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ABSTRACT

We present a new algorithm for locating a small cluster of
points with differential privacy [Dwork, McSherry, Nissim,
and Smith, 2006]. Our algorithm has implications to private
data exploration, clustering, and removal of outliers. Fur-
thermore, we use it to significantly relax the requirements
of the sample and aggregate technique [Nissim, Raskhod-
nikova, and Smith, 2007], which allows compiling of “off the
shelf” (non-private) analyses into analyses that preserve dif-
ferential privacy.
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1. INTRODUCTION

Clustering — the task of grouping data points by their
similarity — is one of the most commonly used techniques
for exploring data, for identifying structure in uncategorized
data, and for performing a variety of machine learning and
optimization tasks. We present a new differentially private
algorithm for a clustering-related task: Given a collection S
of n points in the d-dimensional Euclidean space R? and a
parameter ¢ reflecting a target number of points, our goal
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is to find a smallest ball containing at least ¢ of the input
points, while preserving differential privacy.

1.1 Problem and motivation

We recall the definition of differential privacy. We think
of a dataset as consisting of n rows from a data universe U,
where each row corresponds to one individual. Differential
privacy requires that no individual’s data has a significant
effect on the distribution of what we output.

DEFINITION 1.1. A randomized algorithm M : U™ — Y
is (e, 6) differentially private if for every two datasets S, S’ €
U™ that differ on one row, and every set T CY, we have

Pr[M(S) € T] < e -Pr[M(S") € T] + 4.

The common setting of parameters is to take € to be a
small constant and § to be negligible in n, e.g., § = 1/n'°8 ™,
For the introduction, we will assume that that § < 1/(nd).

In this work we study the following problem under differ-
ential privacy:

DEFINITION 1.2. A 1-cluster problem € = (X%, n,t) con-
sists of a d-dimensional domain X® (where X C R is finite
and totally ordered), and parameters n > t. We say that an
algorithm M solves (X¢,n,t) with parameters (A, w) if for
every input database S € (X4)™, algorithm M(S) outputs
a center ¢ and a radius r s.t. the following holds with high
probability probability:

1. The ball of radius r around c contains at least t — A
input points (from S).

2. Let ropt be the radius of the smallest ball in X? con-
taining at least t input points. Then r < w - Topt.

The 1-cluster problem is very natural on its own, and fur-
thermore, an algorithm for solving the 1-cluster problem can
be used as a building block in other applications:

Data exploration. The 1-cluster problem has direct im-
plications to performing data exploration privately, and,
specifically to clustering. For example, one can think of an
application involving map searches where one is interested
in privately locating areas of certain “types” or “classes” of a
given population to gain some insight of their concentration
over different geographical areas.

Outlier detection. Consider using a solution to the 1-
cluster problem to locate a small ball containing, say, 90%
of the input points. This can be used as a basic private
identification of outliers: The outcome of the algorithm can



be viewed as defining a predicate h that evaluates to one
inside the found ball and to zero otherwise. h can hence be
useful for screening the inputs to a private analysis of the
set of outlier points in the data. Outliers can skew and mis-
lead the training of classification and regression algorithms,
and hence, excluding them from further (privacy preserving)
analysis can increase accuracy.

Furthermore, outlier detection can help in reducing the
noise level required for the differentially private analysis it-
self, which in many cases would result in a dramatic improve-
ment in accuracy. To see how this would happen, recall that
the the most basic construction of differentially private al-
gorithms is via the framework of global sensitivity [8] (see
also Section 2 below). Noise is added to the outcome of
a computation, and the noise magnitude is scaled to the
sensitivity of the computation, i.e., the worst-case difference
that a change of a single entry of the database may incur.
Restricting the input space to a ball of (hopefully) a small
diameter typically results in a smaller global sensitivity, and
hence also significantly less noise.

Sample and aggregate. Maybe most importantly, an al-
gorithm for the 1-cluster problem can be used in the Sample
and Aggregate technique [16]. This generic technique al-
lows using “off the shelf”, non-privacy preserving, analyses
and transform their outcome so as to preserve differential
privacy.

Consider a (non-private) analysis f mapping databases to
(a finite subset of) R?, and assume that f can be well ap-
proximated by evaluating f on a random subsample taken
from the database. In the sample and aggregate framework,
instead of applying the analysis f on the entire dataset, it
is applied on several (say k) random sub-samples of the in-
put dataset, obtaining k outputs S = {x1,z2,...,zx} in R
The outputs are then aggregated to give a privacy-preserving
result z that is “close” to some of the points in S. If f has
the property that results that are in the vicinity of “good”
results are also “good”, then z will also be a “good” result.
Furthermore, it suffices that (only) the aggregation proce-
dure would be differentially private to guarantee that the
entire construction satisfies differential privacy.

Using their aggregation function (discussed below), Nis-
sim et al. constructed differentially private algorithms for k-
means clustering and for learning mixtures of Gaussians [16].
Smith used the paradigm in dimension d = 1 to construct
private statistical estimators [18]. One of the most appeal-
ing features of the paradigm is it that allows transforming
programs that were not built with privacy in mind into dif-
ferentially private analyses. For example, GUPT [15] is an
implementation of differential privacy that uses differentially
private averaging for aggregation. The development of bet-
ter aggregators enables making the sample and aggregate
paradigm more effective.

1.2 Existing techniques

As we will show (by reduction to a lower bound of Bun et
al. [4]), solving the 1-cluster problem on infinite domains is
impossible under differential privacy (for reasonable choices
of parameters), so any private solution must assume a finite
universe X¢ C R?. We will consider the case that X is
a discrete grid, identified with the real d dimensional unit
cube quantized with grid step 1/(|X|—1).

We now list a few existing techniques that can be used to
solve the 1-cluster problem (X%, n,t):

Private aggregation. Nissim, Raskhodnikova, and
Smith [16] introduced an efficient algorithm capable of iden-
tifying a ball of radius O(rop: - V/d/€) containing at least t
points, provided that ¢ > 0.51n > O(‘:—;log2 |X|)." There
are three downsides here: (1) The error in the radius of the
found ball grows with v/d, which might be unacceptable in
high dimensions. (2) The database size n needs to be as
big as d?log®|X|. (3) The algorithm can only identify a
majority size cluster. If, e.g., the input points are split be-
tween several small balls such that none of them contains
a majority of the points, then the algorithm results in an
uninformative center z chosen almost at random.

Exponential mechanism. One of the first ideas for solv-
ing the 1-cluster problem is to use the exponential mech-
anism of McSherry Talwar [14] to choose among all balls:
Given a radius r s.t. there exists a ball of radius r in X¢
containing ¢ points, the exponential mechanism is capable of
identifying a ball of radius r containing t — O(log(| X |%)/€)
points. Privately finding the radius r could be done using a
binary search, which would increase the loss in the size of the
cluster by a factor of O(log(v/d|X|)). Overall, this strategy
results in a ball of radius rop; containing t—O(d)-log?(| X|) /e
input points. Thus, the exponential mechanism can identify
clusters even when they do not contain a majority of the
points. However, we are seeking for an algorithm with run-
ning time poly(n, d,log|X|), while the exponential mecha-
nism runs in time poly(n, | X?).

Query release for threshold functions. For the special
case where d = 1, the 1-cluster can be solved using algo-
rithms for “query release for threshold functions”: On input
a database S € X", a query release mechanism for thresh-
old functions privately computes a database S’ € X s.t. for
every interval I C X it holds that the number of points in
S’ differs from the number of points in S that lie in I by at
most A. Searching for a smallest interval in S’ containing
2 t points results in an interval of length 2r,p: (i.e., of ra-
dius ropt) containing at least t — O(A) input points. Known
algorithms for query release for threshold functions [3, 4]
achieve A = max {2(1‘“’(1))1"‘?* X1 ~log(%),polylog(n)} /e.
Note that the dependency on |X| has improved substan-
tially from the polylog|X| of the above methods. Bun et
al.[4] also showed that A must be at least Q(log™ | X|) and
hence this problem is impossible to solve for infinite X (we
show a similar lower bound for the 1-cluster problem).

1.3 Our contributions

We present an algorithm for the 1-cluster problem that
achieves (almost) the best of all the above. Namely, it (a)
handles a minority size cluster, of size only sublinear in d
(better than all the above) and sublogarithmic in |X| (as
with query release), and loses even less than that in the size
of the cluster; and (b) avoids paying d*® factors in the er-

!The results of [16] do not assume a finite discrete grid uni-
verse. Instead, they allow both a multiplicative and an addi-
tive error in the radius of the found ball. The ad(;itive error
in the radius is eliminated whenever n > O(% log®|X]|).
More specifically, let zp denote the center of the smallest
ball containing ¢ > 0.51n input points. The algorithm of [16]
computes a center z s.t. that the error vector (zo — z) has

magnitude O(*2%) + L. e~ Uevn/d) ip each coordinate.



Needed cluster size — t
Additive loss in cluster size — A

Approximation factor

. R Running time
in radius — w

(d =1 only) [3, 4]

Private t > max < 0.51n, O(ﬁ log? | X1) _
aggregation [16] A—0 { < } = 0(Vd/e) poly(n,d,log|X])
Expoqential t>A=0(d)-log?(|X|)/e w=1 poly(n, | X4|)
mechanism [14]
Query release for (1)l 1 )
threshold functions | t > A = max {2( Fo(1) log™ | X| -log(3), polylog(n)} /e w=1 poly(n,log | X])
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t
A

1) . 9Olog™ (1X1d)
g(l) 50 (log" (|X|d))

w = O(v1ogn) poly(n, d,log | X|)

Table 1: Comparing different solutions from past work and our result.

ror of the radius (instead paying O(v/logn)). See Table 1
for a comparison with past work.

THEOREM 3.2 (INFORMAL). There ezists an efficient (¢, 0)-

differentially private algorithm that, given a set S of n points
in a discretized d-dimensional cube X?, and a parameter t,
outputs a ball of radius O (\/logn . rc,pt) of size at least

i~ Llog (1) . 9O0o5" (1X1)
€ 0
provided that

t> ﬁ log!® (%) . 90(log™ (|1 X|d)) |

€

We note that the algorithm of [16] works in general metric
output spaces, whereas ours is restricted to RY. We leave
open the question of extending our construction to more
general settings.

2. PRELIMINARIES

Notations. Throughout the paper, we use X to denote a
finite totally ordered data universe, and use X¢ for the cor-
responding d-dimensional domain. We will identify X? with
the real d-dimensional unit cube, quantized with grid step
1/(|X| — 1). Datasets are (ordered) collections of elements
from some data universe U (e.g., U = X or U = X¢). Two
datasets S, S’ € U™ are called neighboring if they differ on
at most one entry, i.e., S = (S_;, x}) for some 1 < i < |S]
and z; € U.

We will construct algorithms that use several differentially
private mechanisms as subroutines, and analyze the overall
privacy using the following composition theorem:

THEOREM 2.1 ([6, 7]). A mechanism that permits k adap-
tive interactions with (e, 0)-differentially private mechanisms
(and does not access the database otherwise) is (ke, kd)- dif-
ferentially private.

2.1 The framework of global sensitivity [8]
DEFINITION 2.2 (L,-SENSITIVITY). A function f mapping

databases to R? has Ly-sensitivity k if || £(S) — f(S)|lp < k
for all neighboring S, S’.

The most basic constructions of differentially private algo-
rithms are obtained by adding noise calibrated to the global
sensitivity of the computation. We will use the Laplace
mechanism of [8] to obtain noisy estimations to counting
queries (e.g., how many points in S have 0 on their first co-
ordinate? Such a query has sensitivity 1 since changing one
database element can change the count by at most 1).

THEOREM 2.3 (LAPLACE MECHANISM [8]). A random vari-
able is distributed as Lap(X) if its probability density func-
tion is f(y) = 5 exp(fm) Let € >0, and let f : U* — R?
be a function of L1-sensitivity k. The mechanism A that
on input D € U™ adds independently generated noise with
distribution Lap(%) to each of the d output terms of f(D)
preserves (e,0)-differential privacy.

We will also use the Gaussian mechanism to obtain (noisy)
averages of vectors in R%. See Appendix A for details.

THEOREM 2.4 (GAUSSIAN MECHANISM [6]). Let €,0 €
(0,1), and let f : U* — R? be a function of La-sensitivity
k. Denote ¢ > %.,/2In(1.25/5). The mechanism A that
on input D € U™ adds independently generated noise with
distribution N'(0,02) to each of the d output terms of f(D)
preserves (e, 0)-differential privacy.

2.2 Stability based techniques [7, 19, 3]

Given a database S € U™, consider the task of choos-
ing a “good” solution out of a possible set of solutions F,
and assume that this “goodness” is quantified using a qual-
ity function q : U* x F' — N assigning “scores” to solutions
from F' (w.r.t. the given database S). One of the most useful
constructions in differential privacy — the exponential mech-
anism [14] — shows that such scenarios are compatible with
differential privacy, and that an approximately optimal so-
lution f € F can be privately identified provided that ¢ has
low-sensitivity and that |S| 2 log|F|.

By limiting our attention to cases where the number of
possible solutions with “high” scores is limited, it is possi-
ble to relax the requirement that |S| 2 log|F|, using what
has come to be known as stability based techniques. In this
work we use stability based techniques for the following task:
Given a dataset S € U™ and a partition P of U, find a set
p € P containing (approximately) maximum number of el-
ements of S. This task can be privately solved using algo-
rithms for query release for point functions.



THEOREM 2.5 ([3, 20]). Fiz €,6. Let U be a data uni-
verse, let P be a partition of U, and let S € U™ be an
input database. There exists a poly(n,log |U|)-time (¢,0)-
differentially private algorithm s.t. the following holds. Let
T denote the mazimum number of input elements (from S)
that are contained in a set in P. If T > %log(é—g), then with
probability at least (1 — B) the algorithm returns a set ¢ € P
containing at least T — %log(%") elements from S.

3. OUR ALGORITHMS

In this paper we explore the following problem under dif-
ferential privacy:

DEFINITION 3.1 (THE PROBLEM OF A MINIMAL BALL
ENCLOSING ¢t POINTS). Given a set of n points in the Eu-
clidean space R? and an integer t < n, the goal is to find a
ball of minimal radius rope enclosing at least t input points.

To enhance readability, we are using this section as an
informal presentation of our results, giving most of the ideas
behind our construction. We will also briefly discuss some
intuitive ideas which fail to solve the task at hand, but are
useful for the presentation. Any informalities made hereafter
will be removed in the sections that follow.

We start by recalling known facts (without concern for
privacy) about the problem of a minimal ball enclosing ¢
points:

1. It is NP-hard to solve exactly [17].

2. Agarwal et al. [1] presented an approximation scheme
(PTAS) which computes a ball of radius (1 + &)rop:

containing ¢ points in time O(n'/*d).

3. There is a trivial algorithm for computing a ball of
radius 27.p: containing ¢ points: Consider only balls
centered around input points, and return the smallest
ball containing ¢ points.

Indeed, let B denote a ball of radius rp+ enclosing at
least t input points, and observe that a ball of radius
2ro.pt around any point in B contains all of B. Hence,
there exists a ball of radius 2r,,: around an input point
containing at least t points.

We present a (roughly) +/log n-approximation algorithm
satisfying differential privacy:

THEOREM 3.2. Let n,t,[3,¢,0 be s.t.

t>0 <\/E log (l) log (ld> log <i> . 910g*(2|X\/E)> .
€ B Bé B

There exists a poly(n,d, 1/8,log|X|)-time (¢, §)-differentially
private algorithm that solves the 1-cluster problem (Xd, n,t)
with parameters (A, w) and error probability 3, where w =

O (vlogn) and

—of! n 1) | glogm@1x1va)
A—O<Elog(5)log<ﬂ> 9 .

In words, there exists an efficient (e, §)-differentially pri-
vate algorithm that (ignoring logarithmic factors) is capable
of identifying a ball of radius O(ropt) containing ¢t — O(1)

points, provided that ¢ > O(\/d/e).

REMARK 3.3. For simplicity, in the above theorem we iden-
tified X% with the real d-dimensional unit cube, quantized
with grid step 1/(|X|—1). Our results trivially extend to do-
mains with minimal grid step £ and axis length L = max X —
min X by replacing | X| with L/£.

REMARK 3.4. Observe that the parameters t,A in The-
orem 8.2 have some dependency on the domain size |X|.
Although this dependency is very weak, it implies that our
construction cannot be applied to instances with infinite do-
mains. In Appendix B we show that this is a barrier one
cannot cross with differential privacy, and that solving the
1-cluster problem on infinite domains is impossible under
differential privacy (for reasonable choice of parameters).

OBSERVATION 3.5. Let k < % Our construction
could be used as a heuristic for solving a k-clustering-type
problem: Letting t = n/k, we can iterate our algorithm k
times and find a collection of (at most) k balls that cover all

the data points except at most ~ @ data points (ignoring

logarithmic factors in n, d, k, % and sublogarithmic factors in
|X1)-

Towards proving Theorem 3.2 we design two algorithms.
The first, GoodRadius, is given as input a collection S of n
points and a parameter ¢, and returns a radius r such that
there exists a ball of radius r containing > ¢ of the points
in S and, furthermore, r is within a constant factor of the
smallest such ball.

The second algorithm, GoodCenter, is given as input the
set S of input points, a parameter ¢, and a radius r computed
by GoodRadius. The algorithm outputs a center z of a ball
of radius O(r) containing 2> ¢ of the points in S. So, a
simplified overview of our construction is:

Input: A set S of n points in X<, and an integer t < n.

Step 1: Identify a radius r = O(ropt) s.t. there is a ball of
radius 7 containing = ¢ input points.

Step 2: Given r, locate a ball of radius O (\/logn . r) con-
taining 2 t input points.

3.1 Finding the cluster radius:
algorithm GoodRadius

Let S = (z1,...,%n) be a database containing n points in
X?. Given S and t < n, our current task is to approximate
the minimal radius rop: for which there is a ball of that
radius containing at least ¢ points from S.

We start with the following notations: For a radius r > 0
and a point p € R?, let B, (p) denote the number of input
points contained in a ball of radius r around p. That is,
By (p) = I{i ¢ lloi — pllz < r}].

Recall that we are looking for (a radius of) a ball contain-
ing 2 t points from S, and that a ball containing ¢ points
is just as good as a ball of the same radius containing 100t
points. Hence, we modify our notation of B, (p) to cap counts
at t:

Br(p) = min{ B.(p), t }

Using that notation, our goal is to approximate Top: =
min {r >0 : 3p € R s.t. B,(p) > t}. Recall that a direct
computation of rop: is NP-hard, and let us turn to the sim-
ple 2-approximation algorithm that considers only balls cen-
tered at input points. To that end, for every r» > 0 define



L(r) as the maximum number of input points contained in
a ball of radius r around some input point (capped at t).
That is,

L(r) = max {B,(x:)} .
As we next explain, using that notation, it suffices to com-
pute a radius r s.t.

(@) L(r) 2t and (19) L(r/2) <t.

We now argue that such an r satisfies the requirements of
GoodRadius. By (i) there exists a ball of radius r containing
2 t input points, so we just need to argue that r < O(ropt).
Assume towards contradiction that 7o, < r/4, and hence
there exists a subset D C S of ¢ input points which are
contained in a ball of radius /4. Observe that a ball radius
r/2 around any point in D contains all of D, and therefore
L(r/2) > t, contradicting (ii).

So we only need to compute a radius r satisfying prop-
erties (i) and (ii) above. However, the function L has high
sensitivity, and hence it is not clear how to privately estimate
L(r) for a given radius r. To see why L has high sensitivity,
consider a set S consisting of the unit vector €] along with
t/2 copies of the zero vector and /2 copies of the vector 2-€7.
So, a ball of radius 1 around €7 contains all of the points,
and L(1) = t. However, if we were to switch the vector €3
to 2 €7, then the ball around €7 is no longer valid (since we
only consider balls centered around input points), and every
existing ball of radius 1 contains at most ¢/2 point. So the
sensitivity of the function L is Q(t).

In order to reduce the sensitivity of L we now redefine it
using averaging (a related idea was also used in [16]). For
r > 0 redefine L as

1 _

L(r) = {B(xi,) + ...+ Br(zi,) } .

== max

t distinct 4q,..., it €[n]
That is, to compute L(r) we construct a ball of radius r
around every input point, count the number of points con-
tained in every such ball (counts are capped at t), and com-
pute the average of the ¢t biggest counts.

To see that the redefined function L(r) has low sensitivity,
consider a set of n input points and a ball of radius r around
every input point. Adding a new input point can increase
by at most 1 the number of points contained within every
existing ball. In addition, we now have a new ball centered
around the new input point, and as we cap counts at t, we
count at most ¢ points in this ball. Overall, adding the new
input point can increase L(r) by at most ¢- 1 + ¢ = 2. The
function L(r) has therefore sensitivity O(1).

Utility wise, we are still searching for an r s.t.

(7)) L(r) 2t and (i) L(r/2) <t.

Again, such an r is useful since, by (i), there exists a ball of
radius r containing > ¢ input points, and by (ii) we have that
r < 4rope: Otherwise (if ropr < 7/4) there exists a subset
D C S of ¢ points which are contained in a ball of radius r /4.
A ball of radius /2 around every point in D contains all of
D and therefore there are ¢ balls of radius r/2 containing ¢
points. Hence, L(r/2) > t, contradicting (ii).

So, the function L has low sensitivity, and we are searching
for an r s.t. L(r) 2 t and L(r/2) < t. This can easily be
done privately using binary search with noisy estimates of L
for the comparisons, but as there are (roughly) log(v/d|X|)
comparisons such a binary search would only yield a radius

rst. L(r) 2t —log(v/d|X|).? In Section 4.1 we will use
a tool from [3] (recursion on binary search) to improve the
guarantee to L(r) >t — 9'8" (VXD

LEMMA 3.6 (ALGORITHM GoopRapius). Let S € (X4)™
be a database containing n points from X¢ and let t, 3, ¢,
be parameters. There exists a poly(n,d,log|X]|)-time (e,0)-
differentially private algorithm that on input S outputs a
radius r € R s.t. with probability at least (1 — B):

1. There is a ball in X of radius r containing at least
t—0 (% log(%) . 91°g*(|X“d>) points from S.

2. Let Topt denote the radius of the smallest ball in X°
containing at least t points from S. Thenr < 4- Topt-

3.2 Locating a cluster:
algorithm GoodCenter

Let r be the outcome of Algorithm GoodRadius (so r =
O(ropt) and there exists a ball of radius r containing 2> ¢
input points). Given the radius r, our next task is to locate,
with differential privacy, a small ball in R? containing > t
input points. We begin by examining two intuitive (but
unsuccessful) suggestions for achieving this goal.

First Attempt.

One of the first ideas for using the given radius r in order
to locate a small ball is the following: Divide each axis into
intervals of length & r, identify (for every axis) a “heavy”
interval containing lots of input points, and return the re-
sulting axis-aligned box. Such a “heavy” interval could be
privately identified (on every axis) using known, stability-
based techniques [7, 19, 3].

The main problem with our first attempt is that the re-
sulting box might be empty. This is illustrated in Figure 1,
where a “heavy” interval is identified on each axis s.t. their
intersection is empty.

Second Attempt.

The failure point of our first strategy was the attempt
to locate the cluster in an axis by axis manner. Trying to
avoid that pitfall, consider the following idea for identifying
a “heavy” boz in R?: Let us denote by P C S the guaran-
teed set of 2 ¢ input points which are contained in a ball
of radius r in R?. Observe that the set P is of diameter
2r, and divide each axis into randomly shifted intervals of
length ~ 4dr. For every axis we have that the projection
of P onto that axis is contained within one interval w.p.
2 1—1/(2d), and using the union bound, this is the case for
all axes simultaneously w.p. = 1/2. That is, without look-
ing at the data, we have partitioned R? into disjoint boxes of
side length & 4dr s.t. at least one of them contains 2 ¢ input
points, and such a “heavy” box can be privately identified
using known, stability-based techniques. While the result-
ing box is indeed “heavy”, it is of side-length ~ dr (i.e. of
diameter = d**r), which is not what we are looking for.

2 Alternatively, an r s.t. L(r) > t and L(r/2) < t could be
privately computed using the sparse vector technique, which

also yields a radius 7 s.t. L(r) >t — log(v/d|X]).



Figure 1: An illustration of “heavy” intervals s.t. their intersection is empty.

Towards a Solution.

Assume (for now) that we have privately identified a (con-
cisely described) subset X’ of X such that S’ = SN X’ has
2 t points and is contained in a ball of radius r. Our current
goal is, therefore, to identify a small ball enclosing all of S".
One option (which still does not preserve privacy, but has
potential) it the following: Compute the average c¢ of the
points in §’ and return a ball of radius » around c. This op-
tion has merit since computing the average of input points
can be made private by adding random noise with magni-
tude proportional to the diameter of our subset S’ divided
by its size |S’| 2 t (the intuition is that random noise of that
magnitude masks any possible change limited to one input
element, see Theorem 2.4). In our case, we would like to use
r (the diameter of S’) as such a bound, and hence obtain a
ball of radius (roughly) 2r. However, all of our discussion
above only holds with high probability, say with probability
1 — B. In particular, the diameter of S’ is only bounded
with probability 1 — 8. In order for the privacy analysis to
go through, we need this bound to hold with probability at
least 1 — 0, i.e., set 8 = §. Since § is typically a negligible
function of n, and since our running time depends on 1/8,
this is unacceptable.

As we next explain, our first (failed) attempt comes in
handy for bounding the necessary noise magnitude. For the
intuition, recall that our first attempt failed because we were
misled by points outside the small cluster. By limiting our
attention only to points in S’ (which are clustered), this is
no longer an issue.

Assume that the set S’ contains > t points and that its
diameter is r, and consider the following procedure: Parti-
tion every axis of R? into intervals of length r. On every
axis, at least one such interval contains (the projection of)
2 t/2 points, and we can find such a “heavy” interval I us-
ing known, stability-based techniques. Afterwards, we can
extend its length by r to the left and to the right to obtain
an interval I of length 37 containing all of S’. See Figure 2
for an illustration. So, on every axis we identified an inter-
val of length 3r containing all of the points in S’. Hence,
the intersection of all those intervals is a box B of diameter
~ V/dr containing all of 5.

The thing that works in our favor here is that the above
procedure always returns a box B of diameter &~ v/dr, even
if our assumptions on the set S’ are invalid (in which case
the box B might be empty, but its diameter is the same).
Now consider the set S where we truncate all points in S’
to lie in B. Observe that (w.h.p.) we have that S’ C B and
S =9, and that, in any case, the diameter of S is at most

~ Vdr. We can therefore privately release the noisy average
of the points in S, with noise magnitude proportional to
< Vdr/)S’|. Assuming that |S'| > t > V/d, the incurred
noise is of magnitude < r, which results in a ball of radius
O(r) containing all of S’.

To summarize, it suffices to privately “ignore” all input
points but > ¢ points falling in some ball of radius = r.

Final Step.

Our final task is to identify a subset S’ C S of ~ t input
elements that are contained in a ball of radius roughly r.
Using the Johnson-Lindenstrauss transform we project our
input points onto R¥, where k =~ log(n) (w.h.p. point dis-
tances are preserved up to a constant factor). We denote
the projection of a point 2 € R? as f(z) e R*. By the prop-
erties of the JL-transform, it suffices to identify a part of the
input S’ C S s.t. its projection f(S') := {f(z) : z € §'} is
contained within a ball of radius ~ 7 in R*.

As we next explain, our second (unsuccessful) attempt
could be used to identify such a subset S’ C S. The intuition
is that our second attempt incurred an unacceptable error
factor of poly(d) in the cluster radius when locating the ball
in R¢, and this error factor is mitigated by locating the ball
in the lower-dimensional space R* (where k = O(logn)).

As above, let P C S be the guaranteed set of 2 t input
points contained within a ball of radius r in R%. Note that
(w.h.p.) the set f(P) := {f(z): x € P} is contained within
a ball of radius < 7 in R*, and assume that this is the
case. Partition every axis ¢ of R* into randomly shifted
intervals Z; = {I}},ez of length ~ 4r. On every axis i, with
probability > 1/2 the projection of f(P) on the i*® axis is
completely contained within one interval in Z;. Using the
union bound, with probability > 0.5 = 1/poly(n), this
is the case for all of the k axes simultaneously, and f(P)
is completely contained within an axis aligned box whose
projection onto every axis ¢ of R¥ is in Z;. In other words, we
have partitioned R” into disjoint k-dimensional axis aligned
boxes of side-length ~ 4r s.t. with noticeable probability (we
will later use repetitions to amplify this probability, and use
the sparse vector technique to privately choose one of the
repetitions) at least one of them contains 2 ¢ (projected)
input points. Such a “heavy” rectangle B could be privately
identified using stability based techniques (its diameter is
~ r/k ~ ry/logn). Finally, we define the set S’ = {z ¢
S : f(z) € B} as the set of points that are mapped (by
the JL transform) into the rectangle B. We now have that
S’ contains > t input elements, since the box B is “heavy”
in R*, and the diameter S’ is < rv/logn, since that is the



Figure 2: An illustration of an interval I of containing some of the points of S’, and the corresponding interval
I of length 3|I| containing all of S’ (since S’ is of diameter r = |I|).

diameter of B = f(S’). The complete construction appears
in Algorithm GoodCenter (algorithm 2).

LEMMA 3.7 (ALGORITHM GOODCENTER). Let S € (R%)™ be
a database containing n points in R?, and let r,t,3,¢,8 be

parameters s.t. t > O (@ log(%) log(%) log(%)). There

exists a poly(n,d, 1/B)-time (¢, §)-differentially private algo-
rithm that on input S,r,t outputs a point z € R? s.t. the
following holds. If there exists a ball of radius r in R? con-
taining at least t points from S, then with probability at least
1 — 3, the ball of radius O (r\/log n) around z contains at

least t — O (% log(%) log(%)) of the points in S.

4. DETAILS OF ANALYSIS
4.1 Algorithm GoodRadius

As we explained in Section 3.1, it is possible to compute an
approximation for the optimal radius using a binary search
on a carefully chosen low sensitivity function. We use the
following tool from [3] in order to reduce the sample cost of
that binary search.

Quasi-concave promise problems [3].
A function Q(-) over a totally ordered domain is quasi-
concave if Q(£) > min{Q (i), Q(j)} for every ¢ < £ < j.

DEFINITION 4.1 ([3]). A Quasi-Concave Promise Prob-
lem consists of an ordered set F of possible solutions, a
database S € U™, a sensitivity-1 quality function Q : U™ X
F — R, an approximation parameter o, and another param-
eter p (called a quality promise).

If Q(S,-) is quasi-concave and if there exists a solution
f € F for which Q(S,f) > p then a good output for the
problem is a solution g € F satisfying Q(S,g) > (1 — a)p.
The outcome is not restricted otherwise.

We will use Algorithm RecConcave from [3] to solve quasi-
concave promise problems while preserving differential pri-
vacy:

THEOREM 4.2 (ALGORITHM RecConcavE [3]). Let U be a
domain, let F be a totally ordered (finite) set of solutions,
and let @Q : U™ x F — R be a sensitivity-1 quality func-
tion. Let «,B,€,0 be parameters. There exists an (€,9)-
differentially private algorithm s.t. the following holds. On

mput a database S and a quality promise p for which Q(S, )
is quasi-concave and

12log* |F|)

« 36log™ | F|
> 5> glog” IFI g
r;leag{Q(S,f)},p,S oc log( 55

the algorithm outputs a solution f € F s.t. Q(S, f) > (1 —
a)p with probability at least (1 — f3).

REMARK 4.3. The computational efficiency of algorithm
RecConcave depends on the quality function Q. It can be
made efficient in cases where for every database S € U™,
the totally ordered set of solutions F' can be partitions into
k = poly(n) intervals of sequential solutions Fi, Fa,..., Fj
s.t. for every i and for every f, f' € F; we have Q(S, f) =
Q(S,f"). In such cases, the algorithm runs in time
poly(n,log |F|), assuming that the partition of F, and that
evaluating Q, can be done in time poly(n,log|F]).

We now proceed with the privacy analysis of algorithm
GoodRadius.

LEMMA 4.4. Algorithm GoodRadius preserves (€,0)- dif-
ferential privacy.

PROOF. Algorithm GoodRadius interacts with its input
database in step 2 using the Laplace mechanism and in step 4
using algorithm RecConcave. In order to show that those
two interactions preserve privacy, we will now argue that
L(r,-) is of sensitivity 2 (for every fixed 7). To see why this
is intuitively correct, consider a set of n input points and
a ball of radius r around every input point. Adding a new
input point can increase by at most 1 the number of points
contained within every such ball. In addition, we now have a
new ball centered around the new input point, and as we cap
counts at t, we count at most ¢ points in this ball. Overall,
adding the new input point can increase L(r,-) by at most
t-y+i=2

More formally, let S, S’ be two neighboring databases and
assume that S’ = S\ {y}U{y'} and that S = S\ {y'}U{y}.
We have that



Algorithm 1 GoodRadius

Input: Database S € (X%)™, desired ball volume ¢, failure probability bound 3, and privacy parameters e, 8.

Algorithm used: Algorithm RecConcave for privately solving quasi-concave problems. We denote the min-

imal quality promise needed for algorithm RecConcave (for our choice of parameters) as T’

144 log* (2| X |V/d) log (2410g*%xw8) )

— glog”(2IX|Vd) |

Notation: For z € X¢ and 0 < r € R let B (x, S) denote the number of input points contained in a ball of radius r
around z. For r <0, let B,(z,S) = 0. Let By(z, S) = min{B,(z, S), t}.

1. For r € R define L(r,S) = % max

t distinct 11,..,0t €[N

| (Br(wiy, S) + ...+ Br(zi,,9)) .

% That is, for every input point x € S we count the number of input points contained in a ball of radius r around
x, capped at t. We define L(r, S) as the average of the ¢ largest counts.

% Note that L(+,S) is a non-decreasing function.

2. Let L(0,S) = L(0, S) + Lap(4/¢). If L(0,S) >t — 2" — 21n(2/B), then halt and return z = 0.

% Step 2 handles the case where there exists a cluster of radius zero containing = ¢ of the input points.

3. Define the quality function Q(r,S) = 2 min{t — L (r/2,S), L(r,5) —t + 4T} .

4. Apply algorithm RecConcave with privacy parameters (

quality promise I' to choose and return z € {0 L

), utility parameters (a:%, g), quality function Q, and

s sters ot w0 | VA )

% For simplicity, we identify X¢ with the real d-dimensional unit cube, quantized with grid step 1/(]X|—1). Our

results trivially extend to domains with grids steps ¢ by choosing the output out of {(), g % %f cee “X\(ﬂw }

t
1 _

distinct zZBT(CCwS)
xz1,..,x¢ €S i=1
1 =1
T <t+;BT(gjiys)>
1 =1
n <t+;8r(xi75)>

! (t DICERIE u)

L(r,S) = max

<  max
distinct
@121 €S\{y}

= max
distinct/ ,
z1,..w 1 €S\ {y'}

< max
distinct

@1,ewe—1€8\{y'}

t—1
1 > ’
< - r (%)
< max 1 (t—i—;[lg (z S)+1}>

T1,...,x4_1ES
< L(r,S)+2.

Similarly, L(S,r) > L(S’,7) — 2, and L(r,-) is of sensitiv-
ity 2. Hence, the use of the laplace mechanism on step 2
preserves (5,0)-differential privacy. Moreover, %L(r,-) is
of sensitivity 1, and, therefore, Q(r,-) is of sensitivity 1
(defined as the minimum of two sensitivity 1 expressions).
The application of algorithm RecConcave preserves (5,0)-
differential privacy. Overall, algorithm GoodRadius is (e, §)-
differentially private by Composition Theorem 2.1. []

We now turn to proving the correctness of algorithm GoodRa-

dius.

LEMMA 4.5. Let GoodRadius be executed on a database S
containing n points in X% and on parameters t, 3,¢,6, and
let T be as defined in algorithm GoodRadius. With probability
at least (1— ), the output z satisfies: (1) There exists a ball
in X% of radius z containing at least (t —4I' — 21n(1/B))

input points from S. (2) Let v denote the radius of the

smallest ball in X containing at least t input points from
S. Then z < 4rgpt.

PrROOF. Note that if L(0,S) > t — 2I", then GoodRadius
fails to output z = 0 in step 2 with probability at most 3/2.
We continue the proof assuming that L(0,S) < ¢t — 2T".

We now argue that algorithm RecConcave returns (w.h.p.)
a value z s.t. Q(z,9) is significant. We need to show
that Q(-,S) is quasi-concave, and that there exists an r
s.t. Q(r,S) > I'. To see that Q(-,S) is quasi-concave, note
that L(-,.S) is non-decreasing (as a function of r), and that,
hence, for every r1 < ry < rs

Q(T27S) _ min{t—L(’r‘Q/ZS) L(Tz,S)—t+4F}

2 ; 5
> min{t_L(g:”/?vS)’L(T1,5)2—t+4F}
> min{Q(rs, ), Q(r1, 9)}.

To see that there exists an r s.t. Q(r,S) > T, recall that
L(0,5) = L (ﬁs) <t — 2T, and note that L(vd, S) =
n > t. Now consider the smallest

1 2 3
e {0 o o[Vl

s.t. L(r,S) > t — 2I". For that r it holds that Q(r,S) =
tmin{t—L(r/2,5), L(r,S)—t+4'} > £ min{2T", 2I'} =T..

By the properties of algorithm RecConcave, with proba-
bility at least (1 — 3/2) the output z is s.t. Q(z,5) > %.
Hence, by the definition of @@ we have that

(a) L(2,8) >t —4T and (b) L(2/2,5) <t-—

N H



Recall that L(z,S) averages B.(z,S) over ¢ points z € S.
Hence, by (a), there exists a ball of radius z in X¢ that
contains at least t — 4I" input points from S.

Let P C S be a set of ¢ input points, and assume towards
contradiction that there is a ball of radius z/4 in X< that
contains all of the points in P. Now note that a ball of
radius z/2 around every point in P contains all of the points
in P. Hence, L(z/2,S) > t. This contradicts (b). We
conclude that Algorithm GoodRadius returns a good radius
with probability at least 1 — 5. [

4.2 Additional preliminaries

Before formally presenting algorithm GoodCenter, we in-
troduce several additional tools.

4.2.1 Composition theorems

Recall that the privacy guaranties in composition theo-
rem 2.1 deteriorates linearly with the number of interac-
tions. By bounding the expected privacy loss in each inter-
action (as opposed to worst-case), Dwork et al. [10] showed
the following stronger composition theorem, where privacy
deteriorates (roughly) as vke 4 ke? (rather than ke).

THEOREM 4.6 ([10]). Let €,6,8" > 0. A mechanism that
permits k adaptive interactions with (e, §)-differentially pri-
vate mechanisms (and does not access the database other-
wise) is (¢, kd + 8')-differentially private, for ¢ = 2ke* +

ey/2k In(1/3").

4.2.2  The sparse vector technique [9]

Consider a large number of low sensitivity functions fi,
f2y--+, fr, which are given (one by one) to a data cura-
tor (holding a database S). Given a dataset S, Algorithm
AboveThreshold by Dwork et al. [9] identifies the queries f;
whose value f;(S) is greater than some threshold ¢:

THEOREM 4.7 (ALGORITHM ABOVETHRESHOLD). There ez-
ists an (e, 0)-differentially private algorithm A such that for
k rounds, after receiving a sensitivity-1 query f; : U* — R,
algorithm A either outputs T and halts, or outputs L and
waits for the next round. If A was executed with a database
S € U* and a threshold parameter t, then the following holds
with probability (1 —B): (i) If a query f; was answered by T
then fi(S) > t—2log(2k/B); (i) If a query f; was answered
by L then fi(S) <t + %log(2k/B).

4.2.3 Geometric tools

We will use the Johnson Lindenstrauss transform to em-
bed a set of points S € R? in R*, k <« d while preserving
point distances.

LEMMA 4.8 (JL TRANSFORM [11]). Let S C R? be a set of
n points, and letn € (0,1/2). Let A be a k x d matriz whose
entries are iid samples from N'(0,1), and define f : R — R”
as f(z) = %Aw. Then,

Vz,y € S it holds that
Pr (1 =mnllz - yl3
A < |If(@) = fWllz

2
>1-—2n° exp (—M) .
< (@ +n)llz -yl
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4.3 Algorithm GoodCenter

Given the outcome of Algorithm GoodRadius, we now
show that algorithm GoodCenter privately locates a small
ball containing 2 t points. We start with its privacy analy-
sis.

LEMMA 4.9. Algorithm GoodCenter preserves (e,0)- dif-
ferential privacy.

PROOF. Algorithm GoodCenter interacts with its input
database on steps 2, 5, 7, 8c, 10. Steps 2, 5 initialize and
use Algorithm AboveThreshold, which is (§, 0)-differentially
private. Step 7 invokes the algorithm from Theorem 2.5 (to
choose a “heavy” box B), which is (g, %)-private. Step 8c
makes d applications of the algorithm from Theorem 2.5. By
theorem 4.6 (composition), this preserves (£, ¢)-differential
privacy. Step 10 invokes the Gaussian mechanism, which
is (£, 2)-private. Overall, GoodCenter is (e, §)-differentially

private by composition. [

We now proceed with the utility analysis of algorithm
GoodCenter.

LEMMA 4.10. Let GoodCenter be executed on a database
S containing n points in R with r.t,B8,¢€,8 s.t.

t>0 (*@ log (%) log((ls)> .

If there exists a ball of radius r in R? containing at least
t points from S, then with probability at least 1 — B, the

output z in Step 10 is s.t. at least t — O (% log(%)) of the

input points are contained in a ball of radius O (r log(%))

around z.

REMARK 4.11. The dependency in 1/ can easily be re-
moved from the radius of the resulting ball by applying Good-
Center with a constant 8 and amplifying the success proba-
bility using repetitions.

PROOF. First note that by Theorem 4.8 (the JL trans-
form), with probability at least 1 — 3, for every z,y € S it
holds that ||z —y|| and || f(z) — f(y)]|| are similar up to a mul-
tiplicative factor of (1+ %) We continue the proof assuming
that this is the case. Hence, there exists a ball of radius 3r in
R* containing at least ¢ points from {f(z) : £ € S}. Denote
this set of (at least t) projected points as W.

Clearly, the projection of the set W onto any axis of R*
lies in an interval of length 3r. Recall that on Step 3a we
partition every axis into randomly shifted intervals {4’} of
length 300r. Hence, for every axis ¢ with probability 0.99 it
holds that the projection of W onto the i*" axis is contained
within one of the {A%}’s. The probability that this holds si-
multaneously for all of the k axes is 0.99% > % Note that in
such a case there exists a rectangle in {B;} containing all of
the points in W, and hence, the corresponding query ¢ (de-
fined on step 5) satisfies ¢(S) > t. So, every (randomly con-
structed) query ¢ satisfies ¢(.S) > t with probability 3/(2n).

Although the iteration of steps 3-6 might be repeated
less than 2nlog(1/5)/5 times, imagine that all of the (po-
tential) 2nlog(1/8)/B queries were prepared ahead of time
(and some may have never issued to AboveThreshold). With
probability at least (1 — ) at least one such query g satisfies
q(S) > t. We continue with the proof assuming that this is



Algorithm 2 GoodCenter

Input: Database S € R? containing n points, radius r, desired number of points ¢, failure probability 8, and privacy

parameters €, §.

1. Let k = 46log(2n/B) and let f : R — R* be a mapping as in Theorem 4.8 (the JL transform).
2. Instantiate algorithm AboveThreshold (Theorem 4.7) with database S, privacy parameter ¢/4, and threshold ¢ —

% log(2n/B).
3. For every axis 1 < i < k of R*:

(a) Choose a random a; € [0,300r]. For j € Z, let A’ be the interval [a; + j - 300r, a; + (j + 1) - 300r).

% {Aj}jez is a partition of the i axis into (randomly shifted) intervals of length 3007.

4. For every j = (J1,---

,Jk) € ZF let B; C R* be the box whose projection on every axis i is A;l

5. Issue query g(S) = max; |f(S5) N Bj| to AboveThreshold. Denote the received answer as a.
% That is, ¢(S) is the maximal number of (projected) input points that are contained within one box.

6. If this step was reached more than 2nlog(1/8)/8 times, then halt and fail. Otherwise, if a = L then goto Step 3.
% That is, for at most 2nlog(1/3)/8 rounds, we define a partition of R* into disjoint rectangles {B5}, and query
algorithm AboveThreshold to identify an iteration in which there is a rectangle in {B;} containing 2> ¢ points.

)

7. Use Theorem 2.5 with privacy parameters (7, 7) to chose a box B € {B;} approximately maximizing |f(S) N B.

Denote D ={z € S : f(x) € B}.

% That is, D is the set of input points from S that are mapped into B by the mapping f.

8. For every axis 1 <4 < d of R%:

(a) Partition axis 4 into intervals Z; = {[j - 450rvk , (j + 1) - 450rVk) : j € Z}.
(b) Define the quality q(I) of every I € Z; as the number of points z € D s.t. their i*" coordinate is in I.

(¢) Use Theorem2.5 with privacy parameters

€

10+/d1n(8/3)’ 8d

° ) to choose an interval I; € Z; with large ¢(-), and let

I; denote that chosen interval after extending it by 450rvk on each side (that is I is of length 1350rVk).

9. Let ¢ be the center of the box in R? whose projection on every axis i is I;, and let C be the ball of radius 1350rv/kd

around c. Define D' = DNC.

% Observe that we defined D' = D N C, even though we expect that D C C. While there is a small (but non
negligible) probability 3 that the diameter of D is larger than 900rv/kd, we can now guarantee that the set D’
is of bounded diameter. This will be useful in the privacy analysis.

10. Use the Gaussian mechanism with privacy parameters (§, §

in D’ (see Appendix A for details).

é

) to compute and return the noisy average of the points

the case. Thus, by the properties of algorithm AboveThresh-
old, with probability at least (1 — ), the loop on Step 6
ended with AboveThreshold returning T. Moreover, in that
iteration we have that ¢(S) > ¢t — 22 log(2n/B). Thus, by
the definition of g, after Step 6 there exists a rectangle { B}
containing at least ¢t — @log@n/ﬂ) projected input ele-
ments.

By Theorem 2.5, with probability at least (1 — /), the box
B chosen on step 7 contains at least ¢t — 21° log(%") projected
input elements. We continue the proof assuming that this is
the case, and denote the set of input points from S that are
mapped into B as D.

Note that B is a box of diameter 300rvk. Hence, by our
assumption on the projection f, for any z,y € D it holds
that ||z — y|| < 450rVk. Therefore, when partitioning every
axis i of R? into intervals Z; of length 450rv/k (on step 8a),
at least one interval I € Z; contains at least half of the

points in D. Assuming that |D| > &E‘/E log(ﬁﬁ%‘i)\/log(%L
for every axis ¢ Theorem 2.5 ensures that with probability

at least (1 — /d) the chosen interval I; € Z; (on step 8c)
contains at least one input elements from D. Recall that

the projection of D onto any axis lies in an interval of length
450rvk. Hence, letting I; be I; after extending it by 450rvk
on each side, we ensure that I; contains all of the points in
D. So, the box in R? whose projection onto every axis i is
I; contains all of the points in D. Recall that (on step 9) we
defined C' to be the bounding sphere of that box, and hence,
C contains all of D, and D' = DNC = D.

Let y denote the average of the point in D’ = D, and
observe that a ball of radius 4507"\/E around y contains all
of the points in D. The output on step 10 is computed using
the Gaussian mechanism as the noisy average of the points in
D’ = D, with noise magnitude proportional to the diameter
of C' (which is 1350rv/kd). By the properties of the Gaussian
mechanism (see appendix A), with probability at least (1 —
B) the output z satisfies z = y+mn, where 7 is a random noise
vector whose every coordinate is distributed as A'(0, o2) for

o< 463\2D0/0|T 2kdIn(%). Observe that Inl|3 is the sum of the

squares of d independent normal random variables (this is
the chi-squared distribution). Using tail bounds for the chi-
squared distribution (see, e.g., [13], Lemma 1 page 1325),

assuming that |D| > 86400 dln(%)ln(%)7 with probability




at least (1 — 8) we have that ||5|lz2 < vk, and hence ||z —
y|l2 < k. Using the triangle inequality, we get that a ball
of radius 4511“\/E around the output z contains all of the
points in D, where |D| > ¢ — 216 log(%”).

Overall, assuming that ¢ > M log(%) log(%), with

probability at least (1 — 73), the output on z is s.t. at least

t— % log(%") of the input points are contained inside a ball

of radius 451rvk around z. [

Theorem 3.2 now follows by combining lemmas 4.5, 4.4,
4.9, and 4.10.

5. SAMPLE AND AGGREGATE

Consider f : U* — X% mapping databases to X¢. Fix a
database S € U*, and assume that evaluating f on a random
sub-sample S’ (containing iid samples from S) results in a
good approximation to f(S). Our goal is to design a private
analogue to f.

DEFINITION 5.1. Fiz a function f : U* — X¢ and a
database S € U*. A point ¢ € X% is an (m,r, a)-stable
point of f on S if for a database S’ containing m id sam-
ples from S we have Pr[||f(S") —cll2 < 7] > a. If such a
point ¢ exists,we say that f is (m,r, a)-stable on S. We will
call v the radius of the stable point c.

In the sample and aggregate framework [16], the goal is to
privately identify an (m, r, «)-stable point of a function f on
the given input database S. Intuitively, if r is small and « is
large, then such a point would be a good (private) substitute
for (the non-private value) f(S). Note that a stable point
with small r and with large o might not exist.

THEOREM 5.2 ([16] RESTATED, INFORMAL). Fiz a desired
stability parameters m, and let n > 4d*m. There exists an
efficient differentially private algorithm that given a database

S € U™ and a function f : U* — X, identifies an (m7 o(W4d-
Topt) + Vd- e_ﬂ(\/g%), 0.51> -stable point of f on S, where

Topt 1S the smallest v s.t. f is (m,r,0.51)-stable on S.

Note the following caveats in Theorem 5.2: (1) The func-
tion f might only be (m,r,0.51)-stable on S for very large
values of 7, in which case the similarity to (the non-private)
f(S) is lost. (2) The error in the radius of the stable point
grows with v/d, which might be unacceptable in high dimen-
sions.® Using Theorem 3.2 it is possible to avoid those two
caveats.

THEOREM 5.3. Fix privacy parameters €, 0, failure param-
eter B, and desired stability parameters m,«. Let

There exists an efficient (e, §)-differentially private algorithm
that given a database S € U™ and a function f:U* — X<,
with probability at least (1 — B), identifies an (m, O(Topt -
Viogn), §)-stable point of f on S, where rop: is the small-
est r s.t. f is (m,r, a)-stable on S.

3Let ¢ be an (m, r,0.51)-stable point of f on S. In [16], the
returned point ¢’ is s.t. that the error vector (c — ¢’) has
magnitude O(ropt) + e~ (V7 4) in each coordinate.

>0
m =

Theorem 5.3 is proved using algorithm SA. Similarly to [16],
the idea is to apply f onto k£ random subsamples of the input
database S (obtaining outputs Y = {y1,%2,..., 9} in X%),
and then to privately identify a point z € X¢ which is close
to points in Y. We will use the following lemma to argue
that the random subsampling step maintains privacy:

LEmMMA 5.4 ([12, 4]). Fiz ¢ < 1 and let A be an (,0)-
differentially private algorithm operating on databases of size
m. For m > 2m, construct an algorithm A that on input
a database D of size n subsamples (with replacement) m
rows from D and runs A on the result. Then A is (€,0)-
differentially private for € = 6em/n and § = exp(6em/n)47m-
0.

LEMMA 5.5. Algorithm SA is (e, 0)-differentially private.

PrOOF. Let A denote an algorithm identical to SA, except
without the iid sampling on step 1 (the input to A is the
database D), and observe that A preserve (¢, d)-differential
privacy. To see this, let D, D’ be two neighboring databases,
and consider the execution of A on D and D’. Next, note
that there is at most one index i s.t. D; differs from Dj.
Hence, Y and Y’ are neighboring databases, and privacy is
preserved by the properties of algorithm M.

Algorithm SA (including the iid sampling) is (e, 6)- differ-
entially private by Lemma 5.4 (iid sampling). [

In the utility analysis of algorithm SA we first show that a
ball around the returned point z € X% contains > « fraction
of points in Y = {y1 = f(D1),y2 = f(D2),...,yx = f(Dxk)}.
Afterwards, we will argue that this ball also contains 2 «
mass of the underlying distribution (i.e., the distribution
defined by applying f on a random subsample of S). The
straightforward approach for such an argument would be to
use VC bounds stating that for any ball (in particular, the
ball around z) it holds that the fraction of points from Y
in it is close to the weight of the ball w.r.t. the underlying
distribution. However, for this argument to go through we
would need |Y'| to be as big as the VC dimension of the class
of d-dimensional balls, which is d + 1. This seems wasteful
since our private algorithm for locating the ball only requires
the generation of a small cluster of size ~ v/d. Instead, will
make use of the inherent generalization properties of differ-
ential privacy, first proven by Dwork et al. [5]. Specifically,
we will use the following theorem of Bassily et al. [2] stat-
ing that any predicate computed with differential privacy
automatically provides generalization:

THEOREM 5.6 ([2]). Let € € (0,1/3), § € (0,¢/4), and
n > Slog(¥). Let A:U" — 2Y be an (e, 6)-differentially
private algorithm that operates on a database of size n and
outputs a predicate h : U — {0,1}. Let D be a distribution
over U, let S be a database containing n i.i.d. elements from
D, and let h + A(S). Then,

[N

— <
Pr[I4(S) ~ h(D)| > 18 < °,
where h(S) is the empirical average of h on S, and h(D) is
the expectation of h over D.

LEMMA 5.7. Let SA be executed on a function f and on
a database S of size n such that f is (m,r,«)-stable on S.
Assume SA has access to an (¢ < £5,6 < %)—pm‘vata al-
gorithm M for solving the 1-cluster problem (X%, k,t) for



Algorithm 3 SA

Input: Database S containing n elements from U, function f : U* — X9, privacy parameters ¢, §, failure parameter

B, and desired stability parameters m,a. We denote k =

Algorithm used: An (e < %,

9m*

t > tmin, with parameters (A<t/2,w) and error probability g

0 < %)—private algorithm M for solving the 1-cluster problem (X9, k,t) for every

1. Let D be the outcome of n/9 iid samples from S. Partition D into k databases D1, D2, ..., Dy, of size m each.

2. Let Y = {y1 = f(D1),y2 = f(D2),...,yx = f(Dx)}.

ak

3. Apply M on the database Y with parameter ¢ = %* to get a point 2. Output 2.

every t > tmin with parameters (A<t/2,w) and error prob-
ability g With probability at least (1 — 3), the output z is
an (m,wr, §)-stable point of f on S, provided that

tmin 1 12
>m- + = =).
nz>m O( 2log(ﬁ))

PRrOOF. Let algorithm SA be executed on a function f
and on a database S such that f is (m,r,a)-stable on S.
Let ¢ € X? be a stable point of f on S, and let B,(c,Y)
denote the number of points in Y within distance r from c.

By the definition of the stable point ¢, for every y; (defined
on step 2) we have that Pr[||y; — c|l2 < r] > «. Hence, by
the Chernoff bound, Pr[B,(c,Y) < %] < exp(—<) < /3.

Assume that B(¢,Y) > %k, i.e., there are at least %’“ =t
points in Y within distance r from c. Hence, by the proper-
ties of algorithm M, with probability at least (1 — 8/3) the
output z is s.t. Byr(z,Y) > % = O‘Tk.

We now argue that the ball of radius wr around z not only
contains a lot of points from Y, but is also “heavy” w.r.t.
the underlying distribution (i.e., the distribution defined by
applying f on a random subsample of S). To that end,
consider the predicate h : X¢ — {0,1} defined as h(z) = 1
iff ||z — z|]]2 < wr. That is, h evaluates to 1 exactly on
points inside the ball of radius wr around z. So h(Y) >
%. By Theorem 5.6, assuming that k& > % log(%), with
probability at least 1 — d/e > 1 — /3 we have that for a
random subsample S’ containing m i.i.d. samples from S,
it holds that Pr[h(f(S")) = 1] = Pr[||f(S") — 2|2 < wr] >
218> 2,

Allin all, provided that n = 9mk > metminJr%i# log(%)7

with probability at least (1—/3), the output z is an (m, wr, §)-
stable point of f on S. [J

Theorem 5.3 now follows from combining lemmas 5.5,
and 5.7 with Theorem 3.2.
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APPENDIX
A. NOISY AVERAGE OF VECTORS IN R¢

THEOREM 2.4 (THE GAUSSIAN MECHANISM [6]). Let €, 0 €
(0,1), and let f : X* — R? be a function of La-sensitivity
k. Denote ¢ > %,/2In(1.25/5). The mechanism A that
on input D € X* adds independently generated noise with
distribution N'(0,0?) to each of the d output terms of f(D)
preserves (e, 0)-differential privacy.

We will use the Gaussian mechanism to obtain (noisy)
averages of vectors in R%: Let g : R — {0,1} be a predicate
over vectors in R?, and denote

Ay = max lv]|2-
v e R s.t.
g(v) =1

Given a multiset of vectors V', we are interested in approx-

: : Z’vEV:g(u):l v
imating TeVig(o)=1]]"

denominator have bounded Lo-sensitivity, we could estimate
each of them separately using the Gaussian mechanism. Al-
ternatively, we could directly analyze the Lo-sensitivity of

g(V) & % and apply the Gaussian mechanism

directly to g(V). This has the advantage of having only
an additive Gaussian error, rather than a noisy numera-
tor/denominator. It is easier to analyze.

We now bound the Ly sensitivity of g(V). Let V be a
multiset of vectors in R and let V' = VU{u} for some vector
u. If g(u) = 0 then g(V) = g(V') and ||g(V) — g(V")||2 = 0.
We assume therefore that g(u) = 1.

Let m = |[{v € V : g(v) = 1}|. We need to analyze

the Ly norm of the error vector n = % (ZvGV:g(v):l v) -

Since both the numerator and the

ot (u + X evigwy=1 v). To that end, observe that the i*"

coordinate of 7 is

1 1
o= Z Vil T Ui + Z Vi

veV:g(v)=1 veEV:g(v)=1
. (ZvEV:g(v):l ’Ui) — mu;
- m(m + 1)
_ 9(V)i—u
m+1
Hence,
Inll = V(m)>+ - (na)?
1
= — -2
V) = 2w (V) + (9(V), (V)
< 2
- m+1

where the last inequality is since

|(u, g(V))]
=lui-g(V)1+ - +uq-g(V)dl

== X w2 Y w

veV:g(v)=1 veV:ig(v)=1

~ O )

veVig(v)=1

S— 3 ulla- lolle < (A%

veV:ig(v)=1

IN

—_

and similarly

o(V), gV = <; > v,g<V>>
veEV:g(v)=1

> (g < (A%

veV:ig(v)=1

3=

So, for any V and V' = V U {u} we have that ||g(V) —

g(V]l2 < Aﬁl, where m = [{v € V : g(v) = 1}|. Therefore,

for any two neighboring sets Vi = V U {u} and Vo = V U
{v} we have that [[g(V1) — g(Va)[l2 < 254
inequality.

We will use algorithm NoisyAVG (algorithm 4) for privately
obtaining (noisy) averages of vectors in R

by the triangle

OBSERVATION A.1l. Let V and g be s.t. m = [{v € V :
gv) = 1} > 1—56111(%). With probability at least (1 — f3)
algorithm NoisyAVG(V') returns g(V') +n where ) is a vector
whose every coordinate is sampled i.i.d. from N(0,02) for
some o < 1529 21n(8/4)

em

OBSERVATION A.2. The requirement that

max [ollz < A,
vig(v)=1

could easily be replaced by

max lu—vll2 < Ay.
u,vig(u)=g(v)=1

That is, the predicate g may define a subset of R? of diameter
< Ay, not necessarily around the origin.



Algorithm 4 NoisyAVG

Input: Multiset V of vectors in R?, predicate g, parameters ¢, §.
21n(2/6). If 7 < 0 then output L and halt.

1. Set = |[{v € V : g(v) = 1}| + Lap(2/e) —

2. Denote o = %
from N(0,02). Return g(V) + .

21n(8/6), and let € R? be a random noise vector with each coordinate sampled independently

PROOF. Let ¢ € R? be s.t. ||c — v||2 < A for every v € R?
s.t. g(v) = 1. Given a vector set V', we could apply algorithm
NoisyAVG on the set V = {v —c:v € V} with the predicate
§:RY = {0,1} s.t. §(v) = g(v + ¢), and add the vector ¢ to
the result. [J

THEOREM A.3. Algorithm NoisyAVG is (e, d)- differentially
private.

PROOF. For a given parameter o, let us denote by n(o) a
random vector whose every coordinate is sampled iid from
N(0,0?). Now fix two neighboring sets V, V' and a predi-
cate g. Denote m = [{v € V : g(v) = 1}|, and recall that
lg(V)—g(V)ll2 <
sian mechanism shows that for any F C R and for any
21n(8/0) it holds that

%. The standard analysis of the Gaus-

g~

Prlg(V) + (o) € F < e Prlg(V’
o n(o

o:\oq

)+ n(o) € Fl+

We will use (V) to denote 7 as it is on step 1 of the
execution of NoisyAVG on V. Note that Prim(V) > m] =

Pr[Lap(2) > 21n(2/6)] < 2. Hence, for any set of outputs
F s.t. L ¢ F we have that

Pr[NoisyAVG(V) € F)

- /OOO Prfi(V) = 1]

- Pr[NoisyAVG(V) € F|m(V) = m|dm

<+ [Pty =

- Pr[NoisyAVG(V) € F|m(V) = m]dm

n(?)) 6F:| dm
g+/ /2 . Prim (V') = m)-

<6E/2 Pr [g(V’) +n (i}f (6)) S F:| + g) dm

<o+ [T el pilnv =

5o
- 5+/o Pr{si(V) = ]
e

Pr (g(V)

. (65/2 Pr [NoisyAvG(V') € Flm(V') = m] + é) din

< §+ e - Pr[NoisyAVG(V') € F1.

For a set of outputs F s.t. L € F we have
Pr[NoisyAVG(V) € F]

= Pr[NoisyAVG(V) = 1]
+ Pr[NoisyAVG(V) € F\ {}]

< e PrNoisyAVG(V') = 1]
+ef Pr[NoisyAVG(V') € F\ {L}]+4

= e Pr[NoisyAVG(V') € F]+6.
O

B. ON THE IMPOSSIBILITY OF SOLVING
THE 1-CLUSTER PROBLEM ON INFI-
NITE DOMAINS

In this section we will show that solving the 1-cluster prob-
lem on infinite domains (with a reasonable parameters) is
impossible under differential privacy. Our lower bound is
obtained through a reduction from the simple interior point
problem defined below.

DEFINITION B.1. An algorithm A : X" — X solves the
interior point problem on X with error probability B if for
every D € X",

Primin D < A(D) <maxD]>1- 4,

where the probability is taken over the coins of A. The sam-
ple complexity of the algorithm A is the database size n.

We call a solution  with minD < z < maxD an in-
terior point of D. Note that x need not be a member of
the database D. As was shown in [4], privately solving the
interior point problem on a domain X requires sample com-
plexity that grows with | X|. In particular, privately solving
this problem over an infinite domain is impossible.

THEOREM B.2 ([4]). Fiz any constant 0 < € < 1/4. Let
§(n) < 1/(50n2). Then for every positive integer n, solving
the interior point problem on X with probability at least 3/4
and with (e,d(n))-differential privacy requires sample com-
plezity n > Q(log™ | X]).

As we will now see, solving the 1-Cluster problem over a
domain X (or over X% for any d > 1) implies solving the
interior point problem on X.

THEOREM B.3. Let B,¢€,6,n,t, A, w be such that A <t <
n. If there exists an (e,d)-private algorithm that solves the
1-cluster problem (X, n,t) with parameters (A, w) and error
probability (B, then there exist a (2€,20)-private algorithm
that solves the interior point problem on X with error prob-
ability 28 using sample complexity

log™ (4w) 144 1og™ (4w) log ( 12log™ (4w) ) .
€ 86

m=n-+8



Algorithm 5 IntPoint

Input: Database S € X™ containing m points from X.
Algorithm used: Algorithm A for privately solving the 1-cluster problem (X, n,t) with parameters (A, w) and error

probability S.

1. Sort the entries of S and let D be a multiset containing the middle n entries of S.

2. Apply A on D to obtain a center ¢ € X and a radius r € R. Let I C X denote the interval of length 2r centered at c.
If r =0 (i.e., I contains only the point c), then halt and return c.
% If A succeeded, then the interval I contains at least 1 input points from D.

3. Partition I into intervals of length r/w, and let J be the set of all edge points of the resulting intervals.
% As I contains points from D, at least one of the above intervals contains points from D. We will show that this
interval cannot contain all of D, and hence, one of its two edge points is an interior point of D (and of S).

4. Deﬁneq:X*xX%Nasq((zl,...

m;” to choose and return j € J.

,@n),a) = min{ [{i: z; < a}|,
on the database S with privacy parameters (e, ), utility parameters (

|{i : @i > a}| }. Apply algorithm RecConcave
a:%, B), quality function ¢, and quality promise

% 1If a point j* € J is an interior point of D, then it is also an interior point of S with quality ¢(S,5") > ™5 (since

D contains the middle n elements of S). Hence, w.h.p.,

algorithm RecConcave identifies an interior polnt of S.

Roughly speaking, Theorem B.3 states that any solution
for the 1-cluster problem (with a reasonable parameter w)
implies a solution for the interior point problem. Let us
introduce the following notation for iterated exponentials:

tower(0) =1 and = gtower(G=1),

tower(5)

COROLLARY B.4. Fiz any constants 0 < €,3 < 1/8, and
let 6(n) < 1/(200n2). Also let A t,w be s.t. A <t <n and
w < Ltower(log(n'/®/40)). For every (e,d)-differentially
private algorithm that solves the 1-cluster problem (X, n,t)
with parameters (A, w) and error probability 3, it holds that
n > Q(log™ | X|).

Hence, in any solution to the 1-cluster problem where w
is smaller than an exponential tower in n, the sample size
n must grow with |X|. In particular, privately solving such
1-cluster problems over infinite domains is impossible.

PROOF OoF COROLLARY B.4. Denote d(n) = 1/(200n?),
and let A be a (=15, d(n))-differentially private algorithm
that solves the 1-cluster problem (X,n,t) with parameters
(A,w) and error probability ﬁ:%, where A < t < n and
w < itower(log(nl/5/40)). By Theorem B.3, there exist a
(2e=1,26(n))-differentially private algorithm that solves the
interior point problem on X with error probability QB:%

using sample complexity
m =+ 8°8 %) . 1440 log* (4w) log (24000712 1og*(4w)).

Using the assumption that w < tower(log(n1/5/40)), we
get that m < 2n, and therefore 26( ) = 557 < o3
Theorem B.2 now states that m > Q(log” |X|) and hence,

n > Qlog™ | X|). O

PrROOF OF THEOREM B.3. The proof is via the construc-
tion of algorithm IntPoint. For the privacy analysis, ob-
serve that on step 1 the algorithm constructs a database D
containing the n middle elements from the input database S.
Fix two neighboring databases S1, S2 of size m, and consider
the databases D1, D2 containing the middle n elements of
S1,S2 respectively. As S1, 52 differ in at most one element,
so does D1, D2 (our algorithms ignore the order of their in-
put database). Hence, applying a private computation onto

D preserves privacy. Algorithm IntPoint interacts with D
using algorithm A (on step 1), and interacts with S using al-
gorithm RecConcave (on step 4). Hence, by composition (see
Theorem 2.1), Algorithm IntPoint is (2¢,20)- differentially
private.

As for the utility analysis, let S € X™ be an instance to
the interior point problem, and consider the execution of al-
gorithm IntPoint on S. Let D be the multiset defined on
step 1 of the execution, and let ¢,r, I be the center, the ra-
dius, and the interval obtained on step 2. By the properties
of algorithm A, with probability 1 — 3, the interval I (of
length 2r centered at c) contains at least t — A > 1 input
points from D, and moreover, 2r < 2w - ropr where 274y is
the length of the smallest interval containing ¢ points from
D. That is, every interval containing ¢ points from D is of
length at least 2r/w. We continue with the analysis assum-
ing that this is the case.

If r = 0, then the interval I contains only the point ¢, and
c is therefore an interior point of D (and of S). We hence
proceed with the analysis assuming that r > 0.

On step 3 we partition the interval I (of length 2r) into
intervals of length r/w. Let us denote them as Z = {I;}.
Since I contains at least 1 point from D, there exists an
interval I, € Z that contains a point from D. In addition, I,
is of length r/w, and can hence contain at most ¢ — 1 points
from D. So, there exists an interval I, € Z containing some
of the points in D, but not all of them. One of its edge points
must be, therefore, an interior point of D. Thus, the set J
of all end points of the intervals in Z (defined on step 3)
contains an interior point of D.

Recall that the input database S contains at least
elements which are bigger than the elements in D and ™3
elements which are smaller. Hence, there exists a point j* €
J st. q(S,3") > 5%, and the quality promise given to
algorithm RecConcave is valid. Observe that | 7| < 4w (this
is the size of the solution set given to algorithm RecConcave).
Hence, assuming that

log* (4w) 1441og™ (4w) 12log™ (4w)
€ log ( Bd )’

with probability at least 1 — 3, the output j € J is s.t.
q(S,7) > ™7, and j is an interior point of S as required. [J

m—n
2

m—n

m>n+8




