑
k=0

t2k+1

(2k + 1)!
E
[
Y2k+1

]
≥ 0.

Then by dropping positive terms, for all j ≥ 1,

0 ≤ E
[
Y2j
]
≤ (2j)!

t2j

∞

∑
k=0

tk

k!
E
[
Yk
]
=

(2j)!
t2j E

[
etY
]
≤ (2j)!

t2j ent2
=

4j(2j)!
αj enα/4.

Thus we have bounded the even moments of Y. By Cauchy-Schwartz, for k =
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2j + 1 ≥ 3,

E
[
|Y|k

]
≤
√

E
[
Y2j
]
·E
[
Y2j+2

]
≤

√
4j(2j)!

αj enα/4 · 4j+1(2j + 2)!
αj+1 enα/4

=
2kk!
αk/2 enα/4

√
k + 1

k
.

Since | f (c)| ≤ 1, we have E
[
| f (c) ·Y|k

]
≤ E

[
|Y|k

]
≤ 2k+1k!enα/4/αk/2 for all

k ≥ 2. Since ζ ∈ [1/4, 1/2), we have γ = (2/π)(1 − 2ζ)/ζ ∈ (0, 1). Hence

E
[
|γI (p ∈ {0, 1} ∧ f (c) 6= 2p− 1) |k

]
≤ 1 for all k. The map u 7→ |u|k is convex for

all k ≥ 2, thus |(x + y)/2|k ≤ (|x|k + |y|k)/2 for all k ≥ 2 and x, y ∈ R. Combining

these three facts, we have

E
[
|ξα,ζ( f )|k

]
≤2k−1E

[
| f (c) ·Y|k + |γI( f (c) 6= f ∗(c))|k

]
≤22kk!enα/4

αk/2 + 2k−1

≤22k+1k!enα/4

αk/2 .

For t ∈ [−
√

α/8,
√

α/8], we have

E
[
etξα,ζ( f )

]
≤1 + tE

[
ξα,ζ( f )

]
+

∞

∑
k=2

|t|k
k!

E
[
|ξα,ζ( f )|k

]
≤1 + tE

[
ξα,ζ( f )

]
+

∞

∑
k=2

|t|k
k!

22k+1k!enα/4

αk/2

=1 + tE
[
ξα,ζ( f )

]
+ 2enα/4

∞

∑
k=2

(
4|t|√

α

)k

≤1 + tE
[
ξα,ζ( f )

]
+ 2enα/4

∞

∑
k=2

(
4|t|√

α

)2

2−(k−2)

=1 + tE
[
ξα,ζ( f )

]
+

64enα/4

α
t2

≤e
tE[ξα,ζ( f )]+Ct2
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Theorem 6.2.16 (Azuma-Doob-like Inequality). Let X1 · · ·Xm ∈ R, µ1 · · · µmR

and U0 · · · Um ∈ Ω be random variables such that, for all i ∈ [m],

• Xi is determined by Ui,

• µi is determined by Ui−1, and

• Ui−1 is determined by Ui.

Suppose that, for all i ∈ [m], u ∈ Ω, and t ∈ [−c, c],

E
[
et(Xi−µi) | Ui−1 = u

]
≤ eCt2

.

If λ ∈ [0, 2Cmc], then

P

∣∣∣∣∣∣ ∑
i∈[m]

(Xi − µi)

∣∣∣∣∣∣ ≥ λ

 ≤ 2e−λ2/4Cm.

If λ ≥ 2Cmc, then

P

∣∣∣∣∣∣ ∑
i∈[m]

(Xi − µi)

∣∣∣∣∣∣ ≥ λ

 ≤ 2emCc2−cλ ≤ 2e−cλ/2.

Proof. First we show by induction on k ∈ [m] that, for all u ∈ Ω and t ∈ [−c, c],

E
[
et ∑m

i=m−k+1(Xi−µi) | Um−k = u
]
≤ ek·Ct2

.

This clearly holds for k = 1, as this is our supposition for i = m. Now suppose this
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holds for some k ∈ [m− 1]. For u ∈ Ω and t ∈ [−c, c], we have

E
[
et ∑m

i=m−k(Xi−µi) | Um−(k+1) = u
]

= ∑
v∈Ω

P [Um−k = v | Um−k−1 = u]E
[
et ∑m

i=m−k(Xi−µi) | Um−k = v
]

= ∑
v∈Ω

P [v | u]E
[
et(Xm−k−µm−k)et ∑m

i=m−k+1(Xi−µi) | v
]

(using shorthand v ≡ Um−k = v and u ≡ Um−k−1 = u)

= ∑
v∈Ω

P [v | u]E
[
et(Xm−k−µm−k) | v

]
E
[
et ∑m

i=m−k+1(Xi−µi) | v
]

(since Um−k = v determines Xm−k and µm−k)

≤ ∑
v∈Ω

P [v | u]E
[
et(Xm−k−µm−k) | v

]
ek·Ct2

(by the induction hypothesis)

= E
[
et(Xm−k−µm−k) | u

]
ek·Ct2

≤ eCt2
ek·Ct2

(by our supposition for i = m− k)

= e(k+1)·Ct2
.

Thus, for all t ∈ [−c, c], we have

E
[
et ∑m

i=1(Xi−µi)
]
≤ em·Ct2

.

By Markov’s inequality we have

P

 ∑
i∈[m]

(Xi − µi) ≥ λ

 ≤ E
[
et ∑i∈[m](Xi−µi)

]
etλ ≤ emCt2−tλ

and

P

 ∑
i∈[m]

(Xi − µi) ≤ −λ

 ≤ E
[
e−t ∑i∈[m](Xi−µi)

]
e(−t)(−λ)

≤ emCt2−tλ
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for all t ∈ [0, c] and λ > 0. Set t = min{c, λ/2mC} to obtain the result.

Bounding the Score

Now we can finally show that the scores are large with high probability.

Theorem 6.2.17 (Correlation Lower Bound). At the end of IFPCN,n,`[P ,FN,n,δ,β] for

arbitrary P , we have, for any λ ∈ [0, 17.5`/
√

α],

γerr` + ∑
i∈S1

s`i ≥
2
π
(1− 2ζ)(1− 2nα)`− λ

with probability at least 1− 2e−
λ2α
280` .

Proof. Since the adversary P is computationally unbounded and arbitrary, we may

assume it is deterministic. We may also assume n = |S1| and that the adversary is

able to see cj
S1 at each round. (This only gives the adversary more power.)

This means that for each j ∈ [`] we can define a function f j : {±1}n → {±1}

that only depends on the interaction up to round j− 1 (i.e. is a function of the state

of P before it receives cj) and satisfies f j(cj
Sj) = aj. For j ∈ [`], define

Xj := γ · I
(

pj ∈ {0, 1} ∧ f j(cj
S1) 6= 2pj − 1

)
+ f j(cj

S1) · ∑
i∈S1

φpj
(cj

i) ∼ ξα,ζ( f j),

where ∼ denotes having the same distribution. We have

γ · (errj − errj−1) + ∑
i∈S1

(sj
i − sj−1

i ) ≤ Xj

and

γerr` + ∑
i∈S1

s`i ≤ ∑
j∈[`]

Xj ∼ ∑
j∈[`]

ξα,ζ( f j).

Now we can apply the above lemmas to bound the expectation and tail of this

random variable.
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Firstly, Proposition 6.2.14 shows that

µj := E
[
Xj
]
= E

[
ξα,ζ( f j)

]
≥ 2

π
(1− 2ζ)(1− 2nα)

for all f j. Moreover, by Proposition 6.2.15,

E
[
et(X j−µj)

]
= E

[
e

t(ξα,ζ( f j)−E[ξα,ζ( f j)])
]
≤ eCt2

for all t ∈ [−
√

α/8,
√

α/8], where C = 70/α ≥ 64enα/4/α, as α ≤ 1/4n.

Define Uj = ( f 1, p1, c1, · · · , f j, pj, cj, f j+1) for j ∈ [`] ∪ {0}. Now X1 · · ·X`,

µ1 · · · µ`, and U0, · · · ,U` satisfy the hypotheses of Theorem 6.2.16 with C = 70/α,

c =
√

α/8, and m = `.

For λ ∈ [0, 2Cmc] = [0, 17.5`/
√

α], we have

P

∑
j∈[`]

Xj ≤
2
π
(1− 2ζ)(1− 2nα)`− λ

 ≤P

∣∣∣∣∣∣ ∑
i∈[m]

(Xi − µi)

∣∣∣∣∣∣ ≥ λ


≤2e−λ2/4Cm ≤ 2e−

λ2α
280` ,

as required.

However, we can also prove that the scores are small with high probability. This

follows from the fact that users with large scores are accused and therefore no user’s

score can be too large:

Lemma 6.2.18. For all λ > 0,

P

[
∑

i∈S1

s`i > λ + nσ +
n√
α

]
≤ e−λ2/4n` + e−

√
αλ/4,

where the probability is taken over IFPCN,n,`[P ,FN,n,δ,β] for an arbitrary P .

We will set λ = σ and, since 1/
√

α ≤ σ, we get that ∑i∈S1 s`i ≤ 3σn with high

probability.
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Proof. Let ji ∈ [`+ 1] be as in Lemma 6.2.10 – that is, i /∈ Sji and i ∈ Sji−1, where we

define S`+1 = ∅ and S0 = [N]. By the definition of ji, sj, and Sj, we have sji−2
i ≤ σ

for all i ∈ S1, as otherwise i ∈ I ji−2 and therefore i /∈ Sji−1 = Sji−2\I ji−2. If i ∈ S1,

then ji = 1 and sji−1
i = 0. Thus

∑
i∈S1

sji−1
i = ∑

i∈S1

sji−2
i + aji−1φpji−1

(cji−1
i ) ≤ ∑

i∈S1

σ +
1√
α
≤ nσ +

n√
α

.

By Lemma 6.2.10,

P

[
∑

i∈S1

s`i − sji−1
i > λ

]
≤ e−λ2/4n` + e−

√
αλ/4.

The lemma follows.

Now we show that the conflicting bounds of Theorem 6.2.17 and Lemma 6.2.18

imply completeness - that is, the adversary P cannot be consistent.

Theorem 6.2.19 (Completeness). At the end of IFPCN,n,`[P ,FN,n,δ,β] for an arbitrary P ,

we have err` > β` with probability at least 1− δ
1
2(

1
2−β)n, assuming

(
1
2 − β

)
n ≥ 1.

Proof. Suppose for the sake of contradiction that err` ≤ β`. By Lemma 6.2.18,

∑i∈S1 s`i ≤ λ + nσ + n√
α

with probability at least 1− e−λ2/4n` − e−
√

αλ/4. Set λ =

nσ ≥ n√
α

. Now we assume

∑
i∈S1

s`i ≤ 3nσ,

which holds with probability at least 1− e−nσ2/4` − e−
√

αnσ/4. Then

γerr` + ∑
i∈S1

s`i ≤ γβ`+ 3nσ. (6.4)

By Theorem 6.2.17, with probability at least 1− 2e−
λ2α
280` ,

γerr` + ∑
i∈S1

s`i ≥
2
π
(1− 2ζ)(1− 2nα)`− λ (6.5)
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for all λ ∈ [0, 17.5`/
√

α]. Set λ =
(

1
2 − β

)2
`/2π and assme Equation (6.5) also

holds.

Combining Equations (6.4) and (6.5) gives

2
π
(1− 2ζ)(1− 2nα)`−

(
1
2 − β

)2

2π
` ≤ γβ`+ 3nσ. (6.6)

We claim this is a contradiction, which then holds with high probability, thus

proving the theorem.

Rearranging Equation (6.6) gives

2
π
(1− 2ζ)(1− 2nα) ≤

(
1
2 − β

)2

2π
+ γβ +

3nσ

`
. (6.7)

Our setting of parameters gives

2nα ≤

(
1
2 − β

)
2

and
3nσ

`
≤

(
1
2 − β

)2

2π
.

Substituting these into Equation (6.7) gives

2
π
(1− 2ζ)

(
1− 1

2

(
1
2
− β

))
≤

(
1
2 − β

)2

π
+ γβ. (6.8)

Now we use 1− 2ζ = 1
2

(
1
2 − β

)
and γ = 2

π
1−2ζ

ζ =
( 1

2−β)
πζ to derive a contradiction

from Equation (6.8):(
1
2 − β

)
π

(
1− 1

2

(
1
2
− β

))
≤

(
1
2 − β

)2

π
+

(
1
2 − β

)
πζ

β,

1− 1
2

(
1
2
− β

)
≤
(

1
2
− β

)
+

β

ζ
,

ζ

(
1− 3

2

(
1
2
− β

))
≤β.
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Since ζ = 1
2 −

1
4

(
1
2 − β

)
, we have

ζ

(
1− 3

2

(
1
2
− β

))
=

1
2

(
1− 1

2

(
1
2
− β

))(
1− 3

2

(
1
2
− β

))
>

1
2

(
1− 2

(
1
2
− β

))
.

And

β =
1
2

(
1− 2

(
1
2
− β

))
.

This gives a contradiction. The total failure probability is bounded by

e−nσ2/4`+e−
√

αnσ/4 + 2e−λ2α/280`≤
(

δ

32

)16n
+

(
δ

32

)4n
+2
(

δ

32

) 1
2(

1
2−β)n

≤δ
1
2(

1
2−β)n,

assuming
(

1
2 − β

)
n ≥ 1.

6.2.6 Non-Interactive Fingerprinting Codes

Our construction and analysis also gives a construction of traditional non-interactive

fingerprinting codes. First we give a formal definition of a fingerprinting code.

Definition 6.2.20 ((Non-Interactive) Fingerprinting Codes). A n-collusion resilient

(non-interactive) fingerprinting code of length ` for N users robust to a β fraction

of errors with failure probability ε and false accusation probability δ is a pair of random

variables C ∈ {±1}N×` and Trace : {±1}` → 2[N] such that the following holds. For all

adversaries P : {±1}n×` → {±1}` and S ⊂ [N] with |S| = n,

P
C,Trace,P

[(∣∣∣{1 ≤ j ≤ ` : 6 ∃i ∈ [N] P(CS)
j = cj

i

}∣∣∣ ≤ β`
)
∧ (Trace(P(CS)) = ∅)

]
≤ ε

and

P
C,Trace,P

[|Trace(P(CS)) ∩ ([N]\S)| > δ(N − n)] ≤ ε,

where CS ∈ {±1}n×` contains the rows of C given by S.

Our construction and analysis is readily adapted to the non-interactive setting.
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We obtain the following theorem.

Theorem 6.2.21 (Existence of Non-Interactive Fingerprinting Codes). For every 1 ≤

n ≤ N, 0 ≤ β < 1/2, and 0 < δ ≤ 1, there is a n-collusion-resilient (non-interactive)

fingerprinting code of length ` for N users robust to a β fraction of errors with failure

probability

ε ≤ min{δ(N − n), 2−Ω(δ(N−n))}+ δΩ(( 1
2−β)n)

and false accusation probability δ for

` = O

n2 log (1/δ)(
1
2 − β

)4

 .

6.3 Hardness of False Discovery

In this section we prove our main result - that answering O(n2) adaptive queries

given n samples is hard. But first we must formally define the model in which we

are working.

6.3.1 The Statistical Query Model

Given a distribution P over {0, 1}d, we would like to answer statistical queries about

P . A statistical query on {0, 1}d is specified by a function q : {0, 1}d → [−1, 1] and

(abusing notation) is defined to be

q(P) = E
x←RP

[q(x)] .

Our goal is to design a mechanismM that answers statistical queries on P using

only iid samples x1, . . . , xn ←R P . Our focus is the case where the queries are chosen

adaptively and adversarially.
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Specifically,M is a stateful algorithm that holds a collection of samples x1, . . . , xn

in {0, 1}d, takes a statistical query q as input, and returns a real-valued answer

a ∈ [−1, 1]. We require that when x1, . . . , xn are iid samples from P , the answer

a is close to q(P), and moreover that this condition holds for every query in an

adaptively chosen sequence q1, . . . , q`. Formally, we define the following game

between anM and a stateful adversary A.

A chooses a distribution P over {0, 1}d.
Sample x1, . . . , xn ←R P , let x = (x1, . . . , xn).
For j = 1, . . . , `
A outputs a query qj.
M(x, qj) outputs aj.
(As A and M are stateful, qj and aj may depend on the history

q1, a1, . . . , qj−1, aj−1.)

Figure 6.3: Accn,d,`[M,A]

Definition 6.3.1 (Accuracy). An mechanismM is (α, β, γ)-accurate for ` adaptively

chosen queries given n samples in {0, 1}d if for every adversary A,

P
Accn,d,`[M,A]

[
For (1− β)` choices of j ∈ [`],

∣∣∣M(x, qj)− qj(P)
∣∣∣ ≤ α

]
≥ 1− γ .

As a shorthand, we will say thatM is (α, β)-accurate for ` queries if for every n, d ∈N,

M is (α, β, on(1))-accurate for ` queries given n samples in {0, 1}d. Here, ` may depend

on n and d and on(1) is a function of n that tends to 0.

We are interested in mechanisms that are both accurate and computationally

efficient. We say that a mechanism M is computationally efficient if, when given

samples x1, . . . , xn ∈ {0, 1}d and a query q : {0, 1}d → [−1, 1], it runs in time

poly(n, d, |q|). Here q will be represented as a circuit that evaluates q(x) and |q|

denotes the size of this circuit.
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6.3.2 Encryption Schemes

Our attack relies on the existence of a semantically secure private-key encryption

scheme. An encryption scheme is a triple of efficient algorithms (Gen, Enc, Dec) with

the following syntax:

• Gen is a randomized algorithm that takes as input a security parameter λ and

outputs a λ-bit secret key. Formally, sk←R Gen(1λ).

• Enc is a randomized algorithm that takes as input a secret key and a message

m ∈ {−1, 0, 1} and outputs a ciphertext ct ∈ {0, 1}poly(λ). Formally, ct ←R

Enc(sk, m).

• Dec is a deterministic algorithm that takes as input a secret key and a ciphertext

ct and outputs a decrypted message m′. If the ciphertext ct was an encryption

of m under the key sk, then m′ = m. Formally, if ct ←R Enc(sk, m), then

Dec(sk, ct) = m with probability 1.

Roughly, security of the encryption scheme asserts that no polynomial time

adversary who does not know the secret key can distinguish encryptions of m = 0

from encryptions of m = 1, even if the adversary has access to a mechanism

that returns the encryption of an arbitrary message under the unknown key. For

convenience, we will require that this security property holds simultaneously for an

arbitrary polynomial number of secret keys. The existence of an encryption scheme

with this property follows immediately from the existence an ordinary semantically

secure encryption scheme. We start with the stronger definition only to simplify

our proofs. A secure encryption scheme exists under the minimal cryptographic

assumption that one-way functions exist. The formal definition of security is not

needed until Section 6.4.
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6.3.3 The Attack

The adversary is specified in Figure 6.4. Observe that Attackn,d is only well defined

for pairs n, d ∈ N for which 1 + dlog2(2000n)e ≤ d, so that there exists a suitable

choice of λ ∈N. Through this section we will assume that n = n(d) is a polynomial

in d and that d is a sufficiently large unspecified constant, which ensures that

Attackn,d is well defined.

The distribution P :
Given parameters d, n, let N = 2000n, let λ = d− dlog2(N)e.
Let (Gen, Enc, Dec) be an encryption scheme
For i ∈ [N], let ski ←R Gen(1λ) and let yi = (i, ski) ∈ {0, 1}d.
Let P be the uniform distribution over {y1, . . . , yN} ⊆ {0, 1}d.

M samples x1, . . . , xn ←R P . Let x = (x1, . . . , xn).
Let S ⊆ [N] be the set of unique indices i such that (i, ski) appears in x.

Attack:
Initialise a n-collusion resilient interactive fingerprinting code F of length `

for N users robust to a β fraction of errors with failure probability ε = negl(n)
and false accusation probability δ = 1/1000.

Let T1 = ∅.
For j = 1, . . . , ` = `(N):

Let cj ∈ {±1}N be the column given by F .
For i = 1, . . . , N, let ctj

i = Enc(ski, cj
i).

Define the query qj(i′, sk′) to be Dec(sk′, ctj
i′) if i′ 6∈ T j and 0 otherwise.

Let aj =M(x; qj) and round aj to {±1} to obtain aj.
Give aj to F and let I j ⊆ [N] be the set of accused users and T j = T j−1∪ I j.

Figure 6.4: Attackn,d[M]

6.3.4 Informal Analysis of the Attack

Before formally analysing the attack, we comment on the overall structure thereof.

At a high level, the attack Attackn,d[M] runs the fingerprinting game IFPCN,n,`[P ,F ],
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where the mechanism M plays the rôle of the fingerprinting adversary P . Each

challenge cj issued by F is passed to the mechanism in encrypted form as qj. The

mechanism must output an approximation aj to the true answer

qj(P) = 1
N ∑

i∈[N]\T j

cj
i .

In order to do this, the mechanism could decrypt qj to obtain cj for every j. How-

ever, the mechanism does not have all the necessary secret keys; it only has the

secret keys corresponding to its sample S. Thus, by the security of the encryption

scheme, any efficient mechanism effectively can only see cj
S\T j . That is to say, if

the mechanism is computationally efficient, then it has the same restriction as a

fingerprinting adversary P . Thus, any computationally efficient mechanism must

lose the fingerprinting game, meaning it cannot answer every query (or even just a

β = 1/2 + Ω(1) fraction of the queries) accurately.

One subtly arises since “accuracy” for the mechanism is defined with respect

to the true answer qj(P) = 1
N ∑i∈[N]\T j cj

i , whereas “accuracy” in the fingerprinting

game is defined with respect to the average over all of cj, that is 1
N ∑i∈[N] cj

i . We

deal with these subtleties by arguing that T j, which is the number of users accused

by the interactive fingerprinting code prior to the j-th query, is small. Here we

use the fact that the fingerprinting code only allows a relatively small number of

false accusations N/1000. Therefore |T j| ≤ n + N/1000 ≤ N/500. As a result, the

definition of accuracy guaranteed by the mechanism will be close enough to the

definition of accuracy required for the interactive fingerprinting code to succeed in

identifying the sample.
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6.3.5 Analysis of the Attack

In this section we prove our main result:

Theorem 6.3.2 (Theorem 6.1.1). Assuming one-way functions exist, for all β < 1/2,

there is a function `(2000n, β) = O(n2/
(

1
2 − β

)4
) such that there is no computationally

efficient mechanismM that is (0.99, β, 1/2)-accurate for `(2000n, β) adaptively chosen

queries given n samples in {0, 1}d.

We will start by establishing that the number of falsely accused users is small.

That is, we have |T` \ S| ≤ N/1000 with high probability. This condition will follow

from the security of the interactive fingerprinting code F . However, security alone is

not enough to guarantee that the number of falsely accused users is small, because

security of F applies to adversaries that only have access to cj
i for users i ∈ S \ T j,

whereas the queries to the mechanism depend on cj
i for users i 6∈ S \ T j. To remedy

this problem we rely on the fact entries cj
i for i outside of S \ T j are encrypted

under keys ski that are not known to the mechanism. Thus, a computationally

efficient mechanism “does not know” those rows. We can formalise this argument

by comparing Attack to an IdealAttack (Figure 6.5) where these entries are replaced

with zeros, and argue that the adversary cannot distinguish between these two

attacks without breaking the security of the encryption scheme.

Claim 6.3.3. For every mechanismM, every polynomial n = n(d), and every sufficiently

large d ∈N,

P
IdealAttackn,d[M]

[
|T` \ S| > N/1000

]
≤ negl(n)

Proof. This follows straightforwardly from a reduction to the security of the fin-

gerprinting code. Notice that the query qj does not depend on any entry cj
i for

i 6∈ S \ T j−1. Thus, an adversary for the fingerprinting code who has access to
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The distribution P :
Given parameters d, n, let N = 2000n, and λ = d− dlog2(N)e.
Let (Gen, Enc, Dec) be an encryption scheme
For i ∈ [N], let ski ←R Gen(1λ) and let yi = (i, ski) ∈ {0, 1}d.
Let P be the uniform distribution over {y1, . . . , yN} ⊆ {0, 1}d.

Choose samples x1, . . . , xn ←R P , let x = (x1, . . . , xn).
Let S ⊆ [N] be the set of unique indices i such that (i, ski) appears in x.

Recovery phase:
Initialise a n-collusion resilient interactive fingerprinting code F of length `

for N users robust to a β fraction of errors with failure probability ε = negl(n)
and false accusation probability δ = 1/1000.

Let T1 = ∅.
For j = 1, . . . , ` = `(N):

Let cj ∈ {±1}N be the column given by F .
For i ∈ S, let ctj

i = Enc(ski, cj
i), for i ∈ [N] \ S, let ctj

i = Enc(ski, 0).
Define the query qj(i′, sk′) to be Dec(sk′, ctj

i′) if i′ 6∈ T j and 0 otherwise.
Let aj =M(x; qj) and round aj to {±1} to obtain aj.
Give aj to F and let I j ⊆ [N] be the set of accused users and T j = T j−1∪ I j.

Figure 6.5: IdealAttackn,d[M]

cj
S\T j−1 can simulate the view of the mechanism. Since we have for any adversary P

P
IFPCN,n,`[P ,F ]

[
ψ` > (N − n)δ

]
≤ ε,

we also have

P
IdealAttackn,d[M]

[
|T` \ S| > N/1000

]
≤ negl(n),

as desired.

Now we can argue that an efficient mechanism cannot distinguish between the

real attack and the ideal attack. Thus the conclusion that |T` \ S| ≤ N/1000 with

high probability must also hold in the real game.

Claim 6.3.4. Let Z1 be the event
{
|T` \ S| > N/1000

}
. Assume (Gen, Enc, Dec) is a
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computationally secure encryption scheme and let n = n(d) be any polynomial. Then, ifM

is computationally efficient, for every sufficiently large d ∈N∣∣∣∣∣ P
IdealAttackn,d[M]

[Z1]− P
Attackn,d[M]

[Z1]

∣∣∣∣∣ ≤ negl(n)

The proof is straightforward from the definition of security, and is deferred to

Section 6.4. Combining Claims 6.3.3 and 6.3.4 we easily obtain the following.

Claim 6.3.5. For every computationally efficient mechanism M, every polynomial n =

n(d), and every sufficiently large d ∈N,

P
Attackn,d[M]

[
|T` \ S| > N/1000

]
≤ negl(n)

Claim 6.3.5 will be useful because it will allow us to establish that an accurate

mechanism must give answers that are consistent with the fingerprinting code. That

is, using θ` to denote the number of inconsistent answers a1, . . . , a`, we will have

θ` � `/2 with high probability.

Claim 6.3.6. IfM is (0.99, β, 1/2)-accurate for ` = `(2000n) adaptively chosen queries

then, for every polynomial n = n(d) and every sufficiently large d ∈N,

P
Attackn,d[M]

[
θ` ≤ β`

]
≥ 1/2− negl(n)

Proof. In the attack, the mechanism’s input consists of n samples from P , and

the total number of queries issued is `. Therefore, by the assumption that M is

(0.99, β, 1/2)-accurate for ` queries, we have

P

 For (1− β)` choices of j ∈ [`],∣∣∣∣M(x, qj)− E
(i,ski)←RP

[
qj(i, ski)

]∣∣∣∣ ≤ 0.99

 ≥ 1/2. (6.9)
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Observe that, by construction, for every j ∈ [`],∣∣∣∣ E
(i,ski)←RP

[
qj(i, ski)

]
− E

i∈[N]

[
cj

i

]∣∣∣∣
=

∣∣∣∣∣∣
 1

N ∑
i∈[N]\T j−1

Dec(ski, ctj
i) +

1
N ∑

i∈T j−1

0

− E
i∈[N]

[
cj

i

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
 1

N ∑
i∈[N]\T j−1

cj
i

− 1
N ∑

i∈[N]

cj
i

∣∣∣∣∣∣
=

∣∣∣∣∣− 1
N ∑

i∈T j−1

cj
i

∣∣∣∣∣
≤
∣∣T j−1

∣∣
N

≤|T
j−1 \ S|+ |S|

N
(6.10)

where the second equality is because by construction ctj
i ←R Enc(ski, cj

i) and the

inequality is because we have cj
i ∈ {±1}.

By Claim 6.3.5, and the fact that T j−1 ⊆ T`, we have

P
[
|T j−1 \ S| > N/1000

]
≤ negl(n).

Noting that N/1000 + n < N/500 and combining with (6.10), we have

P

[
∀ j ∈ [`],

∣∣∣∣ E
(i,ski)←RP

[
qj(i, ski)

]
− E

i∈[n]

[
cj

i

]∣∣∣∣ ≤ 1/500
]
≥ 1− negl(n) (6.11)

Applying the triangle inequality to (6.9) and (6.11), we obtain

P

 For (1− β)` choices of j ∈ [`],∣∣∣∣M(x, qj)− E
i∈[N]

[
cj

i

]∣∣∣∣ ≤ 0.99 + 1/500

 ≥ 1/2− negl(n). (6.12)

Fix a j ∈ [`] such that aj is 0.99-accurate for query qj. If cj
i = 1 for every i ∈ [N],

then aj = M(x, qj) ≥ 1− 0.99− 1/500, so the rounded answer aj = 1. Similarly
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if cj
i = −1 for every i ∈ [N], aj = −1. Therefore there must exist i ∈ [N] so that

aj = cj
i . Thus there are (1− β)` choices of j ∈ [`] for which this condition holds, so

the number of errors θ` is at most β`. This completes the proof of the claim.

As before, we can argue that the real attack and the ideal attack are computation-

ally indistinguishable, and thus the mechanism must also give consistent answers

in the ideal attack.

Claim 6.3.7. Let Z2 be the event
{

θ` ≤ β`
}

. Assume (Gen, Enc, Dec) is a computationally

secure encryption scheme and let n = n(d) be any polynomial. Then ifM is computationally

efficient, for every d ∈N∣∣∣∣∣ P
IdealAttackn,d[M]

[Z2]− P
Attackn,d[M]

[Z2]

∣∣∣∣∣ ≤ negl(n)

The proof is straightforward from the definition of security, and is deferred to

Section 6.4. Combining Claims 6.3.6 and 6.3.7 we easily obtain the following.

Claim 6.3.8. IfM computationally efficient and (0.99, β, 1/2)-accurate for ` = `(2000n)

adaptively chosen queries then for every polynomial n = n(d) and every sufficiently large

d ∈N,

P
IdealAttackn,d[M]

[
θ` ≤ β`

]
≥ 1/2− negl(n).

However, the conclusion of 6.3.8 can easily be seen to lead to a contradiction,

because the security of the fingerprinting code assures that no attacker who only

has access to cj
S\T j−1 in each round j = 1, . . . , ` can give answers that are consistent

for (1− β)` of the columns cj. Thus, we have

Claim 6.3.9. For every mechanismM, every polynomial n = n(d), and every sufficiently

large d ∈N,

P
IdealAttackn,d[M]

[
θ` ≤ β`

]
≤ negl(n)
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Putting the above claims together, we obtain the main theorem:

Proof of Theorem 6.3.2. Assume for the sake of contradiction that there were such a

mechanism. Theorem 6.2.2 implies that an interactive fingerprinting code of length

O(n2/
(

1
2 − β

)4
) exists, so the attack can be carried out. By Claim 6.3.8 we would

have

P
IdealAttackn,d[M]

[
θ` ≤ β`

]
≥ 1/2− negl(n).

But, by Claim 6.3.9 we have

P
IdealAttackn,d[M]

[
θ` ≤ β`

]
≤ negl(n),

which is a contradiction.

Note that the constants in the (0.99, β, 1/2)-accuracy assumption are arbitrary

and have only been fixed for simplicity.

6.3.6 An Information-Theoretic Lower Bound

As in [HU14], we observe that the techniques underlying our computational hard-

ness result can also be used to prove an information-theoretic lower bound when

the dimension of the data is large. At a high level, the argument uses the fact that

the encryption scheme we rely on only needs to satisfy relatively weak security

properties, specifically security for at most O(n2) messages. This security property

can actually be achieved against computationally unbounded adversaries provided

that the length of the secret keys is O(n2). As a result, our lower bound can be

made to hold against computationally unbounded mechanisms, but since the secret

keys have length O(n2), we will require d = O(n2). We refer the reader to [HU14]

for a slightly more detailed discussion, and simply state the following result.
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Theorem 6.3.10 (Theorem 6.1.2). For all β < 1/2, there is a function `(2000n, β) =

O(n2/
(

1
2 − β

)4
) such that there is no mechanismM (even one that is computationally

unbounded) that is (0.99, β, 1/2)-accurate for `(2000n, β) adaptively chosen queries given

n samples in {0, 1}d when d ≥ `(2000n, β).

6.4 Security Reductions from Sections 6.3

In Section 6.3 we made several claims comparing the probability of events in Attack

to the probability of events in IdealAttack. Each of these claims follow from the

assumed security of the encryption scheme. In this section we restate and prove

these claims. Since the claims are all of a similar nature, the proof will be somewhat

modular.

Before we begin recall the formal definition of security of an encryption scheme.

Security is defined via a pair of mechanisms E0 and E1. E1(sk1, . . . , skN, ·) takes as

input the index of a key i ∈ [N] and a message m and returns Enc(ski, m), whereas

E0(sk1, . . . , skN, ·) takes the same input but returns Enc(ski, 0). The security of the

encryption scheme asserts that for randomly chosen secret keys, no computationally

efficient adversary can tell whether or not it is interacting with E0 or E1.

Definition 6.4.1. An encryption scheme (Gen, Enc, Dec) is secure if for every polynomial

N = N(λ), and every poly(λ)-time adversary B, if sk1, . . . , skN ←R Gen(1λ)∣∣∣P [BE0(sk1,...,skN ,·) = 1
]
−P

[
BE1(sk1,...,skN ,·) = 1

]∣∣∣ = negl(λ)

We now restate the relevant claims from Section 6.3.

Claim 6.4.2 (Claim 6.3.4 Restated). Let Z1 be the event
{

ψ` > N/8
}

.

Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let n = n(d)
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be any polynomial. Then ifM is computationally efficient, for every d ∈N∣∣∣∣∣ P
IdealAttackn,d[M]

[Z1]− P
Attackn,d[M]

[Z1]

∣∣∣∣∣ ≤ negl(n)

Claim 6.4.3 (Claim 6.3.7 Restated). Let Z2 be the event
{

θ` ≤ β`
}

.

Assume (Gen, Enc, Dec) is a computationally secure encryption scheme and let n = n(d)

be any polynomial. Then ifM is computationally efficient, for every d ∈N∣∣∣∣∣ P
IdealAttackn,d[M]

[Z2]− P
Attackn,d[M]

[Z2]

∣∣∣∣∣ ≤ negl(n)

To prove both of these claims, for c ∈ {1, 2} we construct an adversary Bc that

will attempt to useM to break the security of the encryption. We construct Bc in

such a way that its advantage in breaking the security of encryption is precisely the

difference in the probability of the event Zc between Attack and IdealAttack, which

implies that the difference in probabilities is negligible. The simulator is given in

Figure 6.6

Proof of Claims 6.4.2, 6.4.3. First, observe that for c ∈ {1, 2}, Bc is computationally

efficient as long as F andM are both computationally efficient. It is not hard to

see that our construction F is efficient and efficiency ofM is an assumption of the

claim. Also notice B can determine whether Zc has occurred efficiently.

Now we observe that when the mechanism is E1 (the mechanism that takes as

input i and m and returns Enc(ski, m)), and sk1, . . . , skN are chosen randomly from

Gen(1λ), then the view of the mechanism is identical to Attackn,d[M]. Specifically,

the mechanism holds a random sample of pairs (i, ski) and is shown queries that

are encryptions either under keys it knows or random unknown keys. Moreover,

the messages being encrypted are chosen from the same distribution. On the other

hand, when the mechanism is E0 (the mechanism that takes as input i and ct and
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Simulate constructing and sampling from P :
Given parameters d, n, let N = 2000n, let λ = d− dlog2(2000n)e.
Sample users u1, . . . , un ←R [N], let S be the set of distinct users in the

sample.
Choose new keys ski ←R Gen(1λ) for i ∈ S.
For i ∈ S, let xi = (ui, skui), let x = (x1, . . . , xn).

Simulate the attack:
Let T1 = ∅.
For j = 1, . . . , ` = `(N):

Let cj be the column given by F .
For i = 1, . . . , N:

If i ∈ S, let ctj
i = Enc(ski, cj

i), otherwise as E for an encryption of cj
i

under
key ski, that is ctj

i = Eb(sk1, . . . , skN, i, cj
i).

Define the query qj(i′, sk′) to be Dec(sk′, ctj
i′) if i′ 6∈ T j and 0 otherwise.

Let aj =M(x; qj) and round aj to {±1} to obtain aj.
Give aj to F and let I j ⊆ [N] be the set of accused users and T j = T j−1∪ I j.

Output 1 if and only if the event Zc occurs

Figure 6.6: BEb(sk1,...,skN ,·)
c,n,d

returns Enc(ski, 0)), then the view of the mechanism is identical to Attackn,d[M].

Thus we have that for c ∈ {1, 2},∣∣∣∣∣ P
IdealAttackn,d[M]

[Zc]− P
Attackn,d[M]

[Zc]

∣∣∣∣∣
=

∣∣∣∣∣ P
sk1,...,skN←RGen(1λ)

[
BE0(sk1,...,skN ,·)

c,n,d = 1
]
− P

sk1,...,skN←RGen(1λ)

[
BE1(sk1,...,skN ,·)

c,n,d = 1
]∣∣∣∣∣

= negl(λ) = negl(d)

The last equality holds because we have chosen N = 2000n(d) = poly(d), and

therefore we have λ = d− dlog Ne = d−O(log d). This completes the proof of both

claims.
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Chapter 7

The Power of Adaptivity in

Differential Privacy

7.1 Introduction

A central question in the differential privacy is literature is: how much error do

we need to answer a large set of queries q1, . . . , qk? Before we can answer this

question, we have to define a model of how the queries are asked and answered.

The literature on differential privacy has considered three different interactive

models1 for specifying the queries:

• The Offline Model: The sequence of queries q1, . . . , qk are given to the algorithm

together in a batch and the mechanism answers them together.

• The Online Model: The sequence of queries q1, . . . , qk is chosen in advance and

then the mechanism must answer each query qj before seeing qj+1.

1Usually, the “interactive model” refers only to what we call the “adaptive model.” We prefer to
call all of these models interactive, since they each require an interaction with a data analyst who
issues the queries. We use the term “interactive” to distinguish these models from one where the
algorithm only answers a fixed set of queries.
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• The Adaptive Model: The queries are not fixed in advance, each query qj+1 may

depend on the answers to queries q1, . . . , qj.

In all three cases, we assume that q1, · · · , qk are chosen from some family of allowable

queries Q, but may be chosen adversarially from this family.

Differential privacy seems well-suited to the adaptive model. Arguably its

signature property is that any adaptively-chosen sequence of differentially private

algorithms remains collectively differentially private, with a graceful degradation

of the privacy parameters [DMNS06, DRV10]. As a consequence, there is a simple

differentially private algorithm that takes a dataset of n individuals and answers

Ω̃(n) statistical queries in the adaptive model with error o(1/
√

n), simply by

perturbing each answer independently with carefully calibrated noise. In contrast,

the seminal lower bound of Dinur and Nissim and its later refinements [DN03,

DY08] shows that there exists a fixed set of O(n) queries that cannot be answered

by any differentially private algorithm with such little error, even in the easiest

offline model. For an even more surprising example, the private multiplicative

weights algorithm of Hardt and Rothblum [HR10] can in many cases answer an

exponential number of arbitrary, adaptively-chosen statistical queries with a strong

accuracy guarantee, whereas [BUV14] show that the accuracy guarantee of private

multiplicative weights is nearly optimal even for a simple, fixed family of queries.

These examples might give the impression that answering adaptively-chosen

queries comes “for free” in differential privacy—that everything that can be achieved

in the offline model can be matched in the adaptive model. Beyond just the lack

of any separation between the models, many of the most powerful differentially

private algorithms in all of these models use techniques from no-regret learning,

which are explicitly designed for adaptive models.
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Another motivation for studying the relationship between these models is the

recent line of work connecting differential privacy to statistical validity for adap-

tive data analysis [HU14, DFH+15c, §3,§6], which shows that differentially private

algorithms for adaptively-chosen queries in fact yield state-of-the-art algorithms for

statistical problems unrelated to privacy. This connection further motivates studying

the adaptive model and its relationship to the other models in differential privacy.

In this chapter, we show that these three models are actually distinct. In fact, we

show exponential separations between each of the three models. These are the first

separations between these models in differential privacy.

7.1.1 Our Results

Given a dataset x whose elements come from a data universe X , a statistical query on

X is defined by a predicate φ on X and asks “what fraction of elements in the dataset

satisfy φ?” The answer to a statistical query lies in [0, 1] and our goal is to answer

these queries up to some small additive error ±α, for a suitable choice of 0 < α < 1.

If the mechanism is required to answer arbitrary statistical queries, then the offline,

online, and adaptive models are essentially equivalent — the upper bounds in the

adaptive model match the lower bounds in the offline model [DRV10, HR10, BUV14,

§4]. However, we show that when the predicate φ is required to take a specific form,

then it becomes strictly easier to answer a set of these queries in the offline model

than it is to answer a sequence of queries presented online.

Theorem 7.1.1 (Informal). For every n ∈N, there exists a data universe X and a family

of statistical queries Q on X such that,

1. there is a differentially private algorithm that takes a dataset x ∈ X n and answers any

set of k = 2Ω(
√

n) offline queries from Q up to error ±1/100 from Q, but
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2. no differentially private algorithm can take a dataset x ∈ X n and answer an arbitrary

sequence of k = O(n2) online (but not adaptively-chosen) queries from Q up to error

±1/100.

The constant 1/100 is arbitrary — the negative results hold for larger values and

the positive results hold for smaller values. The accuracy parameter does not play

an important role in any of our results and should mostly be ignored.

This result establishes that the online model is strictly harder than the offline

model. We also demonstrate that the adaptive model is strictly harder than the

online model. Here, the family of queries we use in our separation is not a family

of statistical queries, but is rather a family of search queries with a specific definition

of accuracy that we will define later.

Theorem 7.1.2 (Informal). For every n ∈ N, there is a family of “search” queries Q on

datasets in X n such that

1. there is a differentially private algorithm that takes a dataset x ∈ {±1}n and accurately

answers any online (but not adaptively-chosen) sequence of k = 2Ω(n) queries from Q,

but

2. no differentially private algorithm can take a dataset x ∈ {±1}n and accurately

answer an adaptively-chosen sequence of k = O(1) queries from Q.

We leave it as an interesting open question to separate the online and adaptive

models for statistical queries, or to show that the models are equivalent for statistical

queries.

Although Theorems 7.1.1 and 7.1.2 separate the three models, these results

use somewhat contrived families of queries. Thus, we also investigate whether

the models are distinct for natural families of queries that are of use in practical
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applications. One very well studied class of queries is threshold queries. These are a

family of statistical queries Qthresh defined on the universe [0, 1] and each query is

specified by a point τ ∈ [0, 1] and asks “what fraction of the elements of the dataset

are at most τ?” If we restrict our attention to so-called pure differential privacy

(i.e. (ε, δ)-differential privacy with δ = 0), then we obtain an exponential separation

between the offline and online models for answering threshold queries.

Theorem 7.1.3 (Informal). For every n ∈N,

1. there is a pure differentially private algorithm that takes a dataset x ∈ [0, 1]n and

answers any set of k = 2Ω(n) offline queries from Qthresh up to error ±1/100, but

2. no pure differentially private algorithm takes a dataset x ∈ [0, 1]n and answers an

arbitrary sequence of k = O(n) online (but not adaptively-chosen) queries from Qthresh

up to error ±1/100.

We also ask whether or not such a separation exists for arbitrary differentially

private algorithms (i.e. (ε, δ)-differential privacy with δ > 0). Theorem 7.1.3 shows

that, for pure differential privacy, online threshold queries have near-maximal

sample complexity. That is, up to constants, the lower bound for online threshold

queries matches what is achieved by the Laplace mechanism (cf. Theorem 4.3.1),

which is applicable to arbitrary statistical queries. This may lead one to conjecture

that adaptive threshold queries also require near-maximal sample complexity subject

to approximate differential privacy. However, we show that this is not the case:

Theorem 7.1.4. For every n ∈ N, there is a differentially private algorithm that takes a

dataset x ∈ [0, 1]n and answers any set of k = 2Ω(n) adaptively-chosen queries from Qthresh

up to error ±1/100.

In contrast, for any offline set of k thresholds τ1, . . . , τk, we can round each

element of the dataset up to an element in the finite universe X = {τ1, . . . , τk, 1}

257



without changing the answers to any of the queries. Then we can use known

algorithms for answering all threshold queries over any finite, totally ordered

domain [BNS13, BNSV15] to answer the queries using a very small dataset of size

n = 2O(log∗(k)). That is, we can answer a number of queries that is an exponential

tower of height Ω(log n), which is much more than exponential in n. We leave it as

an interesting open question to settle the complexity of answering adaptively-chosen

threshold queries in the adaptive model.

7.1.2 Techniques

Separating Offline and Online Queries

To prove Theorem 7.1.1, we construct a sequence of queries q1, · · · , qk such that, for

all j ∈ [k],

• qj “reveals” the answers to q1, · · · , qj−1, but

• q1, · · · , qj−1 do not reveal the answer to qj.

Thus, given the sequence q1, · · · , qk in the offline setting, the answers to q1, · · · , qk−1

are revealed by qk. So only qk needs to be answered and the remaining query

answers can be inferred. However, in the online setting, each query qj−1 must

be answered before qj is presented and this approach does not work. This is the

intuition for our separation.

To prove the online lower bound, we build on the a lower bound for one-way

marginal queries from Chapter 4 — unless k� n2, there is no differentially private

algorithm that answers k one-way marginal queries with constant accuracy. We are

able to “embed” k marginal queries into the sequence of online queries q1, · · · , qk.

Thus a modification of the lower bound for one-way marginal queries applies in the

online setting.
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To prove the offline upper bound, we use the fact that every query reveals

information about other queries. However, we must handle arbitrary sequences

of queries, not just the specially-constructed sequences used for the lower bound.

The key property of our family of queries is the following. Each element x of the

data universe X requires k bits to specify. On the other hand, for any set of queries

q1, · · · , qk, we can specify q1(x), · · · , qk(x) using only O(log(nk)) bits. Thus the

effective size of the data universe given the queries is poly(nk), rather than 2k. Then

we can apply a differentially private algorithm that gives good accuracy as long as

the data universe has subexponential size [BLR13]. Reducing the size of the data

universe is only possible once the queries have been specified; hence this approach

only works in the offline setting.

Separating Online and Adaptive Queries

To prove Theorem 7.1.2, we start with the classical randomized response algo-

rithm [War65]. Specifically, given a dataset x ∈ {±1}n, randomized response

produces a new dataset y ∈ {±1}n where each coordinate yi is independently set

to +xi with probability (1 + α)/2 and is set to −xi with probability (1− α)/2. It is

easy to prove that this algorithm is (O(α), 0)-differentially private. What accuracy

guarantee does this algorithm satisfy? By design, it outputs a vector y that has

correlation approximately α with the dataset x — that is, 〈y, x〉 ≈ αn. On the other

hand, it is also easy to prove that there is no differentially private algorithm (for

any reasonable privacy parameters) that can output a vector that has correlation at

least 1/2 with the sensitive dataset.

Our separation between the online and adaptive models is based on the observa-

tion that, if we can obtain O(1/α2) “independent” vectors y1, . . . , yk that are each

roughly α-correlated with x, then we can obtain a vector z that is (1/2)-correlated
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with x, simply by letting z be the coordinate-wise majority of the yjs. Thus, no

differentially private algorithm can output such a set of vectors. More precisely, we

require that 〈yi, yj〉 ≈ α2n for i 6= j, which is achieved if each yj is an independent

sample from randomized response.

Based on this observation, we devise a class of queries such that, if we are

allowed to choose k of these queries adaptively, then we obtain a set of vectors

y1, . . . , yk satisfying the conditions above. This rules out differential privacy for

k = O(1/α2) adaptive queries. The key is that we can use adaptivity to ensure

that each query asks for an “independent” yj by adding the previous answers

y1, · · · , yj−1 as constraints in the search query.

On the other hand, randomized response can answer each such query with high

probability. If a number of these queries is fixed in advance, then, by a union bound,

the vector y output by randomized response is simultaneously an accurate answer

to any collection of 2Ω(n) queries with high probability. Since randomized response

is oblivious to the queries, we can also answer the queries in the online model, as

long as they are not chosen adaptively.

At a high level, the queries that achieve this property are of the form “output a

vector y ∈ {±1}n that is approximately α-correlated with x and is approximately

as uncorrelated as possible with the vectors v1, . . . , vm.” A standard concentration

argument shows that randomized response gives an accurate answer to all the

queries simultaneously with high probability. On the other hand, if we are allowed

to choose the queries adaptively, then for each query qi, we can ask for a vector yi

that is correlated with x but is as uncorrelated as possible with the previous answers

y1, . . . , yi−1.
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Threshold Queries

For pure differential privacy, our separation between offline and online threshold

queries uses a simple argument based on binary search. Our starting point is a

lower bound showing that any purely differentially private algorithm that takes a

dataset of n points x1, . . . , xn ∈ {1, . . . , T} and outputs an approximate median of these

points requires n = Ω(log T). This lower bound follows from a standard application

of the “packing” technique of Hardt and Talwar [HT10]. On the other hand, by

using binary search, any algorithm that can answer k = O(log T) adaptively-chosen

threshold queries can be used to find an approximate median. Thus, any purely

differentially private algorithm for answering such queries requires a dataset of size

n = Ω(k). Using the structure of the lower bound argument, we show that the same

lower bound holds for online non-adaptive queries as well. In contrast, using the

algorithms of [DNPR10, CSS11, DNRR15], we can answer k offline threshold queries

on a dataset with only n = O(log k) elements, giving an exponential separation.

The basis of our improved algorithm for adaptive threshold queries under

approximate differential privacy is a generalisation of the sparse vector technique

[DNPR10, RR10, HR10] (see [DR14, §3.6] for a textbook treatment). Our algorithm

makes crucial use of a stability argument similar to the propose-test-release techniques

of Dwork and Lei [DL09]. To our knowledge, this is the first use of a stability

argument for any online or adaptive problem in differential privacy and may be

of independent interest. In particular, our algorithm is given an input x ∈ Xn,

a threshold t ∈ (0, 1), and an adaptive sequence of statistical (or low-sensitivity)

queries q1, · · · , qk : Xn → [0, 1] and, for each query qj, it reports (i) qj(x) ≥ t, (ii)

qj(x) ≤ t, or (iii) t− α ≤ qj(x) ≤ t + α. The sample complexity of this algorithm

is n = O(
√

c log(k/εδ)/εα), where k is the total number of queries, c is an upper

bound on the number of times (iii) may be reported, and (ε, δ)-differential privacy
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is provided. We call this the Between Thresholds algorithm.

Once we have this algorithm, we can use it to answer adaptively-chosen thresh-

olds using an approach inspired by Bun et al. [BNSV15]. The high-level ideal is

to sort the dataset x(1) < x(2) < · · · < x(n) and then partition it into chunks of

consecutive sorted elements. For any chunk, and a threshold τ, we can use the

between thresholds algorithm to determine (approximately) whether τ lies below

all elements in the chunk, above all elements in the chunk, or inside the chunk.

Obtaining this information for every chunk is enough to accurately estimate the

answer to the threshold query τ up to an error proportional to the size of the chunks.

The sample complexity is dominated by the O(log k) sample complexity of our

Between Thresholds algorithm multiplied by the number of chunks needed, namely

O(1/α).

7.2 Preliminaries

7.2.1 Models of Interactive Queries

The goal of this work is to understand the implications of different ways to allow an

adversary to query a sensitive dataset. In each of these models there is an algorithm

W that holds a dataset x ∈ X n, and a fixed family of (statistical or search) queries

Q on X n, and a bound k on the number of queries thatW has to answer. There is

also an adversary A that chooses the queries. The models differ in how the queries

chosen by A are given toW .

262



Offline

In the offline model, the queries q1, . . . , qk ∈ Q are specified by the adversary A in

advance and the algorithm W is given all the queries at once and must provide

answers. Formally, we define the following function OfflineA→←W : X n → Qk ×Y k

depending A andW .

Input: x ∈ Xn.
A chooses q1, · · · , qk ∈ Q.
W is given x and q1, · · · , qk and outputs a1, · · · , ak ∈ Y .
Output: (q1, · · · , qk, a1, · · · , ak) ∈ Qk ×Y k.

Figure 7.1: OfflineA→←W : X n → Qk ×Y k

Online Non-Adaptive

In the online non-adaptive model, the queries q1, . . . , qk ∈ Q are again fixed in

advance by the adversary, but are then given to the algorithm one at a time, and

the algorithm must give an answer to query qj before it is shown qj+1. We define

a function OnlineA→←W : X n → Qk × Y k depending on the adversary A and the

algorithmW as follows.

Input: x ∈ Xn.
A chooses q1, · · · , qk ∈ Q.
W is given x.
For j = 1, . . . , k:
W is given qj and outputs aj ∈ Y .2

Output: (q1, · · · , qk, a1, · · · , ak) ∈ Qk ×Y k.

Figure 7.2: OnlineA→←W : X n → Qk ×Y k
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Online Adaptive

In the online adaptive model, the queries q1, . . . , qk ∈ Q are not fixed, and the

adversary may choose each qj based on the answers that the algorithm gave to the

previous queries. We define a function AdaptiveA→←W : X n → Qk ×Y k depending

on the adversary A and the algorithmW as follows.

Input: x ∈ Xn.
W is given x.
For j = 1, . . . , k:
A chooses a query qj ∈ Q.
W is given qj and outputs aj ∈ Y .

Output: (q1, · · · , qk, a1, · · · , ak) ∈ Qk ×Y k.

Figure 7.3: AdaptiveA→←W : X n → Qk ×Y k

Definition 7.2.1 (Differential Privacy for Interactive Mechanisms). In each of the

three cases — Offline, Online Non-Adaptive, or Online Adaptive — we say that W is

(ε, δ)-differentially private if, for all adversaries A, respectively OfflineA→←W , OnlineA→←W ,

or AdaptiveA→←W is (ε, δ)-differentially private.

Definition 7.2.2 (Accuracy for Interactive Mechanisms). In each case — Offline, Online

Non-Adaptive, or Online Adaptive queries — we say thatW is (α, β)-accurate if, for all

adversaries A and all inputs x ∈ X n,

P
q1,··· ,qk,a1,··· ,ak

[
max
j∈[k]

Lqj(x, aj) ≤ α

]
≥ 1− β, (7.1)

where (q1, · · · , qk, a1, · · · , ak) is respectively drawn from one of OfflineA→←W (x),

OnlineA→←W (x), or AdaptiveA→←W (x). We also say thatW is α-accurate if the above holds

with (7.1) replaced by

E
q1,··· ,qk,a1,··· ,ak

[
max
j∈[k]

Lqj(x, aj)

]
≤ α.
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7.2.2 Search Queries

In this work we consider two general classes of queries on the dataset: statistical

queries (which have been described earlier) and search queries.

Formally, a search query q on X n is defined by a loss function Lq : X n×Y → [0, ∞),

where Y is an arbitrary set representing the range of possible outputs. For a dataset

x ∈ X n and an output y ∈ Y , we will say that y is α-accurate for q on x if Lq(x, y) ≤ α.

In some cases the value of Lq will always be either 0 or 1. Thus we simply say that

y is accurate for q on x if Lq(x, y) = 0. For example, if X n = {±1}n, we can define

a search query by Y = {±1}n, and Lq(x, y) = 0 if 〈x, y〉 ≥ αn and Lq(x, y) = 1

otherwise. In this case, the search query would ask for any vector y that has

correlation α with the dataset.

Statistical queries are a special case of search queries: given a statistical query

q on X n, we can define a search query Lq with Y = [0, 1] and Lq(x, a) = |q(x)− a|.

Then both definitions of α-accurate align.

7.3 A Separation Between Offline and Online Queries

In this section we prove that online accuracy is strictly harder to achieve than offline

accuracy, even for statistical queries. We prove our results by constructing a set of

statistical queries that we call prefix queries for which it is possible to take a dataset

of size n and accurately answer superpolynomially many offline prefix queries in a

differentially private manner, but it is impossible to answer more than O(n2) online

prefix queries while satisfying differential privacy.

We now define the family of prefix queries. These queries are defined on the
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universe X = {±1}∗ = ⋃∞
j=0{±1}j consisting of all finite length binary strings.3 For

x, y ∈ {±1}∗, we use y � x to denote that y is a prefix of x. Formally

y � x ⇐⇒ |y| ≤ |x| and ∀i = 1, . . . , |y| xi = yi.

Definition 7.3.1. For any finite set S ⊆ {±1}∗ of finite-length binary strings, we define

the prefix query qS : {±1}∗ → {±1} by

qS(x) = 1 ⇐⇒ ∃y ∈ S y � x.

We also define

Qprefix = {qS | S ⊂ {±1}∗}

QB
prefix = {qS | S ⊂ {±1}∗, |S| ≤ B}

to be the set of all prefix queries and the set of prefix queries with sizes bounded by B,

respectively.

7.3.1 Answering Offline Prefix Queries

We now prove that there is a differentially private algorithm that answers super-

polynomially many prefix queries, provided that the queries are specified offline.

Theorem 7.3.2 (Answering Offline Prefix Queries). For every α, ε ∈ (0, 1/10), every

B ∈N, and every n ∈N, there exists a

k = min
{

2Ω(
√

α3εn), 2Ω(α3εn/ log(B))
}

and an (ε, 0)-differentially private algorithm Wprefix : X n × (QB
prefix)

k → Rk that is

3All of the arguments in this section hold if we restrict to strings of length at most k + log n.
However, we allow strings of arbitrary length to reduce notational clutter.
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(α, 1/100)-accurate for k offline queries from QB
prefix.

We remark that it is possible to answer even more offline prefix queries by

relaxing to (ε, δ)-differential privacy for some negligibly small δ > 0. However, we

chose to state the results for (ε, 0)-differential privacy to emphasize the contrast with

the lower bound, which applies even when δ > 0, and to simplify the statement.

Our algorithm for answering offline queries relies on the existence of a good

differentially private algorithm for answering arbitrary offline statistical queries. For

concreteness, the so-called “BLR mechanism” of Blum, Ligett, and Roth [BLR13]

suffices, although different parameter tradeoffs can be obtained using different

mechanisms. Differentially private algorithms with this type of guarantee exist

only when the data universe is bounded, which is not the case for prefix queries.

However, as we show, when the queries are specified offline, we can replace the

infinite universe X = {±1}∗ with a finite, restricted universe X ′ and run the BLR

mechanism. Looking ahead, the key to our separation will be the fact that this

universe restriction is only possible in the offline setting. Before we proceed with

the proof of Theorem 7.3.2, we will state the guarantees of the BLR mechanism.

Theorem 7.3.3 ([BLR13]). For every 0 < α, ε ≤ 1/10 and every finite data universe X , if

QSQ is the set of all statistical queries on X , then for every n ∈N, there is a

k = 2Ω(α3εn/ log |X |)

and an (ε, 0)-differentially private algorithmWBLR : X n ×Qk
SQ → Rk that is (α, 1/100)-

accurate for k offline queries from QSQ.

We are now ready to prove Theorem 7.3.2.

Proof of Theorem 7.3.2. Suppose we are given a set of queries qS1 , . . . , qSk ∈ QB
prefix

and a dataset x ∈ X n where X = {±1}∗. Let S =
⋃k

j=1 Sj. We define the universe
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XS = S∪ {∅} where ∅ denotes the empty string of length 0. Note that this universe

depends on the choice of queries, and that |XS| ≤ kB + 1. Since XS ⊂ X , it will be

well defined to restrict the domain of each query qSj to elements of XS.

Next, given a dataset x = (x1, . . . , xn) ∈ X n, and a collection of sets S1, . . . , Sk ⊂

X , we give a procedure for mapping each element of x to an element of XS to obtain

a new dataset xS = (xS
1 , . . . , xS

n) ∈ X n
S that is equivalent to x with respect to the

queries qS1 , . . . , qSk . Specifically, define rS : X → XS by

rS(x) = argmaxy∈XS,y�x|y|.

That is, rS(x) is the longest string in XS that is a prefix of x. We summarize the key

property of rS in the following claim

Claim 7.3.4. For every x ∈ X , and j = 1, . . . , k, qSj(rS(x)) = qSj(x).

Proof of Claim 7.3.4. First, we state a simple but important fact about prefixes: If y, y′

are both prefixes of a string x with |y| ≤ |y′|, then y is a prefix of y′. Formally,

∀x, y, y′ ∈ {0, 1}∗ (y � x ∧ y′ � x ∧ |y| ≤ |y′|) =⇒ y � y′. (7.2)

Now, fix any x ∈ X and any query qSj and suppose that qSj(x) = 1. Then there

exists a string y ∈ Sj such that y � x. By construction, we have that rS(x) � x and

that |rS(x)| ≥ |y|. Thus, by (7.2), we have that y � rS(x). Thus, there exists y ∈ Sj

such that y � rS(x), which means qSj(rS(x)) = 1, as required.

Next, suppose that qSj(rS(x)) = 1. Then, there exists y ∈ Sj such that y � rS(x).

By construction, rS(x) � x, so by transitivity we have that y � x. Therefore,

qSj(x) = 1, as required.

Given this lemma, we can replace every row xi of x with xS
i = rS(xi) to obtain a
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new dataset xS such that for every j = 1, . . . , k,

qSj(xS) =
1
n

n

∑
i=1

qSj(xS
i ) =

1
n

n

∑
i=1

qSj(xi) = qSj(x).

Thus, we can answer qS1 , · · · , qSk on xS ∈ X n
S , rather than on x ∈ X n. Note that

each row of xS depends only on the corresponding row of x. Hence, for every set of

queries qS1 , . . . , qSk , if x ∼ x′ are adjacent datasets, then xS ∼ x′S are also adjacent

datasets. Consequently, applying a (ε, δ)-differentially private algorithm to xS yields

a (ε, δ)-differentially private algorithm as a function of x.

In particular, we can give α-accurate answers to these queries using the algorithm

WBLR as long as

k ≤ 2Ω(α3εn/ log |XS|) = 2Ω(α3εn/ log(kB+1)).

Rearranging terms gives the bound in Theorem 7.3.2. We specify the complete

algorithmWprefix in Figure 7.4.

Wprefix(x; qS1 , . . . , qSk):
Write x = (x1, . . . , xn) ∈ X n, S =

⋃k
j=1 Sj, XS = S ∪ {∅}.

For i = 1, . . . , n, let xS
i = rS(xi) and let xS = (xS

1 , . . . , xS
n) ∈ X n

S .
Let (a1, . . . , ak) =WBLR(xS; qS1 , . . . , qSk).
Output (a1, . . . , ak).

Figure 7.4: Wprefix

7.3.2 A Lower Bound for Online Prefix Queries

Next, we prove a lower bound for online queries. Our lower bound shows that the

simple approach of perturbing the answer to each query with independent noise

is essentially optimal for prefix queries. Since this approach is only able to answer
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k = O(n2) queries, we obtain an exponential separation between online and offline

statistical queries for a broad range of parameters.

Theorem 7.3.5 (Lower Bound for Online Prefix Queries). There exists a function

k = O(n2) such that for every sufficiently large n ∈N, there is no (1, 1/30n)-differentially

private algorithm W that takes a dataset x ∈ X n and is (1/100, 1/100)-accurate for k

online queries from Qn
prefix.

In this parameter regime, our algorithm from Section 7.3.1 answers k = eΩ̃(
√

n)

offline prefix queries, so we obtain an exponential separation.

Our lower bound is essentially the same as the lower bound for one-way

marginals in Chapter 4. However, we cannot apply those bounds in a black-

box manner, as we must show that the lower bound works adaptively. Recall the

following key lemma from Section 4.3.3.

Lemma 7.3.6 (Fingerprinting Lemma). Let f : {±1}n → [−1, 1] be any function.

Suppose p is sampled from the uniform distribution over [−1, 1] and c ∈ {±1}n is a vector

of n independent bits, where each bit has expectation p. Letting c denote the coordinate-wise

mean of c, we have

E
p,c

 f (c) · ∑
i∈[n]

(ci − p) + 2
∣∣ f (c)− c

∣∣ ≥ 1
3

.

Proof of Theorem 7.3.5. First we define the distribution on the input dataset x =

(x1, . . . , xn) and the queries qS1 , · · · , qSk .

Input dataset x:

• Sample p1, · · · , pk ∈ [−1, 1] independently and uniformly at random.

• Sample c1, · · · , ck ∈ {±1}n independently, where each cj is a vector of n

independent bits, each with expectation pj.
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• For i ∈ [n], define

xi = (binary(i), c1
i , · · · , ck

i ) ∈ {±1}dlog2 ne+k,

where binary(i) ∈ {±1}dlog2 ne is the binary representation of i where 1 is

mapped to +1 and 0 is mapped to −1.4 Let

x = (x1, . . . , xn) ∈
(
{±1}dlog2 ne+k

)n
.

Queries qS1 , · · · , qSk :

• For i ∈ [n] and j ∈ [k], define

zi,j = (binary(i), c1
i , · · · , cj−1

i , 1) ∈ {±1}dlog2 ne+j.

• For j ∈ [k], define qSj ∈ Qn
prefix by Sj =

{
zi,j | i ∈ [n]

}
.

These queries are designed so that the correct answer to each query j ∈ [k] is

given by qSj(x) = cj:

Claim 7.3.7. For every j ∈ [k], if the dataset x and the queries qS1 , . . . , qSk are constructed

as above, then with probability 1,

qSj(x) =
1
n

n

∑
i=1

qSj(xi) =
1
n

n

∑
i=1

cj
i = cj

Proof of Claim 7.3.7. We have

qSj(xi) = 1 ⇐⇒ ∃w ∈ Sj (w � xi) ⇐⇒ ∃` ∈ [n] (z`,j � xi).

By construction, we have z`,j � xi if and only if ` = i and xj
i = cj

i = 1, as required.

4This choice is arbitrary, and is immaterial to our lower bound. The only property we need is
that binary(i) uniquely identifies i and, for notational consistency, we require binary(i) to be a string
over the alphabet {±1}.
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Here, we have used the fact that the strings binary(i) are unique to ensure that

z`,j � xi if and only if ` = i.

We now show no differentially private algorithmW is capable of giving accurate

answers to these queries. Let W be an algorithm that answers k online queries

from Qn
prefix. Suppose we generate an input dataset x and queries qS1 , . . . , qSk as

above, and runW(x) on this sequence of queries. Let a1, . . . , ak ∈ [−1, 1] denote the

answers given byW .

First, we claim that, ifW(x) is accurate for the given queries, then each answer

aj is close to the corresponding value cj = 1
n ∑n

i=1 cj
i .

Claim 7.3.8. IfW is (1/100, 1/100)-accurate for k online queries from Qn
prefix, then with

probability 1 over the choice of x and qS1 , . . . , qSk above,

E
W

∑
j∈[k]

∣∣∣aj − cj
∣∣∣
 ≤ k

10
.

Proof of Claim 7.3.8. By Claim 7.3.7, for every j ∈ [k], qSj(x) = cj. Since, by assump-

tion, W is (1/100, 1/100)-accurate for k online queries from Qn
prefix, we have that

with probability at least 99/100,

∀j ∈ [k]
∣∣∣aj − qSj(x)

∣∣∣ ≤ 1
100

=⇒ ∀j ∈ [k]
∣∣∣aj − cj

∣∣∣ ≤ 1
100

By linearity of expectation, this case contributes at most k/100 to the expectation.

On the other hand, |aj − qSj(x)| ≤ 2, so by linearity of expectation the case where

W is inaccurate contributes at most 2k/100 to the expectation. This suffices to prove

the claim.

The next claim shows how the fingerprinting lemma (Lemma 7.3.6) can be

applied toW .
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Claim 7.3.9.

E
p,x,q,W

∑
j∈[k]

aj ∑
i∈[n]

(cj
i − pj) + 2

∣∣∣aj − cj
∣∣∣
 ≥ k

3
.

Proof. By linearity of expectation, it suffices to show that, for every j ∈ [k],

E
p,x,q,W

aj ∑
i∈[n]

(cj
i − pj) + 2

∣∣∣aj − cj
∣∣∣
 ≥ 1

3
.

Since each column cj is generated independently from the columns c1, . . . , cj−1,

cj and pj are independent from qS1 , · · · , qSj . Thus, at the time W produces the

output aj, it does not have any information about cj or pj apart from its private

input. (Although W later learns cj when it is asked qSj+1 .) For any fixed values

of c1, . . . , cj−1 and the internal randomness of W , the answer aj is a deterministic

function of cj. Thus we can apply Lemma 7.3.6 to this function to establish the

claim.

Combining Claims 7.3.8 and 7.3.9 gives

E
p,x,q,W

∑
j∈[k]

aj ∑
i∈[n]

(cj
i − pj)

 ≥ 2k
15

.

In particular, there exists some i∗ ∈ [n] such that

E
p,x,q,W

∑
j∈[k]

aj(cj
i∗ − pj)

 ≥ 2k
15n

. (7.3)

To complete the proof, we show that (7.3) violates the differential privacy guarantee

unless n ≥ Ω(
√

k).

To this end, fix any p1, . . . , pk ∈ [−1, 1], whence c1
i∗ , · · · , ck

i∗ ∈ {±1} are inde-

pendent bits with E
[
cj] = pj. Let c̃1, · · · , c̃k ∈ {±1} be independent bits with

E
[
c̃j] = pj. The random variables c1

i∗ , · · · , ck
i∗ have the same marginal distribu-

tion as c̃1, · · · , c̃k. However, c̃1, · · · , c̃k are independent from a1, · · · , ak, whereas
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a1, · · · , ak depend on c1
i∗ , · · · , ck

i∗ . Consider the quantities

Z = ∑
j∈[k]

aj(cj
i∗ − pj) and Z̃ = ∑

j∈[k]
aj(c̃j − pj).

Differential privacy implies that Z and Z̃ have similar distributions. Specifically, if

W is (1, 1/30n)-differentially private, then

E [|Z|] =
∫ 2k

0
P [|Z| > z]dz ≤

∫ 2k

0

(
eP
[
|Z̃| > z

]
+

1
30n

)
dz = eE

[
|Z̃|
]
+

k
15n

,

as |Z|, |Z̃| ≤ 2k with probability 1.

Now E [|Z|] ≥ E [Z] ≥ 2k/15n, by (7.3). On the other hand, aj is independent

from c̃j and E
[
c̃j − pj] = 0, so E

[
Z̃
]
= 0. We now observe that

E
[
|Z̃|
]2 ≤ E

[
Z̃2
]
= Var

[
Z̃
]
= ∑

j∈[k]
Var

[
aj(c̃j − pj)

]
≤ ∑

j∈[k]
E
[
(c̃j − pj)2

]
≤ k.

Thus, we have

2k
15n
≤ E [|Z|] ≤ eE

[
|Z̃|
]
+

k
15n
≤ e
√

k +
k

15n
.

The condition 2k/15n ≤ e
√

k + k/15n is a contradiction unless k ≤ 225e2n2. Thus,

we can conclude that there exists a k = O(n2) such that no (1, 1/30n)-differentially

private algorithm is accurate for more than k online queries from Qn
prefix, as desired.

This completes the proof.

7.4 A Separation Between Adaptive and Non-Adaptive

Online Queries

In this section we prove that even among online queries, answering adaptively-

chosen queries can be strictly harder than answering non-adaptively-chosen queries.
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Our separation applies to a family of search queries that we call correlated vector

queries. We show that for a certain regime of parameters, it is possible to take a

dataset of size n and privately answer an exponential number of fixed correlated

vector queries, even if the queries are presented online, but it is impossible to answer

more than a constant number of adaptively-chosen correlated vector queries under

differential privacy.

The queries are defined on datasets x ∈ {±1}n (hence the data universe is

X = {±1}). For every query, the range Y = {±1}n is the set of n-bit vectors. We

fix some parameters 0 < α < 1 and m ∈N. A query q is specified by a set V where

V =
{

v1, . . . , vm} ⊆ {±1}n is a set of n-bit vectors. Roughly, an accurate answer to

a given search query is any vector y ∈ {±1}n that is approximately α-correlated

with the input dataset x ∈ {±1}n and has nearly as little correlation as possible

with every vj. By “as little correlation as possible with vj” we mean that vj may

itself be correlated with x, in which case y should be correlated with vj only insofar

as this correlation comes through the correlation between y and x. Formally, for a

query qV , we define the loss function LqV : X n ×X n → {0, 1} by

LqV (x, y) = 0 ⇐⇒ |〈y− αx, x〉| ≤ α2n
100

∧ ∀vj ∈ V
∣∣∣〈y− αx, vj〉

∣∣∣ ≤ α2n
100

.

We remark that the choice of α2n/100 is somewhat arbitrary, and we can replace

this choice with C for any
√

n� C � n and obtain quantitatively different results.

We chose to fix this particular choice in order to reduce notational clutter.

We let

Qn,α,m
corr = {qV | V ⊆ {±1}n, |V| ≤ m}

be the set of all correlated vector queries on {±1}n for parameters α, m.
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7.4.1 Answering Online Correlated Vector Queries

Provided that all the queries are fixed in advance, we can privately answer correlated

vector queries using the randomized response algorithm. This algorithm simply

takes the input vector x ∈ {±1}n and outputs a new vector y ∈ {±1}n where each

bit yi is independent and is set to xi with probability 1/2 + ρ for a suitable choice

of ρ > 0. The algorithm will then answer every correlated vector query with this

same vector y. The following theorem captures the parameters that this mechanism

achieves.

Theorem 7.4.1 (Answering Online Correlated Vector Queries). For every 0 < α < 1/2,

there exists k = 2Ω(α4n) such that, for every sufficiently large n ∈ N, there is a (3α, 0)-

differentially private algorithmWcorr that takes a dataset x ∈ {±1}n and is (1/k)-accurate

for k online queries from Qn,α,k
corr .

Proof Theorem 7.4.1. Our algorithm based on randomized response is presented in

Figure 7.5 below.

Wcorr:
Input: a dataset x ∈ {±1}n.
Parameters: 0 < α < 1/2.
For i = 1, . . . , n, independently set

yi =

{
+xi with probability 1+α

2
−xi with probability 1−α

2
.

Let y = (y1, . . . , yn) ∈ {±1}n, and answer each query with y.

Figure 7.5: Wcorr

To establish privacy, observe that by construction each output bit yi depends

only on xi and is independent of all xj, yj for j 6= i. Therefore, it suffices to observe
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that if 0 < α < 1/2,

1 ≤ P[yi = +1 | xi = +1]
P[yi = +1 | xi = −1]

=
1 + α

1− α
≤ e3α

and similarly

1 ≥ P[yi = −1 | xi = +1]
P[yi = −1 | xi = −1]

=
1− α

1 + α
≥ e−3α.

To prove accuracy, observe that since the output y does not depend on the

sequence of queries, we can analyse the mechanism as if the queries qV1 , . . . , qVk ∈

Qn,α,k
corr were fixed and given all at once. Let V =

⋃k
j=1 Vj, and note that |V| ≤ k2.

First, observe that E [y] = αx. Thus we have

E
y
[〈y− αx, x〉] = 0 and ∀v ∈ V E

y
[〈y− αx, v〉] = 0

Since x and every vector in V is fixed independently of y, and the coordinates of y

are independent by construction, the quantities 〈y, x〉 and 〈y, v〉 are each the sum

of n independent {±1}-valued random variables. Thus, we can apply Hoeffding’s

inequality5 and a union bound to conclude

P
y

[
|〈y− αx, x〉| > α2n

100

]
≤ 2 exp

(
−α4n
20000

)
P
y

[
∃v ∈ V s.t. |〈y− αx, v〉| > α2n

100

]
≤ 2k2 exp

(
−α4n
20000

)
The theorem now follows by setting an appropriate choice of k = 2Ω(α4n) such that

2(k2 + 1) · exp
(
−α4n
20000

)
≤ 1/k.

5We use the following statement of Hoeffding’s Inequality: if Z1, . . . , Zn are independent {±1}-
valued random variables, and Z = ∑n

i=1 Zi, then

P
[∣∣∣ Z−E [Z]

∣∣∣ > C
√

n
]
≤ 2e−C2/2
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7.4.2 A Lower Bound for Adaptive Correlated Vector Queries

We now prove a contrasting lower bound showing that if the queries may be chosen

adaptively, then no differentially private algorithm can answer more than a constant

number of correlated vector queries. The key to our lower bound is that fact that

adaptively-chosen correlated vector queries allow an adversary to obtain many

vectors y1, . . . , yk that are correlated with x but pairwise nearly orthogonal with

each other. As we prove, if k is sufficiently large, this information is enough to

recover a vector x̃ that has much larger correlation with x than any of the vectors

y1, . . . , yk have with x. By setting the parameters appropriately, we will obtain a

contradiction to differential privacy.

Theorem 7.4.2 (Lower Bound for Correlated Vector Queries). For every 0 < α < 1/2,

there is a k = O(1/α2) such that for every sufficiently large n ∈N, there is no (1, 1/20)-

differentially private algorithm that takes a dataset x ∈ {±1}n and is 1/100-accurate for k

adaptive queries from Qn,α,k
corr

We remark that the value of k in our lower bound is optimal up to constants,

as there is a (1, 1/20)-differentially private algorithm that can answer k = Ω(1/α2)

adaptively-chosen queries of this sort. The algorithm simply answers each query

with an independent invocation of randomized response. Randomized response

is O(α)-differentially private for each query, and we can invoke the adaptive com-

position theorem [DMNS06, DRV10] to argue differential privacy for k = Ω(1/α2)-

queries.

Before proving Theorem 7.4.2, we state and prove the combinatorial lemma that

forms the foundation of our lower bound.

Lemma 7.4.3 (Reconstruction Lemma). Fix parameters 0 ≤ a, b ≤ 1. Let x ∈ {±1}n
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and y1, · · · , yk ∈ {±1}n be vectors such that

∀1 ≤ j ≤ k 〈yj, x〉 ≥ an

∀1 ≤ j < j′ ≤ k |〈yj, yj′〉| ≤ bn.

Then, if we let x̃ = sign(∑k
j=1 yj) ∈ {±1}n be the coordinate-wise majority of y1, . . . , yk,

we have

〈x̃, x〉 ≥
(

1− 2
a2k
− 2(b− a2)

a2

)
n.

Proof of Lemma 7.4.3. Let

y =
1
k

k

∑
j=1

yj ∈ [−1, 1]n.

By linearity, 〈y, x〉 ≥ an and

‖y‖2
2 =

1
k2

k

∑
j,j′=1
〈yj, yj′〉 ≤ 1

k2

(
kn + (k2 − k)bn

)
≤
(

1
k
+ b
)

n.

Define a random variable W ∈ [−1, 1] to be xiyi for a uniformly random i ∈ [n].

Then

E [W] =
1
n
〈x, y〉 ≥ a and E

[
W2
]
=

1
n

n

∑
i=1

x2
i y2

i =
1
n
‖y‖2

2 ≤
1
k
+ b

By Chebyshev’s inequality,

P [W ≤ 0] ≤ P
[
|W −E [W] | ≥ a

]
≤ Var[W]

a2 =
E[W2]−E[W]2

a2 ≤
1
k + b− a2

a2 .

Meanwhile,

P [W ≤ 0] =
1
n

n

∑
i=1

I[xiyi ≤ 0] ≥ 1
n

n

∑
i=1

I[sign(yi) 6= xi] =
1
2
− 1

2n
〈sign(y), x〉.

Thus we conclude

〈sign(y), x〉 ≥ n− 2nP [W ≤ 0] ≥ n− 2n

(
1
k + b− a2

a2

)
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To complete the proof, we rearrange terms and note that sign(y) = sign(∑k
j=1 yj).

Now we are ready to prove our lower bound for algorithms that answer

adaptively-chosen correlated vector queries.

Proof of Theorem 7.4.2. We will show that the output y1, . . . , yk of any algorithmW

that takes a dataset x ∈ {±1}n and answers k = 100/α2 adaptively-chosen correlated

vector queries can be used to find a vector x̃ ∈ {±1}n such that 〈x̃, x〉 > n/2. In

light of Lemma 7.4.3, this vector will simply be x̃ = sign(∑k
j=1 yj). We will then

invoke the following elementary fact that differentially private algorithms do not

admit this sort of reconstruction of their input dataset.

Fact 7.4.4. For every sufficiently large n ∈N, there is no (1, 1/20)-differentially private

algorithmW : {±1}n → {±1}n such that for every x ∈ {±1}n, with probability at least

99/100, 〈W(x), x〉 > n/2.

The attack works as follows. For j = 1, . . . , k, define the set Vj =
{

y1, . . . , yj−1}
and ask the query qVj(x) ∈ Qn,α,k

corr to obtain some vector yj. Since W is assumed

to be accurate for k adaptively-chosen queries, with probability 99/100, we obtain

vectors y1, . . . , yk ∈ {±1}n such that

∀1 ≤ j ≤ k 〈yj, x〉 ≥ 〈αx, x〉 − |〈y− αx, x〉|

≥ αn− α2n
100

≥ an,
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∀1 ≤ j < j′ ≤ k |〈yj, yj′〉| ≤ |〈αx, yj〉|+ |〈yj′ − αx, yj〉|

≤ α|〈yj, x〉|+ α2n
100

≤ α
(
|〈αx, x〉|+ |〈yj − αx, x〉|

)
+

α2n
100

≤ α2n +
α3n
100

+
α2n
100

≤ 51
50

α2n

= bn,

where a = 99α/100 and b = 51α2/50. Thus, by Lemma 7.4.3, if x̃ = sign(∑k
j=1 yj),

and k = 100/α2, we have

〈x̃, x〉 ≥
(

1− 2
a2k
− 2(b− a2)

a2

)
n

=

(
1− 2

(99α/100)2k
− 2(51α2/50− (99α/100)2)

(99α/100)2

)
n

=

(
1− 2(100/99)2

100
− 2

(
(51/50)− (99/100)2

(99/100)2

))
n

≥ 0.89n ≥ n/2.

By Fact 7.4.4, this proves thatW cannot be (1, 1/20)-differentially private.

7.5 Threshold Queries

First we define threshold queries, which are a family of statistical queries.

Definition 7.5.1. Let ThreshX denote the class of threshold queries over a totally ordered

domain X. That is, ThreshX = {cx : x ∈ X} where cx : X → {0, 1} is defined by

cx(y) = 1 iff y ≤ x.
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7.5.1 Separation for Pure Differential Privacy

In this section, we show that the sample complexity of answering adaptively-chosen

thresholds can be exponentially larger than that of answering thresholds offline.

Proposition 7.5.2 ([DNPR10, CSS11, DNRR15]). Let X be any totally ordered domain.

Then there exists a (ε, 0)-differentially private mechanism M that, given x ∈ Xn, gives

α-accurate answers to k offline queries from ThreshX for

n = O

(
min

{
log k + log2(1/α)

αε
,

log2 k
αε

})

On the other hand, we show that answering k adaptively-chosen threshold

queries can require sample complexity as large as Ω(k) – an exponential gap. Note

that this matches the upper bound given by the Laplace mechanism [DMNS06].

Proposition 7.5.3. Answering k adaptively-chosen threshold queries on [2k−1] to accuracy

α subject to ε-differential privacy requires sample complexity n = Ω(k/αε).

The idea for the lower bound is that an analyst may adaptively choose k threshold

queries to binary search for an “approximate median” of the dataset. However,

a packing argument shows that locating an approximate median requires sample

complexity Ω(k).

Definition 7.5.4 (Approximate Median). Let X be a totally ordered domain, α > 0, and

x ∈ Xn. We call y ∈ X an α-approximate median of x if

1
n
|{i ∈ [n] : xi ≤ y}| ≥ 1

2
− α and

1
n
|{i ∈ [n] : xi ≥ y}| ≥ 1

2
− α.

Proposition 7.5.3 is obtained by combining Lemmas 7.5.5 and 7.5.6 below.

Lemma 7.5.5. Suppose M answers k = d1 + log2 Te adaptively-chosen queries from

Thresh[T] with ε-differential privacy and (α, β)-accuracy. Then there exists an ε-differentially
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private M′ : [T]n → [T] that computes an α-approximate median with probability at least

1− β.

Proof. The algorithm M′, formalised in Figure 7.6, uses M to perform a binary

search.

Input: x ∈ Xn.
M is given x.
Initialize `1 = 0, u1 = T, and j = 1.
While uj − `j > 1 repeat:

Let mj = d(uj + `j)/2e.
Give M the query cmj ∈ Thresh[T] and obtain the answer aj ∈ [0, 1].
If aj ≥ 1

2 , set (`j+1, uj+1) = (`j, mj); otherwise set (`j+1, uj+1) = (mj, uj).
Increment j.

Output uj.

Figure 7.6: M′ : Xn → X

We have u1 − `1 = T and, after every query j, uj+1 − `j+1 ≤ d(uj − `j)/2e. Since

the process stops when uj − `j = 1, it is easy to verify that M′ makes at most

d1 + log2(T − 1)e queries to M.

Suppose all of the answers given by M are α-accurate. This happens with

probability at least 1− β. We will show that, given this, M′ outputs an α-approximate

median, which completes the proof.

We claim that cuj(x) ≥ 1
2 − α for all j. This is easily shown by induction. The

base case is cT(x) = 1 ≥ 1
2 − α. At each step either uj+1 = uj (in which case the

induction hypothesis can be applied) or uj+1 = mj; in the latter case our accuracy

assumption gives

cuj+1(x) = cmj(x) ≥ aj − α ≥ 1
2
− α.

We also claim that c`j(x) < 1
2 + α for all j. This follows from a similar induction

and completes the proof.
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Lemma 7.5.6. Let M : [T]n → [T] be an ε-differentially private algorithm that computes

an α-approximate median with confidence 1− β. Then

n ≥ Ω
(

log T + log(1/β)

αε

)
.

Proof. Let m = d(1
2 − α)ne − 1. For each t ∈ [T], let xt ∈ [T]n denote the dataset

containing m copies of 1, m copies of T, and n − 2m copies of t. Then for each

t ∈ [T],

P
[
M(xt) = t

]
≥ 1− β.

On the other hand, by the pigeonhole principle, there must exist t∗ ∈ [T − 1] such

that

P
[

M(xT) = t∗
]
≤

P
[
M(xT) ∈ [T − 1]

]
T − 1

≤ β

T − 1
.

The inputs xT and xt∗ differ in at most n− 2m ≤ 2αn + 2 entries. By group privacy,

1− β ≤ P
[
M(xt∗) = t∗

]
≤ eε(2αn+2)P

[
M(xT) = t∗

]
≤ eε(2αn+2) β

T − 1
.

Rearranging these inequalities gives

O(εαn) ≥ ε(2αn + 2) ≥ log
(
(1− β)(T − 1)

β

)
≥ Ω(log(T/β)),

which yields the result.

Remark 7.5.7. Proposition 7.5.3 can be extended to online non-adaptive queries, which

yields a separation between the online non-adaptive and offline models for pure differential

privacy and threshold queries.

The key observation behind remark 7.5.7 is that, while Lemma 7.5.5 in general

requires making adaptive queries, for the inputs xt ∈ [T]n (t ∈ [T]) used in Lemma

7.5.6 the queries are “predictable.” In particular, on input xt, the algorithm M′

from the proof of Lemma 7.5.5 will (with probability at least 1− β) always make
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the same sequence queries. This allows the queries to be specified in advance in

a non-adaptive manner. More precisely, we can produce an algorithm M′t that

produces non-adaptive online queries by simulating M′ on input xt and using those

queries. Given the answers to these online non-adaptive queries, M′t can either

accept or reject its input depending on whether the answers are consistent with the

input xt; M′t will accept xt with high probability and reject xt′ for t′ 6= t with high

probability. The proof of Lemma 7.5.6 can be carried out using M′t∗ instead of M′ at

the end.

7.5.2 The BetweenThresholds Algorithm

The key technical novelty behind our algorithm for answering adaptively-chosen

threshold queries is a refinement of the “Above Threshold” algorithm [DR14, §3.6],

which underlies the ubiquitous “sparse vector” technique [DNR+09, RR10, DNPR10,

HR10].

The sparse vector technique addresses a setting where we have a stream of k

(adaptively-chosen) low-sensitivity queries and a threshold parameter t. Instead of

answering all k queries accurately, we are interested in answering only the ones that

are above the threshold t – for the remaining queries, we only require a signal that

they are below the threshold. Intuitively, one would expect to only pay in privacy

for the queries that are actually above the threshold. And indeed, one can get away

with sample complexity proportional to the number of queries that are above the

threshold, and to the logarithm of the total number of queries.

We extend the sparse vector technique to settings where we demand slightly

more information about each query beyond whether it is below a single threshold.

In particular, we set two thresholds t` < tu, and for each query, release a signal as

to whether the query is below the lower threshold, above the upper threshold, or
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between the two thresholds.

As long as the thresholds are sufficiently far apart, whether (the noisy answer to)

a query is below the lower threshold or above the upper threshold is stable, in that it

is extremely unlikely to change on neighboring datasets. As a result, we obtain an

(ε, δ)-differentially private algorithm that achieves the same accuracy guarantees as

the traditional sparse vector technique, i.e. sample complexity proportional to log k.

Our algorithm is summarised by the following theorem.6

Theorem 7.5.8. Let α, β, ε, δ, t ∈ (0, 1) and n, k ∈N satisfy

n ≥ 1
αε

max {12 log(30/εδ), 16 log((k + 1)/β)} .

Then there exists a (ε, δ)-differentially private algorithm that takes as input x ∈ Xn and

answers a sequence of adaptively-chosen queries q1, · · · , qk : Xn → [0, 1] of sensitivity 1/n

with a1, · · · , a≤k ∈ {L, R,>} such that, with probability at least 1− β,

• aj = L =⇒ qj(x) ≤ t,

• aj = R =⇒ qj(x) ≥ t, and

• aj = > =⇒ t− α ≤ qj(x) ≤ t + α.

The algorithm may halt before answering all k queries; however, it only halts after outputting

>.

Our algorithm is given in Figure 7.7. The analysis is split into Lemmas 7.5.9 and

7.5.10.

Lemma 7.5.9 (Privacy for BetweenThresholds). Let ε, δ ∈ (0, 1) and n ∈ N. Then

BetweenThresholds (Figure 7.7) is (ε, δ)-differentially private for any adaptively-chosen

6In Theorem 7.5.8, only one threshold is allowed. However, our algorithm is more general and
permits the setting of two thresholds. We have chosen this statement for simplicity.
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Input: x ∈ Xn.
Parameters: ε, t`, tu ∈ (0, 1) and n, k ∈N.
Sample µ ∼ Lap(2/εn) and initialize noisy thresholds t̂` = t` + µ and t̂u =
tu − µ.
For j = 1, 2, · · · , k:

Receive query qj : Xn → [0, 1].
Set cj = qj(x) + νj where νj ∼ Lap(6/εn).
If cj < t̂`, output L and continue.
If cj > t̂u, output R and continue.
If cj ∈ [t̂`, t̂u], output > and halt.

Figure 7.7: BetweenThresholds

sequence of queries as long as the gap between the thresholds t`, tu satisfies

tu − t` ≥
12
εn

(log(10/ε) + log(1/δ) + 1) .

Lemma 7.5.10 (Accuracy for BetweenThresholds). Let α, β, ε, t`, tu ∈ (0, 1) and n, k ∈N

satisfy

n ≥ 8
αε

(log(k + 1) + log(1/β)) .

Then, for any input x ∈ Xn and any adaptively-chosen sequence of queries q1, q2, · · · , qk,

the answers a1, a2, · · · a≤k produced by BetweenThresholds (Figure 7.7) on input x satisfy

the following with probability at least 1− β. For any j ∈ [k] such that aj is returned before

BetweenThresholds halts,

• aj = L =⇒ qj(x) ≤ t` + α,

• aj = R =⇒ qj(x) ≥ tu − α, and

• aj = > =⇒ t` − α ≤ qj(x) ≤ tu + α.

Combining Lemmas 7.5.9 and 7.5.10 and setting t` = t− α/2 and tu = t + α/2

yields Theorem 7.5.8.
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Proof of Lemma 7.5.9. Our analysis is an adaptation of Dwork and Roth’s [DR14, §3.6]

analysis of the AboveThreshold algorithm. Recall that a transcript of the execution

of BetweenThresholds is given by a ∈ {L, R,>}∗. Let M : Xn → {L, R,>}∗ denote

the function that simulates BetweenThresholds interacting with a given adaptive

adversary (cf. Figure 7.3) and returns the transcript.

Let S ⊂ {L, R,>}∗ be a set of transcripts. Our goal is to show that for adjacent

datasets x ∼ x′,

P [M(x) ∈ S] ≤ eεP
[
M(x′) ∈ S

]
+ δ.

Let

z∗ =
1
2
(tu − t`)−

6
εn

log(10/ε)− 1/n ≥ 2
εn

log(1/δ).

Our strategy will be to show that as long as the noise value µ is under control,

in particular if µ ≤ z∗, then the algorithm behaves in essentially the same way

as the standard AboveThreshold algorithm. Meanwhile, the event µ > z∗ which

corresponds to the (catastrophic) event where the upper and lower thresholds are

too close or overlap, happens with probability at most δ.

The following claim reduces the privacy analysis to examining the probability of

obtaining any single transcript a:

Claim 7.5.11. Suppose that for any transcript a ∈ {L, R,>}∗, and any z ≤ z∗, that

P [M(x) = a|µ = z] ≤ eε/2P
[
M(x′) = a|µ = z + 1/n

]
.

ThenM is (ε, δ)-differentially private.

Proof. By properties of the Laplace distribution, since µ ∼ Lap(2/εn), for any z ∈ R,

we have

P [µ = z] ≤ eε/2P [µ = z + 1/n] ,
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and

P [µ > z∗] =
1
2

e−εnz∗/2 ≤ δ.

Fix a set of transcripts S. Combining these properties allows us to write

P [M(x) ∈ S] =
∫

R
P [M(x) ∈ S|µ = z]P [µ = z]dz

≤
(∫ z∗

−∞
P [M(x) ∈ S|µ = z]P [µ = z]dz

)
+ P [µ > z∗]

≤
(

eε/2
∫ z∗

−∞
P
[
M(x′) ∈ S|µ = z + 1/n

]
P [µ = z]dz

)
+ δ

≤
(

eε
∫ z∗

−∞
P
[
M(x′) ∈ S|µ = z + 1/n

]
P [µ = z + 1/n]dz

)
+ δ

≤ eεP
[
M(x′) ∈ S

]
+ δ

Returning to the proof of Lemma 7.5.9, fix a transcript a ∈ {L, R,>}∗. Our goal

is now to show thatM satisfies the hypotheses of Claim 7.5.11, namely that for any

z ≤ z∗,

P [M(x) = a|µ = z] ≤ eε/2P
[
M(x′) = a|µ = z + 1/n

]
. (7.4)

For some k ≥ 1, we can write the transcript a as (a1, a2, . . . , ak), where aj ∈ {L, R}

for each j < k, and ak = >.

For convenience, let A =M(x) and A′ =M(x′). We may decompose

P [M(x) = a|µ = z] = P
[
(∀j < k, Aj = aj) ∧ qk(x) + νk ∈ [t̂`, t̂u]|µ = z

]
= P

[
(∀j < k, Aj = aj)|µ = z

]
(7.5)

· P
[
qk(x) + νk ∈ [t̂`, t̂u]|µ = z ∧ (∀j < k, Aj = aj)

]
.

We upper bound each factor on the right-hand side separately.
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Claim 7.5.12.

P [(∀i < k, Ai = ai)|µ = z] ≤ P
[
(∀i < k, A′i = ai)|µ = z + 1/n

]
Proof. For fixed z, let Az(x) denote the set of noise vectors (ν1, . . . , νk−1) for which

(A1, . . . , Ak−1) = (a1, . . . , ak−1) when ν = z. We claim that as long as z ≤ z∗,

then Az(x) ⊆ Az+1/n(x′). To argue this, let (ν1, . . . , νk−1) ∈ Az(x). Fix an index

j ∈ {1, . . . , k− 1} and suppose aj = L. Then qj(x) + νj < t` + z, but since qj has

sensitivity 1/n, we also have qj(x′) + νj < t` + (z + 1/n). Likewise, if aj = R, then

qj(x) + νj > tu − z, so

qj(x′) + νj > tu − z− 1/n ≥ t` + (z + 1/n)

as long as z ≤ z∗ ≤ 1
2(tu − t`)− 1/n. (This ensures thatM(x′) does not output L

on the first branch of the “if” statement, and proceeds to output R.)

Since Az(x) ⊆ Az+1/n(x′), this proves that

P [(∀i < k, Ai = ai)|µ = z] = P [(ν1, . . . , νk−1) ∈ Az(x)]

≤ P
[
(ν1, . . . , νk−1) ∈ Az+1/n(x′)

]
= P

[
(∀i < k, A′i = ai)|µ = z + 1/n

]
.

Given Claim 7.5.12, all that is needed to prove (7.4) and, thereby, prove Lemma

7.5.9 is to bound the second factor in (7.5) — that is, we must only show that

P
[
qk(x) + νk ∈ [t̂`, t̂u]|µ = z ∧ (∀j < k, Aj = aj)

]
≤ eε/2P

[
qk(x′) + νk ∈ [t̂`, t̂u]|µ = z + 1/n ∧ (∀j < k, A′j = aj)

]
.
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Let ∆ = (qk(x′)− qk(x)) ∈ [−1/n, 1/n]. Then

P
[
qk(x) + νk ∈ [t̂`, t̂u]|µ = z ∧ (∀j < k, Aj = aj)

]
= P [t` + z ≤ qk(x) + νk ≤ tu − z]

= P
[
t` + z + ∆ ≤ qk(x′) + νk ≤ tu − z + ∆

]
= P

[
t` + (z + 1/n) + (∆− 1/n) ≤ qk(x′) + νk ≤ tu − (z + 1/n) + (∆ + 1/n)

]
= P

[
qk(x′) + νk ∈ [t̂` + ∆− 1/n, t̂u + ∆ + 1/n]|µ = z + 1/n

]
≤ eε/2P

[
qk(x′) + νk ∈ [t̂`, t̂u]|µ = z + 1/n

]
= eε/2P

[
qk(x′) + νk ∈ [t̂`, t̂u]|µ = z + 1/n ∧ (∀j < k, A′j = aj)

]

where the last inequality follows from Claim 7.5.13 below (setting η = 2/n, λ =

6/εn, [a, b] = [t̂`, t̂u], and [a′, b′] = [t̂` + ∆− 1/n, t̂u + ∆ + 1/n]) and the fact that

z ≤ z∗ = 1
2(tu − t`)− 6

εn log(10/ε)− 1/n implies

b− a = t̂u − t̂` = tu − t` − 2µ ≥ 12
εn

log
(

10
ε

)
≥ 2λ log

(
1

1− e−ε/6

)
whenever 0 ≤ ε ≤ 1.

Claim 7.5.13. Let ν ∼ Lap(λ) and let [a, b], [a′, b′] ⊂ R be intervals satisfying [a, b] ⊂

[a′, b′]. If η ≥ (b′ − a′)− (b− a), then

P
[
ν ∈ [a′, b′]

]
≤ eη/λ

1− e−(b−a)/2λ
·P [ν ∈ [a, b]] .

Proof. Recall that the probability density function of the Laplace distribution is given

by fλ(x) = 1
2λ e−|x|/λ. There are four cases to consider: In the first case, a < b ≤ 0.

In the second case, a < 0 < b with |a| ≤ |b|. In the third case, 0 ≤ a < b. Finally, in

the fourth case, a < 0 < b with |a| ≥ |b|. Since the Laplace distribution is symmetric,
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it suffices to analyse the first two cases.

Case 1: Suppose a < b ≤ 0. Then

P
[
ν ∈ [a′, b′]

]
≤ P [ν ∈ [a, b]] +

∫ b+η

b

1
2λ

ex/λdx

=
1
2
(e(b+η)/λ − ea/λ)

=
1
2
·
(

eη/λ − e(a−b)/λ

1− e(a−b)/λ

)
· (eb/λ − ea/λ)

=

(
eη/λ − e−(b−a)/λ

1− e−(b−a)/λ

)
·P [ν ∈ [a, b]] .

Case 2: Suppose a < 0 < b and |a| ≤ |b|. Note that this implies b ≥ (b− a)/2.

Then

P
[
ν ∈ [a′, b′]

]
≤ P [ν ∈ [a, b]] + η · 1

2λ
ea/λ

≤ P [ν ∈ [a, b]]

(
1 +

η

2λ

ea/λ

P [ν ∈ [0, b]]

)

= P [ν ∈ [a, b]]
1− e−b/λ + η

λ ea/λ

1− e−b/λ

≤ P [ν ∈ [a, b]]
1 + η/λ

1− e−b/λ

≤ P [ν ∈ [a, b]]
eη/λ

1− e−(b−a)/2λ
.

Proof of Lemma 7.5.10. We claim that it suffices to show that with probability at least

1− β we have

∀1 ≤ j ≤ k |νj|+ |µ| ≤ α.
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To see this, suppose |νj|+ |µ| ≤ α for every j. Then, if aj = L, we have

cj = qj(x) + νj < t̂` = t` + µ, whence qj(x) < t` + |µ|+ |νj| ≤ t` + α.

Similarly, if aj = R, then

cj = qj(x) + νj > t̂u = tu − µ, whence qj(x) > tu − (|µ|+ |νj|) ≥ tu − α.

Finally, if aj = >, then

cj = qj(x) + νj ∈ [t̂`, t̂u] = [t` + µ, tu − µ], whence t` − α ≤ qj(x) ≤ tu + α.

We now show that indeed |νj|+ |µ| ≤ α for every j with high probability. By tail

bounds for the Laplace distribution,

P [|µ| > α/4] = exp
(
− εαn

8

)
and P

[
|νj| > 3α/4

]
= exp

(
− εαn

8

)
for all j. By a union bound,

P
[
|µ| > α/4 ∨ ∃j ∈ [k] |νj| > 3α/4

]
≤ (k + 1) · exp

(
− εαn

8

)
≤ β,

as required.

7.5.3 The Online Interior Point Problem

Our algorithm extends a result of [BNSV15] showing how to reduce the problem of

privately releasing thresholds to the much simpler interior point problem. By analogy,

our algorithm for answering adaptively-chosen thresholds relies on solving multiple

instances of an online variant of the interior point problem in parallel. In this section,

we present the OIP problem and give an (ε, δ)-differentially private solution that

can handle k adaptively-chosen queries with sample complexity O(log k). Our OIP

algorithm is a direct application of the BetweenThresholds algorithm from Section
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7.5.2.

Definition 7.5.14 (Online Interior Point Problem). An algorithm M solves the Online

Interior Point (OIP) Problem for k queries with confidence β if, when given as input any

private dataset x ∈ [0, 1]n and any adaptively-chosen sequence of real numbers y1, · · · , yk ∈

[0, 1], with probability at least 1− β it produces a sequence of answers a1, · · · , ak ∈ {L, R}

such that

∀j ∈ {1, 2, · · · , k} yj < min
i∈[n]

xi =⇒ aj = L, yj ≥ max
i∈[n]

xi =⇒ aj = R .

(If mini∈[n] xi ≤ yj < maxi∈[n] xi, then M may output either symbol L or R.)

Input: Dataset x ∈ [0, 1]n.
Initialise a BetweenThresholds instance (Figure 7.7) B on dataset x with thresh-
olds t` = 1

3 , tu = 2
3 .

For j = 1, 2, · · · , k:
Receive query yj ∈ [0, 1].
If B already halted on some query qy∗ , output L if yj < y∗ and output R if

yj ≥ y∗.
Otherwise, give B the query cyj ∈ Thresh[0,1].
If B returns >, output R. Otherwise, output the answer produced by B.

Figure 7.8: Online Interior Point Algorithm

Proposition 7.5.15. The algorithm in Figure 7.8 is (ε, δ)-differentially private and solves

the OIP Problem with confidence β as long as

n ≥ 36
ε
(log(k + 1) + log(1/β) + log(10/ε) + log(1/δ) + 1) .

Proof. Privacy follows immediately from Lemma 7.5.9, since Algorithm 7.8 is ob-

tained by post-processing Algorithm 7.7, run using thresholds with a gap of size

1/3.
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To argue utility, let α = 1/3 so that

n ≥ 8
εα

(log(k + 1) + log(1/β)).

By Lemma 7.5.10, with probability at least 1− β, the following events occur:

• If the BetweenThresholds instance B halts when it is queried on cy∗ , then

mini∈[n] xi ≤ y∗ < maxi∈[n] xi.

• If B has not yet halted and yj < mini∈[n] xi, its answer to cyj is L.

• If B has not yet halted and yj ≥ maxi∈[n] xi, its answer to cyj is R.

Thus, if B has not yet halted, the answers provided are accurate answers for the OIP

Problem. On the other hand, when B halts, it has successfully identified an “interior

point” of the dataset x, i.e. a y∗ such that mini∈[n] xi ≤ y∗ < maxi∈[n] xi. Thus, for

any subsequent query y, we have that

y < min
i∈[n]

xi =⇒ y < y∗,

so Algorithm 7.8 correctly outputs L. Similarly,

y ≥ max
i∈[n]

xi =⇒ y ≥ y∗,

so Algorithm 7.8 correctly outputs R on such a query.

7.5.4 Releasing Adaptive Thresholds

with Approximate Differential Privacy

We are now ready to state our reduction from releasing thresholds to solving the

OIP Problem.
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Theorem 7.5.16. If there exists an (ε, δ)-differentially private algorithm solving the OIP

problem for k queries with confidence αβ/8 and sample complexity n′, then there is a

(4ε, (1 + eε)δ)-differentially private algorithm for releasing k threshold queries with (α, β)-

accuracy and sample complexity

n = max

{
6n′

α
,

24 log2.5(4/α) · log(2/β)

αε

}
.

Combining this reduction with our algorithm for the OIP Problem (Proposition

7.5.15) yields:

Corollary 7.5.17. There is an (ε, δ)-differentially private algorithm for

releasing k adaptively-chosen threshold queries with (α, β)-accuracy for

n = O

(
log k + log2.5(1/α) + log(1/βεδ)

αε

)
.

Proof of Theorem 7.5.16. Our algorithm and its analysis follow the reduction of Bun

et al. [BNSV15] for reducing the (offline) query release problem for thresholds to

the offline interior point problem.

Let T be an (ε, δ)-differentially private algorithm solving the OIP Problem with

confidence αβ/8 and sample complexity n′. Without loss of generality, we may

assume that T is differentially private in “add-or-remove-an-item sense”—i.e. if

x ∈ [0, 1]∗ and x′ differs from x up to the addition or removal of a single element,

then for every adversary A and set S of outcomes of the interaction between A and

T, we have P
[

AdaptiveA→←T(x) ∈ S
]
≤ eεP

[
AdaptiveA→←T(x′) ∈ S

]
+ δ. Moreover, T

provides accurate answers to the OIP Problem with probability at least 1− αβ/8

whenever its input is of size at least n′. To force an algorithm T to have these

properties, we may pad any dataset of size less than n′ with an arbitrary fixed

element. On the other hand, we may subsample the first n′ elements from any

dataset with more than this many elements.
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Consider the algorithm AdaptiveThresholdsT in Figures 7.9 and 7.10.

Input: Dataset x ∈ [0, 1]n.
Parameter: α ∈ (0, 1).

Let (x(1), . . . , x(M))←R Partition(x1, . . . , xn, α).
Initialize an instance of the OIP algorithm T(m) on each chunk x(m) ∈ [0, 1]∗,
for m ∈ [M].
For each j = 1, · · · , k:

Receive query cyj ∈ Thresh[0,1].
Give query yj ∈ [0, 1] to every OIP instance T(m), receiving answers

a(1)j , · · · , a(M)
j ∈ {L, R}.

Return aj =
1
M ·
∣∣∣{m ∈ [M] : a(m)

j = R
}∣∣∣.

Figure 7.9: AdaptiveThresholdsT

Input: Dataset x ∈ [0, 1]n.
Parameter: α ∈ (0, 1).
Output: (Random) partition (x(1), . . . , x(M)) ∈ ([0, 1]∗)M of x, where 2/α ≤
M < 4/α.

Let M = 2dlog2(2/α)e.
Sort x in nondecreasing order x1 ≤ x2 ≤ · · · ≤ xn.
For each 0 ≤ ` ≤ log2 M and s ∈ {0, 1}`, sample νs ∼ Lap((log2 M)/ε)
independently.
For each 1 ≤ m ≤ M − 1, let ηm = ∑s∈P(m) νs, where P(m) is the set of all
prefixes of the binary representation of m.
Let t0 = 1, t1 =

⌊ n
M + η1

⌋
, · · · , tm =

⌊m·n
M + ηm

⌋
, · · · , tM = n + 1.

Let x(m) = (xtm−1 , . . . , xtm−1) for all m ∈ [M].

Figure 7.10: Partition

The proof of Theorem 7.5.16 relies on the following two claims about the Partition

subroutine, both of which are implicit in the work of Bun et al. [BNSV15, Appendix

C] and are based on ideas of Dwork et al. [DNPR10]. Claim 7.5.18 shows that for

neighboring databases x ∼ x′, the behaviors of the Partition subroutine on x and

x′ are “similar” the following sense: for any fixed partition of x, one is roughly
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as likely (over the randomness of the partition algorithm) to obtain a partition

of x′ that differs on at most two chunks, where the different chunks themselves

differ only up to the addition or removal of a single item. This will allow us to

show that running M parallel copies of the OIP algorithm on the chunks remains

roughly (ε, δ)-differentially private. Claim 7.5.19 shows that, with high probability,

each chunk is simultaneously large enough for the corresponding OIP algorithm to

succeed, but also small enough so that treating all of the elements in a chunk as if

they were the same element still permits us to get α-accurate answers to arbitrary

threshold queries.

Claim 7.5.18. Fix neighboring datasets x, x′ ∈ [0, 1]n. Then there exists a (measurable)

bijection ϕ : R2M → R2M with the following properties:

1. Let z ∈ R2M be any noise vector. Let x(1), . . . , x(M) denote the partition of x obtained

with random noise set to ν = z. Similarly, let x′(1), . . . , x′(M) denote the partition of

x′ obtained under noise ν = ϕ(z). Then there exist indices i1, i2 such that: 1) For

i ∈ {i1, i2}, the chunks x(i) and x′(i) differ up to the addition or removal of at most

one item and 2) For every index i /∈ {i1, i2}, we have x(i) = x′(i).

2. For every noise vector z ∈ R2M, we have P [ν = ϕ(z)] ≤ e2εP [ν = z].

Claim 7.5.19. With probability at least 1− β/2, we have that |tm −m · n/M| ≤ αn/24

for all m ∈ [M].

Privacy of Algorithm 7.9. We first show how to use Claim 7.5.18 to show that

Algorithm 7.9 is differentially private. Fix an adversary A, and let

B = AdaptiveA→←AdaptiveThresholdsT
simulate the interaction between A and Algorithm

7.9. Let S be a subset of the range of B. Then, by Property (1) of Claim 7.5.18 and
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group privacy, we have that for any z ∈ R2M:

P [B(x) ∈ S|ν = z] ≤ e2εP
[
B(x′) ∈ S|ν = ϕ(z)

]
+ (1 + eε)δ.

By Property (2) of Claim 7.5.18, we also have Pr[ν = z] ≤ e2ε Pr[ν = ϕ(z)] for every

z ∈ R2M. Therefore,

P [B(x) ∈ S] =
∫

R2M
P [B(x) ∈ S|ν = z] ·P [ν = z]dz

≤
∫

R2M

(
e2εP

[
B(x′) ∈ S|ν = ϕ(z)

]
+ (1 + eε)δ

)
·P [ν = z]dz

≤ (1 + eε)δ +
∫

R2M
e2εP

[
B(x′) ∈ S|ν = ϕ(z)

]
· e2εP [ν = ϕ(z)]dz

≤ (1 + eε)δ + e4εP
[
B(x′) ∈ S

]
.

Hence, B is (e4ε, (1 + eε)δ)-differentially private, as claimed.

Accuracy of Algorithm 7.9. We now show how to use Claim 7.5.19 to show that

Algorithm 7.9 produces (α, β)-accurate answers. By a union bound, the following

three events occur with probability at least 1− β:

1. For all m ∈ [M],
∣∣ m

M −
tm
n

∣∣ ≤ α
6 .

2. Every chunk x(m) has size |x(m)| = tm − tm−1 ∈ [αn/6, 2αn/3].

3. Every instance of T succeeds.

Now we need to show that if these three events occur, we can produce α-accurate

answers to every threshold query cy1 , . . . , cyk . Write the sorted input database as

x1 ≤ x2 ≤ · · · ≤ xn. We consider two cases for the jth query: As our first case,

suppose xn ≤ yj. Then for every chunk x(m), we have max{x(m)} ≤ yj. Then the

success condition of T(m) guarantees that a(m)
j = R. Thus, the answer aj = 1 is

(exactly) accurate for the query cj.
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As our second case, let i be the smallest index for which xi > yj, and suppose

the item xi is in some chunk x(mi). Note that this means that the true answer to the

query cyj is (i− 1)/n and that tmi−1 ≤ i ≤ tmi − 1. Then again, for every m < mi we

have max{x(m)} ≤ yj, so every such T(m) instance yields a(m)
j = R. Thus,

aj =
1
M
·
∣∣∣{m ∈ [M] : a(m)

j = R
}∣∣∣ ≥ mi − 1

M
≥ tmi

n
− α

6
− α

2
≥ (i− 1)

n
− α,

since M ≥ 2/α.

On the other hand, for every m > mi, we have min{x(m)} > yj, so every such

T(m) instance instead yields a(m)
j = L.

aj ≤
mi

M
≤ tmi

n
+

α

6
≤

tmi−1 + 2αn/3
n

+
α

6
≤ i

n
+

2α

3
+

α

6
≤ i− 1

n
+ α,

since n ≥ 6/α.
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Chapter 8

Conclusion

This thesis has presented a number of results about privacy and adaptivity in

algorithmic data analysis. The unifying theme of these results is understanding

the information-theoretic relationship between the input and output of randomised

algorithms. For the upper bounds, differential privacy entails a stability condition

that protects privacy and ensures generalisation — changing a single input point

should not change the probability distribution of the output much. For the lower

bounds, fingerprinting techniques show that the output of any accurate algorithm

must “correlate” with its input, which means the output reveals information about

the input. Our results illustrate how versatile these two tools are.

Differential privacy was only defined a decade ago, yet a rich literature has

developed around it. Many fundamental questions remain to be resolved — even

the definition itself is not entirely settled, as Chapter 2 demonstrates. Of particular

interest is the development of practical differentially private tools. Our results

in Chapters 2 and 4 are geared towards a fine-grained analysis of the power of

differential privacy, which we believe will enhance the applicability of differential

privacy.
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Fingerprinting is discussed in four chapters (§4,§5,§6,§7). These are three dif-

ferent applications with different analyses. First, fingerprinting is used to prove

lower bounds for differential privacy; here we have presented the slickest possible

proof. Second, fingerprinting is used to analyse practical privacy attacks; here the

goal is to extend the fingerprinting analysis to the broadest class of distributions

(as we do not have the freedom to choose the distribution with real-world data).

Thirdly, fingerprinting codes are constructed in the original cryptographic context;

here the challenge is carrying out the analysis when we only have a weak accuracy

guarantee. Remarkably, in all three settings we are able to follow the same proof

outline. In what other settings can the fingerprinting analysis be deployed?

The connection between differential privacy and generalisation is unexpectedly

tight in the adaptive setting. Not only is there a direct connection from differential

privacy to generalisation [DFH+15c, §3], but also negative results for privacy can be

extended to yield negative results for generalisation in adaptive data analysis [HU14,

§6]. This application provides further impetus to differential privacy research and

also provides a new perspective on various results about differential privacy, which

will hopefully result in more cross-fertilisation of ideas between differential privacy

other fields such as machine learning and statistics.

This thesis points out several open problems and we believe that their resolution

will provide further insight into the challenges inherent in algorithmic data analysis
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