Probability - short review

1 The Basics

Definition 1.1. A probability space has three components:

1. A set Ω of possible outcomes.
2. A collection of events \mathcal{F}, where each event $E \in \mathcal{F}$ is a subset of Ω. An event containing a single element of Ω is called basic.
3. A probability function $\operatorname{Pr}: \mathcal{F} \rightarrow[0,1]$ satisfying:
(a) $\operatorname{Pr}[\Omega]=1$.
(b) For any countable sequence of pairwise mutually disjoint events $\left\{E_{i}\right\}$:

$$
\operatorname{Pr}\left[\cup_{i} E_{i}\right]=\sum_{i} \operatorname{Pr}\left[E_{i}\right] .
$$

Lemma 1.2. Let $E_{1}, E_{2} \in \mathcal{F}$ be events (not necessarily disjoint), then

$$
\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1} \cap E_{2}\right] .
$$

Proof:

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}\right] & =\operatorname{Pr}\left[E_{1} \backslash E_{1} \cap E_{2}\right]+\operatorname{Pr}\left[E_{1} \cap E_{2}\right], \text { and } \\
\operatorname{Pr}\left[E_{2}\right] & =\operatorname{Pr}\left[E_{2} \backslash E_{1} \cap E_{2}\right]+\operatorname{Pr}\left[E_{1} \cap E_{2}\right], \text { and } \\
\operatorname{Pr}\left[E_{1} \cup E_{2}\right] & =\operatorname{Pr}\left[E_{1} \backslash E_{1} \cap E_{2}\right]+\operatorname{Pr}\left[E_{1} \cap E_{2}\right]+\operatorname{Pr}\left[E_{2} \backslash E_{1} \cap E_{2}\right] . \\
\text { Hence, } \operatorname{Pr}\left[E_{1} \cup E_{2}\right] & =\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1} \cap E_{2}\right] .
\end{aligned}
$$

Corollary 1.3. For any countable sequence of events $\left\{E_{i}\right\}$:

$$
\operatorname{Pr}\left[\cup_{i} E_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[E_{i}\right] .
$$

Definition 1.4. Events E, F are called independent if $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \cdot \operatorname{Pr}[F]$ holds.
Definition 1.5. The conditional probability of E given F is defined as

$$
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}
$$

Corollary 1.6. For independent events E, F :

$$
\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]
$$

Corollary 1.7 (Bayes' Rule). For any two events E, F :

$$
\operatorname{Pr}[E \mid F]=\operatorname{Pr}[F \mid E] \cdot \frac{\operatorname{Pr}[E]}{\operatorname{Pr}[F]}
$$

Definition 1.8 (Random Variables). A random variable is a function $X: \Omega \rightarrow \mathbb{R}$. For a (discrete) random variable X and a real number a, the event $X=a$ corresponds to the set of basic events on which the variable X is assigned the value a :

$$
\operatorname{Pr}[X=a]=\sum_{\omega \in \Omega: X(\omega)=a} \operatorname{Pr}[\omega] .
$$

2 Expectancy, Variance, and higher moments

Definition 2.1. The expectancy (or expectation or mean) of a (discrete) random variable X is

$$
\mathbf{E}[X]=\sum_{a} a \cdot \operatorname{Pr}[X=a] .
$$

Theorem 2.2 (Linearity of Expectation). Let X, Y be random variables, then

$$
\mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y] .
$$

Proof:

$$
\begin{aligned}
\mathbf{E}[X+Y] & =\sum_{a} \sum_{b}(a+b) \operatorname{Pr}[X=a \cap Y=b] \\
& =\sum_{a} a \sum_{b} \operatorname{Pr}[X=a \cap Y=b]+\sum_{b} b \sum_{a} \operatorname{Pr}[X=a \cap Y=b] \\
& =\sum_{a} a \operatorname{Pr}[X=a]+\sum_{b} b \operatorname{Pr}[Y=b] \\
& =\mathbf{E}[X]+\mathbf{E}[Y] .
\end{aligned}
$$

Definition 2.3. The conditional expectancy of X given event E is

$$
\mathbf{E}[X \mid E]=\sum_{a} a \operatorname{Pr}[X=a \mid E] .
$$

Definition 2.4. The t-th moment of a random variable X is $\mathbf{E}\left[X^{t}\right]$.
Definition 2.5. The variance of a random variable X is

$$
\operatorname{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} .
$$

The standard deviation is

$$
\sigma_{X}=\sqrt{\operatorname{Var}[X]} .
$$

Corollary 2.6. For independent random variables X, Y :

$$
\mathbf{E}[X \cdot Y]=\mathbf{E}[X] \cdot \mathbf{E}[Y] \quad \text { and } \quad \operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y] .
$$

Definition 2.7 (Moment Generating Function). The moment generating function of a random variable X is

$$
m_{X}(t)=\mathbf{E}\left[e^{t X}\right],
$$

for $t \in R$ for which the expectation exists.
Noting that $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots=\sum_{j=0}^{\infty} \frac{x^{j}}{j!}$, we get that

$$
m_{X}(t)=\sum_{i} \operatorname{Pr}[X=i] \cdot \sum_{j=0}^{\infty} \frac{(x t)^{j}}{j!}=\sum_{j=0}^{\infty} \sum_{i} \operatorname{Pr}[X=i] \cdot \frac{(x t)^{j}}{j!}=\sum_{j=0}^{\infty} \mathbf{E}\left[x^{j}\right] \cdot \frac{t^{j}}{j!} .
$$

Derivating at $t=0$, we get that

$$
\left.\frac{d^{j} m_{X}(t)}{d t^{j}}\right|_{t=0}=\mathbf{E}\left[x^{j}\right]
$$

i.e., the jth moment of X.

We will use the moment generating function in deriving bounds on the sum of independent random variables. Let $S=\sum_{i} X_{i}$ where the random variables X_{i} are independent. We get that

$$
m_{S}(t)=\mathbf{E}\left[e^{t S}\right]=\mathbf{E}\left[e^{t \cdot \sum_{i} X_{i}}\right]=\mathbf{E}\left[\prod_{i} e^{t X_{i}}\right]=\prod_{i} \mathbf{E}\left[e^{t X_{i}}\right]=\prod_{i} m_{x_{i}}(t) .
$$

3 Continuous Variables

For a continuous random variable X define the probability density function (PDF) $\operatorname{PDF}_{X}(x): \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ such that

$$
\int_{-\infty}^{\infty} \operatorname{PDF}_{X}(x) d x=1
$$

Informally, we will write

$$
\operatorname{Pr}[X \in S]=\int_{S} \operatorname{PDF}_{X}(x) d x
$$

The cumulative distribution function (CDF) of X is the function defined as

$$
\operatorname{CDF}(x)=\operatorname{Pr}[X<x]=\int_{-\infty}^{x} \operatorname{PDF}(x) d x
$$

4 Some Random Variables

Below are a list of random variables that we will repeatedly use in this course.
Bernoulli Random Variable. A discrete random variable. X is called a Bernoulli random variable, denoted $X \sim \operatorname{Ber}(p)$ if X takes only two values 0,1 with $p=\operatorname{Pr}[X=1]$. The expectation of a Bernoulli random variable is $\mathbf{E}[X]=p$ and its variance is $p-p^{2}$.
Bernoulli random variables are often called indicators. For any event E we can associate a corresponding Bernoulli r.v. where $X=1$ if E holds, and $X=0$ otherwise.

Uniform $[0,1]$. When X is a r.v. chosen uniformly at random (u.a.r) from the interval $[0,1]$, denoted $X \sim U_{[0,1]}$ then for any $x \in[0,1]$ we have that $\operatorname{PDF}(x)=1$ and 0 everywhere else (so the PDF indeed integrates to 1) and $\operatorname{CDF}(x)=x$ on the $[0,1]$ interval. The expected value of X is $\mathbf{E}[X]=1 / 2$ and $\operatorname{Var}[X]=1 / 3-(1 / 2)^{2}=1 / 12$.

Exponential Random Variable. A continuous random variable X is called exponential, denoted $X \sim$ $\operatorname{Exp}(\lambda)$ if its PDF is defined as: $\operatorname{PDF}(x)=\lambda e^{-\lambda x}$ for any $x \geq 0$. In this case $\operatorname{CDF}_{X}(x)=1-e^{-\lambda x}$ for any $x \geq 0$, the expectation $\mathbf{E}[X]=1 / \lambda$ and the variance $\operatorname{Var}(X)=1 / \lambda^{2}$.

Laplace Random Variable. A continuous random variable X is called Laplace, denoted $X \sim \operatorname{Lap}(\lambda)$ if its PDF is defined as: $\operatorname{PDF}(x)=\frac{1}{2 \lambda} e^{-|x| / \lambda}$ for any $x \in \mathbb{R}$. Observe that one way to sample a r.v. $X \sim \operatorname{Lap}(\lambda)$ is to pick $Y \sim \operatorname{Exp}(1 / \lambda)$ and then set $X=Y$ w.p. $1 / 2$ and $X=-Y$ w.p. $1 / 2$. The mean of a Laplace random variable is $\mathbf{E}[X]=0$ and its variance is $\operatorname{Var}(X)=2 \lambda^{2}$.

Gaussian Random Variable. A continuous random variable X is called Gaussian, denoted $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ if its PDF is defined as: $\operatorname{PDF}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}(x-\mu)^{2}}$ for any $x \in \mathbb{R}$. The mean of a Gaussian random variable is $\mathbf{E}[X]=\mu$ and its variance is $\operatorname{Var}(X)=\sigma^{2}$. A r.v. $X \sim \mathcal{N}(0,1)$ is called a normal random variable.

5 Tail inequalities

Theorem 5.1 (Markov's Inequality). For a non-negative random variable X,

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbf{E}[X]}{a}
$$

Proof: Define a new random variable to be the indicator function:

$$
I= \begin{cases}1 & X \geq a \\ 0 & \text { otherwise }\end{cases}
$$

Note that $I \leq X / a$, hence $\mathbf{E}[I] \leq \mathbf{E}[X] / a$. We get:

$$
\operatorname{Pr}[X \geq a]=\operatorname{Pr}[I=1]=\mathbf{E}[I] \leq \mathbf{E}[X] / a
$$

Theorem 5.2 (Chebyshev Inequaltiy). For any random variable X,

$$
\operatorname{Pr}[|X-\mathbf{E}[X]|>a] \leq \frac{\operatorname{Var}[X]}{a^{2}}
$$

Proof: Let Y denote the (non-negative) r.v. $Y=(X-\mathbf{E}[X])^{2}$. Then

$$
\operatorname{Pr}[|X-\mathbf{E}[X]|>a]=\operatorname{Pr}\left[(X-\mathbf{E}[X])^{2}>a^{2}\right]=\operatorname{Pr}\left[Y>a^{2}\right] \leq \frac{\mathbf{E}[Y]}{a^{2}}=\frac{\operatorname{Var}[X]}{a^{2}}
$$

Theorem 5.3 (Chernoff-Hoeffding Inequalities). Let X_{1}, \ldots, X_{n} be independent random variables such that $X_{i} \in[0,1]$ and $\mathbf{E}\left[X_{i}\right]=\mu$ and denote $S=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then, for all $\epsilon>0$:

$$
\begin{array}{lll}
\text { (Hoeffding:) } \operatorname{Pr}[S>\mu+\epsilon] \leq e^{-2 n \epsilon^{2}} & \text { and } & \operatorname{Pr}[S<\mu-\epsilon] \leq e^{-2 n \epsilon^{2}} \\
\text { (Chernoff:) } \operatorname{Pr}[S>(1+\epsilon) \mu] \leq e^{-n \mu \epsilon^{2} / 3} & \text { and } & \operatorname{Pr}[S<(1-\epsilon) \mu] \leq e^{-n \mu \epsilon^{2} / 2}
\end{array}
$$

5.1 Applying Tail Inequalities

Imagine we toss a fair coin n (many) times. We know that w.p. $1 / 2$ we see Heads, which means that roughly $1 / 2$ of our tosses are likely to come out Heads and half should come out as Tails. So, what is the probability that we see a lot of heads? Say, more than $\frac{1+\epsilon}{2}$ fraction of the tosses are Heads?

Let X_{i} be the Bernoulli random variable which is 1 if the i-th coin toss comes out Heads. Let $X=$ $\sum_{i=1}^{n} X_{i}$. Then for every i we have that $\mathbf{E}\left[X_{i}\right]=\frac{1}{2}$ and because of Linearity of Expectation we have that $\mathbf{E}[X]=\frac{n}{2}$. So now we can use Markov's Inequality and deduce that

$$
\operatorname{Pr}\left[X>\frac{1+\epsilon}{2} n\right] \leq \frac{n / 2}{n(1+\epsilon) / 2}=\frac{1}{1+\epsilon}
$$

This bound is really not tight. First of all, it is pretty close to 1 . More importantly, it's not improving with n.
Let us now try to bound this event using Chebyshev. Well, $\operatorname{Var}\left[X_{i}\right]=1 / 4$ for any i and since all coin tosses are independent then $\operatorname{Var}[X]=n / 4$. So we now how that

$$
\operatorname{Pr}\left[X>\frac{1+\epsilon}{2} n\right] \leq \operatorname{Pr}\left[\left|X-\frac{n}{2}\right|>\epsilon n / 2\right] \leq \frac{n / 4}{\epsilon^{2} n^{2} / 4}=\frac{1}{\epsilon^{2} n}
$$

This is already much better. It means that when $n=2 / \epsilon^{2}$ then this event happens w.p. $<1 / 2$. Yet, what if we want this probability to be really small? Not just $1 / 2$ but rather $1 / 20,000$? This means we have to set $n=20,000 / \epsilon^{2}$. In general, if we want this probability to be at most δ, then we need to toss the coin $1 / \delta \epsilon^{2}$ times.

To improve on this, we use the Chernoff-Hoeffding bounds. We can use the Chernoff bound and deduce this probability is at most $e^{-n \epsilon^{2} / 6}$. So, if we want this probability to be at most δ then we need to set $n=6 \ln (1 / \delta) / \epsilon^{2}$. Observe that n now depends on $\log (1 / \delta)$ rather than $1 / \delta$. The Hoeffding bound gives a similar result $n=O\left(\log (1 / \delta) / \epsilon^{2} \cdot \square\right.$

Why is this logarithmic dependence in δ important? Imagine the following scenario. Preparing to the upcoming elections we are conducting a phone survey, and we ask randomly and independently chosen people whether they are pro or con k different current issues. How many people do we need to survey to know the true answer for all queries up to, say, 5%-error?

We formalize this problem as follows. Let n denote the size of our survey and for any $j \in\{1,2, \ldots, k\}$ we define X_{i}^{j}, which is a Bernoulli r.v. indicating whether the i-th person is supporting the j-th issue. Let $X^{j}=\frac{1}{n} \sum_{i} X_{i}^{j}$. What is $E\left[X^{j}\right]=E\left[X_{i}^{j}\right]$? That is the fraction of the people in the population that are favor of the j-th issue. Observe that since we pick the survey participants randomly, then for any j it holds that $\left\{X_{1}^{j}, X_{2}^{j}, \ldots, X_{n}^{j}\right\}$ are all mutually independent. (But do note that X_{i}^{1} and X_{i}^{2} are not independent since it is the same person answering both questions.)

[^0]Our goal is to lower-bound the probability $\operatorname{Pr}\left[\forall j,\left|X^{j}-E\left[X^{j}\right]\right| \leq \epsilon\right]$, which is equivalent to upper bounding the probability $\operatorname{Pr}\left[\exists j,\left|X^{j}-\mathbf{E}\left[X^{j}\right]\right|>\epsilon\right]$. That is, we want to have it so that no question has a bad estimation.

Note that we can't directly use Chernoff-Hoeffding, because not all events are independent. Instead, we can use the following argument. Fix j. Now the events $X_{1}^{j}, \ldots, X_{n}^{j}$ are independent and we can use Hoeffding's inequality to deduce that for one issue, $\operatorname{Pr}\left[\left|X^{j}-\mathbf{E}\left[X^{j}\right]\right|>\epsilon\right]<2 e^{-2 n \epsilon^{2}}$. The next step is to use the Union Bound - since if there exists a j s.t. $\left|X^{j}-\mathbf{E}\left[X^{j}\right]\right|>\epsilon$ then this j is either 1 , or 2 , or $3, \ldots$, or k. So

$$
\operatorname{Pr}\left[\exists j,\left|X^{j}-\mathbf{E}\left[X^{j}\right]\right|>\epsilon\right] \leq \sum_{j=1}^{k} \operatorname{Pr}\left[\left|X^{j}-\mathbf{E}\left[X^{j}\right]\right|>\epsilon\right] \leq 2 k e^{-2 n \epsilon^{2}}
$$

Therefore, if we want that w.p. $1-\delta$ all estimations to all k queries are within an error of ϵ is suffices to set $n=\ln (2 k / \delta) /\left(2 \epsilon^{2}\right)$. In other words, if we want to be 99% confident we know the answer to all k questions up to ϵ accuracy, then it suffices to have a sample of size $n=O\left(\ln (k) / \epsilon^{2}\right)$.

This argument will recur quite frequently throughout the semester. We will often abbreviate it by saying "using Chernoff and union we get..."

[^0]: ${ }^{1}$ In general, this quadratic dependence on $1 / \epsilon$ is unavoidable. However, if we know that $p=O(\epsilon)$ then the Chernoff bound outperforms the Heoffding bound: whereas the Hoeffding bound has dependence of ϵ^{-2}, the Chernoff have n depending only on $1 / \epsilon$.

