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ABSTRACT

We prove new positive and negative results concerning the
existence of truthful and individually rational mechanisms
for purchasing private data from individuals with unbounded
and sensitive privacy preferences. We strengthen the impos-
sibility results of Ghosh and Roth (EC 2011) by extending
it to a much wider class of privacy valuations. In particular,
these include privacy valuations that are based on (g,0)-
differentially private mechanisms for non-zero §, ones where
the privacy costs are measured in a per-database manner
(rather than taking the worst case), and ones that do not
depend on the payments made to players (which might not
be observable to an adversary).

To bypass this impossibility result, we study a natural
special setting where individuals have monotonic privacy
valuations, which captures common contexts where certain
values for private data are expected to lead to higher val-
uations for privacy (e.g. having a particular disease). We
give new mechanisms that are individually rational for all
players with monotonic privacy valuations, truthful for all
players whose privacy valuations are not too large, and accu-
rate if there are not too many players with too-large privacy
valuations. We also prove matching lower bounds showing
that in some respects our mechanism cannot be improved
significantly.

Categories and Subject Descriptors

F.0 [Theory of computation|: General; K.4.1 [Compu-
ters and society]: Privacy
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1. INTRODUCTION

Computing over individuals’ private data is extremely use-
ful for various purposes, such as medical or demographic
studies. Recent work on differential privacy first defined
in [DMNS06, Dwo06] has focused on ensuring that analy-
ses using private data can be carried out accurately while
providing individuals a strong quantitative guarantee of pri-
vacy.

While differential privacy provides formal guarantees on
how much information is leaked about an individual’s data,
it is silent about what incentivizes the individuals to share
their data in the first place. A recent line of work [MTO7,
GR11, NST12, Xial3, NOS12, CCK*13, FL12, LR12, RS12]
has begun exploring this question, by relating differential
privacy to questions of mechanism design.

One way to incentivize individuals to consent to the usage
of their private data is simply to pay them for using it. For
example, a medical study may compensate its participants
for the use of their medical data. However, determining the
correct price is challenging: low payments may not draw
enough participants, causing insufficient data for an accurate
study, while high payments may be impossible for budgetary
reasons.

Ghosh and Roth [GR11] approached this problem by al-
lowing the mechanism to elicit privacy valuations from in-
dividuals. A privacy valuation is a description of how much
disutility an individual experiences from having information
about their private data revealed. By eliciting valuations,
the mechanism is hopefully able to tailor payments to in-
centivize enough participants to produce an accurate result,
while not paying too much.

1.1 The setting and previous work

We continue the study of purchasing private data from in-
dividuals as first proposed by Ghosh and Roth [GR11] (see
[Rot12, PR13] for a survey of this area). Since we work
in a game-theoretic framework, we will also call individuals
“players”. As in [GR11], we study the simple case where the
private information consists of a single data bit, which play-
ers can refuse to provide but cannot modify (e.g. because
the data is already certified in a trusted database, such as a
medical record database).

To determine the price to pay players for their data bits,
the mechanism elicits privacy valuations from them. We
study the simple case where each player ¢’s privacy valuation



is parameterized by a single real parameter v;. For example,
in Ghosh and Roth [GR11] they assume that player ¢ loses
v;e utility when their data bit is used in an e-differentially
private mechanism. We will study a wider variety of pri-
vacy valuation functions in this paper. The valuations are
known only to the players themselves, and therefore players
may report false valuations if it increases their utility. Fur-
thermore, because these valuations may be correlated with
the data bits, the players may wish to keep their valuations
private as well. It is instructive to keep in mind the applica-
tion of paying for access to medical data (e.g. HIV status),
where players cannot control the actual data bit, but their
valuation might be strongly correlated to their data bit.

The goal of the mechanism is to approximate the sum of
data bits while not paying too much. Based on the declared
valuations, the mechanism computes payments to each of
the players and obtains access to the purchased data bits
from the players that accept the payments. The mechanism
then computes and publishes an approximation to the sum
of the data bits, which can cause the players some loss of pri-
vacy, which should be compensated for by the mechanism’s
payment.

The mechanism designer aims to achieve three goals, stan-
dard in the game theory literature: the mechanism should be
individually rational, truthful, and accurate. A mechanism
is individually rational if all players receive non-negative
utility from participating in the game. In our context, this
means that the mechanism is sufficiently compensating play-
ers for their loss in privacy, something that may be impor-
tant for ethical reasons, beyond just incentivizing participa-
tion. Informally, a mechanism is truthful for player i on a
tuple = (z1,...,x,) of reports from the players if player
i does not gain in utility by declaring some false type z
(while the other players’ types remain unchanged). We aim
to build mechanisms that are individually rational for all
players, and truthful for as many players and inputs as pos-
sible (ideally for all players and inputs). A mechanism is
accurate if the output of the mechanism is close to the true
function it wishes to compute, in our case the sum of the
data bits.

Ghosh and Roth [GR11] study the restricted setting (in
their terminology the “insensitive value model”) where play-
ers do not care about leaking their privacy valuations, as
well as the general model (the “sensitive value model”) where
they may care and their valuations can be unbounded. They
present two mechanisms in the insensitive value model, one
that optimizes accuracy given a fixed budget and another
that optimizes budget given a fixed accuracy constraint.
They also prove that their mechanisms are individually ra-
tional and truthful under the assumption that each player
i experiences a disutility of ezactly v;e when his data bit is
used in an e-differentially private mechanism.

In the general sensitive value model, they prove the fol-
lowing impossibility result: there is no individually rational
mechanism with finite payments that can distinguish be-
tween the case where all players have data bit 0 and the
case where all players have data bit 1.

This impossibility result spurred a line of work attempting
to bypass it. Fleischer and Lyu [FL12] propose a Bayesian
setting, where (for simplicity considering just Boolean in-
puts) there are publically known distributions Dy and D1
over privacy valuations, and each player who has data bit
b; receives a valuation v; drawn from Dy,. They show that
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in this model, it is possible to build a Bayes-Nash truthful,
individually rational, and accurate mechanism.

In a related work, Roth and Schoenebeck [RS12] study a
Bayesian setting where the agents’ actual (dis)utilities are
drawn from a known prior, and construct individually ra-
tional and ex-post truthful mechanism that are optimal for
minimizing variance given a fixed budget and minimizing
expected cost given a fixed variance goal. In comparison to
[FL12], [RS12] studies a disutility value that does not quan-
titively relate to the privacy properties of the mechanism
(but rather just a fixed, per-player disutility for participa-
tion), while it results in mechanisms satisfying a stronger
notion of truthfulness.

Ligett and Roth [LR12] measure the privacy loss incurred
from a player’s decision to participate separately from the
information leaked about the actual data (effectively ruling
out arbitrary correlations between privacy valuations and
data bits). They work in a worst-case (non-Bayesian) model
and construct a mechanism that satisfies a relaxed “one-
sided” notion of truthfulness and accuracy. However, their
mechanism only satisfies individual rationality for players
whose privacy valuation is not too high.

1.1.1 Improving the negative results

This line of work leaves several interesting questions open.
The first is whether the impossibility result of [GR11] really
closes the door on all meaningful mechanisms when players
can have unbounded privacy valuations that can be arbitrar-
ily correlated with their sensitive data.

There are two important loopholes that the result leaves
open. First, their notion of privacy loss is pure e-differential
privacy, and they crucially use the fact that for pure e-
differentially private mechanisms the support of the output
distribution must be identical for all inputs. This prevents
their result from ruling out notions of privacy loss based on
more relaxed notions of privacy, such as (e, d)-differential
privacy for § > 0. As a number of examples in the differ-
ential privacy literature show, relaxing to (e, d)-differential
privacy can be extremely powerful, even when § is negligibly
small but non-zero [DL09, HT10, DRV10, Del2, BNS13].
Furthermore, even (g,d) differential privacy measures the
worst-case privacy loss over all databases, and it may be the
case that on most databases, the players’ expected privacy
loss is much less than the worst case bound.! Thus it is
more realistic to use per-database measure of privacy loss
(as done in [CCK™13]).

Second, the [GR11] notion of privacy includes as observ-
able and hence potentially disclosive output the (sum of the)
payments made to all the players, not just the sum of the
data bits. This leaves open the possibility of constructing
mechanisms for the setting where an outside observer is not
able to to see some of the player’s payments. For example, it
may be natural to assume that, when trying to learn about

'For example, consider a mechanism that computes an e-
differentially private noisy sum of the first n — 1 rows (which
we assume are bits), and if the result is 0, also outputs a
e-differentially private noisy version of the n’th row (e.g.
via “randomized response”). The worst case privacy loss for
player n is e. On databases of the form (0,0,...,0,b) the
first computation results with 0 with probability ~ & and
player n suffers € privacy loss with this probability. However,
if it is known that the database is very unlikely to be almost
entirely zero, then player n may experience any privacy loss
with only exponentially small probability.



player i, an observer learns the payments to all players ez-
cept player ¢. In the extreme case, we could even restrict
the outside observer to not see any of the payments, but
only the approximation to the sum of the data bits. The
Ghosh-Rosh impossibility proof fails in these cases. Indeed
in this case where player ¢’s own payment is not visible to
the observer, there does ezxist an individually rational and
accurate mechanism with finite payments: simply ask each
player for their valuation v; and pay them wv;e, then out-
put the sum of all the bits with noise of magnitude O(1/¢).
(The reason that this mechanism is unsatisfactory is that it
is completely untruthful — players always gain by reporting
a higher valuations.)

We will close both these gaps: our results will hold even
under very mild conditions on how the players experience
privacy loss (in particular capturing a per-database analogue
of (g, d)-differential privacy), and even when only the ap-
proximate count of data bits is observable and none of the
payments are observable.

1.1.2  Improving the positive results

Another question left open by the previous work is if we
can achieve individual rationality and some form of truth-
fulness under a worst-case setting. Recall that [FL12] and
[RS12] work in a Bayesian model, while [LR12] does not
guarantee individual rationality for all players. Further-
more, in both [FL12] and [RS12] the priors are heavily used
in designing the mechanism, and therefore their results break
if the mechanism designer does not accurately know the pri-
ors. We will replace the Bayesian assumption with a simple
qualitative assumption on the monotonicity of the correla-
tion between players’ data bits and their privacy valuation.
For accuracy (but not individual rationality), we will as-
sume a rough bound on how many players exceed a given
threshold in their privacy valuations (similarly to [NOS12]).

Another question is the interpretation of the privacy loss
functions. We observe that the truthfulness of the mecha-
nisms in [GR11] crucially relies on the assumption that v;e is
the ezact privacy loss incurred. As was argued by [NOS12]
and [CCK™'13], it seems hard to quantify the exact privacy
loss a player experiences, as it may depend on the mech-
anism, all of the players’ inputs, as well as an adversary’s
auxiliary information about the database. (See footnote 1
for an example.) It is much more reasonable to assume that
the privacy valuations v; declared by the players and the dif-
ferential privacy parameter ¢ yield an upper bound on their
privacy loss. When using this interpretation, the truthful-
ness of [GR11] no longer holds. The mechanisms we con-
struct will remain truthful using the privacy loss function
only as an upper bound on privacy loss (for players whose
privacy valuations are not too large, similarly to the truth-
fulness guarantees of [NOS12, CCK*13, LR12)).

1.2  Our results

In our model there are n players labelled 1,...,n each
with a data bit b; € {0,1} and a privacy valuation v; € R,
which we describe as a 2n-tuple (b,v) € {0,1}" x R™. The
mechanism designer is interested in learning (an approxima-
tion of) > b;. The players may lie about their valuation
but they cannot lie about their data bit. A mechanism
M is a pair of randomized functions (Mout, Mpay), where
Mo = {0,1}" x R™ — Z and My, @ {0,1}" X R" — R™.
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Namely Moy produces an integer that should approximate
>~ b; while M,y produces payments to each of the n players.

Because the players are privacy-aware, the utility they
derive from the game can be separated into two parts as
follows:

utility, = payment,; — privacy loss,.

(Note that in this paper, we assume the players have no
(dis)interest in the integer that Mou: produces.) The privacy
loss term will be quantified by a privacy loss function that
depends on the identity of the player, his bit, his privacy
valuation, and his declared valuation i,b,v,v] (where v] is
not necessarily his true type v;), the mechanism M, and the
outcome (s, p) produced by (Mout, Mpay).

Strengthened impossibility result of non-trivial accu-
racy with privacy..

Our first result significantly strengthens the impossibility
result of Ghosh-Roth [GR11].

THEOREM 1.1. (Main impossibility result, informal. See
Theorem 3.4.) Fix any mechanism M and any reasonable
privacy loss functions. Then if M is truthful (even if only for
players with privacy valuation 0) and individually rational
and makes finite payments to the players (even if only when
all players have privacy valuation 0), then M cannot distin-
guish between inputs (b,v) = (0™,0") and (b',v) = (1*,0™).

By “reasonable privacy loss functions,” we mean that if
from observing the output of the mechanism on an input
(b,v), an adversary can distinguish the case that player 7
has data bit b, = 0 from data bit b; = 1 (while keeping
all other inputs the same), then player i experiences a sig-
nificant privacy loss (proportional to v;) on database (b,v).
In particular, we allow for a per-database notion of privacy
loss. Moreover, we only need the adversary to be able to
observe the mechanism’s estimate of the count Zj bj, and
not any of the payments made to players. And our notion
of indistinguishability captures not only pure e-differential
privacy but also (e, d)-differential privacy for 6 > 0. The
conclusion of the result is as strong as conceivably possible,
stating that M cannot distinguish between the two most dif-
ferent inputs (data bits all 0 vs. data bits all 1) even in the
case where none of the players care about privacy.

We also remark that in our main impossibility result, in
order to handle privacy loss functions that depend only on
the distribution of the observable count and not the pay-
ment information, we crucially use the requirement that M
be truthful for players with 0 privacy valuation. As we re-
marked earlier in Section 1.1.1 there exist M that are indi-
vidually rational and accurate (but not truthful).

New notions of privacy and positive results..

One of the main conceptual contributions of this work is
restricting our attention to a special class of privacy loss
functions, which we use to bypass our main impossibility
result. Essential to the definition of differential privacy
(Definition 2.2) is the notion of neighboring inputs. Two
inputs to the mechanism are considered neighboring if they
differ only in the information of a single player, and in the
usual notion of differential privacy, one player’s information
may differ arbitrarily. This view also characterized how pre-
vious work modeled privacy loss functions: in the sensitive
value model of [GR11], the privacy loss function to a player i



on an input (b;,v;) was computed by considering how much
changing to any possible neighbor (b}, v;) would affect the
output of the mechanism. In contrast, we will restrict our
attention to privacy loss functions that consider only how
much changing to a specific subset of possible neighbors
(b}, v;) would affect the output of the mechanism. By re-
stricting to such privacy loss functions, we can bypass our
impossibility results.

We now describe how we restrict (b;,v;). Recall that in
our setting a single player’s type information is a pair (b;, v;)
where b; € {0,1} is a data bit and v; € R is a value for
privacy. We observe that in many cases there is a natural
sensitive value of the bit b;, for example, if b; represents HIV
status, then we would expect that b; = 1 is more sensitive
than bz =0.

Therefore we consider only the following monotonic valu-
ations: (0,v;) is a neighbor of (1,v]) iff v; < vj. Thus, if a
player’s true type is (1,v}), then he is only concerned with
how much the output of the mechanism differs from the case
that her actual type were (0, v;) for v; < v}.

Consider the pairs that we have excluded from consider-
ation: any pairs (b;,v;), (b;,v}) (i.e. the data bit does not
change) and any pairs (0,v;), (1,v;) where v; > v;. By ex-
cluding these pairs we formally capture the idea that players
are not concerned about revealing their privacy valuations
except inasmuch as they may be correlated with their data
bits b; and therefore may reveal something about b;. Since
b; = 1 is more sensitive than b, = 0, the correlation says
that privacy valuation when b; = 1 should be larger than
when b; = 0. This can be seen as an intermediate notion
between a model where players do not care at all about
leaking their privacy valuation (the insensitive value model
of [GR11]), and a model where players care about leaking
any and all information about their privacy valuation (the
sensitive value model of [GR11]).

Of course the assumption that players are not concerned
about revealing their privacy valuation except inasmuch as
it is correlated with their data is highly context-dependent.
There may settings where the privacy valuation is intrinsi-
cally sensitive, independently of the players’ data bits, and in
these cases using our notion of monotonic valuations would
be inappropriate. However, we believe that there are many
settings where our relaxation is reasonable.

By using this relaxed notion of privacy, we are able to
bypass our main impossibility result and prove the following;:

THEOREM 1.2. (Main positive result, informal. See
Theorem 4.6.) For any fived budget B and e > 0, for privacy
loss functions that only depend on how the output distribu-
tion changes between monotonic valuations, there exists a
mechanism M that is individually rational for all players
and truthful for players with low privacy valuation (specif-
tcally vi < B/2en). Furthermore, as long as the players
with low privacy valuation do indeed behave truthfully, then
regardless of the behavior of the players with high privacy
valuation, the mechanism’s output estimates the sum ZZ b;
to within £(h 4+ O(1/e)) where h is the number of players
with high privacy valuation.

Note that even though we fix a budget B beforehand and
thus cannot make arbitrarily high payments, we still achieve
individual rationality for all players, even those with ex-
tremely high privacy valuations v;. We do so by ensuring
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that such players experience perfect privacy (g; = 0), assum-
ing they have monotonic valuations. We also remark that
while we do not achieve truthfulness for all players, this is
not a significant problem as long as the number h of players
with high privacy valuation is not too large. This is be-
cause the accuracy guarantee holds even if the non-truthful
players lie about their valuations. We also give a small im-
provement to our mechanism that ensures truthfulness for
all players with data bit 0, but at some additional practical
inconvenience; we defer the details to the body of the paper.

We remark that besides our specific restriction to mono-
tonic valuations in this paper, the underlying principle of
studying restricted notions of privacy loss functions by con-
sidering only subsets of neighbors (where the subset should
be chosen appropriately based on the specific context) could
turn out to be a more generally meaningful and powerful
technique that is useful to bypass impossibility results else-
where in the study of privacy.

Lower bounds on accuracy..

The above positive result raises the question: can we
adaptively select the budget B in order to achieve accuracy
for all inputs, even those where some players have arbitrar-
ily high privacy valuations? Recall that Theorem 1.1 does
not preclude this because we are now only looking at mono-
tonic valuations, whereas Theorem 1.1 considers arbitrary
valuations. We nevertheless show that it is impossible:

THEOREM 1.3. (Impossibility of accuracy for all privacy
valuations, informal, see Theorem 5.8) For reasonable pri-
vacy loss functions that are only sensitive to changes in out-
put distribution of monotonic neighbors, any M with finite
payments that is truthful (even if only on players with O pri-
vacy valuation) and individually rational, there exist player
privacy valuations v,v" such that M cannot distinguish be-
tween (0™,v) and (1™,v").

The exact formal condition on finite payments is somewhat
stronger here than in Theorem 1.1, but it remains reason-
able; we defer the formal statement to the body of the paper.

Finally, we also prove a trade-off showing that when there
is a limit on the maximum payment the mechanism makes,
then accuracy cannot be improved beyond a certain point,
even when considering only monotonic valuations. We defer
the statement of this result to Section 5.2.

1.3 Related work

The relationship between differential privacy and mecha-
nism design was first explored by [MTO07]. Besides the al-
ready mentioned works, this relationship was explored and
extended in a series of works [NST12], [Xial3] (see also
[Xiall]), [NOS12], [CCKT13] (see also [CCKT11]), [HK12],
[KPRU13|. In [MT07, NST12, HK12, KPRU13], truthful-
ness refers only to the utility that players derive from the
outcome of the game (as in standard mechanism design) and
differential privacy is treated as a separate property. The pa-
pers [Xial3, NOS12, CCK13] study whether and when such
mechanisms, which are separately truthful and differentially
private, remain truthful even if the players are privacy-aware
and may incur some loss in utility from the leakage of the
private information. Differential privacy has also been used
as a technical tool to solve problems that are not necessarily
immediately obvious as being privacy-related; the original
work of [MTO7] does this, by using differential privacy to



construct approximately truthful and optimal mechanisms,
while more recently, [KPRU13] use differential privacy as a
tool to compute approximate equilibria. For more details,
we refer the reader to the recent surveys of [Rot12, PR13].

Two ideas we draw on from this literature (particularly
[NOS12, CCK*13]) are (1) the idea that privacy loss can-
not be used as a threat because we do not know if a player
will actually experience the maximal privacy loss possible,
and therefore we should treat privacy loss functions only
as upper bounds on the actual privacy loss, and (2) the
idea that it is meaningful to construct mechanisms that are
truthful for players with reasonable privacy valuations and
accurate if most players satisfy this condition. Our mech-
anisms are truthful not for all players but only for players
with low privacy valuation; it will be accurate if the mech-
anism designer knows enough about the population to set
a budget such that most players have low privacy valuation
(with respect to the budget).

2. DEFINITIONS

2.1 Notation

For two distributions X,Y we let A(X,Y) denote their
total variation distance (i.e. statistical distance). For an
integer 4 let [¢{] = {1,...,¢}. For any set S and any vector
v e S", welet v_; € S~ 1 denote the vector with entries
ViyeveyViel, Vigtl, ..., Un. We use the following convention:
a vector of n entries consisting of n—1 variables or constants
followed by an indexed variable denotes the vector of n en-
tries with the last variable inserted at its index. For example
e.g. (0"71, v;) denotes the vector with all zeros except at the
i’th entry, which contains v;. Some notation about the set-
ting regarding mechanisms etc. was already introduced in
Section 1.2.

2.2 Differential privacy

DEFINITION 2.1. Two inputs (b,v), (b',v") € {0,1}" x R"
are i-neighbors if b; = b and v; = vj for all j # i. They
are neighbors if they are i-neighbors for some i € [n].

DEFINITION 2.2. A randomized function f is said to be
(¢, 0)-differentially private if for all neighbors (b,v), (b',v"),
it holds that for all subsets S of the range of f:

Pr[f(b,v) € S] < €& Pr[f(b',v") € S] + 6.

We say [ is e-differentially private if it is (g, 0)-differentially
private.

(2.1)

The symmetric geometric random variable Geom(e) takes
integer values with the probability mass function given by
Pry pGeom(e)[® = k] ecI*l for all k € Z. Tt is well-
known and easy to verify that for b € {0,1}", the output
> bi + Geom(e) is e-differentially private.

2.3 Privacy loss functions

A privacy loss function for player i is a real-valued func-
tion /\Z(.M)(b,v,v,{, s,p—;) taking as inputs the vectors of all
player types b,v, player i’s declaration v; (not necessarily
equal to v;), and a possible outcome (s,p_;) € Z x R**
of M. The function also depends on the mechanism M =
(Mout, Mpay). Finally we define

LOSSEM) (b7 v, 'U{) = E(s,p)(—R]M(b,(v,iﬂJé)) [)‘EM) (b7 v, ’U;, S, p—Z)]

(2.2)
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Observe that we have excluded player ¢’s own payment
from the output, as we will assume that an outside observer
cannot see player i’s payment. We let M_; denote the ran-
domized function M_;(b,v) = (Mout(b, v), Mpay(b,v)—;).

We comment that, in contrast to [CCKT13], we allow )\Z(.M)
to depend on the player’s declaration v, to model the possi-
bility that a player’s privacy loss depends on his declaration.
Allowing this dependence only strengthens our positive re-
sults, while our negative results hold even if we exclude this
dependence on v;. We remark that even if )\EM) doesn’t de-
pend on v, then LossEM) will still depend on v}, since it is an
expectation over the output distribution of Mo (b, (v_i,v})).
(See Equation 2.2).)

Since the choice of a specific privacy loss function de-
pends heavily on the context of the mechanism being stud-
ied, we avoid fixing a single privacy loss function and rather
study several reasonable properties that privacy loss func-
tions should have. Also, while we typically think of privacy
valuation as being positive and privacy losses as positive, our
definition does not exclude the possibility that players may
want to lose their privacy, and therefore we allow privacy
valuations (and losses) to be negative. Our impossibility re-
sults will only assume non-negative privacy loss, while our
constructions handle possibly negative privacy loss functions
as long as the absolute value of the privacy loss function is
bounded appropriately.

2.4 Mechanism design criteria

DEFINITION 2.3. A mechanism M = (Mout, Mpay) is said
to be (la, o], B)-accurate on an input (b,v) € {0,1}" x R"
if, setting b= L 3" by, it holds that

Pr{Mow(b,v) ¢ (B — ), (5-+ o)) < .
We say that M is (a, B)-accurate on (b,v) if it is ([, o], B)-
accurate.

We define PayEM)(b, v) = EpeRMpay(b,m[Pi]-

DEFINITION 2.4. Fix n, a mechanism M on n players,
and privacy loss functions ,\gM),...,/\;M). We say M 1is
individually rational if for all inputs (b,v) € {0,1}" x R"
and all i € [n]:

PayEM) (b,v) > Loss§M> (b, v,v;).

M s truthful for input (b, v) and player i if for all v} it holds
that
Pang)(b, v) — Loss§M>(b, v, V;)
> Pay™ (b, (v_s,v])) — Loss.™ (b, v, v})
M is simply truthful if it is truthful for all inputs and all
players.

IMPOSSIBILITY OF NON-TRIVIAL AC-
CURACY WITH PRIVACY

We will use a notion of distinguishability that captures
when a function leaks information about an input pertaining
to a particular player.

3.

DEFINITION 3.1. An input (b,v) € {0,1}" x R" is said
to be -distinguishable for player i with respect to a ran-
domized function f if there is an i-neighbor (b',v") such that

A(f(byv), f(¥,0) = 6.



We choose a notion based on statistical distance because
it allows us to capture (g, d)-differential privacy even for
0 > 0. Namely, if there is an input (b,v) € {0,1}" x R"
that is d-distinguishable for player ¢ with respect to f, then
f cannot be (g,d’)-differentially private for any ¢,d’ satis-
fying 6 > & +e° — 1 ~ § + e. However, note that, unlike
differential privacy, d-distinguishability is a per-input notion,
measuring how much privacy loss a player can experience on
a particular input (b,v), not taking the worst case over all
inputs.

For our impossibility result we will require that any spec-
ified privacy loss should be attainable if the player’s privacy
valuation is large enough, as long as there is in fact a notice-
able amount of information about the player’s type being
leaked (i.e. the player’s input is somewhat distinguishable).
Note that having unbounded privacy losses is necessary for
having any kind of negative result. If the privacy losses
were always upper-bounded by some value L, then a trivially
truthful and individually rational mechanism would simply
pay every player L and output the exact sum of data bits.

DEFINITION 3.2. A privacy loss function )\EM) for a mech-
anism M and player i is increasing for d-distinguishability if
there exists a real-valued function T; such that for all £ > 0,
b€ {0,1}" and v_; € R"™*, if v; > Ti({,b,v_;) and if (b,v)
is -distinguishable for player i with respect to Moy, then
Loss™) (b, v, v;) > ¢.

Notice that in our definition of increasing for §-distin-
guishability we only consider distinguishability for Mo and
not for (Mout, Mpay). Being able to handle this definition is
what makes our impossibility rule out mechanisms even for
privacy loss functions depending only on the distribution of
Mout~

Definition 3.2 implies that the privacy loss functions are
unbounded. We next define a natural property of loss func-
tions, that for privacy-indifferent players privacy loss is not
affected by the particular value reported for v;.

DEFINITION 3.3. A privacy loss function )\EM) for a mech-
anism M and player i respects indifference if whenever v;
0 it follows that LossEM)(b,v,vé) = Lossz(.M)(b,v,U{’) for all

! "
Vi, Uy«

THEOREM 3.4. Fix a mechanism M, a number of players
n, and non-negative privacy loss functions )\gM), . /\,(1M>.
Suppose that the )\EM) respect indifference, and are increas-
ing for d-distinguishability for some § < %.

Suppose that M that satisfies all of the following:

e M is individually rational.

e M has finite payments when all players are privacy-
indifferent, in the sense that for allb € {0,1}" and all
i € [n], it holds that Pay§M>(b7 0™) is finite.

o M s truthful for privacy-indifferent players, namely
M is truthful for all inputs (b,v) and players ¢ such
that v; = 0.

Then it follows that M cannot have non-trivial accuracy in
the sense that it cannot be (1/2,1/3)-accurate on (0™,0™)
and (1™,0™).

PRrOOF. Let Pay,, Loss;, A\; denote Pang)7 Losng)7 )\EM).

By the assumption that M has finite payments when all

416

players are privacy-indifferent, we can define

P= max Pay,(b,0") < occ.

i€[n],be{0,1}™
By the assumption that all the A; are increasing for J-indis-
tinguishability, we may define a threshold

Ti(P,b,0" ")

= max
i€[n],bef{0,1}m
such that for all 4 € [n],b € {0,1}",v; > L, if (b, (0", v;))
is 6-distinguishable, then Loss; (b, (0", v;),v;) > P.

We construct a sequence of 2n + 1 inputs 2%, (1)
220 @D g (0) ) (b 10) -y £ (10) a]) players
have data bit 0 and privacy valuation 0. That is, 210 =
(0™,0™). From 9 we construct (Y by changing player
7’s data bit b; from 0 to 1 and valuation v; from 0 to L. From
Y we construct z(+0) by changing player ¢’s valuation
v; back from L to 0 (but b; remains 1). Thus,

x(i,O) ((1i—17070n—i)7(0i—1707 On—i))7

((171,1,0"7), (01, L,0"7 %)

and

JRCRD
In particular, ™10 = (1™,0™). Define the hybrid distri-
butions H (9 = Mout(x(i’j)).

CLAIM 3.5. Foralli € [n], Pay,; (") < Pay, (z+19) <
P.

To prove this claim, we first note that all players have
privacy valuation 0 in z+1% 5o Pay, (z(F1?) < P by the
definition of P. Since player ¢ has privacy valuation 0 in
:c(”l’o)7 we also know that privacy loss of player ¢ in input
219 s independent of her declaration (since A; respects
indifference). If player i declares L as her valuation instead
of 0, she would get payment Payi(x“’l)). By truthfulness
for privacy-indifferent players, we must have Payi(x(i’l)) <
Pay, (z(T19)).

By the definition of L it follows that Y cannot be 6-
distinguishable for player ¢ with respect to Moy. Otherwise,
this would contradict individual rationality because on input
z®D player ¢ would have privacy loss > P while only getting
payoff < P.

Since 2"V is not d-distinguishable for player i with re-
spect to Mout, and because 2D s an i-neighbor of 209 a5
well as :c(i+1’0), it follows that

AHETD HOD) <6 and AESD, BT <5 (3.)

Finally, since Equation 3.1 holds for all ¢ € [n], and since
H10) — Moue(0,0™) and H(n+1,0) — Mowe (1™,0™), we have
by the triangle inequality that

A(Mout((]n, On)7 ]\4-0[“;(1’”7 On)) < 2715

But since § < 1/6n, this contradicts the fact that M has
non-trivial accuracy, since non-trivial accuracy implies that
we can distinguish between the output of Moy, on inputs
(0™,0™) and (1™,0™) with advantage greater than 1/3, sim-
ply by checking whether the output is greater than n/2. [J

3.1 Using sub-sampling for privacy loss func-
tions with low distinguishability

We comment that the § < 1/6n bound in Theorem 3.4 is
tight up to a constant factor. Indeed, if players do not incur



significant losses when their inputs are O(1/n)-distinguish-
able, then an extremely simple mechanisms based on sub-
sampling can be used to achieve truthfulness, individual ra-
tionality, and accuracy with finite budget.

Namely, suppose that the privacy loss functions are such
that if for all ¢, if player i’s input is not C'/n-distinguishable
for some constant C', then regardless of v;, the loss to player ¢
is bounded by P. Then the following mechanism is truthful,
individually rational, and accurate: pay all players P, select
at random a subset A of size k for some k < C from the
population, and output (n/[A])-> ;.4 b:;. By a Chernoff

Bound, this mechanism is (7, 2e‘"2k)—accurate for all n > 0.
By construction no player’s input is C'/n-distinguishable and
therefore their privacy loss is at most P and the mechanism
is individually rational. Finally mechanism is truthful since
it behaves independently of the player declarations.

4. POSITIVE RESULTS

For our positive results, we will require the following natu-
ral property from our privacy loss functions. Recall that we
allow the privacy loss functions )\EM) to depend on a player’s
report v, in addition the the player’s true type. We require
the dependence on v} to be well-behaved in that if changing
declarations does not change the output distribution, then
it also does not change the privacy loss.

DEFINITION 4.1. A privacy loss function )\EM) respects
identical output distributions if the following holds: for all
b,v, if the distribution of M_;(b,v) is identical to the dis-
tribution of M_;(b, (v_;,v})), then for all s,p, it holds that
A (00,08, 5,9) = XM (b0, 01,5, p).

The above definition captures the idea that if what the pri-
vacy adversary can see (namely the output of M_;) doesn’t
change, then player ¢’s privacy loss should not change.

4.1 Monotonic valuations

We now define our main conceptual restriction of the pri-
vacy loss functions to consider only monotonic valuations.

DEFINITION 4.2. Two player types (b;,vi), (b}, v;) taking
value in {0,1} X R are said to be monotonically related iff
(b; = 0,0, =1, and v; < v}) or (b = 1, b, = 0, and
vi > v;).  Two inputs (b,v), (V' ,v) € {0,1}" x R™ are
monotonic i-neighbors if they are i-neighbors and further-
more (b;,v;), (b;,v;) are monotonically related. They are
monotonic neighbors if they are monotonic i-neighbors for
some i € [n].

Following [CCK™13], we also make the assumption that
the privacy loss functions on a given output (s,p—_;) are

bounded by the amount of influence that player i’s report
has on the probability of the output:

DEFINITION 4.3. A privacy loss function )\EM) is bounded
A0 0,0, 00, 5,p-0)
PI‘[M,Z'(I)/U) = (S7p*i)]

by differential privacy if the following holds:
(d?i’;% 8 BrM (b0, b)), (v, 7)) = (s,p-m)

(4.1)

< ;-
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Input: (b,v) € {0,1}" x R". Auxiliary inputs: budget
B > 0, privacy parameter € > 0.

1. For all i € [n], set b = b; if 2ev; < B/n, otherwise
set b; = 0.

2. Output >_7 | b; + Geom(e).

3. Pay B/n to player i if 2ev; < B/n, else pay player
7 nothing.

ALGORITHM 4.5. Mechanism for monotonic valua-
tions

A privacy loss function )\EM) is bounded by differential
privacy for monotonic valuations if Equation 4.1 holds but
the mazimum is restricted to be only over (b}, v) monoton-
ically related to (b, v;).

As noted and used in [CCK™13], the RHS in the above
definition can be upper-bounded by the level of (pure) differ-
ential privacy, and the same holds for monotonic valuations:

Facr 4.4. If M_; is e-differentially private for i-neigh-
bors (i.e. Equation 2.1 holds for all i-neighbors) and )\l(-M)
is bounded by differential privacy (even if only for mono-
tonic valuations), then player i’s privacy loss is bounded by
vie regardless of other player types, player declarations, or
outcomes.

As hinted at in the definition of privacy loss functions
bounded by differential privacy for monotonic valuations,
one can define an analogue of differential privacy where we
take the maximum over just monotonically related neigh-
bors. However this notion is not that different from the
original notion of differential privacy, since satisfying such
a definition for some privacy parameter ¢ immediately im-
plies satisfying (standard) differential privacy for privacy pa-
rameter 3¢, since every two pairs (b;,v;) and (b}, v]) are at
distance at most 3 in the monotonic-neighbor graph. The
monotonic neighbor notion becomes more interesting if we
consider a further variant of differential privacy where the
privacy guarantee ¢; afforded to an individual depends on
her data (bs,v;) (e.g. € = 1/v;). We defer exploration of
this notion to a future version of this paper.

4.2 Mechanism for monotonic valuations

The idea behind our mechanism for players with monotic
valuations (Algorithm 4.5) is simply to treat the data bit as
0 (the insensitive value) for all players who value privacy too
much.

THEOREM 4.6. For privacy loss functions that are bound-
ed by differential privacy for monotonic valuations and re-
spect identical output distributions, the mechanism M in
Algorithm 4.5 satisfies the following:

1. M is truthful for all players with 2ev; < B/n.
2. M is individually rational for all players

8. Assume only that the truthful players described in Point
1 do indeed declare their true types. Letting n denote



the fraction of players where b; = 1 and 2ev; > B/n,
it holds that M is ([n + v,7], 2e~"™)-accurate.

ProoF. Truthfulness for players with 2cv; < B/n:
if 2ev; < B/n, then declaring any v; < B/(2en) has no ef-
fect on the output of the mechanism, and so there is no
change in utility since the privacy loss functions respect
identical output distributions. If player i declares some
vi > B/(2en), then he loses B/n in payment. Because M_;
is e-differentially private if for i-neighbors (recall we assume
an observer cannot see the change in p;) and we assumed
that the privacy loss functions are bounded by differential
privacy for monotonic valuations, it follows that player i’s
privacy loss has absolute value at most 2cv; under a report
of v; and under a report of v; (Fact 4.4). Thus, there is at
most a change of 2ev; in privacy, which is not sufficient to
overcome the payment loss of B/n.

Individual rationality: consider any vector of types b, v
and any player i. If v; < B/2en then player i receives pay-
ment B/n. By the hypothesis that the privacy loss func-
tions are bounded by differential privacy for monotonic val-
uations, and because the mechanism is e-differentially pri-
vate, the privacy loss to player 7 is bounded by ev; < B/n
(Fact 4.4), satisfying individual rationality.

Now suppose that player ¢ has valuation v; > 2%‘ In
this case the payment is 0. The mechanism sets b; = 0,
and for every (b}, v;) monotonically related to (b;,v;) the
mechanism also sets b; = 0. Since the report of player i does
not affect b; or the payment to player j for j # ¢, monotonic
neighbors will produce the exact same output distribution
Of Mfi.

Therefore the privacy loss of player i is 0. Indeed, since
the privacy loss function is bounded by differential privacy
for monotonic valuations, we have:

)‘Elvj)(b7 U, 1}7{7 S7p—i)

; - | max lo Pr[M_i(b,v) = (s,p—i)]
< ((b;”v;')l g PI'[M*i((b—i, b”/)7 (/072" ’U;/)) — (S,pl)]>
(4.2)
—0

where in Equation 4.2 the maximum is taken over (b, v;)
monotonically related to (b, v;).

Accuracy: the bits of the (1 — ) fraction of truthful
players and players with b; = 0 are always counted cor-
rectly, while the bits of the n fraction of players with b; = 1
and large privacy valuation v; > B/(2en) are either counted
correctly (if they declare a value less than B/(2en)) or are
counted as 0 (if they declare otherwise).

This means that b = 37 b} and b = Y7 | b; satisfy
Ve b,

By the definition of symmetric geometric noise, it follows
that (letting v’ be the declared valuations of the players) it
holds that

Pr(| Moy (b, v") — o/| > yn] < 2e~°7".
The theorem follows.
|
4.2.1 Achieving better truthfulness

We can improve the truthfulness of Theorem 4.6 to in-
clude all players with data bit 0.
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THEOREM 4.7. Let M’ be the same as in Algorithm 4.5,
except that all players with b; = 0 are paid B/n, even those

with large privacy valuations. Suppose that the AEMI) are
bounded by differential privacy for monotonic valuations and
also respect identical output distributions. Then the conclu-
stons of Theorem 4.6 hold and in addition the mechanism is
truthful for all players with data bit b; = 0.

Note that, unlike Algorithm 4.5, here the payment that
the mechanism makes to players depends on their data bit,
and not just on their reported valuation. This might make
it impractical in some settings (e.g. if payment is needed
before players give permission to view their data bits).

PRrROOF. Increasing the payments to the players with b; =
0 and privacy valuation v; > % does not hurt individual
rationality or accuracy. We must however verify that we
have not harmed truthfulness. Since players are not allowed
to lie about their data bit, the same argument for truthful-
ness of players with b; = 1 and v; < B/(2en) remains valid.
It is only necessary to verify that truthfulness holds for all
players with b, = 0.

Observe that for players with b; = 0, the output distri-
bution of the mechanism is identical regardless of their dec-
laration for v;. Therefore by the assumption that the )\EM)
respect identical output distributions, changing their dec-
laration does not change their privacy loss. Furthermore,
by the definition of M’ changing their declaration does not
change their payment as all players with b; = 0 are paid
B/n. Therefore, there is no advantage to declaring a false
valuation. [

We remark that the only setting where Theorem 4.7 is
preferable to Theorem 4.6 is when knowing the true val-
uations is important beyond simply helping to achieve an
accurate output; in particular, notice that M’ as defined in
Theorem 4.7 does not guarantee any better accuracy or any
lower payments (indeed, it may make more payments than
the original Algorithm 4.5).

5. LOWER BOUNDS

5.1 Impossibility of non-trivial accuracy for
all privacy valuations with monotonic pri-
vacy

One natural question that Algorithm 4.5 raises is whether
we can hope to adaptively set the budget B based on the
valuations of the players and thereby achieve accuracy for
all inputs, not just inputs where most players’ privacy valu-
ations are small relative to some predetermined budget. In
this section we show that this is not possible, even when
only considering players who care about privacy for mono-
tonic neighbors.

DEFINITION 5.1. An input (b,v) € {0,1}" x R™ is J-
monotonically distinguishable for player i with respect to
a randomized function f if there is a monotonic i-neighbor
(b',v") such that A(f(b,v), f(b',v")) > 4.

DEFINITION 5.2. A privacy loss function )\EM) for a mech-
anism M and player i is increasing for J-monotonic distin-
guishability if there exists a real-valued function T; such that
foralll >0,be {0,1}" andv_; € R™™ ", ifv; > T;(€,b,v_;)
and if (b,v) is d-monotonically distinguishable for player i
with respect to Moy, then Loss§M>(b,v,vi) > /.



THEOREM 5.3. Fiz any mechanism M and any number
of players n, and fix any non-negalive privacy loss functions
AgM), ceey A Suppose that the )\§M> respect indifference
alnd are increasing for §-monotonic distinguishability for § <

E.
Suppose M satisfies all the following:

o M is individually rational.

e M always has finite payments, in the sense that for
all b € {0,1}",v € R" and all i € [n] it holds that
PayEM)(b, v) s finite.

o M is truthful for privacy-indifferent players, as defined
in Theorem 3.4

Then M does not have non-trivial accuracy for all privacy
valuations, i.e. M cannot be (1/2,1/3)-accurate on (0", v)
and (1™, v) for all v € R™.

ProOF. The argument follows the same outline as the
proof of Theorem 3.4, i.e. by constructing a sequence of
hybrid inputs and using truthfulness for privacy-indifferent
players and individual rationality to argue that the neighbor-
ing hybrids must produce statistically close outputs. How-
ever, we have to take more care here because for the hy-
brids in this proof there is no uniform way to set the max-
imum payment P and threshold valuation L for achiev-
ing privacy loss > P at the beginning of the argument,
since here we allow the finite payment bound to depend
on the valuations (whereas Theorem 3.4 only refers to the
payment bound when all valuations are zero). Instead, we
set P;, L; for the i’th hybrids in a way that depends on
Lj— = (L1,...,Li—1).

As before, we define 2n + 1 hybrid inputs 24 z(tY,
230 @0 p(0) () 2 (rH10) inductively as follows.
In 259, all players have data bit 0 and privacy valuation
0. That is, (9 = (0™,0™). From %, we define (>
by changing player i’s data bit from 0 to 1. From Y =
(b, v), we define P; = Pay,(z*")) to be the amount that
player i is paid in Y, and L; = T:(P;, b, vg) to be a pri-
vacy valuation beyond which payment P; does not compen-
sate for d-distinguishability (as promised by Definition 5.2).
Then we define z(*+19) by increasing the valuation of player
i from 0 to L;. By induction, for ¢ = 1,...,n+ 1, we have

200 (1i710n7i+17L[i71]0n7i+1)'
Define the distribution H® = Mout(:c(i’o)).

CLamM 5.4. Pay,(z019) < Pay,(z"V) = P,

On input Y, player i has privacy valuation 0, so his
privacy loss is independent of his declaration (since \; re-
spects indifference). Declaring L; would change the input
to 010 g0 by truthfulness for privacy-indifferent players,
we have Pay, (z"+19)) < Pay, (D).

By the definition of L;, 29 cannot be d-monotonically
distinguishable for player ¢ with respect to Mou. Otherwise,
this would contradict individual rationality because on input
2HL0) player ¢ would have privacy loss greater than P;
while only getting a payoff of at most P; (by Claim 5.4).
Since 219 is not d-monotonically distinguishable for
player ¢ with respect to Moy, and because 209 s an -
monotonic neighbor of 19 we therefore deduce that
AHCD H®Y) < §. Finally, since this holds for all i € [n],
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the triangle inequality implies that A(H), H™) < nd. But
since ¢ < 1/3n, this implies that

A(Mour(0™,0"), Mow (1", L)) < 1/3

contradicting the fact that M has non-trivial accuracy for
all privacy valuations. []

5.2 Tradeoff between payments and accuracy

One could also ask whether the accuracy of Theorem 4.6
can be improved, i.e. whether it is possible to beat (n +
v,2e”°"")-accuracy. We now present a result that, assum-
ing the mechanism does not exceed a certain amount of pay-
ment, limits the best accuracy it can achieve. (We note
however that this bound is loose and does not match our
mechanism.)

In order to prove optimality we will require that the pri-
vacy loss functions be growing with statistical distance, a
strictly stronger condition than being increasing for §-distin-
guishability. However, a stronger requirement is unavoidable
since one can invent contrived privacy loss functions that are
increasing but for which one can achieve (7, 0)-accuracy by
simply by outputting > b; as constructed in Algorithm 4.5
without noise (while preserving the same truthfulness and
individual rationality guarantees). Nevertheless, being grow-
ing with statistical distance for monotonic neighbors is com-
patible with being bounded by differential privacy for mono-
tonic neighbors (i.e. there exist functions that satisfy both
properties), and therefore the following result still implies
limits to how much one can improve the accuracy of our
positive result Theorem 4.6 for all privacy loss functions
bounded by differential privacy for monotonic neighbors.
DEFINITION 5.5. AEM)(b, v, v, 8, p—;) is growing with sta-
tistical distance (for monotonic neighbors) if:

Lossl(vM)(b7 V) > 05 ((rg/la;/() A(Mout (b, v), Mout(b',v/)))
where the mazimum is taken over (b',v') that are (mono-
tonic) i-neighbors of (b,v).

THEOREM 5.6. Fix a mechanism M, a number of players
n, and privacy loss functions )\§M> fori=1,...,n. Sup-
pose that the )\EM) respect indifference and are growing with
statistical distance for monotonic neighbors.

Suppose that M satisfies the following:

e M is individually rational.

e There exists a maximum payment over all possible in-
puts that M makes to any player who declares O privacy
valuation. Call this mazimum value P.

e M is truthful for privacy-indifferent players as defined
in Theorem 3.4.

Then it holds that for any T,~v,m > 0 such that n + 2y <1,
and any B < 3 — Lyn, the mechanism M cannot be ([n +
v,v], B)-accurate on all inputs where at most an n fraction
of the players’ valuations exceed T.

Proor. Fix any 7,7,7v > 0 and any [ < % — %fyn.

We prove the theorem by showing that M cannot be ([n +
v,7], B)-accurate. Let h = nn denote the number of players
with high privacy valuation allowed.

Fix any L > Ph/(1—2£~n—2p3). Consider the following

sequence of hybrid inputs. Let 2% = (0™,0™). From z*%,



define z("Y by flipping player ¢’s data bit from 0 to 1. From
2V define z+10) by increasing the valuation of player
from 0 to Lifi € [h+ 1], or from O to 7ifi € (h+1,h+
2~yn + 1]. By induction, we have:

Vi €[h + 1],
20 — (qimlgn—i+l pimlgnoitly
Vi e(h+1,h+2yn+ 1],
20 — (qi-lgn=i+l phri-h-lgn=itl)

These are well-defined since h 42y = (n+ 2v)n < n. Define
the hybrids H®*® = Mout(:c(i’(])). To analyze these hybrids,
we use the following claims.

CLAIM 5.7. For any input (b,v) where player i is paid
at most P, it holds that (b,v) is not d-distinguishable for
monotonic neighbors for player i with respect to Mouw for
any 6 > P/v;.

Claim 5.7 holds because by individual rationality, it holds
that the privacy loss does not exceed P. By the assump-
tion that the privacy loss functions are growing with sta-
tistical distance for monotonic neighbors, it follows that
A(Mout (b, v), Moy (b',v")) < P/uv; for all (§',v") monotonic
neighbors of (b, v).

CLAM 5.8. Pay, (z""19) < Pay, (V) < P.

As in the proof of Theorem 5.3, this claim holds because
on input z("1, player ¢ + 1 has 0 privacy valuation, and
so Pay,(z(*Y) < P by our assumption that the mechanism
pays at most P to players with 0 privacy valuation. The in-
equality Pay, (z(T19) < Pay, (2" follows as in the proof
of Theorem 5.3 from the truthfulness of the mechanism for
privacy-indifferent players and by the fact that the privacy
loss functions respect indifference.

We may apply Claim 5.7 to conclude that for all ¢ € [h],
since player 7 has valuation L in z(F%% it therefore holds
that (719 cannot be (P/L)-distinguishable for monotonic
neighbors for player i. Since 20 20+19 are monotonic
i-neighbors, it follows that A(H®, H+1.9) < p/L.

Repeating the same argument for all ¢ € [h + 1, h + 2yn)]
and using the fact that player i has valuation 7 in £+
for these i, it follows that A(H®?, HO+1L9) < p/r.

Combining the above using the triangle inequality and
applying the definition of L, we deduce that

P
L

For i € [n], define the open interval on the real line A(z) =
(i—1—(n+v)n,i—1+4~n). Since the sum of the data bits

in (%% is exactly i — 1, in order for M to be ([n+~,7], 8)-
accurate, it is necessary that

PrH” ¢ A(i)] >1—Bforallie [h+2ym+1] (5.2)
Observe that A(1) and A(h+2yn+1) are disjoint. There-
fore, Equation 5.1 implies that
Pr[H"? € A(1)] < Pr[H" 200 ¢ A(1)] +1-28

By Equation 5.2 it follows that Pr[H"+27+10) ¢ 4(1)] < g
and therefore from the previous inequality we deduce that
Pr[H®% € A(1)] < 1—4. But this contradicts Equation 5.2,
and therefore it must be the case that M is not ([n+~, 7], 8)-
accurate. [

A(H(LO) H(h+2m+1,o)) M
-

+ <1-28 (5.1)
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REMARK 5.9. A different way to evaluate the accuracy
guarantee of our mechanism, (the one taken in the work of
Ghosh and Roth [GR11]) would be to compare it to the op-
timal accuracy achievable in the class of all envy-free mech-
anisms with budget B. However, in our context it is not
clear how to define envy-freeness: while it is clear what it
means for player i to receive player j’s payment, it is not at
all clear (without making further assumptions) how to define
the privacy loss of player i as if he were treated like player
j, since this loss may depend on the functional relationship
between the player i’s type and the output of the mechanism.
Because of this, our mechanism may not envy-free (for rea-
sonable privacy loss functions), and so we refrain from using
envy-free mechanisms as a benchmark.
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