
Probability - short review

1 The Basics

Definition 1.1. A probability space has three components:

1. A set Ω of possible outcomes.

2. A collection of events F , where each event E ∈ F is a subset of Ω. An event containing a single
element of Ω is called basic.

3. A probability function Pr : F → [0, 1] satisfying:

(a) Pr[Ω] = 1.

(b) For any countable sequence of pairwise mutually disjoint events {Ei}:

Pr[∪iEi] =
∑
i

Pr[Ei].

Lemma 1.2. Let E1, E2 ∈ F be events (not necessarily disjoint), then

Pr[E1 ∪ E2] = Pr[E1] + Pr[E2]− Pr[E1 ∩ E2].

Proof:

Pr[E1] = Pr[E1 \ E1 ∩ E2] + Pr[E1 ∩ E2], and

Pr[E2] = Pr[E2 \ E1 ∩ E2] + Pr[E1 ∩ E2], and

Pr[E1 ∪ E2] = Pr[E1 \ E1 ∩ E2] + Pr[E1 ∩ E2] + Pr[E2 \ E1 ∩ E2].

Hence, Pr[E1 ∪ E2] = Pr[E1] + Pr[E2]− Pr[E1 ∩ E2].

Corollary 1.3. For any countable sequence of events {Ei}:

Pr[∪iEi] ≤
∑
i

Pr[Ei].

Definition 1.4. Events E,F are called independent if Pr[E ∩ F ] = Pr[E] · Pr[F ] holds.

Definition 1.5. The conditional probability of E given F is defined as

Pr[E|F ] =
Pr[E ∩ F ]

Pr[F ]
.
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Corollary 1.6. For independent events E,F :

Pr[E|F ] = Pr[E].

Corollary 1.7 (Bayes’ Rule). For any two events E,F :

Pr[E|F ] = Pr[F |E] · Pr[E]

Pr[F ]

Definition 1.8 (Random Variables). A random variable is a function X : Ω → R. For a (discrete) random
variable X and a real number a, the event X = a corresponds to the set of basic events on which the
variable X is assigned the value a:

Pr[X = a] =
∑

ω∈Ω:X(ω)=a

Pr[ω].

2 Expectancy, Variance, and higher moments

Definition 2.1. The expectancy (or expectation or mean) of a (discrete) random variable X is

E[X] =
∑
a

a · Pr[X = a].

Theorem 2.2 (Linearity of Expectation). Let X,Y be random variables, then

E[X + Y ] = E[X] + E[Y ].

Proof:

E[X + Y ] =
∑
a

∑
b

(a+ b) Pr[X = a ∩ Y = b]

=
∑
a

a
∑
b

Pr[X = a ∩ Y = b] +
∑
b

b
∑
a

Pr[X = a ∩ Y = b]

=
∑
a

aPr[X = a] +
∑
b

bPr[Y = b]

= E[X] + E[Y ].

Definition 2.3. The conditional expectancy of X given event E is

E[X|E] =
∑
a

aPr[X = a|E].

Definition 2.4. The t-th moment of a random variable X is E[Xt].

Definition 2.5. The variance of a random variable X is

Var[X] = E[(X − E[X])2] = E[X2]− (E[X])2.

The standard deviation is
σX =

√
Var[X].
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Corollary 2.6. For independent random variables X,Y :

E[X · Y ] = E[X] · E[Y ] and Var[X + Y ] = Var[X] + Var[Y ].

Definition 2.7 (Moment Generating Function). The moment generating function of a random variable X is

mX(t) = E[etX ],

for t ∈ R for which the expectation exists.
Noting that ex = 1 + x+ x2

2 + x3

6 + · · · =
∑∞

j=0
xj

j! , we get that

mX(t) =
∑
i

Pr[X = i] ·
∞∑
j=0

(xt)j

j!
=

∞∑
j=0

∑
i

Pr[X = i] · (xt)j

j!
=

∞∑
j=0

E[xj ] · t
j

j!
.

Derivating at t = 0, we get that
djmX(t)

dtj

∣∣∣∣
t=0

= E[xj ],

i.e., the jth moment of X .

We will use the moment generating function in deriving bounds on the sum of independent random
variables. Let S =

∑
iXi where the random variables Xi are independent. We get that

mS(t) = E[etS ] = E[et·
∑

iXi ] = E[
∏
i

etXi ] =
∏
i

E[etXi ] =
∏
i

mxi(t).

3 Continuous Variables

For a continuous random variable X define the probability density function (PDF) PDFX(x) : R → R≥0

such that ∫ ∞
−∞

PDFX(x)dx = 1.

Informally, we will write

Pr[X ∈ S] =

∫
S
PDFX(x)dx.

The cumulative distribution function (CDF) of X is the function defined as

CDF(x) = Pr[X < x] =

∫ x

−∞
PDF(x)dx

4 Some Random Variables

Below are a list of random variables that we will repeatedly use in this course.

Bernoulli Random Variable. A discrete random variable. X is called a Bernoulli random variable, de-
noted X ∼ Ber(p) if X takes only two values 0, 1 with p = Pr[X = 1]. The expectation of a Bernoulli
random variable is E[X] = p and its variance is p− p2.
Bernoulli random variables are often called indicators. For any event E we can associate a corresponding
Bernoulli r.v. where X = 1 if E holds, and X = 0 otherwise.
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Uniform [0, 1]. When X is a r.v. chosen uniformly at random (u.a.r) from the interval [0, 1], denoted
X ∼ U[0,1] then for any x ∈ [0, 1] we have that PDF(x) = 1 and 0 everywhere else (so the PDF indeed
integrates to 1) and CDF(x) = x on the [0, 1] interval. The expected value of X is E[X] = 1/2 and
Var[X] = 1/3− (1/2)2 = 1/12.

Exponential Random Variable. A continuous random variable X is called exponential, denoted X ∼
Exp(λ) if its PDF is defined as: PDF(x) = λe−λx for any x ≥ 0. In this case CDFX(x) = 1 − e−λx for
any x ≥ 0, the expectation E[X] = 1/λ and the variance Var(X) = 1/λ2.

Laplace Random Variable. A continuous random variable X is called Laplace, denoted X ∼ Lap(λ)
if its PDF is defined as: PDF(x) = 1

2λe
−|x|/λ for any x ∈ R. Observe that one way to sample a r.v.

X ∼ Lap(λ) is to pick Y ∼ Exp(1/λ) and then set X = Y w.p. 1/2 and X = −Y w.p. 1/2. The mean of
a Laplace random variable is E[X] = 0 and its variance is Var(X) = 2λ2.

Gaussian Random Variable. A continuous random variableX is called Gaussian, denotedX ∼ N (µ, σ2)

if its PDF is defined as: PDF(x) = 1√
2πσ2

e−
1
2 (x−µ)2 for any x ∈ R. The mean of a Gaussian random vari-

able is E[X] = µ and its variance is Var(X) = σ2. A r.v. X ∼ N (0, 1) is called a normal random
variable.

5 Tail inequalities

Theorem 5.1 (Markov’s Inequality). For a non-negative random variable X ,

Pr[X ≥ a] ≤ E[X]

a
.

Proof: Define a new random variable to be the indicator function:

I =

{
1 X ≥ a
0 otherwise

Note that I ≤ X/a, hence E[I] ≤ E[X]/a. We get:

Pr[X ≥ a] = Pr[I = 1] = E[I] ≤ E[X]/a.

Theorem 5.2 (Chebyshev Inequaltiy). For any random variable X ,

Pr[|X − E[X]| > a] ≤ Var[X]

a2

Proof: Let Y denote the (non-negative) r.v. Y = (X − E[X])2. Then

Pr[|X − E[X]| > a] = Pr[(X − E[X])2 > a2] = Pr[Y > a2] ≤ E[Y ]

a2
=

Var[X]

a2
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Theorem 5.3 (Chernoff-Hoeffding Inequalities). Let X1, . . . , Xn be independent random variables such
that Xi ∈ [0, 1] and E[Xi] = µ and denote S = 1

n

∑n
i=1Xi. Then, for all ε > 0:

(Hoeffding:) Pr[S > µ+ ε] ≤ e−2nε2 and Pr[S < µ− ε] ≤ e−2nε2

(Chernoff:) Pr[S > (1 + ε)µ] ≤ e−nµε2/3 and Pr[S < (1− ε)µ] ≤ e−nµε2/2

5.1 Applying Tail Inequalities

Imagine we toss a fair coin n (many) times. We know that w.p. 1/2 we see Heads, which means that roughly
1/2 of our tosses are likely to come out Heads and half should come out as Tails. So, what is the probability
that we see a lot of heads? Say, more than 1+ε

2 fraction of the tosses are Heads?
Let Xi be the Bernoulli random variable which is 1 if the i-th coin toss comes out Heads. Let X =∑n
i=1Xi. Then for every i we have that E[Xi] = 1

2 and because of Linearity of Expectation we have that
E[X] = n

2 . So now we can use Markov’s Inequality and deduce that

Pr[X > 1+ε
2 n] ≤ n/2

n(1 + ε)/2
=

1

1 + ε

This bound is really not tight. First of all, it is pretty close to 1. More importantly, it’s not improving with n.
Let us now try to bound this event using Chebyshev. Well, Var[Xi] = 1/4 for any i and since all coin

tosses are independent then Var[X] = n/4. So we now how that

Pr[X > 1+ε
2 n] ≤ Pr[|X − n

2 | > εn/2] ≤ n/4

ε2n2/4
=

1

ε2n

This is already much better. It means that when n = 2/ε2 then this event happens w.p. < 1/2. Yet, what if
we want this probability to be really small? Not just 1/2 but rather 1/20, 000? This means we have to set
n = 20, 000/ε2. In general, if we want this probability to be at most δ, then we need to toss the coin 1/δε2

times.
To improve on this, we use the Chernoff-Hoeffding bounds. We can use the Chernoff bound and deduce

this probability is at most e−nε
2/6. So, if we want this probability to be at most δ then we need to set

n = 6 ln(1/δ)/ε2. Observe that n now depends on log(1/δ) rather than 1/δ. The Hoeffding bound gives a
similar result n = O(log(1/δ)/ε2.1

Why is this logarithmic dependence in δ important? Imagine the following scenario. Preparing to the
upcoming elections we are conducting a phone survey, and we ask randomly and independently chosen
people whether they are pro or con k different current issues. How many people do we need to survey to
know the true answer for all queries up to, say, 5%-error?

We formalize this problem as follows. Let n denote the size of our survey and for any j ∈ {1, 2, . . . , k}
we define Xj

i , which is a Bernoulli r.v. indicating whether the i-th person is supporting the j-th issue. Let
Xj = 1

n

∑
iX

j
i . What is E[Xj ] = E[Xj

i ]? That is the fraction of the people in the population that are favor
of the j-th issue. Observe that since we pick the survey participants randomly, then for any j it holds that
{Xj

1 , X
j
2 , . . . , X

j
n} are all mutually independent. (But do note that X1

i and X2
i are not independent since it

is the same person answering both questions.)
1In general, this quadratic dependence on 1/ε is unavoidable. However, if we know that p = O(ε) then the Chernoff bound

outperforms the Heoffding bound: whereas the Hoeffding bound has dependence of ε−2, the Chernoff have n depending only on
1/ε.

5



Our goal is to lower-bound the probability Pr[∀j, |Xj − E[Xj ]| ≤ ε], which is equivalent to upper
bounding the probability Pr[∃j, |Xj − E[Xj ]| > ε]. That is, we want to have it so that no question has a
bad estimation.

Note that we can’t directly use Chernoff-Hoeffding, because not all events are independent. Instead,
we can use the following argument. Fix j. Now the events Xj

1 , . . . , X
j
n are independent and we can use

Hoeffding’s inequality to deduce that for one issue, Pr[|Xj − E[Xj ]| > ε] < 2e−2nε2 . The next step is to
use the Union Bound — since if there exists a j s.t. |Xj − E[Xj ]| > ε then this j is either 1, or 2, or 3,...,
or k. So

Pr[∃j, |Xj − E[Xj ]| > ε] ≤
k∑
j=1

Pr[|Xj − E[Xj ]| > ε] ≤ 2ke−2nε2

Therefore, if we want that w.p. 1− δ all estimations to all k queries are within an error of ε is suffices to set
n = ln(2k/δ)/(2ε2). In other words, if we want to be 99% confident we know the answer to all k questions
up to ε accuracy, then it suffices to have a sample of size n = O(ln(k)/ε2).

This argument will recur quite frequently throughout the semester. We will often abbreviate it by saying
“using Chernoff and union we get...”

6


	The Basics
	Expectancy, Variance, and higher moments
	Continuous Variables
	Some Random Variables
	Tail inequalities
	Applying Tail Inequalities


