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ABSTRACT
There are significant gaps between legal and technical thinking

around data privacy. Technical standards are described using math-

ematical language whereas legal standards are not rigorous from a

mathematical point of view and often resort to concepts which they

only partially define. As a result, arguments about the adequacy

of technical privacy measures for satisfying legal privacy often

lack rigor, and their conclusions are uncertain. The uncertainty is

exacerbated by a litany of successful privacy attacks on privacy

measures thought to meet legal expectations but then shown to fall

short of doing so.

As computer systems manipulating individual privacy-sensitive

data become integrated in almost every aspect of society, and as

such systems increasingly make decisions of legal significance, the

need to bridge the diverging, and sometimes conflicting legal and

technical approaches becomes urgent.

We formulate and prove formal claims – “legal theorems” – ad-

dressing legal questions such as whether the use of technological

measures satisfies the requirements of a legal privacy standard. In

particular, we analyze the notion of singling out from the GDPR

and whether technologies such as 𝑘-anonymity and differential

privacy prevent singling out.

Our long-term goal is to develop concepts which are on one

hand technical, so they can be integrated in the design of computer

systems, and can be used in legal reasoning and for policymaking

on the other hand.
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1 INTRODUCTION
A 2010 article by Ohm drew a grim picture of how advances in

the study of privacy by computer scientists have “undermined our

faith in the privacy-protecting power of anonymization”. Ohm re-

ferred to the belief that the practice of redacting personal identifiers

and other context dependent identifying information from person-

ally identifiable data provides a “best-of-both-worlds” compromise

where “Analysts will still find the data useful, but unscrupulous

marketers and malevolent identity thieves will find it impossible to

identify the people tracked”. The promise that “[a]nonymization

ensures privacy” so “[s]ociety will be able to turn its collective at-

tention to other problems because technology will have solved this

one” was broken [36]. Central to Ohm’s analysis were cases where

supposedly anonymized data was very effectively re-identified,

such as was demonstrated by Sweeney [41] and Narayanan and

Shmatikov [32, 33].

It is illustrative to recall what led to the revelation that expecta-

tions of privacy were not met and promises were broken. Sweeney

has re-identified very sensitive personal data, the medical records

of state employees in Massachusetts’ Group Insurance Commission

(GIC). Publishers of the GIC data were aware of its sensitivity, and

hence redacted fields containing directly identifying information

such as patient names, addresses, and social security numbers be-

fore putting it in the public sphere. It turned out that this was not

enough for keeping the published records anonymous.

At the heart of Sweeney’s re-identification attack was the crucial

observation that the seemingly innocuous combination of ZIP code,

birth date, and sex – attributes which were not redacted from the

GIC data – is unique for a vast majority of the US population. In

her attack, Sweeney used such triples as quasi-identifiers which
she matched with information available in public records – the

Cambridge MA Voter Vegistration – hence linking patients’ medical

records in the GIC data with directly identifying information.

Narayanan and Shmatikov demonstrated that records contain-

ing user’s ratings of movies which were released by Netflix for its

“Netflix Prize” could be re-identified. Movie viewing information

can reflect sensitive personal characteristics such as a person’s sex-

ual orientation. To protect its customers data, Netflix has applied

disclosure limitation procedures to anonymize the dataset. Nev-

ertheless, Narayanan and Shmatikov found that, analogously to

the combination of ZIP code, birth date, and sex, the movies rated

by a subscriber and the approximate times of their rating often

makes the subscriber unique in the dataset. Even more so, little

partial knowledge about a subscriber’s viewings and ratings, when

matched with publicly available movie ratings from the Internet

Movie Database (IMDb), can lead to the exact re-identification of

the subscriber (or to a small number of candidate identities, one of

which is correct).

https://doi.org/10.1145/3452021.3458816.
https://doi.org/10.1145/3452021.3458816.
https://doi.org/10.1145/3452021.3458816.


On the theoretical side, Dinur and Nissim presented in 2003 a

new way for promises of privacy to be broken (at least in theory)

– reconstruction attacks [16].
1
Consider a dataset over the binary

data domain 𝑋 = {0, 1},
x = (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛,

containing informationwhether each of𝑛 individuals has a sensitive

trait, e.g., 𝑥𝑖 = 1 if person 𝑖 is diabetic and 𝑥𝑖 = 0 otherwise. Access

to the dataset x is provided to an analyst via amechanism answering

statistical queries. If the analyst wishes to learn the number of

diabetic individuals in a specific sub-population𝑞 ⊆ [𝑛], the analyst
can issue the query 𝑞 ⊆ [𝑛] and the mechanism would return as

answer an estimate

𝑎𝑞 ≈
∑
𝑖∈𝑞

𝑥𝑖 .

What if a privacy attacker has access to the mechanism? We say

that a mechanism is blatantly non-private [16] if an attacker having

query access to the mechanism can reconstruct a very accurate

rendering of x, say, x̃ ∈ {0, 1} which agrees with x on all but at

most 5% of the entries. It turns out that such reconstruction is

possible unless either the mechanism introduces sufficiently large

error in its answers or it limits the number of queries asked (or

both). Assume query answers are guaranteed to be within error 𝛼 ,

i.e., for all queries 𝑞 ⊆ [𝑛] we have that |𝑎𝑞 −∑
𝑖∈𝑞 𝑥𝑖 | ≤ 𝛼 .

Theorem 1.1 ([16] informal). There exist constants 𝑐, 𝑐 ′ > 0 such
that reconstruction is possible in the following settings: (i) 𝛼 = 𝑐𝑛 and
an attacker can make all 2𝑛 possible subset queries , or (ii) 𝛼 = 𝑐 ′

√
𝑛

and an attacker can make polynomially many queries.

These results have been strengthened and extended in a number

of works, e.g., [18, 21, 31]. They demonstrate what was coined by

Dwork and Roth as the Fundamental Law of Information Recov-
ery [19]:

overly accurate answers to too many questions will

destroy privacy in a spectacular way.

Re-identification attacks and reconstruction attacks are just two

examples out of a fast growing litany of failures to meet expec-

tations of privacy and we mention a few other notable cases.
2

Backstrom, Dwork, and Kleinberg extended re-identification to the

setting of social graphs [10]; Homer et al. introduced membership

attacks on aggregate genomic data, allowing to infer whether a

person’s data was included in the aggregate [26]; Shokri, Stronati,

Song, and Shmatikov developed membership attacks against ma-

chine learning models, allowing to infer whether a person’s data

was included in the training set [40]; and Carlini, Liu, Erlingsson,

Kos, and Song identified that inadvertent memorization of training

data can lead to the revealing of secret personal information, such

as the exposure of a person’s Social Security Number as an auto-

complete for the sentence “my social-security number is . . .” [11].

Furthermore, reconstruction attacks, initially viewed as primar-

ily a theoretical tool motivating and helping the development of

1
We use the following notation throughout: A dataset x containing personal infor-

mation of 𝑛 individuals is a vector containing 𝑛 records from a data domain 𝑋 , i.e.,

x = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋𝑛
. Each record 𝑥𝑖 in x corresponds to the personal information

of a single individual 𝑖 ∈ [𝑛].
2
See also the survey of attacks on private data complied by Dwork, Smith, Steinke,

and Ullman [20].

formal privacy models, have proved effective when applied to a

commercial system [13] and, more importantly, when applied to

the statistical tables published by the US Census Bureau following

the 2010 Decennial Census [24]. The reconstruction of the 2010

Decennial data yielded exact sex, race, ethnicity, and location to the

block-level and age up to one year difference for 71% of the US pop-

ulation. Furthermore, via matching with commercial databases that

were available in 2010, records were accurately reconstructed and

re-identified for 52 million people (17% of the US population) [7].

These numbers are very different fromwhat the US Census expected

in 2010. For comparison, the prior re-identification risk estimate

for the 2010 Census release was merely 0.003% [8], i.e., lower by

a factor of about 4500. Note that Title 13 of the US code, which

outlines the role of the US Census Bureau, prohibits the Census

Bureau from making “any publication whereby the data furnished

by any particular establishment or individual under this title can

be identified” [1].

1.1 New technical privacy concepts
The examples above demonstrate how some of the commonly used

methods for ensuring privacy can fail. From a technical computer

science point of view, a possible remedy for this failure is via the

introduction of new paradigms for ensuring privacy, two of which

we describe here briefly.

𝑘-anonymity, introduced by Samarati and Sweeney [37, 42], is

a restriction on the output of an anonymization process.
3
In this

framework, a dataset x is anonymized via the application of sup-

pression and generalization of potentially identifying attributes in

the input dataset towards preventing the possibility that any of

the records would be uniquely matched with a publicly available

directly identifying dataset.
4
The 𝑘-anonymizer produces a dataset

x′ which is identical to x except for the suppressed or generalized

attributes subject to the requirement that in x′ every record is

identical to at least 𝑘-1 other records.

As a toy example, see below a dataset x with four records (on

the left) and a 2-anonymized version x′ of the same dataset (on

the right), The derived from x via suppression and hierarchical

generalization operations.

ZIP Age Sex Disease
23456 55 F COVID

23456 42 F COVID

12345 30 M CF

12346 33 F Asthma

ZIP Age Sex Disease
23456 * F COVID

23456 * F COVID

1234* 30-39 * PULM

1234* 30-39 * PULM

Minimizing the number of suppressed attributes is an NP-hard

problem [30] and a rich algorithmic literature exists, providing

methods for 𝑘-anonymizing datasets while (approximately) maxi-

mizing some measure of information content in the anonymized

dataset.

It is important to note that while the syntactic restriction im-

posed by 𝑘-anonymity prevents the type of attacks performed by

Sweeney on the GIC data via finding unique matching with identi-

fiable public data, this restriction is syntactic and does not imply

3
The analysis of 𝑘-anonymity throughout also holds for variants of 𝑘-anonymity such

as ℓ-diversity [29] and 𝑡 -closeness [28].
4
Generalization is typically done in a hierarchical manner, e.g., by suppressing the

last digit(s) of a ZIP code or replacing a geographic unit (e.g., a person’s county of

residence) with a coarser geographic unit (the person’s state of residence).



that a 𝑘-anonymized dataset cannot be post-processed so as to infer

personal data. In particular, in a 𝑘-anonymizer decisions on sup-

pression and generalization are typically data dependent, and hence

the pattern of suppression and generalization in the outcome of a 𝑘-

anonymizer potentially leaks information which a privacy attacker

can make use of. In this vein, a recent result of Cohen provides a re-

construction attack of generalization-based 𝑘-anonymized datasets.

Cohen’s attack applies even in cases where every attribute com-

bination is treated as a potential quasi-identifier. The attack relies

on knowledge of the underlying distribution but does not require

the attacker to consult any other dataset beyond the 𝑘-anonymized

dataset, and hence is purely post-processing [12].

Furthermore, 𝑘-anonymity is not closed under composition, i.e.,

it may well be that the combination of two or more 𝑘-anonymized

datasets derived from the same (or similar) collection of personal in-

formation allows for uniquely identifying individuals in the data [12,

23].

Differential privacy, introduced by Dwork, McSherry, Nissim,

and Smith in 2006 [17], is a definition of privacy capturing the

desiderata that any information-related risk to a person should not

change significantly as a result of that person’s information being

included, or not, in an analysis. Informally, an analysis (referred to

in the literature as a mechanism) satisfies differential privacy if its

outcome distribution is insensitive to any change in a single indi-

vidual’s record. More formally, let 𝑋 be an arbitrary data domain,

and 𝑌 be an arbitrary output domain and let 𝜀 > 0.

Definition 1.2 ([17]). Amechanism𝑀 : 𝑋𝑛 → 𝑌 is 𝜀-differentially

private if for all datasets x, x′ ∈ 𝑋𝑛
which differ on a single entry

and for all events 𝑇 ⊆ 𝑌 ,

Pr[𝑀 (x) ∈ 𝑇 ] ≤ 𝑒𝜀 Pr[𝑀 (x′) ∈ 𝑇 ],
where the probability is over the randomness of the mechanism𝑀 .

A simple example of a differentially private mechanism is the

Laplace mechanism for counting. This mechanism first counts the

number of individuals in the databse with a sensitive trait (e.g., the

number of individuals suffering diabetes) and then introduces sta-

tistical noise to the outcome, sampled from the Laplace distribution.

Theorem 1.3 (Laplace mechanism [17]). Let𝑀𝐿𝑎𝑝 be the mech-
anism which on input x ∈ {0, 1}𝑛 outputs

𝑛∑
𝑖=1

𝑥𝑖 + 𝑌

where 𝑌 ∼ 𝐿𝑎𝑝 (1/𝜀).5 Then,𝑀𝐿𝑎𝑝 is 𝜀-differentially private.

Besides count queries, differentially private computations were

developed for a large variety of tasks, including the computation

of statistical estimates and machine learning.

Note that, in contrast with 𝑘-anonymity, differential privacy

directly limits the information content in the outcome of the mech-

anism so as to limit the ability of any attacker to distinguishwhether

an individual’s records holds one value or another.

The privacy loss parameter 𝜀 (also referred to as the “privacy

budget”) quantifies and bounds the excessive risk to an individual

due to her participation in a differentially private analysis. A lower

5
The probability density function of the Laplace distribution 𝐿𝑎𝑝 (𝑏) is 1

2𝑏
𝑒−|𝑥 |/𝑏 .

value of 𝜀 corresponds to a better privacy guarantee, but also re-

stricts the utility that can be obtained from the data (e.g., in terms

of accuracy of the analysis).

Two important properties of differential privacy are that post

processing of the outcome of a differentially private analysis does

not break the differential privacy guarantee – privacy loss cannot

increase due to post processing. Furthermore, differential privacy

is closed under composition. i.e., the result of applying two or more

differentially private analysis on the same or related data preserves

differential privacy (albeit with worse privacy loss parameter than

that of each individual analysis).

Differential privacy provides a theoretical framework for rea-

soning about privacy in analysis of personal information, based

on well defined concepts, well formed statements, and rigorous

proofs, following a strong tradition established in Foundations of

Cryptography. It is making significant steps towards being used as

a standard for the processing of sensitive personal data in academia,

industry, and government agencies.
6

Potentially, 𝑘-anonymity and differential privacy improve over

the state of affairs described in the introduction. However, techni-

cal concepts as well as mathematical rigor can only go a certain

mileage towards ensuring that expectations of privacy are being

met. It is important to keep in mind that privacy is not merely a

technical concept. It is also a normative concept rooted in a variety

of traditions, including philosophy, sociology, and economics. In

particular, expectations of privacy are coded in numerous laws and

regulations, raising the question of how to argue that the use of

specific technologies meets these legal standards?

1.2 Legal privacy concepts
We provide a very brief review of legal privacy concepts which are

most relevant to our discussion.
7
Legal standards of privacy (such

as the Health Insurance Portability and Accountability Act (HIPAA)

privacy rule [3], the Family Educational Rights and Privacy Act

(FERPA) [2] and Title 13 [1], the EU General Data Protection Regula-

tion (GDPR) [22]) and the recent California Consumer Privacy Act

(CCPA) and California Privacy Rights Act (CPRA) typically focus

on the protection of personally identifiable information (PII) or

personal data. Definitions of PII vary between regulations, but PII

generally includes information that could be linked to an individual.

Information which is not PII is generally excluded from protec-

tion. This includes information where PII has been removed by

means of anonymization or de-identification [39]. As an example,

the HIPAA privacy rule puts no restrictions on the use or disclosure

of de-identified health information. The HIPAA de-identification

standard provides two de-identification methods: (i) by expert de-

termination, i.e., if a person with appropriate knowledge and expe-

rience determines that the identification risk is very small, and (ii)

by using a safe-harbor method prescribed in the privacy rule where

identifiers are redacted. In a little more detail, the HIPAA safe-

harbor methods enumerates 18 identifiers to be redacted including

6
For a more in-depth non-technical introduction to differential privacy and its applica-

tions see [44, 45] . For a technical introduction see [19, 43].

7
An attempt for a more thorough review will quickly hit the limits of the author’s

expertise.



name, geographic location at a resolution smaller than a state, tele-

phone number, and medical record numbers. It is also required

that the processor “has no actual knowledge that the remaining

information could be used to identify the individual” [3].

In defining PII legal standards use a collection of related concepts,

such as identification, linkability, and singling out. These concepts

are not precisely defined from a technical point of view, and also

seem to have a limited scope. As an example, while linkability

may have a concrete meaning in a setting where a record can be

linked to the identify of the individual whose information is in

the records (such as was the case in re-identification attacks by

Sweeney and Narayanan and Shmatikov described above), it is not

clear how linkability should be interpreted in settings where the

data is provided in other formats, such as when a statistical or a

machine learning model is derived from the PII, or when PII is

replaced with “synthetic data”.

These meanings of legal concepts evolve in time. For example,

the US Office of Management and Budget’s guidance on protecting

PII was updated over time to reflect evolving understanding of

re-identification attacks in de-identified data. In particular, by their

guidance, non-PII may eventually become PII [4].

1.3 Do technical concepts of privacy match
legal expectations?

Attempts to argue rigorously that certain privacy measures sat-

isfy legal requirements face a variety of issues and challenges to

the point that it is not clear that technical concepts such as 𝑘-

anonymity and differential privacy, which evolved as measures to

protect data from re-identification and other privacy attacks, match

specific legal requirements.
8
In particular, computer science and

legal approaches to privacy have developed in parallel, leading to

diverging concepts, to the point that legal expectations sometimes

seem to contradict current scientific knowledge. Hence, computer

science and legal approaches to privacy lack common grounds for

a rigorous analysis [34, 35]. Furthermore, the two disciplines differ

greatly in their definitions, their notions of what consists a formal

argument, and in the values which are pursued.

The need to bridge these gaps is now more urgent than ever.

Computer systems are deeply integrated in almost every aspect of

society. They continually collect extremely fine-grained personal

data. And, they make numerous decisions of legal significance and

consequence, effectively interpreting, or even making up the law.

With the fast growing number of such decisions made in computer

systems, It is unlikely that a human judiciary system will be able

to deliberate even a small fraction of these decisions.

Personal data which is collected in these socio-technical systems

encompasses practically every aspect of our lives, small and large.

This data is stored, linked with other data, analyzed, and shared in

ways which are far from being transparent. There is an urgent if

not desperate need for concepts which are on one hand technical,

so they can be integrated in the design of computer systems ma-

nipulating personal information, and on the other hand shown to

agree with legal (and ethical) privacy desiderata.

8
And, similarly with ethical requirements and societal needs.

1.4 Overview
Our goal in the rest of this paper is to demonstrate how a principled

legal-technical analysis can help answer the above question.

In Section 2 we give an example of such an analysis. We begin

with a concept from EU privacy law – the notion of singling out

from the EU General Data Protection Regulation (GDPR). We then

present a definition of what we believe is a related concept – predi-

cate singling out - which we examine mathematically. Finally we

make formal claims – “legal theorems” – regarding whether the

technologies we surveyed above, 𝑘-anonymity and differential pri-

vacy, meet the GDPR requirement for anonymizing personal data.

Throughout, we motivate and justify our modeling choices while

attempting to stay as close as possible to the spirit of the legal text.

We conclude in Section 3 with a short discussion of possible

directions for this line of research to move forward.

2 AN EXAMPLE: FORMALIZING THE GDPR’S
CONCEPT OF SINGLING OUT

As an example of how legal concepts can be modeled mathemat-

ically and then used in rigorous statements – “legal theorems” –

whether the use of specific technologies satisfy the requirements

of legal standards we focus on a recent analysis of the EU’s Gen-

eral Data Protection Regulation (GDPR) concept of singling out

by Altman, Cohen, Nissim, and Wood [9, 14]. Other related exam-

ples include the modeling of the Family Educational Rights and

Privacy Act (FERPA) privacy standard towards examining whether

the use of differentially private analyses satisfies the standard [34],

the modeling of the forgone conclusion doctrine for compelled

disclosure by the government and examining of when decryption

is compellable [15, 38], and the modeling of the right to deletion of

personal data (the right to be forgotten) [25].

Note. Sections 2.1-2.4 are based on [9, 14] adapted, simplified, and

presented in varying levels of (in)formality. The interested reader

is referred to [9, 14] for the detailed legal and technical analysis.

2.1 Singling out in the GDPR
We begin our analysis with the text of the GDPR [22]. Article 1

of the GDPR states that the regulation turns on the processing of

personal data:

This Regulation lays down rules relating to the protec-

tion of natural persons with regard to the processing

of personal data and rules relating to the free move-

ment of personal data.

The notion of personal data is defined in Article 4:

’[P]ersonal data’ means any information relating to

an identified or identifiable natural person (‘data sub-

ject’); an identifiable natural person is one who can

be identified, directly or indirectly

On the other hand, Recital 26 clarifies that the regulation does not

apply to the processing of non-personal data, including personal

data that has been rendered anonymous’:

The principles of data protection should therefore not

apply to anonymous information, namely information

which does not relate to an identified or identifiable



natural person or to personal data rendered anony-

mous in such a manner that the data subject is not or

no longer identifiable.

It is hence essential to understand what processes, when applied to

personal data, render it “anonymous” to understand when data can

be excepted from the data protection requirements in the GDPR.

Finally, Recital 26 gives more details to further clarify the notion

of identifiability:

To determine whether a natural person is identifiable,

account should be taken of all the means reasonably

likely to be used, such as singling out, either by the

controller or by another person to identify the natural

person directly or indirectly.

From Recital 26 we learn that singling out is one of the means
reasonably likely to be used’ to identify a person in data. Hence, for

data to be excepted from the regulation by means of rendering the

personal data anonymous, it is necessary to prevent singling out in

that data.
9

Further insight into what singling out means is provided in offi-

cial opinion documents prepared by the Article 29 Data Protection

Working Party, a working party established by the EU Data Pro-

tection Directive, which preceded the GDPR: the Opinion on the

Concept of Personal Data [5] and the Opinion on Anonymisation

Techniques [6]. Referring to the notion of indirect identification,

the Article 29 Working Party writes:

As regards indirectly identified or identifiable persons,

this category typically relates to the phenomenon

of unique combinations, whether small or large in

size. . . . A name may itself not be necessary in all

cases to identify an individual. This may happenwhen

other identifiers are used to single someone out.

They define singling out as

the possibility to isolate some or all records which

identify an individual in the dataset.

We interpret the a collection of attributes to be a predicate, i.e.,

a function assigning truth values in {0, 1} to records. Using this

formulation we define isolation as follows:

Definition 2.1 (isolation). A predicate 𝑝 : 𝑋 → {0, 1} isolates in
the database x = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋𝑛

if 𝑝 (𝑥𝑖 ) = 1 for exactly one

record 𝑖 ∈ [𝑛], i.e., ∑𝑛
𝑖=1 𝑝 (𝑥𝑖 ) = 1.

In Section 2.4.3 we will return to the opinion documents of the

Article 29Working parties, when we will compare their conclusions

with respect to𝑘-anonymity and differential privacywith the results

of our analysis.

2.2 Formalizing singling out mathematically
Following the text cited above from the Article 29 Working Party

opinion documents, it seems natural to define singling out as isola-

tion. We now present some notation to help formalize this idea. Let

𝑋 be a data domain and 𝑌 an arbitrary range. An anonymization

mechanism 𝑀 : 𝑋𝑛 → 𝑌 takes a dataset x = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋𝑛
as

9
While preventing singling out is a necessary condition for exception, it may not be

sufficient as there may be other “means reasonably likely to be used . . . to identify the

natural person”. However, singling out is the only criterion that is explicitly mentioned

in the GDPR, the only occurrence of the term being the text quoted from Recital 26.

input and produces an output𝑦 in the range𝑌 . A privacy attacker𝐴

observes 𝑦 and outputs a predicate 𝑝 : 𝑋 → {0, 1}. Isolation occurs

if the predicate 𝑝 (𝑥𝑖 ) = 1 for exactly one record in x. Note that the
predicate produced by 𝐴 acts on the records of the original dataset

x and not the output 𝑦. Furthermore, the above formulation rules

out isolation by reference to a record’s position in x (such as "the

first record").

Definition 2.2 (isolation, rough sketch). A mechanism𝑀 prevents

isolation if there does not exist an attacker 𝐴 that isolates in the

dataset x, except for very low probability.

There are some design decisions to be made before turning Def-

inition 2.2 into a formal mathematical definition. To be useful, a

formalization of singling out should help decide whether the ap-

plication of technologies like 𝑘-anonymity and differential privacy

suffices for rendering data anonymous. Ideally, we would like to

be able to develop a mathematical formulation that exactly cap-

tures the GDPR dichotomy so as to exactly distinguish between

personal data and anonymous data. This task, however, seems too

ambitious if only because Recital 26 requires considering “all the

means reasonably likely to be used . . . to identify [a] person” but the

Recital does not make clear what these means are – only singling

out is explicitly mentioned. Furthermore, even exactly capturing

singling out mathematically seems (to the least) problematic. While

formal from a legal point of view, the definitions cited in Section 2.1

from the GDPR as well as the opinion documents of the Article 29

Working Party leave much room for interpretation. The legal stan-

dard does not exhibit the precision required for a mathematical

formulation.

Instead of attempting to exactly capture singling out with a

mathematical formulation, we choose to develop a formulation of

security against a notion of singling out which is potentially weaker

(but not stronger) than what is intended by the GDPR. Preventing

a weaker than intended notion of security against singling out is

necessary but potentially insufficient for rendering data anonymous.

Hence, the most significant consequence of our analysis would be

identifying those technologies which are insufficient for satisfying

the GDPR standard of anonymization (as they do not provide even

a weakened notion of preventing singling out). For technologies

which do withstand the weakened requirement, further inquiry

would be needed for determining whether they meet the GDPR

anonymization standard.

We weaken the requirements for preventing singling out in two

important ways. First, we only consider attackers who do not have

access to any auxiliary information. The GDPR regulators were

likely familiar with the use of auxiliary information (in form of an

identified dataset which can be matched with quasi-identifiers) in

re-identification attacks, and likely intended that singling out would

be prevented even in the presence of some auxiliary information.

Second, we only consider a simple data generation process where

data is sampled i.i.d. from a fixed probability distribution (which

may not known to the attacker). In a more realistic settings, an

attacker can utilize knowledge of the underling distribution as well

as dependencies between data items.

Let𝐷 ∈ Δ(𝑋 ) be a probability distribution over the data universe
𝑋 . We will assume that each individual’s record in the dataset is a



value sampled i.i.d. from 𝐷 , i.e.,

x = (𝑥1, . . . , 𝑥𝑛) ∼ 𝐷𝑛 .

We can now rewrite Definition 2.2:

Definition 2.3 (isolation). A mechanism 𝑀 prevents isolation if

for every attacker 𝐴,

Pr[x ∼ 𝐷𝑛
;𝑦 := 𝑀 (x);𝑝 := 𝐴(𝑦) s.t.

𝑛∑
𝑖=1

𝑝 (𝑥𝑖 ) = 1]

is a negligible function of 𝑛, where the probability is taken over the

i.i.d. drawing of x from 𝐷 and the randomness of𝑀 and 𝐴.10

Unfortunately, Definition 2.3 is impossible to achieve. There ex-

ists trivial attackers, that do not even look at the outcome 𝑦 of

the mechanism, and yet isolate with high probability! For example,

let x be a dataset of birthdates, i.e., the records in x are from the

data domain is 𝑋 = {Jan-1, . . . ,Dec-31} and assume 𝑛 = 365. As-

sume further that 𝐷 is uniform over 𝑋 . An attacker may choose an

arbitrary date in 𝑋 to form a predicate such as

𝑝 (𝑥) =
{

1 if 𝑥 = Apr-30

0 otherwise

The probability that 𝑝 isolates is far from being negligible:(
365

1

)
· 1

365

· (1 − 1

365

)364 ≈ 37%.

This is a general phenomena, if𝐷 has moderate min-entropy (which

would typically be the case), then one can construct a predicate 𝑝

such that Pr𝑥∼𝐷 [𝑝 (𝑥) = 1] = 1/𝑛 by applying the Leftover Hash

Lemma [27].

Definition 2.3 hence needs to be modified so as to take into

account the existence of trivial attackers. We would like to do that

while keeping as close as possible to the spirit of the definition by

the Article 29 Working party.

Define the weight of a predicate 𝑝 under distribution 𝐷 to be

𝑤𝐷 (𝑝) = Pr

𝑥∼𝐷
[𝑝 (𝑥) = 1] .

A predicate 𝑝 of weight 𝑤 which is chosen independently of the

dataset succeeds in isolating with probability

𝑛𝑤 (1 −𝑤)𝑛−1 ≈ 𝑛𝑤𝑒−𝑛𝑤 .

This probability is negligible when either 𝑤 = 𝑛𝑒𝑔𝑙 (𝑛) or 𝑤 =

𝜔 (log𝑛/𝑛) – in all other cases, a predicate with weight𝑤 isolates

with non-negligible probability. We can now modify Definition 2.3

to take this fact into account:
11

Definition 2.4 (Security against predicate singling out, simplified).
A mechanism 𝑀 is prevents predicate singling out if for every

attacker 𝐴,

Pr[x ∼ 𝐷𝑛
;𝑦 := 𝑀 (x);𝑝 := 𝐴(𝑦) s.t.𝑤𝐷 (𝑝) = 𝑛𝑒𝑔𝑙 (𝑛)∧

𝑛∑
𝑖=1

𝑝 (𝑥𝑖 ) = 1]

is a negligible function of 𝑛, where the probability is taken over the

i.i.d. drawing of x from 𝐷 and the randomness of𝑀 and 𝐴.

10
The quantification over attackers can be modified to only consider polynomial-time

attackers. A negligible function is a function approaches zero faster than any inverse

polynomial, i.e., 𝑓 (𝑛) = 𝑛𝑒𝑔𝑙 (𝑛) if 𝑓 (𝑛) = 𝑛−𝜔 (1)
.

11
We will onlt focus on predicates 𝑝 where 𝑤𝐷 (𝑝) is negligible. The case of “heavy”

predicates with 𝑤𝐷 (𝑝) = 𝜔 (log𝑛/𝑛) can be treated analogously but seems less

natural.

2.3 Making use of the formalization
We can now reap the benefits of faving a formal mathematical

definition of security against predicate singling out. We begin by

demonstrating a family of useful mechanisms which are secure

against predicate singling out. We then investigate properties of the

concept itself. Finally, we ask whether 𝑘-anonymity and differential

privacy provide security against predicate singling out.

2.3.1 Mechanisms secure against predicate singling out. We first

demonstrate that the notion of predicate singling out is not vacuous.

In fact, it allows a very natural and useful family of statistical

computations, namely count queries.

Let 𝑞 : 𝑋 → {0, 1} be a predicate. Let 𝑀#𝑞 be the mechanism

that on input x ∈ 𝑋𝑛
returns the count of records in x satisfying 𝑞,

i.e.,

𝑀#𝑞 (x) =
𝑛∑
𝑖=1

𝑞(𝑥𝑖 ) .

Theorem 2.5 ([14]). 𝑀#𝑞 prevents predicate singling out.

2.3.2 Properties of the definition. Next, we examine whether secu-

rity against predicate singling out is robust to post-processing and

composition.

Theorem 2.6 (robustness of security against predicate

singling out to post processing). If a mechanism 𝑀 prevents
predicate singling out, then for any function 𝑓 the mechanism which
on input x ∈ 𝑋𝑛 outputs 𝑓 (𝑀 (x)) also prevents predicate singling
out.

Theorem 2.7 (incomposability of security against predi-

cate singling out [14]). There exists mechanisms𝑀1 : 𝑋
𝑛 → 𝑌1

and𝑀2 : 𝑋
𝑛 → 𝑌2, both preventing predicate singling out whereas

the mechanism that on input x ∈ 𝑋𝑛 outputs (𝑀1 (x), 𝑀2 (x)) does
not prevent predicate singling out.

The proof of Theorem 2.7 provides an explicit construction

of mechanisms 𝑀1, 𝑀2 satisfying the claim. However, these two

mechanisms are not providing a “natural” “useful” functionality. A

weaker incomposibility result can be proved using a larger num-

ber of mechanisms providing a “natural” functionality, namely the

counting mechanisms of Theorem 2.5:

Theorem 2.8 (incomposability of security against predi-

cate singling out [14]). There exists ℓ = 𝜔 (log𝑛) count mecha-
nisms𝑀#𝑞1 , . . . , 𝑀#𝑞ℓ such that the mechanism that on input x ∈ 𝑋𝑛

outputs (𝑀#𝑞1 (x), . . . , 𝑀#𝑞ℓ (x)) does not prevent predicate singling
out.

The proof of Theorem 2.8 demonstrates how count queries can be

used to learn sufficiently many bits of a single record so as to isolate

it with a predicate of negligible weight. This use of count queries in

the proof implies that any formalization of security against singling

out will fail to compose as long as count mechanisms would be

deemed secure under that formalization.

2.3.3 Differential privacy and security against predicate singling
out. The count mechanism𝑀#𝑞 does not satisfy differential privacy,

and hence differential privacy is not necessary for security against

predicate singling out. However, differential privacy does provide

PSO security.



Theorem 2.9 (informal [14]). If𝑀 is 𝜀-differentially private for
some constant 𝜀 then𝑀 prevents predicate singling out.

2.3.4 𝑘-anonymity and security against predicate singling out. In
contrast with differential privacy, it turns out that 𝑘-anonymity

does not prevent predicate singling out attacks.

Theorem 2.10 (informal [14]). Typical implementations of 𝑘-
anonymity, which try to optimize on the information content of the
𝑘-anonymized dataset enable an attacker to predicate single out with
probability approximately 37%, i.e., to isolate in the data using predi-
cates of negligible weight.

A short explanation of why 𝑘-anonymity typically does not pre-

vent predicate singling out is in place. Let x′ be a 𝑘-anonymized

version of a dataset x. The data in x′ can viewed as a collection

“equivalence classes” each of 𝑘 or more records, and a predicate

can be assigned to each of the equivalence classes in x′ based
on their data. For the toy example 2-anonymized dataset in Sec-

tion 1.1 the top two records form one equivalence class, and, sim-

ilarly, the bottom two records, and the predicate corresponding

to the bottom records evaluates to 1 on a record 𝑥 if 𝑥 [ZIP] ∈
{12340, . . . , 12349} ∧ 𝑥 [Age] ∈ {30, . . . , 39} ∧ 𝑥 [Disease] ∈ 𝑃𝑈𝐿𝑀 ,

where 𝑃𝑈𝐿𝑀 is the set of pulmonary diseases. A typical dataset

would be include many more attributes than that of our toy ex-

ample, and 𝑘-anonymizers attempt to retain as much as possible

information in the 𝑘-anonymized data and hence suppress and

generalize as little attributes as possible. Hence it typically the

case that the predicates corresponding the equivalence classes in a

𝑘-anonymized datasets would have negligible weights.

Let 𝑝 such a predicate obtained from x′. Since 𝑝 has negligible

weight, 𝑝 does not evaluate to 1 for any entry of x outside its

equivalence class. We hence get

𝑛∑
𝑖=1

𝑝 (𝑥𝑖 ) =
𝑛∑
𝑖=1

𝑝 (𝑥 ′𝑖 ) = 𝑘 ′ ≥ 𝑘.

It remains to choose a predicate 𝑝 ′ of weight 1/𝑘 ′ over the equiva-
lence class.

12
Noting that 𝑝 ′ isolates in the equivalence class, and

that the weight of 𝑝 ∧ 𝑝 ′ is bounded by the weight of 𝑝 and hence

negligible, we get that an attacker outputting the predicate 𝑝 ∧ 𝑝 ′

succeeds in predicate singling out with probability ≈ 37%.

Recent attacks by Cohen strengthen the results of Theorem 2.10

in the case of generalization-based 𝑘-anonymization, as they al-

low isolation with a negligible weight predicate with probability

approaching 100% [12]

2.3.5 Is predicate singling out the only modeling possible? Before

ending this subsection, we note that other formulations of singling

out may emerge from the very same text of the GDPR, which is

a rather incomplete description of the concept. The emergence of

such concepts can be of great benefit to studying how to bridge

between legal and technical privacy concepts.

2.4 Legal theorems
Based on theorems 2.9 and 2.10, we now wish to make rigorous

statements of legal implications whether or not the use of a specific

12
Technically, to see that such a predicate exists, one need to prove that sufficient

min-entropy remains given that 𝑝 (𝑥) = 1, hence the leftover hash lemma can be used

for constructing 𝑝′.

privacy technology results in satisfying a legal standard. In particu-

lar, we return to the question whether 𝑘-anonymity and differential

privacy satisfy the GDPR standard of preventing singling out.

2.4.1 Differential privacy and the GDPR anonymization standard.
As discussed in Section 2.2, preventing singling out is a necessary

but not a sufficient condition for satisfying the GDPR standard of

anonymization, let alone providing a porentially weaker notion

than that contemplated by the GDPR. We hence get that differential

privacy may provide the right level of anonymization required

by the GDPR, but further analysis is needed for making such a

determination.

2.4.2 𝑘-anonymity and the GDPR anonymization standard. In con-

trast, Theorem 2.10 has legal implications. As 𝑘-anonymity fails to

prevent predicate singling out, and, as by the design choices made

in Section 2.2, failure to prevent predicate singling out implies fail-

ure to prevent the GDPR notion of singling out, we can conclude a

“legal theorem” and a “legal corollary”:

Legal Theorem 2.1. 𝑘-anonymity (similarly, ℓ-diversity and 𝑡-
closeness) fails to prevent singling out as required by the GDPR.

Legal Corollary 2.1. 𝑘-anonymity (similarly, ℓ-diversity and
𝑡-closeness) does not meet the GDPR standard for anonymization.

2.4.3 Comparing our conclusions with those of the Article 29 Work-
ing Party. In its Opinion on Anonymisation Techniques [6], the

Article 29 Working Party explores a number of privacy technolo-

gies, including 𝑘-anonymity, ℓ-diversity, and differential privacy

and reach different conclusions than ours. Asking “Is Singling out

still a risk?” they answer “no” for 𝑘-anonymity and for ℓ-diversity

while they answer “may not” for differential privacy. Such a conflict

between our technical analysis and what may be the current most

authoritative legal interpretation of the concept we study puts our

approach under stress. We explore two very different attempts to

resolve it.

One possibility is to claim that the opinions provided by the

Working Party are ground truth, and any modeling of singling

out must agree with their determination that 𝑘-anonymity elim-

inates the risk of singling out while differential privacy may not.

With this view, 𝑘-anonymity captures the meaning of preventing

singling out (partially or in full), and the claim that 𝑘-anonymity

eliminates the risk of singling out is unfalsifiable. We believe that

this approach should be rejected if only because defining privacy

implicitly by stipulating that a specific technology achieves privacy

is an approach that has proved to fail [36].

Another possibility, which we strongly advocate, is that state-

ments that a given privacy technology satisfies a given legal stan-

dard for anonymity should bemathematically falsifiable. We believe

that the work presented above demonstrates how a principled anal-

ysis supported by mathematical argument can and should play an

important role in articulating and informing public policy at the

interface between law and technology. Returning to the Working

Party Opinion on Anonymisation Technologies, to our best under-

standing their assessments were not substantiated using such a

rigorous approach. We suggest and hope that the European Data

Protection Board (EDPB), which in May 2018 replaced the Article 29

Working Party, will reconsider the Working Party’s recommenda-

tions regarding 𝑘-anonymity and its variants.



3 DISCUSSION
At the time of writing, it is not clear whether this work will have

any real-world influence. In particular, it is not clear whether the

European Data Protection Board (EDPB) (which replaced in 2018

the Article 29 Working Party) would find our reasoning compelling,

adopt its conclusions, and update their Opinion on Anonymisation

Techniques accordingly. Still, we believe that the value of a rigor-

ous analysis has significant value, from both legal and technical

points of view. The problem of bridging between legal and technical

concepts is magnanimous, and rigor – our only tool for dispelling

wrong intuitions while promoting reliable well-founded under-

standing and solutions – is probably the only direction towards

tackling this extremely complex task.

Looking forward, as socio-technical systems occupy a central

place in society, there is an urgent need to develop new method-

ologies and frameworks for the design of such systems which are

based on legally sound and mathematically sound principles. New

hybrid legal-technical concepts that harmonize legal and technical

aspects of privacy are needed for specifying requirements of socio-

technical systems, reasoning about their properties, and for making

sure their design meets legal-normative standards of protection

to individuals, groups, and society at large. The development of

such hybrid concepts would require a deep interdisciplinary col-

laboration, a legal-technical co-design taking into consideration

the normative-legal desiderata as well as the result of a technical-

scientific study of privacy. In turn, these concepts will serve as

building blocks for both policymaking and for the design and im-

plementation of accountable socio-technical systems. The analysis

presented in section 2, as well as other recent work [15, 25, 34, 38]

provides an encouraging signal significant progress can be made in

this direction.
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