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ABSTRACT
We present PrivInfer, an expressive framework for writing
and verifying differentially private Bayesian machine learning
algorithms. Programs in PrivInfer are written in a rich func-
tional probabilistic programming language with constructs
for performing Bayesian inference. Then, differential pri-
vacy of programs is established using a relational refinement
type system, in which refinements on probability types are
indexed by a metric on distributions. Our framework lever-
ages recent developments in Bayesian inference, probabilistic
programming languages, and in relational refinement types.
We demonstrate the expressiveness of PrivInfer by verifying
privacy for several examples of private Bayesian inference.

1. INTRODUCTION
Differential privacy [17] is emerging as a gold standard in

data privacy. Its statistical guarantee ensures that the prob-
ability distribution on outputs of a data analysis is almost
the same as the distribution on outputs obtained by per-
forming the same data analysis on a (hypothetical) dataset
differing in one individual. A standard way to ensure dif-
ferential privacy is by perturbing the data analysis adding
some statistical noise. The magnitude and the shape of noise
must provide a protection to the influence of an individual
on the result of the analysis, while ensuring that the algo-
rithm provides useful results. Two properties of differential
privacy are especially relevant for this work: (1) composabil-
ity, (2) the fact that differential privacy works well on large
datasets, where the presence or absence of an individual has
limited impact. These two properties have led to the design
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of tools for differentially private data analysis. Many of these
tools use programming language techniques to ensure that
the resulting programs are indeed differentially private [2–
4, 6, 19–21, 29, 33]. Moreover, property (2) has encouraged
the interaction of the differential privacy community with the
machine learning community to design privacy-preserving
machine learning techniques, e.g. [12, 18, 25, 39]. At the same
time, researchers in probabilistic programming are exploring
programming languages as tools for machine learning. For
example, in Bayesian inference, probabilistic programming
allows data analysts to represent the probabilistic model, its
parameters, and the data observations as a specially crafted
program. Given this program as input, we can then use
inference algorithms to produce a distribution over the pa-
rameters of the model representing our updated beliefs on
them. Several works have explored the design of program-
ming languages to compute efficiently the updated beliefs
in order to produce efficient and usable tools for machine
learning, e.g. [22, 24, 28, 31, 32, 36].
Recently, research in Bayesian inference and machine

learning has turned to privacy-preserving Bayesian infer-
ence [15, 38, 40, 41], where the observed data is private.
Bayesian inference is a deterministic process, and directly
releasing the posterior distribution would violate differential
privacy. Hence, researchers have developed techniques to
make Bayesian inference differentially private. Basic tech-
niques add noise on the input data, or add noise on the
result of the data analysis, while more advanced techniques
can ensure differential privacy by releasing random samples
from the posterior distribution instead of releasing the pos-
terior distribution itself. The diversity of approaches makes
Bayesian inference an attractive target for verification tools
for differential privacy.
In this work we present PrivInfer, a programming frame-

work combining verification techniques for differential privacy
with learning techniques for Bayesian inference. PrivInfer
consists of two main components: a probabilistic functional
language extending PCF for Bayesian inference, and a rela-
tional higher-order type system that can verify differential
privacy for programs written in this language.
The core idea of Bayesian learning is to use conditional

distributions to represent the beliefs updated after some
observations. PrivInfer, similarly to other programming lan-
guages for inference models conditioning on data explicitly
using an observe statement. An interesting aspect of Bayesian
inference is that although the inferred output is a probability
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distribution, the process to generate it is deterministic. To
guarantee differential privacy, we need to inject some ran-
domness into the inference process. To handle these two roles
of distributions, PrivInfer distinguishes between symbolic dis-
tributions and actual distributions. The former represent the
result of an inference, while the latter are used to represent
random computations, e.g. differentially private computa-
tions (mechanisms). Moreover, we parametrize our language
with an algorithm to perform Bayesian inference returning
symbolic distributions, expressed by the statement infer, and
mechanisms to ensure differential privacy returning actual
distributions.
Differential privacy is a probabilistic 2-property, i.e. a

property expressed over pairs of execution traces of the pro-
gram. To address this challenge, we use an approach based on
approximate relational higher-order refinement type system,
like the ones used in the system HOARe2 [6].
PrivInfer extends this approach to deal with the construc-

tions that are needed for Bayesian inference like the observe
and infer constructs and the distinction between symbolic
and actual distributions. Another important aspect of the
verification of differential privacy is reasoning about the sen-
sitivity of a data analysis. This measures the influence that
two databases differing in one individual can have on the
output. Calibrating noise to sensitivity ensures that the data
analysis provides sufficient privacy. In Bayesian inference,
the output of the computation is a distribution (often defined
by a few numeric parameters) for which one can consider dif-
ferent measures. A simple approach is to considered standard
metrics (Euclidean, Hamming, etc.) to measure the distance
between the parameters. Another more interesting approach
is to consider distances between distributions, rather than
the parameters. The type system of PrivInfer allows one to
reason about the parameters of a distribution, using stan-
dard metrics, but also about the distribution itself using
f-divergences, a class of probability metrics including some
well known examples like total variation distance, Hellinger
distance, KL divergence, etc.
In summary, PrivInfer extends the relational type system

approach of HOARe2 in three directions:

‚ providing relational typing rules for observe and infer,

‚ providing relational typing rules to reason about sym-
bolic and actual distributions,

‚ generalizing the probability polymonad of HOARe2 to
reason about general f -divergences.

The combination of these three contributions allows us to ad-
dress Bayesian inference, which is not supported by HOARe2.

To illustrate the different features of our approach we show
how different basic Bayesian data analysis can be guaranteed
differentially private in three different ways: by adding noise
on the input, by adding noise on the parameters with sen-
sitivity measured using the �p-norms, and finally by adding
noise on the distributions with sensitivity measured using
f -divergences. This shows that PrivInfer can be used for a
diverse set of Bayesian data analyses.

Summing up, the contributions of our work are:

‚ A probabilistic extension PCFp of PCF for Bayesian
inference that serves as the language underlying our
framework PrivInfer (§ 4). This includes observe and
infer statements as well as primitives for handling sym-
bolic and actual distributions.

‚ A higher-order approximate relational type system for
reasoning about properties of two runs of programs from
PrivInfer (§ 5). In particular, the type system permits
to reason about f -divergences. The f -divergences can
be used to reason about differential privacy as well as
about program sensitivity for Bayesian inference.

‚ We show on several examples how PrivInfer can be
used to reason about differential privacy (§ 6). We will
explore three ways to guarantee differential privacy:
by adding noise on the input, by adding noise on the
output parameters based on �p-norms, and by adding
noise on the output parameters based on f -divergences.

2. BAYESIAN INFERENCE
Our work is motivated by Bayesian inference, a statisti-

cal method which takes a prior distribution Prpξq over a
parameter ξ and some observed data x, and produces the
posterior distribution Prpξ | xq, an updated version of the
prior distribution. Bayesian inference is based on Bayes’
theorem, which gives a formula for the posterior distribution:

Prpξ | xq “ Prpx | ξq ¨ Prpξq
Prpxq

The expression Prpx | ξq is the likelihood of ξ when x is
observed. This is a function Lxpξq of the parameter ξ for
fixed data x, describing the probability of observing the data
x given a specific value of the parameter ξ. Since the data
x is considered fixed, the expression Prpxq denotes a nor-
malization constant ensuring that Prpξ | xq is a probability
distribution. The choice of the prior reflects the prior knowl-
edge or belief on the parameter ξ before any observation has
been performed. In practice, the prior and the likelihood
are typically chosen so that the posterior belongs to the
same family of distributions as the prior. In this case the
prior is said to be conjugate prior for the likelihood. Using
conjugate priors, besides being mathematically convenient
in the derivations, ensures that Bayesian inference can be
performed by a recursive process over the data.

Our goal is to perform Bayesian inference under differential
privacy. We provide the formal definition of differential
privacy in Definition 3.1, but for the purpose of this section
it is enough to know that differential privacy is a statistical
guarantee that requires the answers of a data analysis to
be statistically close when run on two adjacent databases,
i.e. databases that differ in one individual. In the vanilla
version of differential privacy, the notion of“statistically close”
is measured by a parameter ε. A typical way to achieve
differential privacy is to add random noise, and we present
several primitives for doing this in § 3. For one example,
the exponential mechanism (denoted ExpMechε) returns a
possible output with probability proportional to a quality
score function Q. The function Q takes in input a database
and a potential output for the statistic computed on the
database, and gives each output a score representing how
good that output is for that database. The privacy and the
utility of the mechanism depend on ε and on the sensitivity
of the quality score function, i.e., how much the quality score
can differ for two adjacent databases.

As a motivating example we will consider a simple Bayesian
inference task: learning the bias of a coin from some obser-
vations. For example, we can think of the observations as
medical records asserting whether patients from a sample
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population have a disease or not. We can perform Bayesian
inference to establish how likely it is to have the disease in the
population. We will show how to make this task differentially
private, and verify privacy in PrivInfer.

First, the input of this example is a set of binary observa-
tions describing whether any given patient has the disease—
this is the private information that we want to protect. We
assume that the number of patients n is public and that the
adjacency condition for differential privacy states that two
databases differ in the data of one patient. In our concrete
case this means that two databases d, d1 are adjacent if all of
their records are the same except for one record that is 0 in
one database and 1 in the other.
While in abstract our problem can be described as esti-

mating the bias of a coin, we need to be more formal and
provide the precise model and the parameters that we want
to estimate. We can incorporate our initial belief on the
fairness of the coin using a prior distribution on the bias ξ
given by a beta distribution. This is a distribution over r0, 1s
with probability density:

betapξ | a, bq “ ξa´1p1 ´ ξb´1q
Bpa, bq

where a, b P R` are parameters and B denotes the beta
function. The likelihood is the probability that a series of
i.i.d samples from a Bernoulli distributed random variable
with bias ξ matches the observations. Using an informal
notation,1 we can write the following program in PrivInfer:

infer
´
observe

`
λr.bernoulliprq “ obs

˘
betapa, bq

¯
(1)

The term infer represents an inference algorithm and the
observe statement is used to describe the model. Expression
(1) denotes the posterior distribution that is computed using
Bayes’ theorem with prior betapa, bq and with likelihood
pλr.bernoulliprq “ obsq.
Now, we want to ensure differential privacy. We have

several options. A first natural idea is to perturbate the
input data using the exponential mechanism, corresponding
to the following program:

infer
´
observepλr.bernoulliprq “ ExpMechε Qobsq betapa, bq

¯
The fact that differential privacy is closed under post-

processing ensures that this guarantees differential privacy
for the whole program. In more detail, in the notation above
we denoted by Q the scoring function. Since obs is a boolean,
we can use a quality score function that gives score 1 to b
if b “ obs and 0 otherwise. This function has sensitivity 1
and so one achieves pε, 0q-differential privacy. This is a very
simple approach, but in some situations it can already be
very useful [38].

A different way of guaranteeing differential privacy is by
adding noise on the output. In this case the output is the
posterior which is a betapa1, b1q for some values a1, b1. Us-
ing again the exponential mechanism we can consider the
following program:

ExpMechε Q
´
infer

`
observepλr.bernoulliprq “ obsqbetapa, bq˘¯

In this case, the exponential mechanism is not applied to
booleans but instead to distributions of the shape betapa1, b1q.
1We omit in particular the monadic probabilistic construc-
tions. A formal description of this example is in § 6.

So, a natural question is which Q we can use as quality score
function and what is its sensitivity in this case.

There are two natural choices. The first one is to consider
the parameters pa1, b1q as a vector and measure the possible
distance in term of some metric on vectors, e.g. the one given
by �1 norm dppa, bq, pa1, b1qq “ |a´a1| ` |b´b1|. The second is
to consider betapa1, b1q as an actual distribution and then use
a notion of distance on distributions, e.g. Hellinger distance
ΔHpbetapa, bq, betapa1, b1qq.

These two approaches both guarantee privacy, but they
have different utility properties. Our system PrivInfer can
prove privacy for both approaches.

3. BACKGROUND

3.1 Probability and Distributions
In our work we will consider discrete distributions. Fol-

lowing Dwork and Roth [16] we will use standard names for
several continuous distributions but we will consider them to
be the approximate discrete versions of these distributions
up to arbitrary precision.

We define the set DpAq of distributions over a set A as the
set of functions μ : A Ñ r0, 1s with discrete supportpμq “ tx |
μx ‰ 0u, such that

ř
xPA μx “ 1. In our language we will

consider only distribution over basic types, this guarantees
that all our distributions are discrete (see § 4).

We will use several basic distributions like uniform, bernoulli,
normal, beta, etc. These are all standard distributions and we
omit their definition here. We will also use some notation to
describe distributions. For instance, given an element a P A,
we will denote by 1a the probability distribution that assigns
all mass to the value a. We will also denote by bindμM
the composition of a distribution μ over the set A with a
function M that takes a value in A and returns a distribution
over the set B.

3.2 Differential Privacy
Differential privacy is a strong, quantitative notion of

statistical privacy proposed by Dwork et al. [17]. In the
standard setting, we consider a program (sometimes called
a mechanism) that takes a private database d as input, and
produces a distribution over outputs. Intuitively, d represents
a collection of data from different individuals. When two
databases d, d1 are identical except for a single individual’s
record, we say that d and d1 are adjacent2, and we write
dΦ d1. Then, differential privacy states that the output
distributions obtained from running the program on two
adjacent databases should be statistically similar. More
formally:

Definition 3.1 (Dwork et al. [17]). Let ε, δ ą 0 be two
numeric parameters, let D be the set of databases, and let
R be the set of possible outputs. A program M : D Ñ DpRq
satisfies pε, δq-differential privacy if

PrpMpdq P Sq ď eε PrpMpd1q P Sq ` δ

for all pairs of adjacent databases d, d1 P D such that d Φ d1,
and for every subset of outputs S Ď R.

As shown by Barthe et al. [3], we can reformulate differen-
tial privacy using a specific statistical ε-distance ε-D:

2In our concrete examples we will consider sometime as adja-
cent also two databases that differ by at most one individual.

70



Lemma 3.1. Let ε, δ P R`. Let D be the set of databases,
and let R be the set of possible outputs. A program M : D Ñ
DpRq satisfies pε, δq-differential privacy iff ε-DpMpdq,Mpd1qq ď
δ, where d, d1 are adjacent databases and

ε-Dpμ1, μ2q ” max
EĎR

`
Pr

xÐμ1

rx P Es ´ eε ¨ Pr
xÐμ2

rx P Es˘
for μ1, μ2 P DpRq.

Differential privacy is an unusually robust notion of privacy.
It degrades smoothly when private mechanisms are composed
in sequence or in parallel, and it is preserved under any post-
processing that does not depend on the private database.
The following lemmas capture these properties:

Lemma 3.2 (Post-processing). Let M : D Ñ DpRq be an
pε, δq-differentially private program. Let N : R Ñ DpR1q be
an arbitrary randomized program. Then λd.bind pM dqN :
D Ñ DpR1q is pε, δq-differentially private.

Differential privacy enjoys different composition schemes,
we report here one of the simpler and most used.

Lemma 3.3 (Composition). Let M1 : D Ñ DpR1q, and M2 :
D Ñ DpR2q respectively pε1, δ1q and pε2, δ2q differentially
private programs. Let M : D Ñ DpR1 ˆ R2q the program
defined as Mpxq ” pM1pxq,M2pxqq. Then, M is pε1 `ε2, δ1 `
δ2q differentially private.

Accordingly, complex differentially private programs can
be easily assembled from simpler private components, and
researchers have proposed a staggering variety of private
algorithms which we cannot hope to summarize here. (Inter-
ested readers can consult Dwork and Roth [16] for a textbook
treatment.)
While these algorithms serve many different purposes,

the vast majority are constructed from just three private
operations, which we call primitives. These primitives offer
different ways to create private mechanisms from non-private
functions. Crucially, the function must satisfy the following
sensitivity property:

Definition 3.2. Let k P R`. Suppose f : A Ñ B is a
function, where A and B are equipped with distances dA
and dB . Then f is k-sensitive if

dBpfpaq, fpa1qq ď k ¨ dApa, a1q
for every a, a1 P A.

Intuitively, k-sensitivity bounds the effect of a small change
in the input, a property that is similar in spirit to the differ-
ential privacy guarantee. With this property in hand, we can
describe the three basic primitive operations in differential
privacy, named after their noise distributions.

The Laplace mechanism. The first primitive is the stan-
dard way to construct a private version of a function that
maps databases to numbers. Such functions are also called
numeric queries, and are fundamental tools for statistical
analysis. For instance, the function that computes the aver-
age age of all the individuals in a database is a numeric query.
When the numeric query has bounded sensitivity, we can use
the Laplace mechanism to guarantee differential privacy.

Definition 3.3. Let ε P R` and let f : D Ñ R be a numeric
query. Then, the Laplace mechanism maps a database d P D

to fpdq ` ν, where ν is drawn form the Laplace distribution
with scale 1{ε. This distribution has the following probability
density function:

Lap1{εpxq “ ε

2
expp´|x|εq.

If f is a k-sensitive function, then the Laplace mechanism is
pkε, 0q-differentially private.

The Gaussian mechanism. The Gaussian mechanism is
an alternative to the Laplace mechanism, adding Gaussian
noise with an appropriate standard deviation to release a
numeric query. Unlike the Laplace mechanism, the Gaussian
mechanism does not satisfy pε, 0q-privacy for any ε. However,
it satisfies pε, δq-differential privacy for δ P R`.

Definition 3.4. Let ε, δ P R and let f : D Ñ R be a numeric
query. Then, the Gaussian mechanism maps a database
d P D to fpdq ` ν, where ν is a drawn from the Gaussian
distribution with standard deviation

σpε, δq “ a
2 lnp1.25{δq{ε.

If f is a k-sensitive function for k ă 1{ε, then the Gaussian
mechanism is pkε, δq-differentially private.

The exponential mechanism. The first two primitives can
make numeric queries private, but in many situations we may
want to privately release a non-numeric value. To accomplish
this goal, the typical tool is the exponential mechanism [30],
our final primitive. This mechanism is parameterized by
a set R, representing the range of possible outputs, and a
quality score function q : D ˆ R Ñ R, assigning a real-valued
score to each possible output given a database.
The exponential mechanism releases an output r P R

with approximately the largest quality score on the private
database. The level of privacy depends on the sensitivity of
q in the database. Formally:

Definition 3.5 (McSherry and Talwar [30]). Let ε P R`.
Let R be the set of outputs, and q : D ˆ R Ñ R be the
quality score. Then, the exponential mechanism on database
d P D releases r P R with probability proportional to

Prprq „ exp

ˆ
qpd, rqε

2

˙
If f is a k-sensitive function in d for any fixed r P R, then
the exponential mechanism is pkε, 0q-differentially private.

3.3 f-divergences
As we have seen, differential privacy is closely related to

function sensitivity. To verify differential privacy for the
result of probabilistic inferences, we will need to work with
several notions of distance between distributions. These
distances can be neatly described as f -divergences [13], a
rich class of metrics on probability distributions. Inspired by
the definition of relative entropy, f -divergences are defined
by a convex function f . Formally:

Definition 3.6 (Csiszár and Shields [13]). Let fpxq be a
convex function defined for x ą 0, with fp1q “ 0. Let μ1, μ2

distributions over A. Then, the f -divergence of μ1 from μ2,
denoted Δf pμ1 | μ2q is defined as:

Δf pμ1 | μ2q “
ÿ
aPA

μ2paqf
´μ1paq
μ2paq

¯
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f-diverg. fpxq Simplified form

SDpxq 1
2

|x ´ 1|
ÿ
aPA

1

2
|μ1paq ´ μ2paq|

HDpxq 1
2

p?
x ´ 1q2

ÿ
aPA

1

2

´a
μ1paq ´ a

μ2paq
¯2

KLpxq x lnpxq ´ x ` 1
ÿ
aPA

μ1paq ln
´μ1paq
μ2paq

¯
ε-Dpxq maxpx ´ eε, 0q

ÿ
aPA

max
´
μ1paq ´ eεμ2paq, 0

¯
Table 1: f -divergences for statistical distance (SD), Hellinger
distance (HD), KL divergence (KL), and ε-distance (ε-D)

where we assume 0 ¨ fp 0
0

q “ 0 and

0 ¨ f
´a

0

¯
“ lim

tÑ0
t ¨ f

´a

t

¯
“ a lim

uÑ8

´fpuq
u

¯
.

If Δf pμ1 | μ2q ď δ we say that μ1 and μ2 are pf, δq-close.
Examples of f -divergences includeKL-divergence, Hellinger

distance, and total variation distance. Moreover, Barthe and
Olmedo [2] showed how the ε-distance of Lemma 3.1 can
be seen as an f -divergence for differential privacy. These
f -divergences are summarized in Table 1. Notice that some
of the f -divergences in the table above are not symmetric. In
particular, this is the case for KL-divergence and ε-distance,
which we use to describe pε, δq-differential privacy. We will
denote by F the class of functions meeting the requirements
of Definition 3.6.

Not only do f -divergences measure useful statistical quan-
tities, they also enjoy several properties that are useful for
formal verification. (e.g. see [13]). A property that is worth
mentioning and that will be used implicitly in our example
is the following.

Theorem 3.1 (Data processing inequality). Let f P F ,
μ1, μ2 be two distributions over A, and M be a function
(potentially randomized) mapping values in A to distributions
over B. Then, we have:

Δf pbindμ1 M, bindμ2 Mq ď Δf pμ1, μ2q
Another important property for our framework is compo-

sition. As shown by Barthe and Olmedo [2] we can compose
f -divergences in an additive way. More specifically, they give
the following definition.

Definition 3.7 (Barthe and Olmedo [2]). Let f1, f2, f3 P F .
We say that pf1, f2q are f3 composable if and only if for every
A,B, two distributions μ1, μ2 over A, and two functions
M1,M2 mapping values in A to distributions over B we have

Δf3pbindμ1 M1, bindμ2 M2q ď
Δf1pμ1, μ2q ` sup

v
Δf2pM1 v,M2 vq

In particular, we have the following.

Lemma 3.4 (Barthe and Olmedo [2]).

‚ pε1-D, ε2-Dq are pε1 ` ε2q-DP composable.

‚ pSD, SDq are SD composable.

‚ pHD,HDq are HD composable.

‚ pKL,KLq are KL composable.

This form of composition will be internalized by the rela-
tional refinement type system that we will present in § 5.

4. PrivInfer
The main components of PrivInfer are a language that

permits to express Bayesian inference models and a type
system for reasoning in a relational way about programs
from the language.

4.1 The language
The language underlying PrivInfer is a probabilistic pro-

gramming extension of PCF that we will call PCFp. Ex-
pressions of PCFp are defined by the following grammar

e ::“ x | c | e e | λx. e
| letrec f x “ e | case e with rdi xi ñ eisi
| return e | mlet x “ e in e
| observex ñ e in e | inferpeq | ranpeq
| bernoullipeq | normalpe, eq | betape, eq | uniformpq
| lapMechpe, eq | gaussMechpe, eq | expMechpe, e, eq

where c represents a constant from a set C and x a variable.
We will denote by PCFp (X ) the set of expression of PrivInfer
where the variables are taken from the set X .

We will consider only expressions that are well typed using
simple types of the form

τ, σ ::“ rτ | Mrrτ s | MrDrrτ ss | Drrτ s | τ Ñ σrτ ::“ ‚ | B | N | R | R` | R
` | r0, 1s | rτ list.

where rτ are basic types. As usual a typing judgment is a
judgment of the shape Γ $ e : τ where an environment Γ
is an assignment of types to variables. The simply typed
system of PrivInfer is an extension of the one in Barthe et al.
[6]; in Figure 1 we only present the rules specific to PrivInfer.

The syntax and types of PCFp extend the ones of PCF by
means of several constructors. Basic types include the unit
type ‚ and types for booleans B and natural numbers N. We
also have types for real numbers R, positive real numbers R`,

positive real number plus infinity R
`

and for real numbers in
the unit interval r0, 1s. Finally we have lists over basic types.
Simple types combines basic types using arrow types, a prob-
ability monad Mrrτ s over the basic type rτ , and a type Drrτ s
representing symbolic distributions over the basic type rτ . The
probability monad can also be over symbolic distributions.
Probabilities (actual distributions) are encapsulated in the
probabilistic monad Mrrτ s that can be manipulated by the let-
binder mlet x “ e1 in e2 and by the unit return e. Symbolic
distributions are built using basic probabilistic primitives
like bernoullipeq for Bernoulli distributions, normalpe1, e2q for
normal distribution, etc. These primitives are assigned types
as described in Figure 2. For symbolic distributions we
also assume that we have an operation getParams to extract
the parameters. We also have primitives lapMechpe1, e2q,
gaussMechpe1, e2q and expMechpe1, e2, e3q that provide im-
plementations for the mechanism ensuring differential privacy
as described in § 3.2.
Finally, we have three special constructs for representing

learning. The primitive observex ñ e1 in e2 can be used to
describe conditional distributions. This is a functional version
of a similar primitive used in languages like Fun [23]. This
primitive takes two arguments, a prior e2 and a predicate e1
over x. The intended semantics is the one provided by Bayes’
theorem: it filters the prior by means of the observation
provided by e1 and renormalize the obtained distribution
(see Section § 4.2 for more details). The primitives inferpeq
and ranpeq are used to transform symbolic distributions in
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BindM
Γ $ e1 : MrT1s Γ, x : T1 $ e2 : MrT2s

Γ $ mlet x “ e1 in e2 : MrT2s UnitM
Γ $ e : T

Γ $ return e : MrT s

Observe
Γ $ e1 : Mrrτ s Γ, x : rτ $ e2 : MrBs

Γ $ observex ñ e2 in e1 : Mrrτ s Ran
Γ $ e : Drrτ s

Γ $ ranpeq : Mrrτ s Infer
Γ $ e : Mrrτ s

Γ $ inferpeq : Drrτ s
Figure 1: PCFp type system (selected rules)

uniform : Drr0, 1ss
bernoulli : r0, 1s Ñ DrBs
beta : R` ˆ R` Ñ Drr0, 1ss
normal : R ˆ R` Ñ DrRs
lapMech : R` ˆ R Ñ MrRs
gaussMech : R` ˆ R Ñ MrRs
expMech : R ˆ ppD,Rq Ñ Rq ˆ D Ñ MrRs

Figure 2: Primitive distributions types.

actual distributions and vice versa. In particular, inferpeq is
the main component performing probabilistic inference.

4.2 Denotational Semantics
The semantics of PCFp is largely standard. We con-

sider only terminating programs and hence we can interpret
them in a set-theoretic way. Basic types are interpreted in
the corresponding sets, e.g. �‚� “ t‚u, �B� “ ttrue, falseu,
�N� “ t0, 1, 2, . . .u, etc. As usual, arrow types �τ Ñ σ� are
interpreted as set of functions �τ� Ñ �σ�. A monadic type
Mrτ s for τ P trτ ,Drrτ su is interpreted as the set of discrete
probabilities over τ , i.e.:

�Mrτ s� “ �
μ : �τ� Ñ R` | supppμq discrete^

ÿ
xP�τ�

μx “ 1
(

Types of the shape Drrτ s are interpreted in set of symbolic
representations for distributions parametrized by values. As
an example, DrBs is interpreted as:

�DrBs� “ �
bernoullipvq | v P r0, 1s(

The interpretation of expressions is given as usual under a
validation θ which is a finite map from variables to values
in the interpretation of types. We will say that θ validates
an environment Γ if @x : τ P Γ we have θpxq P �τ�. For most
of the expressions the interpretation is standard, we detail
the less standard interpretations in Figure 3. Probabilistic
expressions are interpreted into discrete probabilities. In
particular, �return e�θ is defined as the Dirac distribution
returning �e�θ with probability one. The binding construct
mlet x “ e1 in e2 composes probabilities. The expression
observe x ñ t inu filters the distribution �u�θ using the pred-
icate x ñ t and rescales it in order to obtain a distribution.
The observe is the key component to have conditional distri-
butions and to update a prior using Bayes’ theorem. The
semantics of infer relies on a given algorithm3 AlgInf for in-
ference. We leave the algorithm unspecified because it is not

3In this work we consider only exact inference, and we leave
for future works to consider approximate inference. We also
consider only terminating programs with a well defined se-
mantics (e.g. no observations of events with zero probability)
and where the inference algorithms never fail (this could be
easily simulated by using the maybe monad).

central to our verification task. Symbolic distributions are
syntactic constructions, this is reflected in their interpreta-
tion. For an example, we give in Figure 3 the interpretation
�bernoullipeq�θ. The operator ran turns a symbolic distribu-
tion in an actual distribution. Its semantics is defined by
cases on the given symbolic distribution. In Figure 3 we
give its interpretation for the case when the given symbolic
distribution is bernoullipeq. The cases for the other symbolic
distributions are similar.

The soundness of the semantics is given by the following:

Lemma 4.1. If Γ $ e : τ and θ validates Γ, then �e�θ P �τ�.

5. RELATIONAL TYPE SYSTEM

5.1 Relational Typing
To reason about differential privacy as well as about f -

divergences we will consider a higher-order relational re-
finement type system. We follow the approach proposed
by Barthe et al. [6].
We will distinguish two sets of variables: XR (relational)

and XP (plain). Associated with every relational variable
x P XR, we have a left instance xŸ and a right instance xŹ.
We write XR’ for

Ť
xPXRtxŸ, xŹu and X’ for XR’ Y XP .

The set of PrivInfer expressions E is the set of expressions
defined over plain variables, i.e. expressions in PCFppXPq.
The set of PrivInfer relational expressions E’ is the set of
expressions, defined over plain and relational variables (ex-
pressions in PCFppX’q) where only non-relational variables
can be bound.

The sets of relational types T “ tT, U, . . .u and assertions
A “ tφ, ψ, . . .u are defined by the following grammars:

T, U P T ::“ rτ | Mf,δrtx :: rτ | φus | Mf,δrtx :: Drrτ s | φus
| Drrτ s | Πpx :: T q. T | tx :: T | φu

φ, ψ P A ::“ Q px : τq. φ px P XPq
Q px :: T q. φ px P XRq
| ΔD

f pe’, e’q ď δ | f P F
| e’ “ e’ | e’ ď e’ | Cpφ1, . . . , φnq

C “ tJ{0, K{0, �{1, _{2, ^{2, ñ{2u,
where f, δ, e’ P E’, and Q P t@, Du.

Relational types extend simple types by means of relational
refinements of the shape tx :: T | φu. This is a refinement
type that uses a relational assertion φ stating some rela-
tional property that the inhabitants of this type have to
satisfy. Relational assertions are first order formulas over
some basic predicates: ΔD

f pe’, e’q ď δ asserting a bound
on a specific f -divergence, f P F asserting that f is a
convex function meeting the requirements of Definition 3.6,
and e’ “ e’ and e’ ď e’ for the equality and inequal-
ity of relational expressions, respectively. Relational types
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�Γ $ return e : Mrτ s�θ “ 1�e�θ �Γ $ mlet x “ e1 in e2 : Mrσs�θ “ d ÞÑ
ÿ

gP�τ�θ

p�e1�θpgq ¨ �e2�θgxpdqq

�Γ $ observex ñ t inu : Mrτ s�θ “ d ÞÑ �u�θpdq ¨ p�t�θdxptrueqqÿ
gP�τ�θ

p�u�θpgq ¨ p�t�θgxptrueqqq �Γ $ infer e : Drτ s�θ “ AlgInf e

�Γ $ bernoullipeq : DrBs�θ “ bernoullip�e�θq �Γ $ ranpbernoullipeqq : MrBs�θ “ d ÞÑ
#

�e�θ if d “ true

1 ´ �e�θ otherwise

Figure 3: Interpretation for some of PCFp expressions (selected rules).

also refines the probability monad. This has now the shape
Mf,δrtx :: T | φus, for T P trτ ,Drrτ su, and it corresponds to
a polymonad [26] or parametric effect monads [27] where f
and δ are parameters useful to reason about f -divergences.
Relational expressions can appear in relational refinements
and in the parameters of the probabilistic monad, so the
usual arrow type constructor is replaced by the dependent
type constructor Πpx :: T q. S.

Before introducing the typing rule of PrivInfer we need to
introduce some notation. A relational environment G is a
finite sequence of bindings px :: T q such that each variable
x is never bound twice and only relational variables from
XR are bound. We write xG for the type of x in G. We will
denote by |¨| the type erasure from relational types to simple
types and its extension to environments. We will use instead
the notation }¨}, to describe the following map from relational
environments to environments xs}G} “ x|G| iff x P dompGq,
where s P tŸ,Źu. For example, given a relational binding
px :: T q, we have }px :: T q} “ xŸ : |T |, xŹ : |T |.
We can now present our relational type system. PrivInfer

proves typing judgment of the form G $ e1 „ e2 :: T . We will
use Γ $ e :: T as a shorthand for Γ $ e „ e :: T . Several of
the typing rules of PrivInfer come from the system proposed
by Barthe et al. [6]. We report some of them in Figure 5.
We also extend the subtyping relation of Barthe et al. [6]
with the rule for monadic subtyping in Figure 4.

We present the rules that are specific to PrivInfer in Fig-
ure 5. The rules UnitM and BindM correspond to the unit and
the composition of the probabilistic polymonad. These are
similar to the usual rule for the unit and composition of mon-
ads but additionally they require the indices to well behave.
In particular pf1, f2q are required to be f3 composable to
guarantee that the composition is respected. The rules Infer
and Ran are similar to their simply typed version but they
also transfer the information on the f -divergence from the
indices to the refinements and viceversa. The rule Observe
requires that the sub-expressions are well typed relationally
and it further requires the validity of the assertion:

}G} $ Δf pobservexŸ ñ eŸ in e1
Ÿ, observexŹ ñ eŹ in e1

Źq ď δ2

for the δ2 that can then be used as a bound for the f -
divergence in the conclusion. This assertion may be surpris-
ing at first, since it doesn’t consider the bounds δ and δ1 for
the sub-expressions but instead requires to provide directly a
bound for the conclusion—it is not really compositional. The
reason for this presentation is that a generic bound in term
of δ and δ1 would be often too large to say something useful

S-M

G $ T ĺ U }G} $ δi : R
` }G} $ fi P F

@θ. θ ( G, x :: T ñ �f1 ď f2 ^ δ1 ď δ2 ă 8�θ

G $ Mf1,δ1 rT s ĺ Mf2,δ2 rU s
Figure 4: Relational Subtyping (rule for monadic subtyping)

about the conclusion. In fact, estimating bounds on the
f -divergence of conditional distributions is a hard task and
often it is only expressed in term of prior perturbations [14].
So, instead we prefer to postpone the task to verify a bound
to the concrete application where a tighter bound can be
found with some calculation. We will see some uses of this
rule in the examples in § 6.

5.2 Relational Interpretation
We want now to give a relational interpretation of relational

types so that we can prove the soundness of the relational type
system of PrivInfer. Before doing this we need to introduce
an important component of our interpretation, the notion of
pf, δq-lifting of a relation, inspired from the relational lifting
of f -divergences by Barthe and Olmedo [2].

Definition 5.1 (pf, δq-Lifting of a relation Ψ). Let Ψ Ď T1ˆ
T2, let f be a convex function providing an f -divergence and
let δ P R`. Then, we have that μ1 P MrT1s and μ2 P MrT2s
are in the pf, δq-lifting of Ψ, denoted Lpf,δqpΨq iff there exist
two distributions μL, μR P MrT1 ˆ T2s such that

1. μi pa, bq ą 0 implies pa, bq P Ψ, for i P tL,Ru,
2. π1 μL “ μ1 ^ π2 μR “ μ2, and

3. Δf pμL, μRq ď δ.

where π1 μ “ λx.
ř

y μ px, yq and π2 μ “ λy.
ř

x μ px, yq.
We will call the distributions μL and μR the left and right

witnesses for the lifting, respectively.

This notion of lifting will be used to give a relational
interpretation of monadic types. We say that a valuation θ
validates a relational environment G, denoted θ ( G, if θ (
}G} and @x P dompGq, pxŸθ, xŹθq P �xG�θ. The relational
interpretation �φ�θ P tJ,Ku of assertions φ with respect to
a valuation θ ( Γ is an extension of the the one provided
in Barthe et al. [6]. In Figure 7 we provide the extensions
specific to PrivInfer. Notice that we interpret the assertion
ΔD

f pe’

1 , e
’

2 q ď δ with the corresponding f -divergence.
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UnitM
}G} $ f P F }G} $ δ : R

` G $ e :: T

G $ return e :: Mf,δrT s Infer
G $ e : Mf,δrtx :: rτ | xŸ “ xŹus

G $ inferpeq : tx :: Drrτ s | ΔD
f pxŸ, xŹq ď δu

BindM

G $ e1 :: Mf1,δ1 rT1s pf1, f2q are f3-composable
G $ Mf2,δ2 rT2s G, x :: T1 $ e2 :: Mf2,δ2 rT2s

G $ mlet x “ e1 in e2 :: Mf3,δ1`δ2 rT2s Ran
G $ e : tx :: Drrτ s | ΔD

f pxŸ, xŹq ď δu
G $ ranpeq : Mf,δrtx :: rτ | xŸ “ xŹus

Observe

G $ e :: Mf,δrty :: rτ | yŸ “ yŹus
G, x : rτ $ e1 :: Mf,δ1 rty :: B | yŸ “ yŹus }G} $ Δf pobservexŸ ñ eŸ in e1

Ÿ, observexŹ ñ eŹ in e1
Źq ď δ2

G $ observex ñ e in e1 :: Mf,δ2 rty :: rτ | yŸ “ yŹus
Figure 5: PrivInfer Relational Typing Rules

d1, d2 P �rτ�

pd1, d2q P �rτ�θ

pd1, d2q P �T �θ �φ�
θ

!
xŸ ÞÑ d1
xŹ ÞÑ d2

)
pd1, d2q P �tx :: T | φu�θ

f1, f2 P �|T | Ñ |U |�
@pd1, d2q P �T �θ. pf1pd1q, f2pd2qq P �U�

θ
!
xŸ ÞÑ d1
xŹ ÞÑ d2

)
pf1, f2q P �Πpx :: T q. U�θ

d1, d2 P �Drrτ s�
pd1, d2q P �Drrτ s�θ

μ1, μ2 P �Mr|T |s�
Lf,δp�T �θq μ1 μ2

pμ1, μ2q P �Mf,δrT s�θ
Figure 6: Relational interpretation of types

We give in Figure 6 the relational interpretation �T �θ of
a relational type T with respect to the valuation θ ( }G}.
This corresponds to pairs of values in the standard interpre-
tation of PCFp expressions. To define this interpretation we
use both the interpretation of relational assertions given in
Figure 7 and the definition of lifting given in Definition 5.1.
The interpretation of relational assertions is used in the inter-
pretation of relational refinement types, while the lifting is
used to provide interpretation to the probabilistic polymonad.
Notice that the relational interpretation of a type Drrτ s is
just the set of pairs of values in the standard interpretation
of Drrτ s. This can then be restricted by using relational
refinement types. We can then prove that the relational re-
finement type system is sound with respect to the relational
interpretation of types.

Theorem 5.1 (Soundness). If G $ e1 „ e2 :: T , then for
every valuation θ |ù G we have p�e1�θ, �e2�θq P �T �θ.

The soundness theorem above give us a concrete way to
reason about f -divergences.

Corollary 5.1 (f -divergence). If $ e :: Mf,δrty :: τ | yŸ “ yŹus
then for every pμ1, μ2q P �e� we have Δf pμ1, μ2q ď δ.

Moreover, thanks to the characterization of differential
privacy in terms of f -divergence given by Barthe and Olmedo
[2] we can refine the previous result to show that PrivInfer
accurately models differential privacy.

Corollary 5.2 (Differential Privacy). If $ e :: tx :: σ |
Φu Ñ Mε-D,δty :: τ | yŸ “ yŹu then �e� is pε, δq-differentially
private w.r.t. adjacency relation �Φ�.

�f P F�θ “ �f�θ P F
�ΔD

f pe’

1 , e
’

2 q ď δ�θ “ Δ�f�θ p�e’

1 �θ, �e
’

2 �θq ď �δ�θ

Figure 7: Relational interpretation of assertions (added
rules)

6. EXAMPLES
In this section we show how we can use PrivInfer to guaran-

tee differential privacy for Bayesian learning by adding noise
on the input, noise on the output using �1 norm, and noise
on the output using f -divergences. We will show some of
these approaches on three classical examples from Bayesian
learning: learning the bias of a coin from some observations
(as discussed in § 2), its generalized process, i.e the Dirich-
let/multinomial model and the learning of the mean of a
Gaussian. In all the example we will use pseudo code that
can be easily desugared into the language presented in § 4.
Indeed, the following examples have been type-checked with
an actual tool implementing PrivInfer.

6.1 Input perturbation

Input perturbation: Beta Learning.
Let’s start by revisiting the task of inferring the parameter

of a Bernoulli distributed random variable given a sequence
of private observations. We consider two lists of booleans
with the same length in the adjacency relation Φ iff they
differ in the value of at most one entry. We want to ensure
differential privacy by perturbing the input. A natural way
to do this, since the observations are boolean value is by
using the exponential mechanism. We can then learn the bias
from the perturbed data. The post-processing property of
differential privacy ensures that we will learn the parameter
in a private way.
Let’s start by considering the quality score function for

the exponential mechanism. A natural choice is to con-
sider a function score:boolÑboolÑ{0,1} mapping equal
booleans to 1 and different booleans to 0. Remember that
the intended reading is that one of the boolean is the one to
which we want to give a quality score, while the other is the
one provided by the observation. The sensitivity of score
is 1. Using this score function we can then create a general
function for adding noise to the input list:

1. let rec addNoise db eps = match db with
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2. | [] Ñ return ([])
3. | y::yl Ñ mlet yn = (expMech eps score y) in
4. mlet yln = (addNoise yl eps) in return(yn::yln)

To this function we can give the following type guaranteeing
differential privacy.

tl :: B list | lŸ Φ lŹu Ñ tε :: R` |“u Ñ Mε-D,0tb :: B list |“u
where we use tx :: T |“u as a shorthand for tx :: T | xŸ “
xŹu. We will use this shorthand all along this section.
The bulk of the example is the following function that

recursively updates the prior distribution and learns the final
distribution over the parameter.

1. let rec learnBias dbn prior = match dbn with
2. | [] Ñ prior
3. | d::dbs Ñ observe
4. (fun r Ñ mlet z = ran bernoulli(r) in return (d=z))
5. (learnBias dbs prior)

The likelihood given in Line 4 is the formal version of the
one we presented in § 2. The function learnBias can be typed
in different ways depending on what is our goal. For this
example we can assign to it the following type:

tl :: B list |“u Ñ MSD,0tx :: r0, 1s |“u Ñ MSD,0tx :: r0, 1s |“u
The reading of this type is that if learnBias takes two lists

of observations that are equal and two prior that are equal,
then we obtain two posterior that are equal. Thanks to
this we can type the occurrence of observe in line 3-4 using
a trivial assertion. Here we use the SD divergence but in
fact this would also hold for any other f P F . In particular,
this type allows us to compose it with addNoise using an
mlet. This type also reflects the fact that the prior is public.
We can then compose these two procedures in the following
program:

1. let main db a b eps = mlet noisyDB = (addNoise db eps)
2. in return(infer (learnBias noisyDB (ran (beta(a,b)))))

Notice that in line 2 we use infer for learning from the noised
data. We can then assign to main the type

tl :: B list | lŸ Φ lŹu Ñ ta :: R` |“u Ñ tb :: R` |“u Ñ
tε :: R` |“u Ñ Mε-D,0td :: Drr0, 1ss |“u

which guarantees us that the result is ε differentially pri-
vate. Notice that the result type is a polymonadic type
over Drr0, 1ss. This because we are releasing the symbolic
distribution.

Input perturbation: Normal Learning.
An example similar to the previous one is learning the

mean of a gaussian distribution with known variance: kv,
from a list of real number observations—for instance some
medical parameters like the level of LDL of each patient. We
consider two lists of reals with the same length adjacent when
the �1 distance between at most two elements (in the same
position) is bounded by 1. To perturb the input we may now
want to use a different mechanism, for example we could use
the Gaussian mechanisms—this may give reasonable results
if we expect the data to come from a normal distribution.
Also in this case, the sensitivity is 1. The addNoise function
is very similar to the one we used in the previous example:

1. let rec addNoise db eps delta = match db with
2. | [] Ñ return ([])
3. | y::yl Ñ mlet yn = (gaussMech (sigma eps delta) y) in
4. mlet yln = (addNoise yl eps delta) in return(yn::yln)

The two differences are that now we also have delta as input
and that in line 3 instead of the score function we have a
function sigma computing the variance as in Definition 3.4.
The inference function become instead the following.

1. let rec learnMean dbn prior = match dbn with
2. | [] Ñ prior
3. | d::dbs Ñ observe (fun (r: real) Ñ
4. mlet z = ran normal(r, kv) in return (d=z))
5. (learnMean dbs prior) in
6. let main db hMean hVar eps delta =
7. mlet noisyDB = (addNoise db eps delta)in
8. return(infer (learnMean noisyDB
9. (ran (normal(hMean,hVar)))))

Composing them we get the following type guaranteeing
pε, δq-differential privacy.

tl :: R list | lŸ Φ lŹu Ñ ta :: R` |“u Ñ tb :: R` |“u Ñ
tε :: R` |“u Ñ tδ :: R` |“u Ñ Mε-D,δtd :: DrRs |“u

6.2 Noise on Output with �1-norm
We present examples where the privacy guarantee is achieved

by adding noise on the output. For doing this we need to
compute the sensitivity of the program. In contrast, in the
previous section the sensitivity was evident because directly
computed on the input. As discussed before we can compute
the sensitivity with respect to different metrics. Here we
consider the sensitivity computed over the �1-norm on the
parameters of the posterior distribution.

Output parameters perturbation: Beta Learning.
The main difference with the example in the previous

section is that here we add Laplacian noise to the parameters
of the posterior.

1. let main db a b eps=
2. let d = infer (learnBias db (ran beta(a,b))) in
3. let (aP, bP) = getParams d in
4. mlet aPn = lapMech(eps, aP) in
5. mlet bPn = lapMech(eps, bP) in
6. return beta(aPn, bPn)

In line 2 we use the function learnBias from the previous
section, while in line 4 and 5 we add Laplace noise. The
formal sensitivity analysis is based on the fact that the
posterior parameters are going to be the counts of true and
false in the data respectively summed up to the parameters
of the prior. This reasoning is performed on each step of
observe. Then we can prove that the �1-norm sensitivity of
the whole program is 2 and type the program with a type
guaranteeing 2ε-differentially privacy.

tl :: B list | lŸ Φ lŹu Ñ ta :: R` |“u Ñ tb :: R` |“u Ñ
tε :: R` |“u Ñ M2ε-D,0td :: Drr0, 1ss |“u

Output parameters perturbation: Normal Learning.
For this example we use the same adjacency relation of

the example with noise on the input where in particular the
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number of observation n is public knowledge. The code is
very similar to the previous one.

1.let main db hM hV kV eps =
2. let mDistr = infer (learnMean db (ran normal(hM,kV))) in
3. let mean = getMean mDistr in
4. mlet meanN = lapMech(eps/s mean) in
5. let d = normal(meanN, uk) in return(d)

where uk “ `
1

hV 2 ` n
kv2

˘´1
. Notice that we only add noise

to the posterior mean parameter and not to the posterior
variance parameter since the latter doesn’t depend on the
data but only on public information. The difficulty for
verifying this example is in the sensitivity analysis. By some
calculations this can be bound by s “ hV

kv`hV
where kv is the

known variance of the gaussian distribution whose mean we
are learning and hV is the prior variance over the mean. We
use this information in line 4 when we add noise with the
Laplace mechanism. By using this information we can give
the following type to the previous program:

tl :: R list | lŸ Φ lŹu Ñ thM :: R |“u Ñ thV :: R` |“u Ñ
tkv :: R` |“u Ñ tε :: R` |“u Ñ Msε-D,0td :: DrRs |“u

6.3 Noise on Output using f-divergences
We now turn to the approach of calibrating the sensitivity

according to f -divergences. We will consider once again
the example for learning privately the distribution over the
parameter of a Bernoulli distribution, but differently from
the previous section we will add noise to the output of the
inference algorithm using the exponential mechanism with
a score function using an f -divergence. So, we perturb the
output distribution and not its parameters.

We will use Hellinger distance as a metric over the output
space of our differentially private program, but any other
f -divergence could also be used. The quality score function
for the exponential mechanism can be given a type of the
shape:

tl :: B list | lŸ Φ lŹu Ñ td :: Drτ s |“u Ñ tr :: R | |rŸ´rŹ| ď ρu
where the bound ρ express its sensitivity. Now we can use
as a score function the following program

score (db, prior) out = -(H (infer (learnBias db prior)) out)

This quality score uses a function H computing the Hellinger
distance between the result of the inference and a potential
output to assign it a score. The closer out is to the real
distribution (using Hellinger distance), the higher the scoring
is. If we use the exponential mechanism with this score we
achieve our goal of using the Hellinger to “calibrate the noise”.
Indeed we have a program:

let main prior obs eps = expMech eps score (obs, prior)

To which we can assign type:

MHD,0tx :: r0, 1s |“u Ñ t� :: B list | �Ÿ Φ �Źu
Ñ tε :: R` |“u Ñ Mρε-D,0td :: Drr0, 1ss |“u

Concretely, to achieve this we can proceed by considering
first the code for learnBias:

1.let rec learnBias db prior = match dbn with
2.| [] Ñ prior
3.| d::dbs Ñ mlet rec = (learBias dbs prior) in observe
4. (fun r Ñ mlet z = ran bernoulli(r) in return (d=z)) rec

To have a bound for the whole learnBias we need first to
give a bound to the difference in Hellinger distance that two
distinct observations can generate. This is described by the
following lemma.

Lemma 6.1. Let d1, d2 : B with d1Φd2. Let a, b P R`. Let
Prpξq “ Betapa, bq. Then ΔHDpPrpξ | d1q,Prpξ | d2qq ďa
1 ´ π

4
“ ρ.

Using this lemma we can then type the observe statement
with the bound ρ. We still need to propagate this bound
to the whole learnBias. We can do this by using the adja-
cency relation which imposes at most one difference in the
observations, and the data processing inequality Theorem 3.1
guaranteeing that for equal observations the Hellinger dis-
tance cannot increase. Summing up, using the lemma above,
the adjacency assumption and the data processing inequality
we can give to learnBias the following type:

tl :: B list | lŸ Φ lŹu Ñ MHD,0tx :: r0, 1s |“u
Ñ MHD,ρtx :: r0, 1s |“u

This ensures that starting from the same prior and observing
l1 and l2 in the two different runs such that l1 Φ l2 we
can achieve two beta distributions which are at distance at
most ρ. Using some additional refinement for infer and H we
can guarantee that score has the intended type, and so we
can guarantee that overall this program is pρε, 0q-differential
privacy.

The reasoning above is not limited to the Hellinger distance.
For instance the following lemma:

Lemma 6.2. Let d1, d2 : B with d1Φd2. Let a, b P R`.
Let Prpξq “ Betapa, bq. Then ΔSDpPrpξ | d1q,Prpξ | d2qq ďa

2p1 ´ π
4

q “ ζ.

gives a type in term of statistical distance:

tl :: B list | lŸ Φ lŹu Ñ MSD,0tx :: r0, 1s |“u
Ñ MSD,ζtx :: r0, 1s |“u

The choice of which metric to use is ultimately left to the
user.

This example easily extends also to the Dirichlet example.
Indeed, Lemma 6.1 can be generalized to arbitrary Dirichlet
distributions:

Lemma 6.3. Let k P Ně2, d1, d2 : rks list with d1Φd2.
Let a1, a2, . . . , ak P R`. Let Prpξq “ Dirichletpa1, a2, . . . , akq.
Then ΔHDpPrpξ | d1q,Prpξ | d2qq ď a

1 ´ π
4

“ ρ.

Using this lemma we can assign to the following program:

1.let rec learnP db prior = match dbn with
2.| [] Ñ prior
3.| d::dbs Ñ mlet rec = (learnP dbs prior) in observe
4. (fun r sÑ mlet z = ran multinomial(r,s) in
5. return (d=z)) rec

the type:

tl :: r3s list | lŸ Φ lŹu Ñ MHD,0tx :: r0, 1s2 |“u
Ñ MHD,ρtx :: r0, 1s2 |“u

Similarly to the previous example we can now add noise
to the output of the inference process using the sensitivity
with respect to the Hellinger distance and obtain a pρε, 0q-
differential privacy guarantee.
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7. RELATED WORK

Differential privacy and Bayesian inference. Our sys-
tem targets programs from the combination of differential
privacy and Bayesian inference. Both of these topics are ac-
tive areas of research, and their intersection is an especially
popular research direction today. We briefly summarize the
most well-known work, and refer interested readers to sur-
veys for a more detailed development (Dwork and Roth [16]
for differential privacy, Bishop [9] for Bayesian inference).

Blum et al. [10] and Dwork et al. [17] proposed differential
privacy, a worst-case notion of statistical privacy, in a pair
of groundbreaking papers, initiating intense research interest
in developing differentially private algorithms. The original
works propose the Laplace and Gaussian mechanisms that
we use, while the seminal paper of McSherry and Talwar [30]
introduces the exponential mechanism. Recently, researchers
have investigated how to guarantee differential privacy when
performing Bayesian inference, a foundational technique in
machine learning. Roughly speaking, works in the literature
have explored three different approaches to guaranteeing
differential privacy when the samples are private data. First,
we may add noise directly to the samples, and then perform
inference as usual [38]. Second, we may perform inference on
the private data, then add noise to the parameters themselves
[40]. This approach requires bounding the sensitivity of the
output parameters when we change a single data sample,
relying on specific properties of the model and the prior
distribution. The final approach involves no noise during
inference, but outputs samples from the posterior rather
than the entire posterior distribution [15, 40, 41]. This last
approach is highly specific to the model and prior, and our
system does not handle it, yet.

Formal verification for differential privacy. In parallel
with the development of private algorithms, researchers in
formal verification have proposed a wide variety of tech-
niques for verifying differential privacy. For a comprehensive
discussion, interested readers can consult the recent survey
by Barthe et al. [8]. Many of these techniques rely on the
composition properties of privacy, though there are some ex-
ceptions [7]. For a brief survey, the first systems were based
on runtime verification of privacy [29]. The first systems for
static verification of privacy used linear type systems [21, 33].
There is also extensive work on relational program logics for
differential privacy [2–4], and techniques for verifying privacy
in standard Hoare logic using product programs [5]. None of
these techniques have been applied to verifying differential
privacy of Bayesian inference. Our system is most closely
related to HOARe2, a relational refinement type system that
was recently proposed by Barthe et al. [6]. This system has
been used for verifying differential privacy of algorithms, and
more general relational properties like incentive compatibil-
ity from the field of mechanism design. However, it cannot
model probabilistic inference.

Probabilistic programming. Research in probabilistic pro-
gramming has emerged early in the 60s and 70s, and is nowa-
days a very active research area. Relevant to our work is
in particular the research in probabilistic programming for
machine learning and statistics which has been very active
in recent years. Many probabilistic programming languages

have been designed for these applications, including Win-
BUGS [28], IBAL [32], Church [22], Infer.net [31], Tabu-
lar [24], Anglican [36], Dr. Bayes [37]. Our goal is not to
provide a new language but instead is to propose a frame-
work where one can reason about differential privacy for such
languages. For instance, we compiled programs written in
Tabular [24] into PrivInfer so that differential privacy could
be verified. Another related work is the one by Adams and
Jacobs [1] proposing a type theory for Bayesian inference.
While technically their work is very different from ours it
shares the same goal of providing reasoning principles for
Bayesian inference. Our work considers a probabilistic PCF
for discrete distributions. It would be interesting to extend
our techniques to higher-order languages with continuous
distributions and conditioning, by building on the rigorous
foundations developed in recent work [11, 35].

8. CONCLUSION
We have presented PrivInfer, a type-based framework for

differentially private Bayesian inference. Our framework
allows to write data analysis as functional programs for
Bayesian inference and to add noise to them in different ways
using different metrics. Besides, our framework allows to
reason about general f -divergences for Bayesian inference.

Future directions include exploring the use of this approach
to guarantee robustness for Bayesian inference and other ma-
chine learning techniques [14], to ensure differential privacy
using conditions over the prior and the likelihood similar
to the ones studied by Zhang et al. [40], Zheng [41], and
investigating further uses of f -divergences for improving the
utility of differentially private Bayesian learning. On the
programming language side it would also be interesting to
extend our framework to continuous distributions following
the approach by Sato [34]. We believe that the intersection
of programming languages, machine learning, and differential
privacy will reserve us many exciting results.
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