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Re: Request for information (New techniques and methodologies based on combining data from 
multiple sources) 

 
Dear Dr. Potok, 

 
This comment is informed by research through the ​Privacy Tools Project​, a broad, 
multidisciplinary project with collaborators across Harvard University, Georgetown University, 
Massachusetts Institute of Technology, Boston University, and the State University of New York 
at Buffalo.  Through this collaboration, we are exploring a wide collection of technical and legal 1

privacy issues that arise in the context of the collection, analysis, and dissemination of research 
datasets containing personal information; computations over distributed data; and the publication 
of statistical data products by federal statistical agencies such as the US Census Bureau. Our 
efforts are focused on translating the theoretical promise of new measures for privacy protection 
such as differential privacy into practical tools and approaches. In particular, our work aims to 
help realize the tremendous potential from research data by making it easier to share data using 
privacy-protective tools. 
 
Statistical agencies have a longstanding record of collecting, analyzing, and publishing data 
while protecting the privacy of respondents. Like other government and commercial actors, they 
are also collecting, storing, analyzing, and sharing increasingly greater quantities of personal 
information about individuals over progressively longer periods of time.  Powerful analytical 2

capabilities, including emerging machine learning techniques, are enabling the mining of 
large-scale datasets to infer new insights about human characteristics and behaviors and driving 
demand for large-scale datasets for scientific inquiry, public policy, and innovation. 
 

1 Harvard University Privacy Tools Project, https://privacytools.seas.harvard.edu. 
2 See Micah Altman, Alexandra Wood, David R. O'Brien, and Urs Gasser, “Practical Approaches to Big Data 
Privacy Over Time,” International Data Privacy Law (forthcoming 2018), 
https://privacytools.seas.harvard.edu/publications/practical-approaches-big-data-privacy-over-time​. 
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These factors are putting pressure on traditional measures for protecting privacy. Advances in the 
scientific study of privacy in the fields of theoretical computer science, statistics, and 
information science over the last two decades have demonstrated the inadequacy of widely-used 
privacy protection measures and other challenges related to managing information privacy in the 
modern world. A fundamental challenge revealed by modern privacy research is that every 
release of data, if it has any utility, inevitably and cumulatively, regardless of how it is protected, 
leaks some private information. In other words, there is no “free lunch” when using information 
about people; useful statistics must always be purchased with privacy loss. These advances also 
point to the benefits of using more recent scientifically-grounded privacy measures, as they can 
enable analysis of data that would have otherwise been withheld or redacted. Furthermore, such 
approaches can be used as tools for ensuring the validity of statistical and machine learning 
analyses, as they can be used to protect against overfitting. 
 
In particular, failures of traditional privacy-preserving approaches to control disclosure risks in 
statistical publications have motivated computer scientists to develop a strong, formal approach 
to privacy. The main concept currently under study is ​differential privacy​, introduced by Dwork, 
McSherry, Nissim, and Smith in 2006.  This is a formal mathematical standard for quantifying 3

and managing privacy risk, meaning statements about risk are proved mathematically (rather 
than, say, empirically). The definition requires the output distribution of a privacy preserving 
analysis to remain “stable” under any possible change to a single individual's information. 
Currently, differential privacy is the only framework that provides meaningful privacy 
guarantees in scenarios in which adversaries have access to arbitrary external information. 
Analyses satisfying differential privacy provide provable privacy protection against any feasible 
adversarial attack, whereas de-identification concepts only counter a limited set of specific 
attacks.  4

 
Differential privacy has a compelling intuitive interpretation as it essentially masks the 
contribution of any single individual, making it impossible to infer any information specific to 
him or her, including whether the individual’s information was used at all. It can also be 
interpreted as essentially ensuring that using an individual’s data will not reveal any personally 
identifiable information that is specific to him or her, i.e., information that cannot be inferred 
unless the individual’s information is used in the analysis. 
 

3 See Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith, “Calibrating Noise to Sensitivity in 
Private Data Analysis,” Journal of Privacy and Confidentiality 7(3): 2 (2016), 
http://repository.cmu.edu/jpc/vol7/iss3/2/​. 
4 For a more detailed but intuitive discussion of the protection provided by differential privacy, Kobbi Nissim, 
Thomas Steinke, Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi, David O'Brien, 
and Salil Vadhan, “Differential Privacy: A Primer for a Non-technical Audience,” Working Paper (2018), 
https://privacytools.seas.harvard.edu/publications/differential-privacy-primer-non-technical-audience-preliminary-ve
rsion​. 
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There is a continually growing list of tasks that have been shown, in principle, to be computable 
with differential privacy including descriptive and inferential statistics, machine learning 
algorithms, and production of synthetic data. Existing real-world applications of differentially 
private analyses include implementations by companies such as Google, Apple, and Uber,  and 5

federal agencies such as the US Census Bureau.  6

 
Differentially private tools can help enable researchers, policymakers, and businesses to analyze 
and share sensitive data while providing strong guarantees of privacy to the individuals in the 
data. Differential privacy is supported by a rich and rapidly advancing theory that enables one to 
reason with mathematical rigor about privacy risk. Adopting this formal approach to privacy 
yields a number of practical benefits for users:  7

 
● Systems that adhere to strong formal definitions like differential privacy provide 

protection that is robust to a wide range of potential privacy attacks, as defined above, 
including attacks that are unknown at the time of deployment. An analyst designing a 
differentially private data release need not anticipate particular types of privacy attacks, 
such as the likelihood that one could link particular fields with other data sources that 
may be available. 

● Differential privacy provides provable privacy guarantees with respect to the cumulative 
risk from successive data releases and is the only existing approach to privacy that 
provides such a guarantee 

● Differentially private tools also have the benefit of transparency, as it is not necessary to 
maintain secrecy around a differentially private computation or its parameters. This 
feature distinguishes differentially private tools from traditional de-identification 
techniques which often require concealment of the extent to which the data have been 
transformed, thereby leaving data users with uncertainty regarding the accuracy of 

5 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. "Rappor: Randomized aggregatable privacy-preserving 
ordinal response." In ​Proceedings of the 2014 ACM SIGSAC conference on computer and communications security​, 
pp. 1054-1067. ACM, 2014; Greenberg, Andy. "Apple’s ‘differential privacy’ is about collecting your data–but not 
your data." ​Wired (June 13, 2016)​(2016); Johnson, Noah, Joseph P. Near, and Dawn Song. "Practical differential 
privacy for sql queries using elastic sensitivity." ​arXiv preprint arXiv:1706.09479​ (2017).  
6 National Academies of Sciences, Federal Statistics, Multiple Data Sources, and Privacy Protection: Next Steps, 
Consensus Report (2017), 
https://www.nap.edu/catalog/24893/federal-statistics-multiple-data-sources-and-privacy-protection-next-steps​; John 
M. Abowd, “Why the Census Bureau Adopted Differential Privacy for the 2020 Census of Population,” Presentation 
at Harvard University (December 11, 2017), 
https://privacytools.seas.harvard.edu/why-census-bureau-adopted-differential-privacy-2020-census-population​. 
7 ​See Kobbi Nissim, Thomas Steinke, Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco 
Gaboardi, David O'Brien, and Salil Vadhan, “Differential Privacy: A Primer for a Non-technical Audience,” 
Working Paper (2018), 
https://privacytools.seas.harvard.edu/publications/differential-privacy-primer-non-technical-audience-preliminary-ve
rsion​. 
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analyses on the data. This can enable public scrutiny of the privacy-preserving techniques 
used. 

● Differentially private tools can be used to provide broad, public access to data or data 
summaries in a privacy-preserving way. They can enable wide access to data that cannot 
otherwise be shared due to privacy concerns, and do so with a guarantee of privacy 
protection that substantially increases the ability of the institution to protect the 
individuals in the data. 

Furthermore, data need not be centralized to perform a differentially private analysis. The field 
of cryptography offers formal approaches to performing computations on joint data while not 
leaking more information than the functionality intended. For example, secure multiparty 
computation can be used to perform differentially private computations over distributed data.  8

 
Regulations and policies for privacy protection should evolve in light of scientific advances in 
privacy. In particular, expectations that traditional disclosure control techniques such as 
de-identification provide sufficient privacy protection are no longer supported by the legal or 
scientific literature.  A key insight from the scientific study of privacy is that data cannot be 9

analyzed or released without some leakage of information about individuals. Differential privacy 
quantifies this leakage and, furthermore, is equipped with tools for bounding the accumulation of 
multiple releases. It is a matter of policy to set a limit for privacy leakage (referred to as the 
“privacy budget”) and decide how to act once the budget is exhausted. Policymakers should 
accordingly consider the importance of setting and monitoring a privacy budget and develop 
policies specifying how the privacy budget should be used, such as how to choose between 
analyses to be performed if the privacy budget cannot allow all desired analyses.  10

 
Differential privacy is a new way of protecting privacy that is more quantifiable and 
comprehensive than the concepts of privacy that underlie many existing laws, policies, and 
practices around privacy and data protection. The differential privacy guarantee can be 
interpreted in reference to these other concepts, and can even accommodate variations in how 
they are defined across different laws. In many cases, data holders may use differential privacy 

8 For an early example of this approach, see Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya 
Mironov, and Moni Naor, “Our Data, Ourselves: Privacy via Distributed Noise Generation,” ​Advances in 
Cryptology - EUROCRYPT 2006​ (2006): 486–503, 
https://www.iacr.org/archive/eurocrypt2006/40040493/40040493.pdf​. 
9 See Paul Ohm, “Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization,” ​UCLA Law 
Review​ 57 (2010): 1701-1777. 
10 For an intuitive understanding of the privacy loss parameter and privacy budget, see Kobbi Nissim, Thomas 
Steinke, Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi, David O'Brien, and Salil 
Vadhan, “Differential Privacy: A Primer for a Non-technical Audience,” Working Paper (2018), 
https://privacytools.seas.harvard.edu/publications/differential-privacy-primer-non-technical-audience-preliminary-ve
rsion​. 
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to demonstrate that they have complied with legal and policy requirements for privacy 
protection. 
 
However, the diversity of regulatory standards for privacy protection introduces ambiguity and 
uncertainty with respect to the level of protection needed when data governed by different 
regulatory and policy regimes are combined. Consequently, it is important to work towards 
unifying the regulatory requirements and harmonize them with the scientific knowledge being 
accumulated about privacy. Increasing the understanding of how formal privacy models relate to 
basic concepts from privacy law (such as personally identifiable information, linkage, 
identification, risk, and inference) can help reduce this uncertainty. An example of work in this 
direction is research by Nissim et al. on bridging the gaps between differential privacy and the 
de-identification requirements of the Family Educational Rights and Privacy Act (FERPA).  11

This approach involved (i) identifying a description of a potential privacy attacker and the 
attacker's goals embedded within FERPA's definition of personally identifiable information; (ii) 
developing a mathematical model of FERPA's privacy requirements while making conservative 
assumptions in the model to account for possible ambiguities in the regulatory standard; and (iii) 
analyzing differential privacy with respect to the mathematical model extracted from FERPA's 
privacy requirements, and proving formally that differential privacy is sufficient to satisfy its 
requirements. 
 
In other work, we have argued for the need for comprehensive and consistent regulatory 
protection against information privacy harms in research.  Protection for people whose 12

information is used in research should be based on the risks and benefits to the subject and to 
society, and not on other elements of the research context that are irrelevant from an ethical 
perspective, such as the institution conducting the research, its commercial status, or its sources 
of funding.  
 
There is a growing need to develop and implement approaches to privacy that are up-to-date 
scientifically and to combine these rigorous approaches with additional legal and procedural 

11 See Kobbi Nissim, Aaron Bembenek, Alexandra Wood, Mark Bun, Marco Gaboardi, Urs Gasser, David R. 
O'Brien, Thomas Steinke, and Salil Vadhan, “Bridging the Gap between Computer Science and Legal Approaches 
to Privacy,” 31 ​Harvard Journal of Law & Technology​ __ (forthcoming 2018), 
https://privacytools.seas.harvard.edu/publications/bridging-gap-between-computer-science-and-legal-approaches-pri
vacy​; Alexandra Wood, "Bridging Privacy Definitions: Differential Privacy and Concepts from Census Law & 
Policy," Presentation at DIMACS/Northeast Big Data Hub Workshop on Overcoming Barriers to Data Sharing, 
Rutgers University in New Brunswick, NJ (Oct. 23-24, 2017), 
http://dimacs.rutgers.edu/Workshops/Barriers/Slides/Wood.pdf​. 
12 See Effy Vayena, Urs Gasser, Alexandra Wood, David R. O'Brien, and Micah Altman, “Elements of a New 
Ethical Framework for Big Data Research,” ​Washington and Lee Law Review​ 72(3) (2016): 420-441, 
http://lawreview.journals.wlu.io/elements-of-a-new-ethical-framework-for-big-data-research​. 
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tools. As a general framework, we recommend that policies and guidance on privacy and 
confidentiality be based on the following principles of a modern approach to privacy:  13

 
● Calibrating privacy and security controls to the intended uses and privacy risks associated 

with the data; 

● When conceptualizing informational risks, considering not just re-identification risks but 
also inference risks, or the potential for others to learn about individuals from the 
inclusion of their information in the data; 

● Addressing informational risks using a combination of privacy and security controls 
rather than relying on a single control such as consent or deidentification; 

● Calibrating controls to the specific structure and risks of the data as datasets increase in 
scale, heterogeneity, integration and longevity, both the benefits of data use and privacy 
risks may grow non-linearly (e.g., the protection devised for individual uses of datasets 
does not necessarily protect the combined uses); 

● Anticipating, regulating, monitoring, and reviewing interactions with data across all 
stages of the lifecycle (including the post​access stages), as risks and methods will evolve 
over time; and 

● In efforts to harmonize approaches across regulations and institutional policies, 
emphasizing the need to provide similar levels of protection to research activities that 
pose similar risks. 

In addition, the collection and use of fine-grained personal data over time is associated with 
significant risks to individuals, groups, and society at large. The risks posed by big data are a 
function of temporal factors comprising age, period, and frequency and non-temporal factors 
such as population diversity, sample size, dimensionality, and intended analytic use. Increasing 
complexity in any of these factors, individually or in combination, creates heightened risks that 
are not readily addressable through traditional de-identification and process controls. However 
these risks can be mitigated by new privacy technologies approaches when these are calibrated to 
risk factors present in a specific case.  14

13 See Micah Altman, Alexandra Wood, David O'Brien, Salil Vadhan, and Urs Gasser, “Towards a Modern 
Approach to Privacy-Aware Government Data Releases,” Berkeley Technology Law Journal 30(3): 1967-2072 
(2015), ​http://btlj.org/data/articles2015/vol30/30_3/1967-2072%20Altman.pdf​; Micah Altman, Alexandra Wood, 
David R. O'Brien, and Urs Gasser, “Practical Approaches to Big Data Privacy Over Time,” International Data 
Privacy Law (forthcoming 2018), 
https://privacytools.seas.harvard.edu/publications/practical-approaches-big-data-privacy-over-time​. 
14 See ​Micah Altman, Alexandra Wood, David R. O'Brien, and Urs Gasser, “Practical Approaches to Big Data 
Privacy Over Time,” ​International Data Privacy Law​ (forthcoming 2018), 
https://privacytools.seas.harvard.edu/publications/practical-approaches-big-data-privacy-over-time​. 
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Sincerely, 
 
Micah Altman 
MIT Libraries, Massachusetts Institute of Technology 
 
Aloni Cohen 
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology 
 
Aaron Fluitt 
Georgetown University Law Center 
 
James Honaker 
Center for Research on Computation and Society, Harvard University 
 
Kobbi Nissim 
Department of Computer Science, Georgetown University 
 
Michael Washington 
J.D. Candidate, 2018, Washington University in St. Louis 
 
Alexandra Wood 
Berkman Klein Center for Internet & Society, Harvard University 
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