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Project Goal
We propose to lead a community effort to build a system of tools for enabling privacy-protective
analysis of sensitive personal data, focused on an open-source library of algorithms for generating
differentially private statistical releases. We aim for this platform, OpenDP, to become the standard
body of trusted and open-source implementations of differentially private algorithms for statistical
analysis and machine learning on sensitive data, and a pathway that rapidly brings the newest
algorithmic developments to a wide array of practitioners.

Objectives
We envision OpenDP as an open-source project for the differential privacy community to develop
general-purpose, vetted, usable, and scalable tools for differential privacy, which users can simply,
robustly and confidently deploy.

Proposed Activities
We will run workshops and provide small research grants to build a community of DP experts
committed to an open-source library of DP algorithms and a system to deploy them. Together
with this community we will produce a blueprint for library contributions and system deployment,
and begin this development.

Expected Products
We will build a small steering group for OpenDP as well as an extended open-source community of
experts, and produce a minimum viable system by the end of one year of support. We will establish
a solid foundation for long-lasting continued development of the OpenDP system.

Expected Outcomes
We will enable researchers to find, explore and analyze sensitive data, and for government, industry,
and other institutions to share such sources. The resulting contributions to knowledge, given the
burgeoning new sources of sensitive data, will help shape all fields of knowledge on human behavior.
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OpenDP: An Open-Source Suite of Differential Privacy Tools

1. What is the research question and why is it important?
We propose to lead a community effort to build a system of tools for enabling privacy-protective
analysis of sensitive personal data, focused on an open-source library of algorithms for generating
differentially private statistical releases. We aim for this to become the standard body of trusted
and open-source implementations of differentially private algorithms for statistical analysis and
machine learning on sensitive data, and a pathway that rapidly brings the newest algorithmic
developments to a wide array of practitioners.

When big data intersects with highly sensitive data, both opportunity to society and risks
abound. Traditional approaches for sharing sensitive data are known to be ineffective in protecting
privacy. Differential Privacy [DMNS06], deriving from roots in cryptography, is a strong mathe-
matical criterion for privacy preservation that also allows for rich statistical analysis of sensitive
data. Differentially private algorithms are constructed by carefully introducing “random noise” into
statistical analyses so as to obscure the effect of each individual data subject. (See the appendix
for more background on differential privacy.)

Despite substantial demand from government agencies, human-subjects research communities,
industry, and data archivists, practical adoption of differential privacy remains slow. To address
this problem, we propose to encourage and guide the research community in constructing OpenDP,
a trustworthy suite of differential privacy tools that will be a public resource for use by any orga-
nization wanting to make use of differential privacy.

Some of the use cases we envision for OpenDP are to enable:
• Archival data repositories, such as Dataverse, ICPSR, and Zenodo, to offer academic researchers

privacy-preserving access to sensitive data. This would allow both novel secondary reuse and
replication access to data that otherwise is commonly locked away in archives, or shared using
ineffective “deidentification” methods that fail to protect privacy.

• Government agencies to safely share sensitive data with researchers, data-driven policy makers,
and the broader public. For example, although the US Census has invested heavily in differential
privacy, they continue to lack a library of algorithms they can promote to other Federal statistical
agencies who seek to draw on their expertise.

• Companies to share data on their users and customers with external researchers (as in the Social
Science One project funded in part by the Sloan Foundation) or with institutions that bring
together several such datasets (as in the proposed “Institute for the Secure Sharing of Online
Data” being formulated under a grant from the Sloan Foundation). This enables groundbreaking
research on novel informative datasets, often of important social consequence, without the ex-
pense of one-off single researcher solutions or the risk of violating user trust (as in the Cambridge
Analytica incident).

• Additionally, beyond the context of sensitive data, Differential Privacy has been shown to guard
against overfitting and to ensure generalization, and our released tools could also be used for
increasing the robustness of empirical findings.

Although we see many more potential use cases for researchers, industry, policymakers and the
broader public, we are focused on opening otherwise siloed and sequestered sensitive data to support
scientifically oriented research and exploration in the public interest. This presently means we would
focus on the “centralized model” of differential privacy, in which there is a trusted “curator” that
can store and compute on the entire sensitive dataset to produce statistical releases or synthetic
data (which are infused with noise in order to satisfy differential privacy).1 More details on the

1An alternative model for differential privacy is the “local model” where noise infusion is done by the data subjects
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first two use cases above can be found in the appendix.

2. What is the state of the research on this question?
As mentioned above, differential privacy has started to have large-scale deployments in industry
and government (Google, Apple, Uber, US Census Bureau) and there is also an extensive body of
implementation and experimental work in academia. As far as we know, all of this work falls short
of our goals for this project as they:

1. are highly tailored to a specific application, with particular data sets and types of analyses
to be supported,

2. require more expertise in computer science or differential privacy than our anticipated users
would have,

3. and/or have not been vetted by the differential privacy community at large.
In the Privacy Tools Project at Harvard, we have been developing a differential privacy tool,

PSI (a Private data Sharing Interface), that aims to address Items 1 & 2 above [GHK+16]. PSI
is being designed to integrate into data repositories like the 40 repositories that use the Dataverse
software infrastructure, to allow releasing public statistical summaries and providing interactive
queries for exploratory data analysis. PSI is planned for beta deployment along with Dataverse
5, targeted for the end of 2019. However, PSI’s functionality (in terms of the statistical analyses
it supports) is still fairly limited, and the underlying library of implemented differentially private
algorithms has not been vetted by the research community at large.

We envision OpenDP as a larger open-source project for the differential privacy community to
develop general-purpose, usable, and scalable tools for differential privacy (DP) in which users can
have confidence. PSI, along with other implementations of differential privacy in academia and
industry, can serve as starting points for components of OpenDP, which we envision will continue
to grow and evolve through the community that builds around it. A community-driven open-source
library that incorporates contributions from many such projects will have greater capabilities, better
trust, and broader adoption, which will lead to faster translation of differential privacy to practice.
Moreover, even among current existing government and industry deployments, there has been a
stated desire to draw from common, trusted, open codebases, rather than reinvent the underlying
primitives continually for each new project, and we believe that OpenDP will provide that codebase
and receive enthusiastic code contributions from industry partners.

3. Why is the proposer qualified to address the research question for which funds are
being sought?

This project has emerged from the successful collaboration of our team in the Harvard Privacy
Tools Project, which has been funded by an NSF Secure and Trustworthy Cyberspace Frontier
Project, “Privacy Tools for Sharing Research Data,” the Sloan Foundation grant “Applying The-
oretical Advances in Privacy to Computational Social Science Practice,” and other sources. This
multidisciplinary project is a joint effort of Harvard’s Institute for Quantitative Social Science

themselves before sending anything to the (now untrusted) curator; this has been used in commercial deployments
by companies such as Google, Apple, and Microsoft for collecting data from their customers. An intermediate model
between the centralized and local models is the “multiparty model” where several curators hold sensitive datasets
about different subjects (e.g., hospitals, each with data about their patients) and the goal is to allow for statistical
analysis over the union of the datasets. However, the reduced need for trust in these models has a significant
price, either in the accuracy of statistics computed or in computational complexity coming from use of cryptographic
techniques like secure multiparty computation. These models would require a significantly different and more complex
software architecture than our proposed suite of tools for centralized differential privacy.
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(IQSS), the Center for Research on Computation and Society (CRCS), and other centers. One of
the key products of this project is the PSI tool mentioned in the previous section, for which the
proposers led development.

PI Salil Vadhan is a Harvard College Professor and the Vicky Joseph Professor of Computer
Science and Applied Mathematics in the Harvard Paulson School of Engineering and Applied
Sciences. He is the lead PI on the Harvard Privacy Tools Project, and was CRCS Director from
2008-11 and 2014-15. Over the past decade, he and his collaborators have obtained numerous
results delineating the border between what is possible and impossible with differential privacy.
He is a recipient of a Simons Investigator Award, a Gödel Prize, a Guggenheim Fellowship, a
Sloan Fellowship, a Phi Beta Kappa Award for Excellence in Teaching, and the ACM Doctoral
Dissertation Award.

Co-PI Mercè Crosas is Chief Data Science and Technology Officer at IQSS and Harvard
University’s Research Data Officer at the Office of Vice Provost for Research. Together with co-
PI King, Crosas started the Dataverse software project in 2006 and has since led development of
the project. Her role is to provide strategic direction for the architecture, design, and research of
the Dataverse project, and lead its community engagement. In particular, Crosas initiated four
years ago the successful annual Dataverse Community Meeting, which brings together about 200
Dataverse developers and users from around the world. With this initiative and other outreach
efforts, the Dataverse project has now more than 80 contributors, generates 12 releases a year with
550 pull requests, and has 40 installations of the software platform across practically all continents.
Crosas also participates in numerous community groups to build standards for research data and
software, including data citation and software citation principles and implementation.

Co-PI James Honaker is a Research Associate at CRCS. Previously he has been a Senior
Research Scientist at IQSS, and faculty at Penn State and UCLA. He leads development of the
PSI: Private data Sharing Interface. His research focuses on statistical software solutions for broad
problems in quantitative social science. He is the author of several widely used statistical software
packages for quantitative social science, including Amelia (for missing data), Zelig (for statistical
inference and interpretation), and TwoRavens (for data exploration and automated machine learn-
ing). He won the 2014 Award for Best Statistical Research Software of the Society for Political
Methodology.

Co-PI Gary King is the Albert J. Weatherhead III University Professor at Harvard University—
one of 24 with Harvard’s most distinguished faculty title—and Director of the Institute for Quanti-
tative Social Science. King develops and applies empirical methods in many areas of social science
research, focusing on innovations that span the range from statistical theory to practical applica-
tion. King leads the Dataverse project together with co-PI Crosas, and leads Social Science One
together with Nathaniel Persily. He will lead our efforts to find social science use cases for OpenDP,
as well as our efforts to raise industry support.

All four have been extensively involved in five years of summer programs training and mentoring
research fellows (undergraduate, graduate and postdoctoral) in privacy research and tools imple-
mentation, as well as spearheading workshops on privacy both for the research community and the
broader lay public of quantitative researchers and data archivists. In response to discussions with
government and industry about the difficulty finding and training engineers to work in privacy, PI
Vadhan and co-PI Honaker have developed and are currently teaching a graduate course examining
the pragmatics of software deployments of differential privacy.

4. What is the research methodology?
We orient the construction of our proposed tools around a series of key principles for ensuring
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trust, a community structure for enlarging participation, and a series of architectural components
for establishing adoption of our tools. We detail these key principles here as the foundation for
describing our community building and tool architecture in the next section.

Key Principles: The design and community governance of the system should reflect the following
core design principles to allow for the most trusted and capable system:
• Open Source: Research and Development advances will be driven by an open-source community,

with a core team that will guide the implementation and priorities. It will engage a broad
set of DP experts and development contributors worldwide, through appropriate processes and
incentives.

• Security and Privacy: To guard against security and privacy risks, the additions to the API or
to any critical component of the service must be vetted by security experts, additions to the
library of differentially private algorithms must be vetted by experts in differential privacy, and
the service itself should avoid storing (and in most cases even accessing) raw sensitive data.

• Scalability: The service must provide means to scale for datasets of TB to PB size.
• Extensibility: The architecture must be modular and allow contributions of new features through

a well defined process.

5. What is the work plan?
The key principles above provide the framework from which we build both our community and
system architecture, and we now describe these concrete components of our project strategy. Finally
we provide our current blueprint for system development, although we expect that this will evolve
through community contribution.

Key Phase Zero Community Building As an open-source community effort, and anticipat-
ing broad adoption across data partnerships, the community architecture—including governance,
appropriate resources, and community engagement—is as important as the technical software ar-
chitecture. We envision a foundational Phase Zero in which we assemble expert involvement around
key tasks, leverage current work by co-PI Crosas on open-source software health,2 and follow rec-
ommendations provided by the NumFocus project3 to define OpenDP’s community architecture
and sustainability (see Appendix for more on project sustainability). Key teams include:
• Principal DP scientist(s): Oversees the design and implementation of the DP library, bud-

geting interfaces and other aspects of the privacy preserving architecture.
• OpenDP architect (CTO or CSO): Designs and guides implementation of OpenDP archi-

tecture. Leads the process to approve the implementation of a new model in the DP service,
critical changes in the technical components, and extension of the API.

• Steering committee: Assembled from experienced distinguished experts in the curation, anal-
ysis, and protection of data as well as open-source software development, this committee peri-
odically reviews the growth priorities and capabilities of the system, as well as the community
engagements, and provides guidance and direction to all aspects of the system development.

• DP oversight committee: Consists of experts in the development and deployment of differ-
entially private algorithms. They will provide guidance on the architectural choices in OpenDP

2Co-PI Crosas leads a joint IMLS and Sloan funded project titled “A Proposed Quantitative Index to Un-
derstand and Evaluate the Health of Open Source Projects”, which leverages the also Sloan funded CHAOSS
project (https://chaoss.community/) and the IMLS funded ”Lyrasis: It Takes a Village” (http://lyrasisnow.
org/press-release-itav-guidebook/) project to define metrics to evaluate the health of academic open-source
software projects

3https://numfocus.org/
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that implicate differential privacy and the prioritization of methods from the differential privacy
research literature to incorporate into OpenDP, as well as serve as an editorial board for the
vetting of algorithms and their implementations as they are incorporated into OpenDP.

• Security oversight committee: This committee consists of experts in computer security, who
will oversee and provide guidance on security aspects of the system architecture, including secure
storage, transfer APIs, authentication, information flow, side-channel attacks, and processes for
identifying vulnerabilities (e.g. via bug bounties).

• DP development team: In charge of technical components requiring DP expertise, such as
the library, programming and graphical interfaces, and verification of code.

• System development team: In charge of technical development of system architecture, de-
ployment, containers and APIs, and integration with data custodian partners.

• Open-source coordinator: In charge of driving the collaborative process, the open-source
coordinator collects input from all the stakeholders: the contributors of code to OpenDP, the
academic, government, and industry organizations that will deploy and use OpenDP, and indi-
vidual end-users, so as to help set priorities, grow the community, and foster adoption.

In this hierarchy, teams are primarily made up of staff developers who create robust, polished,
enterprise code, while committees are made up of research and practitioner experts who provide
expert guidance and vetting, in addition to contributing code coming from their own research. Of
these, the three committees—the steering, DP oversight, and security oversight committees—are
the key and novel building block of our community plan. These are the points at which we plan
to harness the contributions of motivated researchers and experts. The steering committee will
consist of experienced distinguished experts representing many of the stakeholders that OpenDP
will serve, including the DP research community, privacy policy, social science, medical informatics,
data repositories, open-source software development, government, and industry organizations. It
will provide guidance on the broad goals of the system and review its growth priorities, accomplish-
ments and milestones. We envision that in steady state, it will meet twice per year, though perhaps
more frequently during the ramp-up of OpenDP. The DP oversight committee will be filled with
leading experts in the development and deployment of differentially private algorithms. They will
recommend the most pressing algorithms to add to the library; oftentimes, additionally committee
members would contribute code from their own research to form the first draft of library imple-
mentations. The DP committee will oversee the vetting of the mathematical proofs of algorithms
before the DP development team begins writing code implementations, and then also oversee the
review and verification of the code. Similarly, the security oversight committee would be created
from researchers in systems security, and will provide guidance on security aspects of the system
architecture. We expect that these oversight committees will meet quarterly in steady state, with
some work carried out between meetings (similarly to an editorial board). Our initial ideas for the
membership of these committees is listed in the appendix.

While the committees are constructed mostly from researchers, the DP development and system
development teams are primarily composed of professional software developers. Some funding
from this proposal would go towards some positions in these teams, and our plan would grow
these teams with future grants and industry support. To foster contributions from and use by
industry, we envision offering six-month residencies, wherein companies could send developers to
join the OpenDP team, contribute to OpenDP codebase, and learn and train in differential privacy
before returning to their companies, where they may also continue to contribute to the OpenDP
codebase as their company makes use of OpenDP’s tools. (We have extensive experience in teaching
differential privacy through the tutorials we have offered every year in the very successful Privacy
Tools summer internship program, and the “Applied Privacy for Data Science” graduate course
currently being taught by Honaker and Vadhan.) As we intend for this to be a community-wide

6



effort, we are keen to cooperate with any commercial and non-commercial partners who agree with
the value of such a library.

The team of co-PIs in this proposal, Vadhan, Crosas, Honaker, and King, are committed to the
successful flourishing of this project and system and leading it through at least its first year. PI
Vadhan will serve in the role of Principal DP scientist for the initial launch of OpenDP, but a newly
recruited community member might take on this role in the future. PI Vadhan, and co-PIs King
and Crosas will be part of the steering committee, while co-PI Honaker will start off by leading the
DP development team and participating on the DP oversight committee. The committees will be
filled by community experts in security and privacy from academia and industry recruited in the
Phase Zero supported by this proposal.

Key Phase One Deliverables In Phase One we plan to build a deployable privacy preserving
solution over the course of a year. The exact architecture and specifications of these components
will be driven by community decisions in Phase Zero, but we expect the following components to
be crucial to any successful approach.
• Library of DP Algorithms/Methods: A library of DP methods will grow as the open-source

community contributes new models. A new method will go through vetting managed by the DP
oversight committee before it is released and supported through the API.

• Budgeting Interfaces: We propose to provide at least two interfaces to the system, for two types
of users. The first is a clear intuitive graphical user interface (GUI) that provides a constrained
workflow and detailed guidance to users that allows data owners and analysts with no privacy
expertise to make informed choices about the balance between accurate answers and accumulated
privacy loss. In addition, we propose to provide a more expressive programming interface that
allows a sophisticated user to describe more sophisticated and customized statistical releases
built up from basic differentially private primitivesMach.

• API: A new API needs to be defined for this new service. The API will support submitting a
DP request based on one of the supported DP methods in the library. The REST API should
be secured by using an authorization protocol such as OAuth2.0. The API should be registered
as a SmartAPI to follow best practices from the open-source community,

• Containers: The DP service will use a container (Docker, or similar technology) that holds the
script of DP algorithms and requests to be applied to the data. The container is pulled from the
location of the data source. The analysis takes place in the data enclave where the sensitive data
resides, and the raw data never needs to leave the enclave or data source. The results are placed
in a location accessible by the DP service.

• Authentication and Authorization: OAuth2 protocol (or similar) will be used to authenticate and
authorize users to use the API.

• Large-scale data engine: For large datasets, it might be necessary to deploy a Spark cluster or
similar big data engine to run the DP algorithms in the data source location. In this case, the DP
methods will need to be written to support Spark (or in particular SparkR) and take advantage
of computing parallelism.

Many of these components, may be adopted individually by practitioners for use in their own
projects. For example, a government agency might use the Library as is to release privacy pre-
serving statistics, an organization with DP expertise might use the Library as a starting point for
designing custom DP algorithms (which they then can contribute back to OpenDP), and an indus-
try portal might use the budgeting GUI to facilitate simple queries from non-experts for their own
DP algorithms. However, in combination, the set of components will allow the full OpenDP system
to be a web service that provides the ability to construct scripts or code to generate differentially
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private statistical releases on a sensitive, secure, remote dataset, when supplied with the appropri-
ate metadata to construct the release, and correctly measures the cumulative privacy loss of such
releases. OpenDP will expose an Application Programming Interface (API) that allows agents who
hold sensitive data, as well as authorized analysts, the ability to describe statistical releases they
require from OpenDP’s library algorithms, and returns securely to the site that holds the data
the code to generate these privacy-preserving releases. These privacy-preserving algorithms will be
curated from the expert community of differential privacy researchers, vetted by the DP oversight
committee, and published in open-source formats that can be run on common large-scale data
science stacks.

Relation to Previous Work by the PIs In our work most directly related to OpenDP, and
which was funded in part by a grant from the Sloan Foundation, co-PIs Honaker, King, Vadhan, and
collaborators have built the prototype tool, PSI (a Private data Sharing Interface), to demonstrate
that the strong privacy guarantees of differential privacy could be brought to practice for use by
quantitative social scientists with archival data. While differential privacy is a highly specialized
mathematical field completely removed from the topics covered in quantitative statistical training,
our goal was to prove that a system could be used by data collectors and analysts without any
advanced training, and without any involvement or intervention by computer scientists or other
experts in data privacy. In much the same way that most researchers use statistical software
without needing to know anything about the underlying computer architecture, we aimed to build
a system that allows researchers who want to distribute data to focus on their research topics, and
contribute and leverage what they know about their data, while abstracting away the mechanisms
that protect privacy. In addition to accessibility, we aimed to build a generalized system that
would work across the wide variety of social science datasets that might be deposited in a data
repository like those that use the Dataverse platform. In the technical literature, and in the existing
industrial deployments, DP algorithms are often highly tailored and tuned to a specific attached
use case, while our goal of a system that does not require the intervention of privacy experts means
focusing on generalizable techniques that pragmatically and robustly work across the spectrum
of data settings. PSI is part of a larger effort to expand the Dataverse repository infrastructure
to take on sensitive data, including other important elements such as support for secure storage,
authentication, customized terms of use, and other law and policy aspects of sensitive data. This
includes integration of Dataverse with the DataTags system [SCB15], a set of standardized levels
that define security, access, and contractual (DUA) requirements. Using the DataTags system will
help guarantee that these pre-defined requirements assigned to each dataset will be accordingly
satisfied. We plan for the release of Dataverse version 5 by end of 2019 to incorporate these
features, including configuration to integrate with a beta version of PSI as an external tool, so that
the 40 data repositories around the world that use Dataverse can start hosting sensitive data and
employing differential privacy as one means for accessing such data.

Our experience in building and deploying PSI will greatly inform our efforts towards OpenDP.
We expect that elements of PSI’s architecture, and possibly some of the actual software, will be
incorporated into the OpenDP suite. However, OpenDP will greatly expand the capabilities and
scope of PSI in a number of respects. First, the library of differentially private algorithms currently
underlying PSI is quite minimal; OpenDP aims to produce a much more comprehensive library
incorporating sophisticated, state-of-the-art methods contributed by researchers throughout the
differential privacy community. Second, OpenDP will incorporate architectural insights coming
from other efforts in the differential privacy community to design general-purpose differential pri-
vacy tools, such as as PinQ [McSherry09], εktelo [ZMK+18], PrivateSQL [KTM+19], Fuzz [HPN11]

8



and LightDP [ZK17]. Like PSI, most of these tools are currently research prototypes; OpenDP will
provide an avenue to turn them into production-ready tools and get them into the hands of many
users.

Furthermore, our experience building an active and growing community for the Dataverse
project and our current joint IMLS and Sloan-funded project titled “A proposed quantitative
index to understand and evaluate the health of open source projects” will inform us how to best
build and grow the OpenDP community. On one hand, the experience with Dataverse has showed
us the importance of being connected to the community through a diverse set of venues: active
mailing lists, bi-weekly community calls, and an annual in-person community meetings. It has
also showed us the importance of managing the project using an agile approach, with transparency
about the project’s roadmap, the issues backlog, and what is being worked on each sprint (2 weeks),
as well as a technical and management process that enables the community to easily contribute
their code. On the other hand, our current work on open-source software health metrics will help
assess quantitatively the growth and sustainability of academic open-source software projects, us-
ing expert elicitation and mixed methods approach to define the appropriate (weighted) metrics
for each project based on a defined set of project goals. The outcomes of this study can help
define and collect the appropriate metrics for OpenDP. The appendix contains more details on our
sustainability plan.

OpenDP Architecture
Library: Our fundamental goal is for the OpenDP library to become the standard body of trusted
and open-source implementations of differentially private algorithms for statistical analysis and
machine learning on sensitive data, and a pathway that rapidly brings the newest algorithmic
developments to a wide array of practitioners. To reach this breadth of adoption, we want to
support the currently most common definitions of differential privacy (such as pure, approximate,
and concentrated differential privacy for tabular data), and be extensible to allow for including
other versions in the future.

We have a core library from PSI in R, but presently plan to port and rebuild either in Python,
or in C++ with R and Python bindings to allow for contributions in both languages.

Metadata for the algorithms in the library would define which privacy definition(s) the algorithm
meets, and allow the system to offer different correct subsets of the library depending on the
library user’s chosen privacy model. In addition to vetted algorithms to make a library useful
in deployment and to practitioners, we have found through our experience with PSI that these
algorithms need a flora of surrounding utility functions for various types of use, such as to translate
privacy-loss parameters into promises of accuracy in the DP releases, or conversely to determine
the required privacy-loss parameter to meet a desired level of accuracy, as well as to construct
confidence intervals about releases, and to “post-process” other statistical information that can be
released for no privacy loss as functions of previously released information. Our library would also
offer composition functions for measuring total privacy-loss across releases across an analysis. We
have examples of all of these functions for the present statistics available in our PSI Library in R,
including code for the optimal composition theorem for approximate differential privacy [MV16],
the theoretical work for which was developed specifically for PSI.

We envision the library having a modular architecture like εktelo [ZMK+18] that isolates and
minimizes privacy-critical trusted code that needs to be verified carefully. This privacy-critical code
will be verified by a combination of manual vetting by DP experts (the DP oversight committee)
and tools for formal verification of DP (which started with Fuzz [HPN11] and has now become
much easier to use with systems like LightDP [ZK17]).
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Interfaces: A library of differentially private algorithms is not sufficient to enable non-experts to
use differential privacy safely; it is also essential to have tools that manage the limited “privacy loss-
budget” over many statistical releases by a data holder and/or interactive queries by data analysts.
One of the challenges is that it can be difficult to understand the implications of different selections
of the privacy loss parameters (namely ε and δ), both in terms of privacy and utility, especially
when these need to be distributed over many different statistics. We envision that OpenDP will
include several budgeting and query interfaces that can be used with the underlying library.

We anticipate that one of these budgeting and query interfaces will be similar to the graphical
user interface that we have built for PSI (and indeed this may be PSI’s most concrete contribution
to OpenDP). The PSI interface exposes the accuracy versus privacy tradeoff to users in easy-to-
understand terms and is accompanied by a variety of simple explanations of differential privacy
and its parameters that are shown to the user at relevant times, with tailored natural language
interpretations. Through this support, analysts who may not have any familiarity with differential
privacy can still make decisions about what statistics they would like to release, informed by the
level of accuracy that can be expected. We have invested in usability experiments with non-expert
data analysts to continue to refine our system, and to demonstrate the potential of this approach.
While the PSI use-case required extensive development of a GUI for applied researchers, we believe
a programming interface will be an important requirement for many of the more sophisticated
users of our library and system. A programming interface would allow users to write scripts using
our library and automatically certify that all of the points where the sensitive data is touched
are through the vetted differentially private mechanisms in the library, and enforce a privacy-loss
budget across an entire analysis or even from cumulative analyses from different researchers whose
previous releases have been recorded. PSI does not presently offer a programming interface, and
does not have the capability to track the privacy loss budget for analyses that go beyond what
can be expressed in its GUI. Instead, we hope to incorporate insights coming from programming
frameworks such as PinQ [McSherry09] and εketelo [ZMK+18].

Containerization: We envision OpenDP will not directly touch sensitive data, but instead will
generate code to construct differentially private releases, that can be securely sent to the secure
locations where the data is presently stored, and the owners (who may verify the certification of
the code) can run the code on their own data to generate a differentially private release. This may
involve utilizing OpenDP created or sanctioned software components for executing these scripts,
such as to guarantee randomness and prevent side-channels in the execution. OpenDP will also
guide a schema standard for the storage and sharing of differentially private releases, for interop-
erability with different users and reusers of OpenDP releases. The service needs to guarantee that
only approved and secure requests can be submitted, and the generated code is securely returned.
Creating trusted code that can be executed remotely, in a “software as a service” model, will allow
our system to provide data owners a way to keep very large or very sensitive data on their own
systems, and execute all analyses in their own trust environments. By removing the need to move
sensitive data to places where owners lose control, we think we can increase the willingness of data
owners to open privacy-preserving access to their data, and also remove the risks of data being
exposed in insecure or unintended locations or intercepted in transit.

The appendix contains more details on important system design choices in OpenDP.

Community Engagement The success of OpenDP will rely crucially on buy-in and participa-
tion from the wider differential privacy community, to participate in the development and gover-
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nance of OpenDP, to contribute code to its libraries, and help in vetting code contributed by others.
To this end, PI Vadhan pitched the vision described in the present proposal at the Sloan-sponsored
March 2019 workshop “Data Privacy: From Foundations to Applications” at the Simons Institute
for the Theory of Computing, where many of the leaders in bringing differential privacy to prac-
tice (from academia, industry, and government) were present. The talk received an enthusiastic
response and led to an engaged discussion about how to ensure its success. We describe some of
the ideas offered below.

Researchers in the differential privacy community have a strong desire to maximize the impact
of their work, and OpenDP can provide a channel for such impact. To maximize these incentives, we
can provide code contributors with measures of how widely their code is used, and encourage users
of the library to cite the researchers who designed the algorithms they used. Along these lines, we
have been working to make the PSI library self-citing, so that as an analysis is constructed, all the
algorithms that have been used are put into a bibliography that credits the original paper authors, to
facilitate the proper citation of works contributed to the library. The cloud deployment of the library
in the OpenDP system could also track the usage of algorithms and report metrics to the original
authors to show the impact of their work. Another idea is to offer automated benchmarking against
a corpus of test datasets (building on DPBench [HMM+16]), so that contributors of algorithms
can easily demonstrate the utility of their contributions in papers they produce from their work.
A “bug bounty” program can be used to incentivize the community to carefully inspect any new
contributions to OpenDP for vulnerabilities.

Our proposal to offer 6-month residencies for software engineers from industry also came from
this community discussion, out of a recognition that there is currently a high demand (but low
supply) for differential privacy engineers.

6. What will be the output from the research project?
We aim for OpenDP to become a standard body of trusted and open-source implementations of
differentially private algorithms for statistical analysis and machine learning on sensitive data, and
a pathway that rapidly brings the newest algorithmic developments from the theoretical literatures
to a wide array of practitioners. As such we want to build a long-lasting open-source community,
with no foreseeable endpoint. To accomplish this we plan a two-phase deployment together with
a speedy (Phase Zero) period of community building and engagement, which together form a two-
and-a-half-year launch window. We expect a deployable DP solution and a coalesced community
of privacy research experts and practitioners by the end of our first year, which is the period for
which we are asking for support.

During the Phase Zero period we plan to establish the foundational community of researchers
and practitioners to build OpenDP. Two major products of this period are linked workshops to
establish the open-source community and achieve the buy-in of experts and practitioners. Immedi-
ately we plan to host a small workshop, focused on laying a groundwork, and composed primarily
of differential privacy experts who have experience on deployed DP systems (such as those on
the proposed DP oversight committee, as listed in the Appendix), along with a few additional
key experts (e.g. on open-source software development). This workshop will produce the starting
whitepaper of both the software architecture and community structure, as well as the method of
recruitment to the following workshop. Subsequently, we propose to run a much larger workshop,
that is broadly inclusive of the many stakeholders for OpenDP, such as those on the proposed com-
mittees (see Appendix). In this workshop, we will introduce the whitepaper from the first workshop
as the foundational proposal, and allow the broader community to develop and refine the vision
of both the community principles and the software architecture of the project itself. We expect
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Timeline Key Deliverables
Phase Zero 0-6 months Community Building, Funded

Organizational Workshops, Period
Architectural Specifications,
Board and Leadership Roles Filled.

Phase One 7-12 months Budgeting Graphical User Interface, Funded
Large Scale Data Engine, Period
Continued Library Development,
Continued Security Engineering.

13-18 months Budgeting Graphical User Interface,
Large Scale Data Engine,
Continued Library Development,
Continued Security Engineering.

Phase Two 18-30 months Expanded Use Case Partner Development,
Additional Library Contributions,
Architecture and Deployment Improvements.

these workshops to conclude and publish their finalized guidelines within six months. The key
deliverable from these workshops should be a formal open-source structure for this project, a core
of researchers committed to the required service roles, and an agreed-upon architectural blueprint
for the OpenDP library and system development.

During Phase One we plan to build a deployable privacy-preserving solution over the course
of a year. The first six months of this will be supported by this grant. In the funded period we
will deliver a minimal viable product of the OpenDP platform, including a library of differentially
private algorithms, an architecture for running DP operations composed of these libraries in remote
storage, and a programming interface for using this library that will confirm and verify that an
analysis meets the privacy-loss constraints desired by the user.

While both the scale of the system and the timelines we are proposing are ambitious, we
believe we can draw on our earlier experience building the more limited differential privacy toolkit,
PSI, as well as similar projects of interested collaborators, to kick-start development. This, in
combination with a notably strong and broad core of theoretical computer scientists and applied
quantitative practitioners in our existing research group, and strong interest from the broader
research community and government and industry adopters to join this endeavor, can give this
project a rapid launch from which we envision OpenDP will continue to grow and evolve through
the community that builds around it.

In addition to the major products of community formation and minimum viable OpenDP re-
lease, we expect numerous secondary research developments. In particular, during Phase One, as
part of our open-source strategy, we have set aside funds to provide small grants to research con-
tributors to aid in tasks for the system development and the library implementation. We anticipate
around 5 small grants to aid researcher and student time, and cement proposed contributions to
OpenDP. From this, we expect not only the flourishing of the concrete software and service de-
liverables already described, but likely new research products, particularly on the pragmatics of
DP implementation and experimentation, such as papers and workshop talks, will be additional
products of this funding.
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Appendices

What is Differential Privacy?

[This section, except for the fifth paragraph, is a verbatim extract from the differential privacy
primer [WAB+18], coauthored by co-PI Honaker, PI Vadhan, and collaborators.]

Differential privacy is a strong, mathematical definition of privacy in the context of statistical
and machine learning analysis. It is used to enable the collection, analysis, and sharing of a broad
range of statistical estimates based on personal data, such as averages, contingency tables, and
synthetic data, while protecting the privacy of the individuals in the data.

Differential privacy is not a single tool, but rather a criterion, which many tools for analyzing
sensitive personal information have been devised to satisfy. It provides a mathematically provable
guarantee of privacy protection against a wide range of privacy attacks, defined as attempts to
learn private information specific to individuals from a data release. Privacy attacks include re-
identification, record linkage, and differencing attacks, but may also include other attacks currently
unknown or unforeseen. These concerns are separate from security attacks, which are characterized
by attempts to exploit vulnerabilities in order to gain unauthorized access to a system.

Computer scientists have developed a robust theory for differential privacy over the last fifteen
years, and major commercial and government implementations are starting to emerge. Differential
privacy mathematically guarantees that anyone viewing the result of a differentially private analysis
will essentially make the same inference about any individual’s private information, whether or not
that individual’s private information is included in the input to the analysis.

What can be learned about an individual as a result of her private information being included in
a differentially private analysis is limited and quantified by a privacy loss parameter, usually denoted
epsilon (ε). Privacy loss can grow as an individual’s information is used in multiple analyses, but
the increase is bounded as a known function of and the number of analyses performed.

Differentially private algorithms are constructed by carefully introducing random noise into
statistical analyses so as to obscure the effect of each individual data subject. Thus, differential
privacy reduces the accuracy of statistical analyses, but does so in a quantifiable manner that
introduces an explicit privacy-utility tradeoff. As the number n of observations in a dataset grows
sufficiently large, the loss in accuracy due to differential privacy generally becomes much smaller
than that due to statistical sampling error. However, it can be challenging to maintain high accuracy
for studies on modest-sized datasets (or modest-sized subsets of large datasets).

The differential privacy guarantee can be understood in reference to other privacy concepts:
• Differential privacy protects an individual’s information essentially as if her information were

not used in the analysis at all, in the sense that the outcome of a differentially private
algorithm is approximately the same whether the individual’s information was used or not.

• Differential privacy ensures that using an individual’s data will not reveal essentially any
personally identifiable information that is specific to her, or even whether the individual’s
information was used at all. Here, specific refers to information that cannot be inferred
unless the individual’s information is used in the analysis.

As these statements suggest, differential privacy is a new way of protecting privacy that is
more quantifiable and comprehensive than the concepts of privacy underlying many existing laws,
policies, and practices around privacy and data protection. The differential privacy guarantee can
be interpreted in reference to these other concepts, and can even accommodate variations in how
they are defined across different laws. In many cases, data holders may use differential privacy to
demonstrate that they have complied with legal and policy requirements for privacy protection.

Differential privacy is currently in initial stages of implementation and use in various academic,
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industry, and government settings, and the number of practical tools providing this guarantee
is continually growing. Multiple implementations of differential privacy have been deployed by
corporations such as Google, Apple, and Uber, as well as federal agencies like the US Census
Bureau. Additional differentially private tools are currently under development across industry
and academia.

Some differentially private tools utilize an interactive mechanism, enabling users to submit
queries about a dataset and receive corresponding differentially private results, such as custom-
generated linear regressions. Other tools are non-interactive, enabling static data or data sum-
maries, such as synthetic data or contingency tables, to be released and used. In addition, some
tools rely on a curator model, in which a database administrator has access to and uses private
data to generate differentially private data summaries. Others rely on a local model, which does
not require individuals to share their private data with a trusted third party, but rather requires
individuals to answer questions about their own data in a differentially private manner. In a local
model, each of these differentially private answers is not useful on its own, but many of them can
be aggregated to perform useful statistical analysis.

Differential privacy is supported by a rich and rapidly advancing theory that enables one to
reason with mathematical rigor about privacy risk. Adopting this formal approach to privacy yields
a number of practical benefits for users:

• Systems that adhere to strong formal definitions like differential privacy provide protection
that is robust to a wide range of potential privacy attacks, including attacks that are unknown
at the time of deployment. An analyst using differentially private tools need not anticipate
particular types of privacy attacks, as the guarantees of differential privacy hold regardless of
the attack method that may be used.

• Differential privacy provides provable privacy guarantees with respect to the cumulative risk
from successive data releases and is the only existing approach to privacy that provides such
a guarantee.

• Differentially private tools also have the benefit of transparency, as it is not necessary to
maintain secrecy around a differentially private computation or its parameters. This feature
distinguishes differentially private tools from traditional de-identification techniques, which
often conceal the extent to which the data have been transformed, thereby leaving data users
with uncertainty regarding the accuracy of analyses on the data.

• Differentially private tools can be used to provide broad, public access to data or data sum-
maries while preserving privacy. They can even enable wide access to data that cannot oth-
erwise be shared due to privacy concerns. An important example is the use of differentially
private synthetic data generation to produce public-use microdata.

Differentially private tools can, therefore, help enable researchers, policymakers, and businesses to
analyze and share sensitive data, while providing strong guarantees of privacy to the individuals in
the data.

Exemplar Use Cases

Some brief envisioned use cases are described in sections 1 and 5, and we elaborate some of those
here for richer detail and to give a greater vision of the potential impact of this project.

Open Science Data Repositories: Dataverse [King07, Crosas11, Crosas13, King14], developed
at Harvard’s Institute for Quantitative Social Science (IQSS) since 2006 under co-PIs King and
Crosas, enables researchers to share their datasets with the research community through an easy-

2



to-use, customizable web interface, keeping control of and gaining credit for their data while the
underlying infrastructure provides robust support for good data archival and management practices.
The Dataverse software has been installed and serves as a research data repository in more than
40 institutions worldwide. The Dataverse repository hosted at Harvard University4 is open to all
researchers, and contains one of the largest collections of small to medium sized research data in
the world.

Prior to our work, Dataverse repositories (like most general-purpose data repositories) had
almost no support for hosting privacy-sensitive data. Datasets with sensitive information about
human subjects were supposed to be “de-identified” before deposit. Unfortunately, research in data
privacy has demonstrated convincingly that traditional de-identification does not provide privacy
protection. An early and dramatic example of the problems with traditional de-identification
was given by Latanya Sweeney in the late 1990s [Sweeney97]. She showed how to re-identify
patients in “anonymized” medical insurance claims records that were publicly released by the
Massachusetts Group Insurance Commission by matching date of birth, gender, and ZIP code with
publicly available voter registration lists. Surprisingly, these three attributes uniquely identify well
over 50% of the US population [Sweeney00, Golle06]. In particular, she was able to identify the
medical record of William Weld, who was then governor of the state of Massachusetts. There
have since been numerous demonstrations of the ease of re-identifying subjects in de-identified
datasets, including Netflix movie rentals [NS08], geographical information system data [GS07],
genetic databases [MS00, MS01], and internet search engine logs [BZ06]. The risks posed by re-
identification are magnified as social science research becomes more data-driven, more external
sources of information that can be exploited for re-identification become available, and research
datasets are made accessible to the general public based on well-intentioned open data policies.

The current alternative to open data sharing in repositories like Dataverse is that researchers
depositing a dataset (“data depositors”) could declare their dataset “restricted,” in which case
the dataset would not be made available for download, and the only way for other researchers to
obtain access would be through contacting the data depositor and negotiating terms on an ad hoc
basis. This approach is also unsatisfactory, as it can require the continued involvement of the data
depositor, the negotiations can often take months, and thus it impedes the ability of the research
community to verify, replicate, and extend work done by others.

In our work on the Privacy Tools Project, supported by the National Science Foundation,
the Sloan Foundation, and the US Census Bureau, we have been building software tools to make
privacy-protective and data-sharing more accessible and efficient for researchers with no expertise
in data privacy, computer science, or law. These tools enable such researchers to use the methods of
differential privacy; to navigate the complex requirements of privacy laws, university data policies,
and institutional review board procedures; and to select appropriate data-handling policies and
data-sharing agreements. In particular, our tool PSI (described earlier in the proposal), will allow
a data depositor to offer differentially private summary statistics and exploratory data analysis to
a wide range of Dataverse users, in addition to allowing for approved researchers to apply for access
to the raw, sensitive data. As discussed in the proposal, the development of PSI so far has been
targeted at integration specifically with Dataverse repositories. Moreover, it currently supports
only a small collection of differentially private algorithms and its implementation has not been
vetted by the community at large.

OpenDP will allow for differential privacy to be safely deployed in a similar way across many
other data repositories in the social and health sciences. It will offer a professional and trusted
codebase that integrates easily with other repository platforms, with much more functionality than

4http://dataverse.harvard.edu
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any single academic research project can offer, and focused on the pragmatic statistical techniques
needed by quantitative researchers, including model optimization, inference and hypothesis testing.
OpenDP will offer a programming interface so that repositories can accept verified DP scripts to
run on the data in their holdings, and a graphical user interface for more simple data exploration.

Government Statistics: In recent years, federal, state, and local agencies have been making
increasing amounts of data publicly available pursuant to open data initiatives. Government open
data, from segregation and urban mobility to records of bicycle collisions, from geolocated crime
incidents to geolocated pothole reports, can support a wide range of social science research about
the fine-grained structure of social and political life. Notable open city portals include Boston’s
BARI5 and New York’s CUSP6, and the importance of such data is highlighted by the fact that
the meta-question of which governments have more open data and why has itself become a social
science literature [Ubaldi13, VBS14, ZJ14].

However, most government agencies are ill-equipped to appropriately address the privacy con-
cerns in their data. Consequently many datasets are either withheld or released with inadequate pro-
tections. Data published to municipal open data portals often undergo an ad hoc de-identification
process in which columns deemed identifying are removed or coarsened prior to release in microdata
formats, and identifiable and sensitive information can frequently be found in the published data.
For example, the open data portal for the City of Boston has published records of 311 requests
containing individual-level information, such as addresses of residents requesting assistance from a
program offering inspections to households with children suffering from asthma [AWO+16]. Our
Privacy Tools team, through ongoing engagement with open government data communities, has
developed a framework by which government agencies can match modern privacy tools to the risks
and intended uses of their data [AWO+16]. This framework has been advocated by a draft NIST
Publication [Garfinkel16] providing guidance to government agencies on applying de-identification
techniques. However, despite calling for use of “modern privacy tools” such as differential pri-
vacy across government, these tools are not currently available in software that can be used by
non-experts, in particular by government open data managers. Our work will start to remedy this
situation.

Government agencies will be able to use OpenDP to produce rich statistical summaries of sen-
sitive datasets that can be shared widely without worry that the combination of released statistics
will reveal individual-level information (in contrast to data de-identified using traditional means,
which have repeatedly been shown to be vulnerable to re-identification). This is similar to how the
US Census Bureau plans to use differential privacy to produce public-use microdata samples for
the 2020 Decennial Census. (In fact, members of our team are participating in a Census-funded
cooperative agreement, “Formal Privacy Models and Title 13,” that aims to help the Bureau in
this regard. That effort is synergistic with the one we are proposing here. ) In addition to tables
of statistics that would be of common interest, in principle it is possible to generate differentially
private “synthetic data” that reflects many statistical properties of the original dataset and thus
can be treated as a safe-to-release proxy for the original dataset. (For example, this can be done by
estimating the parameters of a statistical model in a differentially private way, and then generating
new data points using the model with estimated parameters.)

Agencies could also provide approved researchers with the OpenDP query interface to run
differentially private analyses of interest to them on the data. The reason to limit such access to
approved researchers is that every query made increases the privacy loss (ε) measured by differential

5https://www.northeastern.edu/csshresearch/bostonarearesearchinitiative/boston-data-portal/
6https://cusp.nyu.edu
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privacy, and thus there is a finite “privacy budget” of queries that can be made while maintaining
a desired level of privacy protection. The privacy budget could be quickly exhausted with a public
query interface. On their own, differential privacy tools may not provide sufficient accuracy or
support for the statistical methods that a researcher needs to use to obtain publishable results.
In such a case, a differentially private query interface can be used for exploratory data analysis,
for example for formulating hypotheses. The final analysis could then be carried out in a more
controlled manner, for example in an enclave similar to Census Research Data Centers or by having
an agency statistician vet and run the analysis for the researcher.

System Details

OpenDP System Properties Building a system that has broad use to a wide community
across a spectrum of applications requires an encompassing, modular architecture that can support
different materialized requirements. There are lots of choices inherent in any actual deployment of
differential privacy to a particular use case—choices in architecture, algorithms, trade-offs between
ease of use versus flexibility, even choices of what types of data to support. Our goal is to harness
the knowledge and abilities of the community of experts to make decisions reflecting the state of
the art, while maintain flexibility when relative trade-offs favor different styles of applications. In
general, we want to architect OpenDP so that the system can be adapted in the longer run to
have broad adoption and use, while not needlessly slowing immediate application to the currently
prioritized use cases. From our experience building PSI, and intensely reviewing other differential
privacy deployments, we describe some of the key system decisions needed and how our OpenDP
platform will accommodate them. We also show the process by which we plan to grow in our
OpenDP product lifecycle in Figure 1.

Figure 1: OpenDP product lifecycle.

Definitional choices: The most fundamental choices involve the very definition of differential
privacy. At an abstract level, for an algorithm to meet the definition of differential privacy requires
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that distribution of outputs be close from two neighboring datasets. The exact definition of close
(which provides the quantitative measure of privacy loss), as well as the definition of neighboring
(which captures the unit of privacy protection, e.g. individuals, households, relationships, etc.) can
vary. We want to support the currently most common definitions of differential privacy, and then
allow the OpenDP user to choose among these for their own use case.
• Privacy-loss definitions: Currently we envision supporting pure, approximate, Rényi and concen-

trated differential privacy, and be extensible to allow for including other versions in the future.
• Neighbor relations: We aim for the OpenDP library to support both the “delete one observation”

and “change one observation” definitions of neighboring, especially as certain types of operations
and types of algorithms are easier to work with under rival neighborhood definitions.

• Composition: The exact differential privacy definition employed defines how such releases com-
pose. We would offer composition functions appropriate to the definitions that are covered in
the library. We would also propose an object structure for batches of differentially private re-
leases from the OpenDP library that automatically measures the composed privacy loss of the
contained releases.

Algorithm and architecture choices: Another central choice is what differentially private
algorithms to include and prioritize. The possible literature is vast to cover, but some choices and
emphases we envision are:
• Modularity: Given that very many DP algorithms are built up from a core set of differentially

private primitives, we would architect our library to isolate and facilitate the easy recombination
of the underlying common primitive DP constituent methods. Drawing on the insights in systems
such as PinQ [McSherry09], εktelo [ZMK+18], and our own PSI [GHK+16], we would separate
transformations on the underlying sensitive data from methods that inject noise and produce
safe differentially private releases from “post-processing” on those releases. This approach iso-
lates trusted, privacy-critical code and simplifies the task of verifying that differential privacy is
satisfied.

• Simple summary statistics: Exploratory data analysis (EDA) [Tukey77] is crucial to both releas-
ing predetermined query workloads and allowing adaptive interactive learning for data discovery.
Univariate summary statistics, and simple low-dimensional measures of relationships form the
backbone of EDA, and would form a necessary emphasis in the OpenDP library.

• Optimization: For more complex statistical and machine learning models, generalized differen-
tially private approaches to optimization often allow a model of interest to be constructed in a
conventional manner, then optimized and released with privacy-preservation, and such optimizers
would be another key focus [ACG+16, CMS11].

• Uncertainty: The quantification of uncertainty (e.g. through confidence intervals and p-values),
and privacy-preserving hypothesis testing are necessary capabilities any DP system oriented
toward open science research will have to support. We will emphasize including these abilities
into the OpenDP library [GLRV18, KV18].

Data structure choices: Our present goal is to create a minimum viable product within one year
that will provide secure, trusted releases with community vetted code, with a focus on supporting
scientifically oriented research and exploration in the public interest. Towards this fast-paced goal,
we initially plan to support datasets that are simple flat tables where the unit of observation is
an individual data subject. However, many more complex forms of data require their own tailored
algorithms (and even privacy definitions). We would plan to extend the system to the following
types of data, prioritized based on the interests of the community of researchers and the needs of
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the use cases, practitioners, and industry partners who join our community.
• Relational data is common in industry and administrative settings. The sensitivity of joins

between datasets poses a difficult problem that recent work such as the Flex library [JNS18]
and PrivSQL [KTM+19] have begun to address in practical systems.

• Graph and network data is key to studying many sensitive social phenomena such as social
networks and communication, and presents unique challenges especially with regard preserving
privacy at the level of the node (which typically corresponds to an individual data subject)
[KNRS13, BBDS13].

• Location data, even aggregated to large regions, can quickly uniquely fingerprint an individual
[DHVB13]. Pioneering work such as OnTheMap [AAG+09] was one of the first large scale deploy-
ments of differential privacy, and this continues to be an important application field [MIC+13].

• Time-series and online data, contains repeated observations over time of the same observations,
causing unique challenges for composition of differential privacy. Algorithms for continuously
updating data [DNPR10] and serially dependent observations [SCR+11] are key to any such use
cases.

System exploit concerns: Another important aspect of building this library is verifying that
the implementations actually satisfy the guarantees of differential privacy, rather than potentially
leaking sensitive information due to bugs in the code or gaps between a programming language and
its textbook abstraction. For example, issues that OpenDP will address include:
• Side channels/Covert channels: sensitive information can be inadvertently leaked through the

the timing of executions or writing to system globals [HPN11].
• Random numbers: Many standard differentially private algorithms call for generating random

numbers from continuous probability distributions (such as the Laplace distribution [DMNS06]).
This can be a source of vulnerabilities because floating-point arithmetic is only an approximation
to real-number arithmetic [Mironov12] and default random number generators are predictable
[Krawczyk92]. Thus OpenDP will require the use of cryptographically strong random number
generators, and make careful use of discretization (e.g. fixed-point arithmetic) that is explicitly
analyzed for privacy, like in the recent work of PI Vadhan [BV18].

• Verification: in general, proving that an implementation of an algorithm in code matches the algo-
rithm proved in theory can require great human expertise, but significant progress has been made
in automated verification of implementations of differential privacy [BGHP17, ZK18, AH17], and
we plan to use formal verification techniques as a resource and assistance to aid in the vetting of
contributions to the OpenDP library.

Attention to Diversity

We are committed to gender and racial diversity in all the teams associated with this project:
the security oversight committee, the DP oversight committee, the steering committee, the DP
development team, the system development team. One of two principal goals is to create a vi-
brant community of researchers and practitioners, and such a community is successful only if it is
welcoming, tolerant, fosters understanding and respect, and actively brings in a full diversity of
experiences and viewpoints.

This approach has been a building block of constructing the team on the Privacy Tools Project.
As a key example, we have used summer fellowships (undergraduate, graduate, postdoc) to form
the collaboration communities for most of our projects, such as PSI. Over the six years of this
program, we have been very active in recruiting fellows to bring diversity to our group, with a broad
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distribution of our call for applications including specific outreach at/to the Tapia Conference on
Diversity in Computing, Harvard’s Women in Computer Science (WICS) organization, WECode
(Women Engineers Code Conference), Women in Theory (WIT), and Lawrence Livermore National
Laboratories Office of Strategic Diversity and Inclusion Programs. Year-by-year, about thirty
percent of our project participants have been women and nine percent underrepresented minorities.
Project Participants for Privacy Tools
In years 1 & 2, of 55 students and postdocs, 15 were women and 6 underrepresented minorities.
In year 3, of 63 project participants, 18 were women and at least 8 were underrepresented minorities.
In year 4, of 69 project participants, 19 were women and at least 5 were underrepresented minorities.
In year 5, of 51 project participants, 16 were women and at least 3 were underrepresented minorities.
In our sixth year, of 19 project participants, 7 are women and at least 1 is from an underrepresented
minority.

We will use a similar approach to outreach as we recruit for participation in OpenDP. We have given
thought to diversity in the potential membership of our committees (listed in an earlier appendix). Of the
35 suggested members, 13 are women and 3 are underrepresented minorities.

As a declaration of values and a signal of who we aim to be as a community, we will have a code of
conduct for our workshops that solidify our aspirations and commitments. The codes of conduct of the
Society for Political Methodology 7 and their statement of diversity8 partially modelled on the resources of
the Geek Feminism Wiki9 are exemplars of how we would construct our own code of conduct. Our partner in
open-source scientific tools and community building, NumFOCUS, has successfully created a code of conduct
10 and reporting mechanisms we will discuss with them.

Beyond policies and towards action, attention to diversity in our community will be a primary objective
of one of the funded positions in this proposal, the Open-source coordinator, charged with building a vibrant,
healthy community of contributors and users.

Information Products Appendix

We plan to release a deployable differential privacy solution within the 12 months funded by this project,
and to continue to grow this system over a futher 18 months. All the component code for this system will
be publicallly available on GitHub and licensed under Apache Licence 2.0, as detailed in the sustainability
plan. The core components released under this system are:
• Library of DP Algorithms/Methods: A library of DP methods will grow as the open-source community

contributes new models. A new method will go through vetting managed by the DP oversight committee
before it is released and supported through the API.

• Budgeting Interfaces: We propose to provide at least two interfaces to the system, for two types of
users. The first is a clear intuitive graphical user interface (GUI) that provides a constrained workflow
and detailed guidance to users that allows data owners and analysts with no privacy expertise to make
informed choices about the balance between accurate answers and accumulated privacy loss. In addition,
we propose to provide a more expressive programming interface that allows a sophisticated user to describe
more sophisticated and customized statistical releases built up from basic differentially private primitives.

• API: A new API needs to be defined for this new service. The API will support submitting a DP request
based on one of the supported DP methods in the library. The REST API should be secured by using
an authorization protocol such as OAuth2.0. The API should be registered as a SmartAPI to follow best
practices from the open-source community,

• Containers: The DP service will use a container (Docker, or similar technology) that holds the script of
DP algorithms and requests to be applied to the data. The container is pulled from the location of the

7https://www.cambridge.org/core/membership/spm/about-us/diversity-and-inclusion/

code-of-conduct-at-spm-events
8https://www.cambridge.org/core/membership/spm/about-us/diversity-and-inclusion
9https://geekfeminism.wikia.org/wiki/Conference_anti-harassment

10https://numfocus.org/code-of-conduct
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data source. The analysis takes place in the data enclave where the sensitive data resides, and the raw
data never needs to leave the enclave or data source. The results are placed in a location accessible by
the DP service.

• Authentication and Authorization: OAuth2 protocol (or similar) will be used to authenticate and authorize
users to use the API.

• Large-scale data engine: For large datasets, it might be necessary to deploy a Spark cluster or similar big
data engine to run the DP algorithms in the data source location. In this case, the DP methods will need
to be written to support Spark (or in particular SparkR) and take advantage of computing parallelism.

Sustainability Plan: This project adheres to community standards and National Digital Stewardship
Alliance sustainability factors, applied to both software and data.11 The partners in the project will work
together to support diversified roles that can live beyond the span of the project. These are the roles or
categories identified in successful data repositories and research software projects [Lee12].
• Service provider: “Development, maintenance and support of a centralized preservation environment where

other parties can transfer resources”
• Enabler: “Development, maintenance and support of software tools and systems that other institutions can

install and run in their own environments”
• Facilitator: “Convening of forums for discussion and interaction among interested professionals, support

for development of communities of practice, local testing of technical approaches to share experiences with
others, development and dissemination of guidance documents”

We have used these ideas and roles with success to promote the sustainability of the Dataverse project. In
OpenDP we plan to expand them to support the sustainability of our privacy-sensitive tools and privacy
tools integrated with Dataverse. This will be delivered in the following way:
• The Harvard Dataverse repository will initially serve as the service provider for any privacy-sensitive

datasets described in the use cases, as well as additional privacy-sensitive datasets deposited by the
research community. The IQSS Dataverse team, in collaboration with the Harvard Library and the
Harvard University Information Technology, will provide the ongoing maintenance and support needed to
sustain this centralized archival repository. As the system grows, more service providers can be added.

• All code for OpenDP (including libraries, APIs, GUI and programming interfaces and code for deployment)
will be available through the GitHub repository, and distributed under Apache License 2.0. (Dataverse
software also is distributed under Apache License 2.0.) Documentation with instructions on how to install
the software will be provided with each release. Additionally, the OpenDP project aims to grow the un-
derlying library into a shared community resource for privacy researchers and practitioners and will create
extensive modes of developer and user support to stimulate community contribution including detailed
developer/user websites, mailing lists and issue queues for opening the architecture and development goals,
and a robust system of verification and testing for contributed code. Through all this, the DP development
team and System development team will fulfill the enabler role in this project.

• The Open-source coordinator, located at IQSS, and working with the Steering committee and Principal
DP scientist, and with the involvement of the broader OpenDP community, will fulfill the facilitator role
in this project. Currently at IQSS the Dataverse team sustains and helps grow a community of users and
developers. This includes 80 GitHub contributors, 75 community calls sp far, a community list (forums)
with 534 members, and an annual community meeting with about 200 attendees. As relayed in the book
[Millington12], when a community becomes too large and diversified, it is recommended to create sub-
community groups. In this case, we propose to create sub-communities on “privacy tools for sharing data
to support scientific research”, following the same tactics used by the Dataverse community: an annual
meeting co-hosted with (but separate from) the Dataverse Community meeting, a forum for discussion
on privacy tools (associated with the current Dataverse community group), and leveraging the on-going
Dataverse community calls to engage several times a year a group of users and stakeholders interested in
privacy tools and sharing sensitive data.

We will also use the resources and advice provided by NumFocus to develop further our sustainability

11The Software Sustainability Institute. https://www.software.ac.uk/. At The University of Edinburgh. Also
the National Digital Stewardship Alliance (NDSA). http://www.digitalpreservation.gov/ndsa/NDSAtoDLF.html.
Library of Congress.
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plan. We aim for OpenDP to become a NumFocus affiliated project and thus have access to its Sustain-
ability Program, which, as defined in the NumFocus website, focuses on four main goals: 1) connect the
NumFOCUS projects to each other to jointly develop and share information on sustainability strategies, 2)
connect project leads with people with relevant expertise and networks, 3) provide training on skills related
to open source sustainability, including business and financial planning, marketing strategies, community
engagement, governance, etc.; and 4) support infrastructure that would help the projects more effectively
manage finances, necessary technical resources, and client and business relationships.

This proposal funds core elements for the first year of this project. We have outlined a 2.5 year timeline
to rapidly grow the system and reach expanded use cases with partners. We are investigating support
from interested industry partners. Some of these dialogues are advanced, but are not yet at the stage
of a funding agreement. We believe that an initial commitment by the Sloan Foundation to foster the
community of experts will in turn attract industry support for other tasks and future years, and if successful
this system could to continue to rapidly expand beyond our initial 2.5 year timeline. However, if we reach
our deployment goals and then look primarily for maintenance and sustainability we project the estimated
incremental cost for maintaining the OpenDP system is to fund the Open-source coordinator at one-half
time, and two staff developers (one for library maintenance and development, and one for backend and
deployment development).
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