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Abstract

When it is ethical and legal to use a sensitive attribute (such as gender or race) in machine
learning systems, the question remains how to do so. We show that the naive application of
machine learning algorithms using sensitive attributes leads to an inherent tradeoff in accuracy
between groups. We provide a simple and efficient decoupling technique, that can be added on top
of any black-box machine learning algorithm, to learn different classifiers for different groups. The
method can apply to a range of fairness criteria. In particular, we require the application designer
to specify as joint loss function that makes explicit the trade-off between fairness and accuracy.
Our reduction is shown to efficiently find the global optimum loss as long as the objective has a
certain natural monotonicity property. Monotonicity may be of independent interest in the study
of fairness in algorithms.

Please see http://arxiv.org/abs/1707.06613 for a full and up-to-date version of this manuscript.

1 Introduction
As algorithms are increasingly used to make decisions of social consequence, the social values encoded
in these decision-making procedures are the subject of increasing study, with fairness being a chief
concern (Pedreshi et al., 2008; Zliobaite et al., 2011; Kamishima et al., 2011; Dwork et al., 2011;
Friedler et al., 2016; Angwin et al., 2016; Chouldechova, 2017; Joseph et al., 2016; Hardt et al., 2016;
Kusner et al., 2017; Berk, 2009). Classification and regression algorithms are one particular locus of
fairness concerns. Classifiers map individuals to outcomes: applicants to accept/reject/waitlist; adults
to credit scores; web users to advertisements; felons to estimated recidivism risk. Informally, the
concern is whether individuals are treated “fairly,” however this is defined. Still speaking informally,
there are many sources of unfairness, prominent among these being training the classifier on historically
biased data and a paucity of data for under-represented groups leading to poor performance on these
groups, which in turn can lead to higher risk for those, such as lenders, making decisions based on
classification outcomes.

Should ML systems use sensitive attributes, such as gender or race if available? The legal and
ethical factors behind such a decision vary by time, country, jurisdiction, and culture, and downstream
application. Still speaking informally, it is known that “ignoring” these attributes does not ensure
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Figure 1: Disregarding group membership (feature x2), the most accurate linear classifier (red) per-
fectly classifies the majority class but perfectly misclassifies the minority group.

1



+–
–

+

+– +–

Figure 2: Decoupling helps both majority (red) and minority (blue) groups each maximize accuracy
from different linear classifiers (white line and left black line). If, say, equal numbers of positives are
required from both groups, the white line and right black line would maximize average accuracy.

fairness, both because they may be closely correlated with other features in the data and because
they provide context for understanding the rest of the data, permitting a classifier to incorporate
information about cultural differences between groups (Dwork et al., 2011). Using sensitive attributes
may increase accuracy for all groups and may avoid biases where a classifier favors members of a
minority group that meet criteria optimized for a majority group.

In this paper, we consider how to use a sensitive attribute such as gender or race to maximize
fairness and accuracy, assuming that it is legal and ethical. If a data scientist wanted to fit, say, a
simple linear classifier, they may use the raw data, upweight/oversample data from minority groups,
or employ advanced approaches to fitting linear classifiers that aim to be accurate and fair. No matter
what they do and what fairness criteria they use, assuming no linear classifier is perfect, they may
be faced with an inherent tradeoff between accuracy on one group and accuracy on another. As an
extreme illustrative example, consider the two group setting illustrated in Figure 1, where feature x1

perfectly predicts the binary outcome y ∈ {−1, 1}. For people in group 1 (where x2 = 1), the majority
group, y = sgn(x1), i.e., y = 1 when x1 > 0 and −1 otherwise. However, for the minority group
where x2 = 2, exactly the opposite holds: y = −sgn(x1). Now, if one performed classification without
the sensitive attribute x2, the most accurate classifier predicts y = sgn(x1), so the majority group
would be perfectly classified and the minority group would be classified as inaccurately as possible.
However, even using the group membership attribute x2, it is impossible to simultaneously achieve
better than 50% (random) accuracy on both groups. This is due to limitations of a linear classifier
sgn(w1x1 + w2x2 + b), since the same w1 is used across groups.

In this paper we define and explore decoupled classification systems, in which a separate classifier
is trained on each group. Training a classifier involves minimizing a loss function that penalizes er-
rors; examples include mean squared loss and absolute loss. In decoupled classification systems one
first obtains, for each group separately, a collection of classifiers differing in the numbers of positive
classifications returned for the members of the given group. Let this set of outputs for group k be
denoted Ck, k = 1, . . . ,K. The output of the decoupled training step is an element of C1 × . . .× CK ,
that is, a single classifier for each group. The output is chosen to minimize a joint loss function that
can penalize differences in classification statistics between groups. Thus the loss function can capture
group fairness properties relating the treatment of different groups, e.g., the false positive (respectively,
false negative) rates are the same across groups; the demographics of the group of individuals receiv-
ing positive (negative) classification are the same as the demographics of the underlying population;
the positive predictive value is the same across groups.1 By pinning down a specific objective, the
modeler is forced to make explicit the tradeoff between accuracy and fairness, since often both cannot
simultaneously be achieved.

The following observation provides a property essential for efficient decoupling. A profile is a vector
specifying, for each group, a number of positively classified examples from the training set. For a given
profile (p1, . . . , pK), the most accurate classifier also simultaneously minimizes the false positives and
false negatives. It is the choice of profile that is determined by the joint loss criterion. We show

1In contrast individual fairness Dwork et al. (2011) requires that similar people are treated similarly, which requires
a task-specific, culturally-aware, similarity metric.
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that, as long as the joint loss function satisfies a weak form of monotonicity, one can use off-the-shelf
classifiers to find a decoupled solution that minimizes joint loss. The monotonicity requirement is
that the joint loss is non-decreasing in error rates, for any fixed profile. This sheds some light on
the thought-provoking impossibility results of Chouldechova (2017) and Joseph et al. (2016) on the
impossibility of simultaneously achieving three specific notions of group fairness.

The contributions of this work are: (a) showing how, when using sensitive attributes, the straight-
forward application of many machine learning algorithms will face inherent tradeoffs between accuracy
across different groups, (b) introducing an efficient decoupling procedure that outputs separate classi-
fiers for each class using transfer learning, and (c) modeling fair and accurate learning as a problem
of minimizing a joint loss function.

1.1 Related Work
Group fairness has a variety of definitions, including conditions of statistical parity, class balance
and calibration. The statistical parity condition requires that the assigned label of an individual is
independent of sensitive attributes. Statistical parity can be approximated by either modifying the
data set or by designing classifiers subject to fairness regularizers that penalize violations of statistical
parity (see Feldman et al. (2015) and references therein). The class-balanced condition (called error-
rate balance by Chouldechova (2017) or equalized odds by Hardt et al. (2016)), similar to statistical
parity, requires that the assigned label is independent of sensitive attributes, but only conditional on
the true classification of the individual. For binary classification tasks, a class-balanced classifier results
in equal false positive and false negative rates across groups. One can also modify a given classifier to
be class-balanced while minimizing loss by adding label noise (Hardt et al., 2016). The well-calibrated
condition requires that, conditional on their label, an equal fraction of individuals from each group
have the same true classification. A well-calibrated classifier labels individuals from different groups
with equal accuracy. The class-balanced solution (Hardt et al., 2016) also fails to be well-calibrated.
Chouldechova (2017) and Joseph et al. (2016) concurrently showed that, except in cases of perfect
predictions or equal base rates of true classifications across groups, there is no class-balanced and
well-calibrated classifier.

Dwork et al. (2011) propose a “fair affirmative action” methodology that carefully relaxes between-
group individual fairness constraints in order to achieve group fairness. Zemel et al. (2013) introduce
a representational approach that attempts to “forget” group membership while maintaining enough
information to classify similar individuals similarly; this approach also permits generalization to unseen
data points. To our knowledge, the earliest work on trying to learn fair classifiers from historically
biased data is by Pedreshi et al. (2008); see also (Zliobaite et al., 2011) and (Kamishima et al., 2011).

Additionally, a number of recent works explore causal approaches to defining and detecting bias
(Nabi and Shpitser, 2017; Kusner et al., 2017; Bareinboim and Pearl, 2016; Kilbertus et al., 2017).

2 Preliminaries
Let X = X1 ∪ X2 ∪ . . . ∪ XK be the set of possible examples partitioned by group. The set of possible
labels is Y and the set of possible classifications is Z. A classifier is a function c : X → Z. We assume
that there is a fixed family C of classifiers.

We suppose that there is a joint distribution D over labeled examples x, y ∈ X × Y and we have
access to n training examples (x1, y1), . . . , (xn, yn) ∈ X × Y drawn independently from D. We denote
by g(x) the group number to which x belongs and gi = g(xi), so xi ∈ Xgi .

Finally, as is common, we consider the loss `D(c) = Ex,y∼D[`(y, c(x))] for an application-specific
loss function ` : Y × Z → R where `(y, z) accounts for the cost of classifying as z an example whose
true label is y. The group-k loss for D, c is defined to be `Dk(c) = ED[`(y, c(x))|x ∈ Xk] or 0 if D
assigns 0 probability to Xk. The standard approach in ML is to minimize `D(c) over c ∈ C. Common
loss functions include the L1 loss `(y, z) = |y − z| and L2 loss `(y, z) = (y − z)2. In Section 4, we
provide a methodology for incorporating a range of fairness notions into loss.
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3 Decoupling and the cost of coupling
For a vector of K classifiers, ~c = (c1, c2, . . . , cK), the decoupled classifier γ~c : X → Z is defined to be
γ~c = cg(x)(x). The set of decoupled classifiers is denoted γ(C) = {γ~c | ~c ∈ CK}. Some classifiers, such
as decision trees of unbounded size over X = {0, 1}d, are already decoupled, i.e., γ(C) = C. As we shall
see, however, in high dimensions common families of classifiers in use are coupled to avoid the curse
of dimensionality.

The cost of coupling of a family C of classifiers (with respect to `) is defined to be the worst-case
maximum of the difference between the loss of the most accurate coupled and decoupled classifiers
over distributions D.

cost-of-coupling(C, `) = max
D∈∆(X×Y)

[
min
c∈C

`D(c)− min
γ~c∈γ(C)

`D(γ~c)

]
.

Here ∆(S) denotes the set of probability distributions over set S. We now show that the cost of
coupling related to fairness across groups. All proofs are deferred to the full version.

Lemma 1. Suppose cost-of-coupling(C, `) = /c. Then there is a distribution D such that no matter
which classifier c ∈ C is used, there will always be a group k and a classifier c′ ∈ C whose group-k loss
is at least /c smaller than that of c, i.e., `Dk(c′) ≤ `Dk(c)− /c.

Hence, if the cost of coupling is positive, then the learning algorithm that selects a classifier faces
an inherent tradeoff in accuracy across groups. We now show that the cost of coupling is large (a
constant) for linear classifiers and decision trees.

Theorem 1. Fix X = {0, 1}d, Y = {0, 1}, and K = 2 groups (encoded by the last bit of x). Then
the cost of coupling is at least 1/4 for linear regression (Z = R, C = {w · x + b | w ∈ Rd, b ∈ R},
and `(y, z) = (y − z)2), linear separators (Z = {0, 1}, C = {I[w · x + b ≥ 0] | w ∈ Rd, b ∈ R},
and `(y, z) = |y − z|), and bounded-size decision trees (for Z = {0, 1}, C being the set of binary
decision trees of size ≤ 2s leaves, and `(y, z) = |y − z|).

4 Joint loss and monotonicity
As discussed, the classifications output by an ML classifier are often evaluated by their empirical loss
1
n

∑
i `(yi, zi). To account for fairness, we generalize loss to joint classifications across groups. In

particular, we consider an application-specific joint loss L̂ : ([K] × Y × Z)∗ → R that assigns a cost
to a set of classifications, where [K] = {1, 2, . . . ,K} indicates the group number for each example. A
joint loss might be, for parameter λ ∈ [0, 1]:

L̂
(
〈gi, yi, zi〉ni=1

)
=
λ

n

n∑
i=1

|yi − zi|+
1− λ
n

K∑
k=1

∣∣∣∣∣∣
∑
i:gi=k

zi −
1

K

∑
i

zi

∣∣∣∣∣∣ .
The above L̂ trades off accuracy for differences in number of positive classifications across groups. For
λ = 1, this is simply L1 loss, while for λ = 0, the best classifications would have an equal number of
positives in each group.

For the remainder of our analysis, we henceforth consider binary labels and classifications, Y =
Z = {0, 1}. Our approach is general, however. For a given 〈xi, yi, zi〉ni=1, and for any group k ≤ K
and all (y, z) ∈ {0, 1}2, recall that the groups are gi = g(xi) and define:

counts: nk =
∣∣{i | gi = k}

∣∣ ∈ {1, 2, . . . , n}
profile: p̂k =

1

n

∑
i:gi=k

zi ∈ [0, nk/n]

group losses: ˆ̀
k =

1

nk

∑
i:gi=k

|zi − yi| ∈ [0, 1]
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Note that the normalization is such that the standard 0-1 loss is
∑
k
nk

n
ˆ̀
k and the fraction of positives

within any class is n
nk
p̂k.

In many applications there is a different cost for false positives where (y, z) = (0, 1) and false
negatives where (y, z) = (1, 0). The fractions of false positives and negatives for each group k, defined
below, can be computed based on the fraction of positive labels πk 1

nk

∑
i:gi=k

yi in each group:

FPk =
1

nk

∑
i:gi=k

zi(1− yi) =
ˆ̀
k + p̂k

n
nk
− πk

2
(1)

FNk =
1

nk

∑
i:gi=k

(1− zi)yi =
ˆ̀
k + πk − p̂k n

nk

2
, (2)

While minimizing group loss ˆ̀
k = FPk + FNk in general does not minimize false positives or false

negatives on their own, the above implies that for a fixed profile p̂k, the most accurate classifier on
group k simultaneously minimizes false positives and false negatives. The above can be derived by
adding or subtracting the equations ˆ̀

k = FPk + FNk (since every error is a false positive or a false
negative) and n

nk
p̂k = FPk + (πk −FNk) (since every positive classification is either a false positive or

true positive, and the fraction of true positives from group k are πk − FNk). We also define the false
negative rate FNRk = FNk/πk. False positive rates can be defined similarly.

Equations (1) and (2) imply that, if one desires fewer false positives and false negatives (all other
things being fixed), then greater accuracy is better. That is, for a fixed profile, the most accurate
classifier simultaneously minimizes false positives and false negatives. This motivates the following
monotonicity notion.

Definition 1 (Monotinicity). Joint loss L̂ is monotonic if, for any fixed 〈gi, yi〉ni=1 ∈ ([K] × Y)∗, L̂
can be written as c(〈ˆ̀k, p̂k〉Kk=1) where c : [0, 1]2K → R is a function that is nondecreasing in each ˆ̀

k

fixing all other inputs to c.

That is, for a fixed profile, increasing ˆ̀
k can only increase joint loss.

The monotonicity requirement admits a range of different fairness criteria, but not all. We do not
mean to imply that monotonicity is necessary for fairness, but rather to discuss the implications of
minimizing a non-monotonic loss objective. For example, fix K = 2 and λ ≤ 1/2. Then the following
joint loss is monotonic: (1 − λ)(ˆ̀

1 + ˆ̀
2) + λ|ˆ̀1 − ˆ̀

2|. This loss trades off accuracy for differences in
loss rates between groups. What we see is that monotonic losses can account, to a limited extent, for
differences across groups in fractions of errors, and related statements can be made for combinations
of rates of false positive and false negative, inspired by “equal odds” definitions of fairness. However,
when the weight λ on the fairness term exceeds 1/2, then the loss is non-monotonic and one encounters
situations where one group is punished with lower accuracy in the name of fairness. This may still be
desirable in a context where equal odds is a primary requirement, and one would rather have random
classifications (e.g., a lottery) than introduce any inequity.

5 Minimizing joint loss on training data
Here, we show how to use learning algorithm to find a decoupled classifier in γ(C) that is optimal
on the training data. Our approach to decoupling uses a learning algorithm for C as a black box.
A C-learning algorithm A : (X × Y)∗ → 2C returns one or more classifiers from C with differing
numbers of positive classifications on the training data, i.e., for any two distinct c, c′ ∈ A

(
〈xi, yi〉ni=1),∑

i c(xi) 6=
∑
i c
′(xi). In ML, it is common to simultaneously output classifiers with varying number

of positive classifications, e.g., in computing ROC or precision-recall curves (Davis and Goadrich,
2006). Also note that a classifier that purely minimizes errors can be massaged into one that outputs
different fractions of positive and negative examples by reweighting (or subsampling) the positive- and
negative-labeled examples with different weights.

Our analysis will be based on the assumption that the classifier is in some sense optimal, but
importantly note that it makes sense to apply the reduction to any off-the-shelf learner. Formally,
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Algorithm 1 The simple decoupling algorithm partitions data by group and runs the learner on each
group. Within each group, the learner outputs one or more classifiers of differing numbers of positives.

1: procedure Decouple(A, L̂, 〈xi, yi〉ni=1,X1, . . . ,XK) . Minimize training loss L̂ using learner A
2: for k = 1 to K do
3: Ck ← A

(
〈xi, yi〉i:xi∈Xk

)
. Learner outputs a set of classifiers

4: return γ~c that minimizes min~c∈C1×...×CK
L̂
(
〈gi, yi, γ~c(xi)〉ni=1

)
. γ~c(xi) = cgi(x))

we say A is optimal if for every achievable number of positives P ∈
{∑

i c(xi)
∣∣ c ∈ C}, it outputs

exactly one classifier that classifies exactly P positives, and this classifier has minimal error among all
classifiers which classify exactly P positives. Theorem 2 shows that an optimal classifier can be used
to minimize any (monotonic) joint loss

Theorem 2. For any monotonic joint loss function L̂, any C, and any optimal learner A for C,
the Decouple procedure from Algorithm 1 returns a classifier in γ(C) of minimal joint loss L̂. For
constant K, Decouple runs in time linear in the time to run A and polynomial in the number of
examples n and time to evaluate L̂ and classifiers c ∈ C.
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