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Chapter 1

Introduction

Society is caught in a vise. The exponential growth in the power and ubiquity
of computing devices has enabled the collection and analysis of data at an un-
precedented scale. This Cambrian explosion in data collection promises enormous
benefits across commercial, scientific, and policy fields. Unfortunately, this col-
lection and analysis of increasingly-personal data has also proved to be a grave
threat to individual’s privacy.

Consider the infamous Netflix Prize. In 2006, Netflix announced a $1 million dollar
prize to any researcher that could improve its movie recommendation algorithm
[Loh10]. To aid research, they released a dataset of its users movie ratings. Sensitive
to the privacy implications of revealing a user’s private viewing habits, Netflix
attempted to ensure privacy by removing all identifying information from the
data release. However, Narayanan and Shmatikov [NS07] demonstrated how this
anonymization could easily be broken by matching records with publicly available
movie reviews on the IMDB website. This led to widespread public outrage as
well as a class-action lawsuit and investigation by the FTC, forcing Netflix to
cancel the challenge [Loh10].

This is only one in a growing collection of privacy failures stemming from well-
meaning attempts to learn from personal data. Data releases from public health
records [Swe02] to personal censuse responses [Abo18]. These examples illustrate
the difficulty of balancing the gains from mining of personal data with the privacy
risks such releases can present.

Differential privacy presents one way out of this morass. Introduced by Cynthia
Dwork, differential privacy provides a rigorous definition of privacy, and shows
how one can still learn useful information about a population under this con-
straint [DR13]. Intuitively, differential privacy guarantees that the inclusion of an
individual’s information in a data release will not significantly affect any analysis
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2 CHAPTER 1. INTRODUCTION

performed on that dataset.

Due to its robust guarantees and practical usability, differential privacy has seen
wide adoption in the literature, and is increasingly being deployed to protect pri-
vacy in real world settings. The most common, and easiest setting is the interactive
model. In this setting, analysts can repeatedly ask the curator of a sensitive dataset
queries about the dataset, such as the average value of a particular column. The
curator replies to each query with an approximately correct answer, to ensure
privacy will still allowing the analysts to learn useful information.

While simple and practical, in many ways the interactive model is a poor fit for
the settings where we would like to ensure privacy. Each query in the interactive
model reveals a quantum of information about a user, which limits the number of
queries that can be answered while maintaining a fixed privacy budget. Further,
the interactive model only allows analysts to interact with the dataset through
the bottleneck of asking a query to a remote curator and waiting for a response.
This breaks decades of tooling and habits built around being able to iteratively
explore the entire dataset. Finally, as noted by Hsu, Roth, and Ullman [HRU13],
the queries asked by an analyst may be sensitive, and analysts may not want to
reveal their thinking to a third-party curator.

Instead, we may desire a non-interactive data release, where the curator generates
in a differentially private manner a synthetic database with the property that the
result of any query over the synthetic database is close to the result of that query
over the true dataset. Unfortunately, a fundamental law of differential privacy
proves that it is impossible to release a dataset that accurately answers all possible
queries while providing any level of privacy [DR13]. However, Blum, Ligett, and
Roth [BLR11] showed that for any dataset, there exists a differentially private
version of it that can accurately answer exponentially many queries. This problem
is known as the query release problem, or often simply synthetic data generation.

Even if there always exists such a database, a string of computational hardness
results show that finding such a dataset subject to differential privacy can be
prohibitively difficult [UV11]. Ullman [Ull12] showed how privately releasing data
that is accurate for polynomially many queries drawn from a very simple family of
queries, two-term conjunctions, can take time linear in the size of the data universe,
and therefore exponential in the dimension. In virtue of this, one thought has
been to apply the remarkable practical success of deep learning in efficiently
solving problems that are also hard in the worst case. If Generative Adversarial
Networks (GANs) can learn to generate realistic faces, perhaps they can also
generate tabular data under the constraint of differential privacy.

While there has been some progress on this front, a major issue remains: deep
learning rarely comes with any guarantees of accuracy. This may be fine for most
machine learning applications, where typically the cost of a misclassification or
a poor sample is low. The primary purpose of synthetic data, however, is to
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enable analysts to learn novel and robust information from the data. It’s simply
unacceptable, for example, to expect social scientists to publish analyses based
on fake data that lacks any guarantee of accuracy. To enable broad usage of
synthetic data, we need better heuristics to avoid worst-case hardness bounds.
But as equally importantly, we need to come up with verifiable heuristics, that
we let us be confident in the validity of the resulting data.

This, then is the central focus of this thesis:

Can we use GAN heuristics to efficiently generate private synthetic
data, while still providing accuracy guarantees if the GAN training
succeeds?

We answer this question in the (conditional) affirmative. We introduce a new
algorithm, QueryGAN, that can efficiently generate private synthetic data with
guaranteed accuracy for a number of useful classes of queries that we were previ-
ously unable to do efficiently.

1.1 Structure of the Thesis
This chapter gives an overview and motivation of the problem, and surveys related
work.

Chapter Two provides a detailed introduction to many of the concepts used in
this thesis, including differential privacy, the query release problem, two-player
games, neural networks, GANs, and online learning.

Chapter Three shows how to connect the GAN objective to the query release
problem. It then introduces the main contribution of this work, QueryGAN.
QueryGAN shows how, given access to 1) a provably optimal online algorithm
for training a discriminator, and 2) a heuristic algorithm for training a generator,
we can privately generate synthetic data with accuracy guarantees.

Chapter Four presents two such optimal discriminator algorithms -- an efficient one
for all queries approximated by a shallow neural network, as well as an inefficient
one for any arbritrary class of queries.

In Chapters Five and Six, we turn our attention to the practical considerations.
The prior results eliminate many of the theoretical hurdles to provably accurate
synthetic data. However, at the end of the day this approach is predicated on
the hypothesis that machine learning/GAN methods will in practice be able to
solve problems that are hard in the worst case. Towards that end, in Chapter
5 we introduce a generator architecture tailored to the synthetic data problem.
Then, in Chapter 6 we empirically evaluate the efficiency and accuracy of our
approaches for a number of datasets and query classes, comparing them to other
means of private synthetic data generation.
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Finally, Chapter Seven concludes by summarizing our results, discussing limita-
tions, and presenting possible directions for future work. In particular, we discuss:

1. A central challenge in generating synthetic data -- the impossibility of (guar-
anteed) global non-convex optimization -- and whether in this context that
barrier can be circumvented in practice.

2. Whether the GAN framework, as opposed to other heuristic or deep learning
approaches, is best suited to the private data release problem.

1.2 Related Work
There has been a significant amount of work on the problem of generating pri-
vate synthetic data that accurately answers statistical queries [BLR11; DRV10;
GRU11; UV11]. Several approaches are able to generate private synthetic data
that accurately answer exponentially many queries. Unfortunately, these all have
runtime at least linear in the size of the data universe, and thus exponential in
the dimensionality. Indeed, Ullman and Vadhan [UV11] showed that, subject to
standard cryptographic assumptions, this exponential runtime is necessary in the
worst case for most natural families of queries.1

In light of this worst-case hardness, there has been some work on improving the
runtime in practice. Hardt, Ligett, and Mcsherry [HLM12] (following Hsu, Roth,
and Ullman [HRU13]) showed how a differentially private form of multiplicative
weights could be used, but still required manipulating objects linear in the size of
the data universe. Gaboardi et al. [Gab+14] viewed the query release problem as
a zero-sum game between a data player that sought to generate realistic looking
data, and a query player that attempted to find the worst performing query. Their
algorithm, DualQuery, used commercial integer programming heuristic optimizers
to efficiently solve this problem, requiring much less space and (in practice) less
time than the multiplicative weights method. They showed that, while DualQuery
doesn’t always successfully find a solution, when it does the outputted dataset
closely approximates the true dataset.

Recently, Neel, Roth, and Wu [NRW18] provided a general framework for using
heuristic optimizers to solve hard query release problems. Treating the optimizers
as black box oracles, they described an oracle efficient algorithm for generating
synthetic data accurate for any set of queries that had what they termed a sep-
arator set . Unfortunately, the probabilistic and black box nature of the oracles
required a runtime proportional to 1{δ to ensure differential privacy. This 1{δ
factor was necessary to compensate for the fact that heuristic oracles had a small

1Note that these hardness results only apply to synthetic databases, where the rows of the
synthetic database are of the same type as the rows of the input database. There has been
active work in efficiently generating synopses – arbitrary data structures that can accurately
compute the answer to exponentially many queries [DR13; DRV10]. Unfortunately, there also
exist hardness results for differentially privately generating synposes – see [UV11]
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probability of failure. The very fact that the oracle failed leaked information about
the private data, requiring many passes over the dataset to reduce this probability
to acceptable level δ. When δ is cryptographically small, that could be prohibitive.
Regardless, this thesis draws heavily from the framework and theory in [NRW18].

A final approach has been to use deep learning’s powerful ability to solve non-
convex problems in order to get around the worst-case hardness. In particular, Gen-
erative Adversarial Networks (GANs), introduced by Goodfellow et al. [Goo+14]
have had remarkable success in generating high-dimensional synthetic data, typi-
cally images. Abay et al. [Aba+19] used GANs to generate differentially private
synthetic health records, while Xie et al. [Xie+18] expanded on this approach.
Finally, Jordon and Yoon [JY19] applied the Private Aggregation of Teacher En-
sembles (PATE) framework to tighter bound the sensitivity of the learning process,
allowing for significant gains in accuracy.

While often effective in practice, so far no deep learning approaches have been
able to provide useful worst-case guarantees on query accuracy. Unlike [Gab+14]
or [NRW18], they cannot guarantee that all queries over the synthetic dataset will
be within an additive factor of the true dataset.

Towards that end, there has been some progress in provable convergence guarantees
for online deep learning. A pair of recent papers have provided an oracle efficient
for (non-private) non-convex online learning [AGH19a; SN19]. By training against
a noisy sum of historical loss functions to stabilize learning, they were able to
prove convergence assuming the oracle succeeds. Less generally, [Grn+17] used a
similar historical play approach to solve the online learning problem for GANs.
Instead of adding noise to guarantee convergence, the authors showed that when
the game is convex with respect to one player (and possibly very non-convex with
respect to the second), standard methods from online convex optimization could
be used.

1.3 Terms and Notation
Below is a reference of commonly used variables in this thesis.

Symbol Meaning
ε Privacy Loss
δ Privacy Probability
Ŝ Sanitized dataset
S Sensitive dataset
x Row of S
X Data Universe
Q Query Universe
∆X The set of all probability distributions over X



6 CHAPTER 1. INTRODUCTION

Symbol Meaning
m Number of columns of dataset
n Number of rows in dataset
V p¨, ¨q Value of the game
RpT q Cumulative regret
W p¨, ¨q Wasserstein loss
`p¨q Loss function
φ Generator parameters
θ Discriminator parameters
Dθp¨q Discriminator with parameters θ
Gφp¨q Generator with parameters φ
z Generator noise sample
σ Non-linear activation function
η Learning rate
α Approximation factor
K Lipschitz constant
β Smoothness



Chapter 2

Background

In this chapter we introduce many of the fundamental concepts used throughout
the thesis.

2.1 Differential Privacy
Differential privacy has become the de-facto standard to protect the privacy of
records in a statistical database. It formalizes the notion of privacy by looking at
outcomes over neighboring databases. A database or dataset S “ pxp1q, xp2q, ..., xpnqq
is a multiset of rows x drawn from a universe of all possible rows X . Two databases
are said to be neighboring if they differ on a single row.

An algorithm or mechanism M : Xn Ñ Y is a randomized function mapping
databases S to outputs Ω P Y .

Definition 2.1.1 (Differential Privacy [DR13]). A randomized algorithm M if
for every Ω Ď Y and for all neighboring databases S, S1 P Xn

P rMpSq P Ωs ď eε ¨ P rMpS1q P Ωs ` δ

If δ “ 0, we say that M is ε-differentially private.

This is the core guarantee of differential privacy, that any computation over
your personal data cannot reveal much more information about you than if you
hadn’t been in the dataset. In particular, the privacy loss parameter ε bounds the
maximum information that can be leaked.

pε, δq-differential privacy is weaker than ε-differential privacy – it permits the
mechanism to violate ε-DP with probability δ. Ideally, δ is negligibly small, and
certainly ! 1{n – because a trivial mechanism that chose a row uniformly and

7



8 CHAPTER 2. BACKGROUND

released it in its entirety would satisfy pε, 1{nq-DP. The benefit of this slight
relaxation is it allows for a number of useful, efficient mechanisms that do not
satisfy ε-DP for any ε.

A useful property of this definition is that it is immune to post-processing – no
computation done without additional private knowledge, over the output ofM,can
make the output less differentially private.

Theorem 2.1.1 (Post-Processing [DR13]). Let M be a pε, δq-DP mechanism.
Let f be an arbitrary randomized mapping. Then f ˝M is also pε, δq-DP.

Moreover, another useful feature is that differentially private mechanisms compose
well over multiple computations.

Very often, private algorithms often access the same or similar databases over
multiple rounds, with the output of each access depending on the prior output.
This model is called k-fold adaptive composition, and we can more tightly bound
the privacy loss of algorithms that access sensitive data in this way.

Theorem 2.1.2 (Advanced Composition [DR13]). Let Mi each be pεi, 0q-DP
for i P rks with εi ď ε1 bounded. Then the composition pM1pSq, ...,MkpSqq is
p
řk
i“1 εi, 0q-DP, and pε, δq private for

ε “
a

2 logp1{δqkε1 ` kε1pexppε1q ´ 1q

for any δ P p0, 1q.

2.1.1 Mechanisms
Definition 2.1.2 (Global Sensitivity). The global sensitivity of a function f :
Xn Ñ Rk, is its maximum difference on neighboring databases S, S1

∆q :“ max
S,S1

||fpSq ´ fpS1q||

We make use of two fundamental mechanisms over real numbers: the Laplace and
Gaussian.

Definition 2.1.3 (Laplace Distribution). The Laplace Distribution with mean 0
and scale b, denoted Lappbq, has probability density function

fpxq :“ 1
2b exp p´|x|{bq

Theorem 2.1.3 (Laplace Mechanism [DR13]). The Vector Laplace Mechanism
ML, which takes a function f : Xn Ñ Rk, is defined as
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MLpS, f, εq :“ fpSq ` pY1...Ykq

where Yi are drawn i.i.d from Lapp∆f{εq

The Laplace mechanism is ε-DP

The Gaussian mechanism can only guarantee approximate differential privacy, in
exchange for better utility.

Theorem 2.1.4 (Gaussian Mechanism [DR13]). The Gaussian Mechanism MN
with parameter σ, unlike the Laplace mechanism, adds noise scaled to N p0, σ2q
to each component of the output.

For c2 ą 2 logp1.25{δq, the Gaussian Mechanism with parameter σ ě c∆f{ε is
pε, δq-DP.

2.2 The Query Release Problem
We study the problem of privately generating synthetic data to answer linear
queries over a data universe Xn. Formally, a linear query over X is a function
q : X Ñ r0, 1s. Given a a dataset S P Xn, we define qpSq, the average value of a
query over the rows of S

qpSq :“ 1
n

ÿ

xPS

qpxq “ ExPSqpxq

Our goal is to produce a synthetic dataset that, for every query in some family
of queries, takes approximately the same value as the true dataset.

Definition 2.2.1 (α´approximate). We say a synthetic dataset Ŝ α-approximates
a true dataset S w.r.t a family of queries Q if

@q P Q : |qpSq ´ qpŜq| ď α

2.3 Game Theoretic Formulation
Hsu, Roth, and Ullman [HRU13] demonstrate how to formulate the query release
problem as a two-player, zero sum game between a discriminatorD and a generator
G. The generator has an action set X , while the discriminator has an action set
Q. The generator aims to output a dataset Ŝ P X that maximally agrees with S,
while the discriminator aims to find queries q P Q that distinguish Ŝ and S.

Formally, given a play x P X and q P Q, the discriminator gets payoff V px, qq and
the generator gets payoff ´V px, qq, where V px, qq denotes:
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Definition 2.3.1 (Payoff).

V px, qq :“ |qpxq ´ qpx̂q|

The goal of both G and D is to maximize their worst case payoffs, thus

max
qPQ

min
xPX

V px, qq pGoal of Dq and min
xPX

max
qPQ

´V px, qq pGoal of Gq

If there exists a point px˚, q˚q such that neither G nor D can improve their payoffs
by playing a different move, we call that a Pure Nash Equilibrium. Unfortunately,
such a pure equilibrium is not always guaranteed to exist (and likely does not in
the case of synthetic data generation).

However, the seminal work of [Nas50] showed that there always exists a Mixed
Nash Equilibrium (MNE), where the players play probability distributions over
their action sets, instead of fixed actions.

Let ∆pX q and ∆pQq denote the set of probability distribution over X and Q.
Formally, if G plays a strategy g P ∆pX q and D plays d P ∆pQq, we define the
payoff to be the expected value of a single draw:

V pg, dq :“ Ex„g,q„dV px, qq

Thus, a pair of strategies g P ∆pX q and d P ∆pQq forms an α´approximate Mixed
Nash Equilibrium if for all strategies u P ∆pX q and w P ∆pQq

V pg, wq ď V pu,wq ` α and V pu, dq ď V pu,wq ´ α

Moreover, [Gab+14] showed how to reduce the problem of finding an α´approximate
dataset to the problem of finding an an α´equilibrium in the query release game:

Theorem 2.3.1. Let pu,wq be the α´approximate MNE in a query release game
for a dataset S P X and a query universe Q. If Q is closed under negation, then
the dataset Ŝ sampled from u α-approximates S over Q. [Gab+14]

Hence, our task is to provide an algorithm to privately reach an α´MNE in the
query release game. In the following section, we will provide the background for
how this can be done with GANs.



Chapter 3

Machine Learning
Background

Before we show how to solve the query release game with GANs, we first provide
a background of necessary concepts from machine learning.

3.1 Convexity Primer
The results of this thesis can be understood as reducing the query release prob-
lem to a simple function optimization problem. A crucial property in function
optimization is convexity:

Definition 3.1.1 (Convexity). A function f : X Ñ R is convex iff for all x1, x2 P
X and t P r0, 1s, the following property holds:

ptx1 ` p1´ tqx2q ď tfpx1q ` p1´ tqfpx2q

Intuitively, this entails that the line segment connecting any two points on the
graph of a function lies above the two points. If f is differentiable, we can equiva-
lently express this in terms of its derivative:

fpx1q ě fpx2q ` f
1px2qpx1 ´ x2q

We make use of a few properties of convex functions:

1. If fp¨q and gp¨q are both convex functions, and g is non-decreasing, then g˝f
is also convex

11
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Figure 3.1: A convex function
Figure 3.2: A highly non-convex func-
tion

2. If f is doubly differentiable, then it is convex iff its second derivative is
non-negative over the entire domain.

3. If f1, ..., fn are convex functions and w1, ..., wn are non-negative real num-
bers, then the weighted sum gpxq “ w1 ¨ f1pxq ` ... ` wn ¨ fnpxq is also a
convex function.

4. If f is a convex function, then any local minimum is also a global minimum

The final property is crucial. This means (subject to a few conditions) we are able
to provably minimize a convex function simply by performing a search for a local
minimum – a problem that can be computed easily. It is trivial to verify that
a point is a local minimum, and thus for convex we can easily verify that we’ve
reached a global minimum.

In contrast, minimizing arbritrary non-convex functions is NP-Hard in general.
Moreover, there’s no general efficient algorithm to tell how far a local minimum
is from the global minimum of a non-convex function, or even verify if you have
reached the global minimum at all. This is especially challenging in this instance,
because the building block of GANs, neural networks with more than one layer,
are in general non-convex. Yet using neural networks to solve the query release
problem via a two player game requires finding a global minimizer. We will show
in chapter 4 how this can be partially circumvented.

3.1.1 Lipschitz and Smooth functions
Definition 3.1.2 (Lipschitz function). A function f is said to be K-Lipschitz if

}fpxq ´ fpyq} ď K}x´ y}

for all x,y in the domain. If there exists some finite K for which f is K-Lipschitz,
we say it is Lipschitz continous
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Intuitively, Lipschitz continuity limits how much a function can change from small
changes in its inputs. We make use of the following properties

Lemma 3.1.1 (Lipschitz Properties). • If f is K1-Lipschitz and g is K2-
Lipschitz, then f ˝G is pK1 ¨K2q-Lipschitz

• For a differentiable, multivariate Lipschitz function f , if }∇f}8 ď K then
f is K-Lipschitz with the best Lipschitz constant K.

Definition 3.1.3 (Smooth function). A continuously differentiable function f is
β-smooth if the gradient ∇f is β-Lipschitz. That is,

}∇fpxq ´∇fpyq} ď β}x´ y}

3.2 Optimization Oracles for Non-convex Mini-
mization

For problems that are hard in theory but have effective heuristics in practice, we
would like to be able to show that if the heuristic succeeds, our algorithm will
also succeed. We account for this by defining an optimization oracle

Definition 3.2.1 (Offline optimization oracle). An offline optimization oracle O
is a function that takes a loss function f , and returns an x˚ in x such that

x˚ P arg min
xPX

fpxq

In practice, most oracles can only find an approximate minimizer, and even then
they don’t always succeed:

Definition 3.2.2. [Approximate Optimization Oracle] We say thatO is an pα, βq-
approximate optimization oracle if with probability 1 ´ β over the internal ran-
domness of O, the outputted minimizer x˚ is with α of the true minimum:

fpx˚q ď min
xPX

fpxq ` α

Remark 3.2.1. Note that Definition 3.2.2 does not require that O only output a
point x if it can certify that x is within α of the minimum, and output fail otherwise.
Instead, O is allowed to output a point x without certifying its optimality – it only
requires that most of the time, x is in fact approximately optimal. This reflects
the reality of many non-convex solvers, that it is impossible to even know if a
solution is a global minima, or just a saddle point.
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3.3 Online Learning
To efficiently find an equilibrium in the zero-sum GAN game, we draw on results
from online learning.

The standard model for machine learning is the batch, or offline setting. Here, a
learner is given a dataset px1, .., xN q sampled iid from the true data distribution,
and the objective is to find a function f parametrized by θ that minimizes empirical
loss over the samples, for some loss function `ip¨q:

θ :“ arg min
ÿ

iăN

`ipθq

Contrast this with the online setting. In each of T rounds the player must choose
an action θt, and then a loss function `t is revealed, after which the player suffers
loss `tpθtq. The loss functions can be chosen adaptively based on the players prior
actions, even adversarially. The player’s goal is now to minimize the total regret.

Definition 3.3.1 (Regret). The regret R(T) measures the cumulative loss of a
sequence of decisions θ, compared to the best fixed decision in hindsight.

RpT q “
T
ÿ

t“1
`tpxtq ´ min

x˚PX

T
ÿ

t“1
`tpx

˚q

When a strategy provably leads to regret is sublinear in T , we call that no-regret,
as average regret Ñ 0 as T Ñ8.

As [FS99] first demonstrated, no-regret algorithms are a powerful tool for efficiently
solving finding equilibria of zero-sum games:

Lemma 3.3.1. [No-regret [FS99]] Suppose two players G,D are playing a zero-
sum game with value V . At each step t G attempts to minimize the online
loss function `Gt p¨q “ V p¨, dtq and D attempts to minimize the opposite `Dt p¨q “
´V pgt, ¨q

After T iterations, suppose each player has regret at most αG, αD respectively.
Let gt denote G1s strategy at time t, and likewise for dt. Then, the time averaged
mixed strategies

g˚ :“ 1
T

t
ÿ

t“0
gt & d˚ :“ 1

T

t
ÿ

t“0
dt

form an pαg`αdq

2 -approximate mixed Nash Equilibrium.
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As a consequence, if G and D both play no-regret strategies, their time averaged
mixed strategy will asymptotically converge to an exact MNE.

One approach to regret minimization is at each step to choose the action θt`1
that minimizes the cumulative loss over all past loss functions.

θt`1 “ arg min
xPX

T
ÿ

t“1
`tpxq

This approach is known as Follow-The-Leader. While natural, this approach is
easily exploitable by an adversary, and is not no-regret in general. At a high
level, this is because it overfits to past outcomes, allowing it to oscillate between
suboptimal strategies. In particular, the best bound we can get on the regret is

Lemma 3.3.2 (FTL Regret [Vie+] ). For any sequence of loss functions `1...`T ,
FTL outputs a series of predictors θT with regret

RpT q ď
ÿ

tăT

`tpθtq ´ `tpθt`1q

Instead, to ensure no-regret, we introduce a regularization term that ensures that
`tpθtq ´ `tpθt`1q is small.

Definition 3.3.2 (Follow-The-Regularized-Leader (FTRL)). Given a regulariza-
tion function } ¨ } and a regularization weight ηT , at each step choose θt`1 P X to
minimize the regularized cumulative loss:

θt`1 “ arg min
xPX

T
ÿ

t“1
`tpxq ` η||x||

Lemma 3.3.3. [Haz19] Assume that the losses are convex and K-Lipschitz, and
let D be the diameter of the action set X . There is a choice of η such that

RpT q ď 2KD
?

2T

Therefore, for Lipschitz and convex losses, FTRL is no-regret.

Note that solving the game using FTRL requires efficiently computing the mini-
mizer of a sum of loss functions. In other words, FTRL reduces the online learning
problem to the offline, batch problem. When the losses are convex, this is feasible,
as there are efficient algorithms for offline batch minimization. However, in later,
non-convex formulations, this becomes trickier.
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Thus, by 3.3.1 and 3.3.3, we can find the approximate MNE of a game V pg, dq if
both G and D play according to FTRL, so long as V is concave with respect to
g and convex with respect to d.

We term this property of V convex-concave:

Definition 3.3.3 (Convex-Concave). A two-player, zero sum game V p¨, ¨q is said
to be convex-concave if for any fixed g0, V pg0, dq is convex in d, and likewise for
any fixed d0, V pg, d0q is concave in g.

Unfortunately, the query release game V is clearly not convex-concave for arbitrary
query classes Q. Recall that the pure strategy form of V is defined as

V pg, qq :“ qpgq ´ qpĝq

Clearly, if qp¨q is not a convex function, then V is not convex in g. Likewise, if g’s
action space X is a non-convex set (or in later formulations, a set containing non-
convex functions), V is not concave in q. As expectations of non-convex functions
are also non-convex, this extends to the mixed definition of V as well.

Therefore, FTRL is not a no-regret algorithm for the query release game for
arbritrary Q, G. The following sections describe two approaches to enable no-
regret solutions to the game: 1) Restricting Q (but not necessarily G) to convex
functions to make the game tractable, and 2) using Follow-The-Perturbed-Leader,
a randomized variant of FTRL which was recently shown to be no-regret for
non-convex losses, at the cost of looser bounds on regret.

3.4 Achieving Equilbrium via Semi-convex games
Here, we describe semi-convexity, a relaxation of the convexity requirement for
two player games. Introduced in [Grn+17], it only requires that the game is convex
with respect to one of the players. This makes the no-regret optimization problem
tractable, while still permitting a large family of useful games.

Definition 3.4.1 (Semi-convex [Grn+17]). A game is semi-convex if for any fixed
g0, V pg0, dq is convex in d, though not necessarily concave in g.

[Grn+17] shows how this if V is semi-convex, if the convex player plays FTRL,
this enables the non-convex player to play (non-regularized) FTL and still achieve
no regret. Of course, the non-convex player still must solve the underlying offline
optimization of FTL. We assume the non-convex player has access to an optimiza-
tion oracle. This result manages to reduce the problem of online optimization to
the offline setting. Though FTL is not no-regret for arbritrary convex loss func-
tions, [Grn+17] take advantage of the predictability of the actions of the FTRL
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player to show how FTL is no-regret for this specific setup.

Algorithm 1: Non-Private Equilibrium Finding [Grn+17]
Input: game objective V , Steps T , Regularization weight η
Result: Dataset x P X d, Accuracy α

1 for t P 1...T do
2 Update D and G according to FT(R)L:
3 θt`1 Ð argθ min

ř

iăt `
D
i pθq and φt`1 Ð

argφ max
ř

iăt∇`Gi pφiqφ´
?
T

2η }φ}

4

5 Update losses:
6 `Dt`1p¨q “ V p¨, φt`1q and `Gt`1p¨q “ V pθt`1, ¨q
7

8

9 Output Mixed Strategies S1 „ Uniftθ1...θT u and S2 „ Uniftφ1...φT u

Lemma 3.4.1 ([Grn+17]). Suppose G and D play according to FTRL and FTL
respectively in a semi-convex zero sum game that is convex in D. Then, the time
averaged mixed strategies

` 1
T

˘

form a α-MNE, where α “ OpT´1{2q.

Algorithm 1 provides an online way to achieve equilibrium by solving a batch
minimization problem at each step, provided the game is semi-convex. While a
number of query release problems can be structured as a semi-convex game, the
vast majority cannot. In the following section we introduce FTPL, an oracle-
efficient no-regret algorithm for non-convex games.

3.5 Achieving Equilibrium in Non-Convex Games

When the game value V p¨, ¨q is non-convex for both players, FTRL fails to induce
the stability required to ensure online no-regret. Recently, Agarwal, Gonen, and
Hazan [AGH19a]showed how a variant of FTRL is no-regret even for non-convex
losses (the bounds were later tightened by [SN19]). Instead, of using a determin-
istic regularization function Rpxq to induce stability, FTPL introduces a random
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perturbation γ to the loss at each step.

Algorithm 2: Follow the Perturbed Leader (FTPL) for non-convex losses
[AGH19b]

Input: Perturbation Magnitude η ě 0, Step T , Online series of losses
f1p¨q, ..., fT p¨q : Rd Ñ R)

Result: Online prediction θ1, .., θT
1 for t P 1...T do
2 Draw random vector γ „ Exppηqd

3 Output prediction at time t
4

θt P arg min
x

ÿ

iăt

fipxq ´ γ
Tx

Because FTPL is a randomized algorithm, we can only bound the expected regret,
where the expectation is over the random draw of the algorithm. This can easily
be converted into a fixed bound that holds with high probability through the use
of the Chernoff bound.

Theorem 3.5.1 (FTPL is no-regret[SN19]). Let D be the l8 diameter of the ac-
tion set X P Rd. Suppose the losses f1, ..., fT are L-Lipschitz. Then the predictions
made by FTPL have expected regret

E rRpT qs “ Opηd2DL2T q

Thus, for appropriate choice of η, FTPL achieves optimal expected regret Op
?
T q.

This theorem, combined with 3.3.1, shows that approximate equiblirium is achieved
if both players play FTPL in a non-convex game. Like in Algorithm 1, we assume
each player has access to an optimization oracle that can in practice solve the
underyling offline minimzation problem.

In the next section we will discuss how if G and D are parametrized by neural
networks, and O is a form of SGD, we can view the query release problem as an
instance of training a Generative Adversarial Network.

3.6 Generative Adversarial Networks
Generative Adversarial Networks (GANs), introduced by [Goo+14], are an ap-
proach to generative deep learning that has shown remarkable promise in generat-
ing realistic samples from complex distributions. In the GAN setup, a generator
neural network Gφp¨q is paired with a discriminator neural network Dθp¨q, with
parameters φ and θ respectively. The discriminator attempts to distinguish real
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Figure 3.3: Photo Realistic GAN samples [BDS19]

samples and generated samples, while the generator aims to generate realistic
samples that fool the generator.

Let pdata denote the probability distribution from which the finite batch of real
data S :“ pxp1q, ..., xpnqq P Xn was drawn. For instance, in a dataset of images
of human faces, pdata assigns a high probability to a headshot of a person, while
assigning low (or zero) probability to an image of a cat. We also define a random
noise distribution pz, typically a standard gaussian.

The goal is to train a generator network Gφp¨q whose input is a vector drawn from
pz, and whose output is a sample from a distribution pg over X , where pg is the
generators’ attempt to approximate the true distribution pdata. The discriminator
Dp¨; θq : X Ñ r0, 1s is a function trained to estimate the probability that a sample
x P X was drawn from the true data distribution rather than pg.

Figure 3.4: The GAN training game

The discriminator and generator are trained simultaneously and adversarially.
yielding a two-player, zero-sum game with minimax objective
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min
G

max
D

V pθ, φq :“ 1
2Ex„pdata

logDθpxq `
1
2Ez„pz

logp1´DθpGφpzqqq

However, Arjovsky, Chintala, and Bottou [ACB17] argue that this cost function
Vgan is not sensible cost function in practice, when the distributions are supported
by low-dimensional manifolds. This results in training difficult and convergence
failures. Instead, they proposed to use the Earth-Mover, or Wasserstein-1 objective.

Definition 3.6.1 (Earth Mover Distance). The EM distance between two dis-
tribution pdata and pg is

W ppdata, pgq :“ inf
γPΠppdata,pgq

Epx,yq„γ |x´ y|

where Π ppdata, pgq denotes the set of all joint distributions γpx, yq whose marginals
are respectively pdata and pg.

While this infinimum is highly intractable to compute, [ACB17] used the Kantorovich-
Rubinstein duality [Vil08] to show that

W ppdata, pgq “ sup
}f}LďK

Ex„pdata
rfpxqs ´ Ex„pg

rfpxqs

where the supremum is over all K-Lipschitz functions. Note that the choice of K
is somewhat arbritrary so long as it is finite, for any K-Lipschitz function can be
converted into a 1-Lipschitz function by scaling the ouput by 1{K.

Thus, if our discriminator D is an element of a set of K-Lipschitz functions D,
minimizing the following Wasserstein GAN objective also minimizes W ppdata, pgq:

V pD,Gq :“ Ex„pdata
rDpxqs ´ Ez„pz rDpGpzqqs

Remark 3.6.1. In the Wasserstein GAN, the discriminator is no longer guaran-
teed to output values in r0, 1s, and therefore cannot be interpreted as a probability.
For this reason, the Wasserstein discriminator is typically called a critic [ACB17].

3.6.1 Enforcing Lipschitz Constraints
Of course, in practice D is not actually optimized over all K-Lipschitz functions.
Instead, D is a finite neural network that we train via gradient descent. [ACB17]
suggest enforcing the Lipschitz constraint by clipping the weight of D’s parameters
θ to a fixed interval r´w,ws. This ensures that all functions Dθ are K-Lipschitz
for a K that depends only on w, and not the particular weights.
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Lemma 3.6.1 (Weight clipping implies Lipschitz continuity). Let Dθp¨q be a
l-layer fully connected neural network with input dimension m, and wlog Kσ-
Lipschitz activation function φ. Suppose the `8 norm of the weights }θ 8 ď w
for some fixed w. Then D is KD-Lipschitz for some finite constant KD.

Proof. A l-layer neural network D is a composition of functions

D “ fl ˝ σ ˝ fl´1 ˝ . . . σ ˝ ˝f1

where each fipXq “ θTX. We use the fact that any function with bounded gradient
}∇Xf}8 ď K is K-Lipschitz. As }∇XpθTXq}8 ď }θ}8 “ w, each fi is therefore
w-Lipschitz.

Finally, we use the fact that the composition of two functions that are respectively
K1,K2-Lipschitz is pK1 ¨K2q-Lipschitz. Thus, each layer σ˝fi is pKσ ¨wq-Lipschitz,
and the composition of l layers is

ś

iălpKσ ¨ wq-Lipschitz.

As [ACB17] noted, weight clipping is a blunt means of enforcing a Lipschitz
constraint. We can show that for any Lipschitz bound K enforced by a clipping
threshold w, there exist parameters θ such that Dθ is K-Lipschitz, but }θ}8 ą w.
In fact, Petzka, Fischer, and Lukovnicov [PFL18] proved that in almost all cases,
the optimal K-Lipschitz D that minimizes W pG, ¨q is not in the class of functions
that can be generated under the weight clipping constraint.

However, this concern turns out to be less relevant for the problem explored in
this thesis. First, our primary result relies on a one-layer discriminator. It is easy
to verify that for a single-layer network σpθTxq, the weight clipping bound is tight.
Moreover, even in the case of deep discriminators there is an independent reason
for enforcing weight clipping. We will see in the following sections that }θ} must
be bounded both to ensure convergence of the online algorithm, as well as to
ensure differential privacy.

Remark 3.6.2. One might worry that the argument for the Wasserstein loss re-
quires a number of unrealistic assumptions that do not actually hold. In particular,
the argument assumes that:

1. The class of finite, K-Lipschitz neural networks is sufficient to approximate
all K-Lipschitz functions

2. Enforcing Lipschitz constraints via weight clipping does not exclude too
many valid discriminators

3. The (usually non-convex) discriminator is trained to optimality

However, the contingency of these assumptions is not fatal to our argument. The
above arguments aim to suggest that the Wasserstein loss is a practical and
efficient objective function for GAN training. Neither the accuracy nor privacy
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guarantees rely on any specific properties of the Wasserstein loss besides its
structural resemblance to the query release objective. The arguments above simply
aim to provide some theoretical understanding of the improved performance of
the Wasserstein loss, and how it can be applied here.

3.6.2 Wasserstein GAN Equivalence
In this section, we prove that the Wasserstein GAN objective is equivalent to the
query release objective for specific neural networks.

Lemma 3.6.2. [Wasserstein GAN equivalence] Let G and D be neural networks,
where D is K-Lipschitz. Define Suppose G and D are trained to an α´ mixed
equilibrium of the Wasserstein objective with some training dataset S. Then a
dataset Ŝ sampled from G α´approximates S for all queries Q representable by
D.

Proof. This proof follows from a simple reduction to Theorem 2.3.1, drawn from
[Gab+14]. Theorem 2.3.1 states that

Let pu,wq be the α´approximate MNE in a query release game for a
dataset S P X and a query universe Q. If Q is closed under negation,
then the dataset Ŝ sampled from u α-approximates S overQ. [Gab+14]

To apply this theorem to the Wasserstein GAN, we must show that the Wasserstein
GAN objective is equivalent to the query release objective, and in addition that
D is closed under negation.

If the activation function φ is odd, then the fact that the set of weight parameters
Θ is closed under negation ensures that Q is. For non-odd functions, we can simply
let Q1 “ QYQ, where Q is the class of negated queries.

We can now show equivalence of the two objectives.

Recall that in the query release game the payoff of V over mixed strategies is
defined as

min
gP∆X

max
qP∆Q

V pg, dq “ |Ex„grqpxqs ´ Ex„Pdata
rqpxqs|

Because Q is closed under negation, we can drop the absolute value around V .
Limiting Q to a family of K-Lipschitz functions, we recover the exact Wasserstein
formulation.
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Importantly, for the Wasserstein GAN this limits us to all queries that are K-
Lipschitz over each row. 2. In this context, that may prove to be infeasibly limiting.
Even a simple linear threshold query over a continous domain, q(x) = 1tx ą 1{2u
is not Lipschitz for any finite K. This has not proven to be too onerous of a restric-
tion in prior GAN literature because for visual data, changing 1 pixel intuitively
shouldn’t change the realism of an image by much, and thus the discriminator
has no need to represent queries particular sensitive to individual pixels.

In general, our goal is to find a GAN objective that induces a discriminator
function class that contains many queries of interest, while still making training
feasible. In later sections we will explore other objectives.

2To be clear, this is not the standard Lipschitz condition in differential privacy, where some
function f : X dˆn Ñ R is defined over a multi-set of records. Instead, the discriminator (and
thus queries) takes a single row f : X d Ñ R. Thus, for f to be 1-Lipschitz, flipping a single
column of a row x P t0, 1ud can’t change fpxq by more than 1.



Chapter 4

QueryGAN

We now have almost all the necessary components for our first result. 3.6.2 re-
duces the query release problem to the problem of training GANs. 3.4.1 and
Theorem 3.5.1 shows how, we can use an optimization oracle as a heuristic to
efficiently find the minimum of a semi-convex game and non-convex game re-
spectively. Using stochastic gradient descent over a neural network as our oracle,
we can then define an algorithm that is guaranteed to produce an α-accurate
synthetic database, conditioned on the oracle succeeding in each round.

However, as noted above, we are unable to certify whether the oracle has success-
fully found an approximate minimum. Recall that a solution x˚ is α´approximate
if

α ď fpx˚q ´min
xPX

fpxq

In the case of non-convex gradient descent, without other assumptions it is impos-
sible to in general determine α, because the global minimum min fpxq could be
arbritrarily far from the stationary point x˚. Without this feature, we cannot pro-
vide any guarantees regarding the worst case accuracy of a query on the synthetic
dataset.

However, while we cannot guarantee (or even certify) convergence to an approxi-
mate global minimum in general, we can take advantage of the specific structure
of the query release problem. In particular, if D is optimal 3, the global minimum

3Note that unlike in many classic GAN proofs [Goo+14], this is not the unrealistic optimality
where D has infinite capacity and is optimized in the space of probability density functions.
Rather, we merely mean optimal in the space of functions D that can actually be computed.
Because D is designed such that D contains all the queries of interest, considering this restrictive
function class is sufficient for our purposes. By comparison, in the standard GAN setting, where
the goal is not just to match a few specific queries, but rather to exactly match the distributions.

24
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of the game value V is known: 0

Lemma 4.0.1. Let d˚ be the optimal discriminator. Then, the cumulative regret
of the generator’s loss `t “ V pd˚, ¨q can be bounded by the empirical sum of the
losses:

RpT q ď
T
ÿ

t“1
`tpgtq

Proof. Recall that regret is defined as

RpT q “
T
ÿ

t“1
`tpxtq ´ min

x˚PX

T
ÿ

t“1
`tpx

˚q

To prove the theorem, we show that the term m :“ minx˚PX
ř

ftpx
˚q “ 0 by

bounding each term in the sum from above and below.

In the Wasserstein formulation, each `tppgq “ W ppdata, pgq is a proper distance
between probability distributions. By definition, ft ě 0. Moreover, the action
where g samples uniformly from the true distribution pdata clearly has value at
most 0.

However, given that d˚ must be learned in a differentially private manner, we can
only guarantee that d˚ is α-approximate for some fixed α. In this context, we can
bound the regret as:

Lemma 4.0.2. Let D α-approximate the optimal discriminator d˚. Then the
cumulative regret of the generators loss `αt “ V pd˚α, ¨q can be bounded by

RpT q ď pT ´ 1qα`
T
ÿ

t“1
`αt pgtq

4.0.1 gives us a framework for obtaining certifiable error guarantees even when
using non-certifiable heuristics to train the generator. So long as we can guarantee
the discriminator is approximately globally optimal, we can track the total regret
by simply summing the generators historical losses.

We formalize this discriminator requirement as:

Definition 4.0.1. We say A is a pQ, Rptq, ρq-online discriminator oracle (ODO)
if for any sequence of loss functions fed losses `1, .., `T in an online fashion, after
each sample it outputs a function Dt such that with probability rho

ÿ

tăT

`tpDtq ´ sup
qPQ

ÿ

tăT

`tpqq ď RpT q
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If A is also pεpT q, δq-differentially private for the entire sequence of losses `1...`T ,
we call it an pQ, Rptq, εpT q, δq-ODO

Remark 4.0.1. Note that unlike the oracle definitions in section 3.2, the dis-
criminator oracle is an online, rather than batch learner. As shown in section 3.3,
we can always convert a batch learner to an online learner using FTRL/FTPL.
However, this is an extremely general reduction, and by allowing the discrimina-
tor learner to optimize specifically for the online case, we can often obtain better
regret bounds.

With this, we have the foundation for our GAN based query release algorithm.

Algorithm 3: QueryGAN
Input: sensitive dataset S P Xn, pQ, Rdptq, εpT q, δq-Online Discriminator

Oracle OD, Offline Generator Oracle OG, Rounds T , game
objective V , output rows N , Privacy Budget pε “ ε1 ` ε2, δq,
Reporting confidence bound p1´ uq P p1{2, 1q, GAN objective
V pθ, φtq

Result: Dataset S P X d, Accuracy α
1

2 Randomly initialize Discriminator θ0 and Generator parameters φ0
3 for t P 1...T do
4 Obtain discriminator θt by passing loss function `dt p¨q “ V p¨, φt´1q to

OD
5

6 Let `gt p¨q “ V pθt, ¨q
7 if V is convex in θ then
8 Let Jtp¨q :“

ř

τăt `
d
τ p¨q be the FTL objective ??

9 else
10 Draw noise γ „ ExppηGq

11 Let Jtpθq :“
ř

τăt `
d
τ pθq ` γ

ᵀθ be the FTPL objective 2
12 Compute φt by passing objective J to OG
13

14 Let k “ ´ n
ε2

logp1´ 2uq
15 Privately calculate cumulative regret:
16 R̂ “

ř

tăT

`gt pGtq ` Lappm{ε2q ` k

17

18 for i P 1...N do
19 Draw t „ UnifprT sq and z „ N p0, 1q
20 Set xi “ Gtpzq

21

22 return Dataset tx1, ..., xNu, Approximation factor α “ R̂`RdpT q
T
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Remark 4.0.2. As we will prove below, Algorithm 3 shows how we can efficiently
generate synthetic data with accuracy guarantees in the GAN framework, provided
we have both:

1. A private, online discriminator oracle that can provably train a discriminator
to near optimality at each step

2. A heuristic generator oracle that in general can train a generator to produce
good samples

The vast literature and experimental evidence on the surprising effectiveness
of deep networks suggests that the second problem is feasible with standard
tools for training GAN generators. The challenge in later sections is to provide
private ODO’s for broad classes of useful queries that can be trained in reasonable
(typically sub-exponential) time.

Theorem 4.0.1. [QueryGAN Utility] Suppose QueryGAN is instantiated with
a pQ, Rptqq-ODO, a reporting failure probability u P p0, 1{2q, and an approximate
optimization oracle OG. Let the game objective V pD,Gq be the Wasserstein GAN
objective w.r.t to the sensitive data x̂

Let x, α be the results of running T iterations of QueryGAN with the above
parameters.

Then with probability u, x α´approximates x̂ with respect to Q

Proof. This follows directly from 3.4.1 and Lemma Theorem 2.3.1

Because the regret bound is reported privately, we can only upper bound the
private regret with high probability.

Lemma 4.0.3. Let R̂ be as defined on line 16 of Algorithm 3. Let R :“
ř

tăT

`gt pGtq

be the unperturbed regret. Then P pR ě R̂q ď u

Proof. This follows by basic probability. Let Y „ Lappn{ε2q, Z „ Exppε2{nq,
k “ n

ε2
logp1´ 2uq as in Algorithm 3. Then, We can write R̂ as R̂ “ R` Z ` k.

P pR ě R̂q “ P pR ě R` Z ` kq

“ 1´ 1
2P p|Y | ě kqBy symmetry of Laplace

“ 1´ 1
2P pZ ě kqExponential is one-sided laplace

“ 1´ 1
2 p1´ exppk ¨ ε2{nqq

ď u
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Applying the above confidence bound to Algorithm 3 proves the claim.

We now will show that given access to a approximate optimization oracle, Query-
GAN converges at rate T´1{2

Theorem 4.0.2 (Conditional convergence). Suppose OG is an pαq-approximate
optimization oracle. Then w the average regret 1

T E rRGpT qs ď OpT´1{2 ` α{T q.

Proof. There are two cases:

• If `dp¨q is non-convex then OG plays FTPL. Then the proof follows directly
from the bounds given in Theorem 3.5.1.

• If `dp¨q is convex, then it can forego any perturbation by playing just Follow
the Leader. The stability of the actions θt of the discriminator ensures the
loss functions `gt are also stable, obviating the need for explicit regularization.
This proof is similar to [Grn+17], but for general predictions as well as those
of FTPL, rather than merely FTRL.

Theorem 4.0.3. Assume }V }8 ď C. Let V be KD lipchitz with respect to the
discriminator parameters . Then, if G plays FTL,

E rRGpT qs ď
ÿ

tăT

KDE r}θt`1 ´ θt}s ` 2C (4.1)

ď KDTE r}θt`1 ´ θt}s ` 2C (4.2)

Proof. The proof of the bound on generator regret is adopted from [Grn+17],
modified here to allow the discriminator to play FTPL rather than FTRL. Recall
that, per 3.3.2, the regret of follow-the-leader is bounded by

RpT q ď
ÿ

tăT

`tpφtq ´ `tpφt`1q

Using the fact that `tpφq “ V pφ, θtq is KD-Lipschitz with respect to θ as well as
that the losses are bounded by C, the lemma follows:
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RpT q ď
ÿ

tăT

`tpφtq ´ `tpφt`1q

“

˜

T´1
ÿ

t“1
`tpφtq ´ `tpφt`1q ` `t`1pφt`1q ´ `t`1pφt`1q ` p`T pφT q ´ `T pφT`1qq

¸

“

˜

T´1
ÿ

t“1
`t`1pφt`1q ´ `tpφt`1q

¸

`

T´1
ÿ

t“1
p`tpφtq ´ `t`1pφt`1qq ` p`T pφT q ´ `T pφT`1qq

“

˜

T´1
ÿ

t“1
V pφt`1, θt`1q ´ V pφt`1, θtq

¸

` p`1pφ1q ´ `T pφT`1qq

E rRpT qs ď

˜

T´1
ÿ

t“1
KD ¨ E r}θt`1 ´ θt}s

¸

` p`1pφ1q ´ `T pφT`1qq

ď KD ¨ T ¨ E r}θt`1 ´ θt}s ` 2C

Theorem 4.0.4. Let Mp`1, ..., `tq be an ε-differentially private mechanism with
neighbour relation p`1:t||`1:t`1q. Let θt “ Mp`1, ..., `tq be the output of an ε-
differentially private mechanism, with respect to the sequence of loss functions.

E r}θt`1 ´ θt}1s ď 2ε ¨ }θ}8p

Proof. Dwork and Roth [DR13, Definition 10.1] shows that if θt and θt`1 are
the output of an ε differentially private mechanism M on neighbouring inputs
`1:t, `1:t`1, then

|Ex„Mp`1:tq rxs ´ Ex1„Mp`1:t`1q

“

x1
‰

| ď 2εEx„Mp`1:tq rxs

By the reverse triangle inequality, linearity of expectation, and the independence
of the mechanism’s perturbations:

E
“

||x| ´ |x1||
‰

ď 2εEθ„Mp`1:tq rxs

We treat each coordinate θit as its i.i.d own random variable x in the above
equation. Thus,

E r}θt ´ θt}1s ď p ¨ E
“

|θit ´ θ
i
t|
‰

ď 2εEθ„Mp`1:tq rθs
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This proves the first part of the theorem. For FTPL in particular, note that Each
step of FTPL with Laplace noise λ is differentially private for ε :“ }θ}8

λ . Plugging
in ε into the above bounds obtains the desired result.

Using this, if we let ε ď O
´

KD}θ}8?
T

¯

! 1, then G has expected regret RGpT q ď
Op
?
T ` 2Cq

Theorem 4.0.5 (QueryGAN Privacy). Suppose QueryGAN is run for T rounds,
over a dataset x̂ P Xmˆn, with privacy parameters ε “ ε1` ε2, and a differentially
private discriminator oracle Od. Then QueryGAN satisfies ε-differential privacy.

Proof. In QueryGAN, the only interaction with sensitive data comes through the
discriminator loss function fp¨q “ V pG, ¨q. Thus, by ensuring the discriminator is
differentially private, the generator privacy (and thus the privacy of the ultimate
data release) comes via post-processing. However, the regret bounds also depend
directly on the sensitive loss function f , and must be independently perturbed to
ensure privacy. The total privacy loss of both computations is bounded by the sum
of the privacy loss of calculating the regret bound and training the discriminator.

Lemma 4.0.4. The mechanism to report the regret bound is ε2-DP.

RÐ
1
T

ÿ

tPT

ftpGtq ` Lappm{ε2q ` k

Proof. The privacy of reporting the regret bound comes from the addition of
Laplace noise. Each objective fi is a statistical query over the same dataset x̂.
As f is ensured to be 1´Lipschitz over a single row, then each individual query
ft has sensitivity m. As they are all computed over the same records, the total
sensitivity of the average 1

T

ř

i fi is also m. Thus, by standard Laplace mechanism,
R is ε2-DP.

Because OD is defined to be a p , , ε1q-ODO in Algorithm 3, by the definition of
an ODO it is ε1 differentially private over T rounds. Thus, via basic composition,
we arrive at a total privacy loss of ε1 ` ε2 “ ε as desired.



Chapter 5

One Layer Discriminator
Oracles

In this section we describe a ODO for the class of (K-Lipschitz) one layer neural
networks F1

F1 :“
!

fpxq “ σpθTx` bq
ˇ

ˇ

ˇ
}θ}8 ď 1

)

.

where σ satisfies the following conditions:

Assumption 5.0.1 (Activation conditions). We assume the activation function
σ in F1 is any β smooth, convex, 1-Lipschitz, monotonic activation function with
continous second derivative.

Figure 5.1: The softplus and ReLU activation functions

One such common activation function is softplus, a smooth approximator to the
ReLU function σReLU pxq “ maxp0, xq. The softplus is defined as [Zhe+15]
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σpxq :“ logp1` exq (5.1)

Lemma 5.0.1. The softplus function satisfies Assumption 5.0.1.

Proof. The first and second derivatives of softplus are ex

1`ex and ex

p1`exq2
respec-

tively.

Note that the first derivative of softplus is the sigmoid function, and thus the first
derivative has bound 1. By 3.1.1, that proves 1-Lipschitzness. Similarly, by the
definition of smoothness 3.1.3, function with β-Lipschitz gradients is β-smooth.
As sigmoid is 1-Lipschitz, we have that softplus is β-smooth.

Softplus is a composition of monotonic functions, and therefore it too is monotonic.
Finally, as the second derivative is all points differentiable, softplus therefore has
a continous second derivative.

Each fpxq P F1 is clearly a convex function of x, as both the weighted sum θTx`b
and σpxq are convex in x. Because composition of two convex functions is also
convex, the overall function is as well.

Algorithm 4 is a simple instantiation of FTPL. At each step t, the algorithm
uses any off-the-shelf, non-private convex optimizer, such as gradient descent, to
minimize the FTPL objective. Our novel contribution is in showing that the single
laplace perturbation ensures both no-regret and differential privacy.

Algorithm 4: ODO-1[AGH19b]
Input: Privacy parameter (ε, δ), Steps T , Online series of ERM losses

`tpθq :“WpDθ, Gtq for t P 1...T
Result: Online prediction θ1, .., θT

1 for t P 1...T do
2

ε0 :“ ε
a

2T logp1{δq
λ :“ 2}X}8

ε0

3 Draw random vector γ „ Lappλqp

4 Output prediction at time t
5

θt P arg min
x

ÿ

iăt

`ipθq ´ γ
Tx

We will prove the parameters ODO-1 are differentially private. Recall that by post-
processing, any dataset generated from those parameters (and no other private
data) is also differentially private.
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Lemma 5.0.2 (Privacy). The sequence pθ1, ..., θT q outputted by Algorithm 4 is
pε, δq-DP

Proof. The difficulty in proving privacy is that unlike in the standard setup of
differentially private online learning, where each loss function `t is assumed to be
a single sensitive datapoint, here each loss function depends on the entire dataset.
Because of this, we cannot use the standard analyses from private online learning.

Instead, we show that the FTPL objective is equivalent to the batch convex
optimization objective

ř

iăn
˜̀
ipDq, where each ˜̀

ipDq depends only on a single
record xi. This lets us analyze the Follow the Leader perturbations in the objective
perturbation framework of [CMS].

Let `FTPLpDq be the FTPL objective, where γ is a random noise vector.

`FTPLpDq :“
ÿ

tăT

LtpDq ` γTD “
ÿ

tăT

˜

1
n

ÿ

iăn

Dpxiq ´
1
m

ÿ

iăm

DpGtpziqq

¸

Because the first term
ř

iănDpxiq does not depend on t, we can swap the order
of the summation

`FTPLpDq “
ÿ

iăn

˜̀
ipDq ` γ

TD

where

˜̀
ipDq :“ Dpxiq ´

1
m

ÿ

jăm

ÿ

tăT

DpGtpzjqq

Note that each ˜̀
i depends only on the single row xi, and theore is a convex ERM

problem. Thus, the output of one iteration of FTPL can instead be viewed as the
output from a differentially private, objective perturbation mechanism. This lets
us apply the following lemma from [KST].

Lemma 5.0.3 (Objective Perturbation Privacy [KST]). Let Lpθq :“ 1
n

ř

iăn
˜̀
ipθq

be a convex loss function with a continous hessian, let ζ be the upper bound on
}∇˜̀

ipθq}2, and let and assume the rank of ∇2 ˜̀pθq is at most one.

Then the mechanism that outputs the minima of the perturbed objective

min
θ

1
n

ÿ

iăn

˜̀
ipθq ` γ

T θ; γ „ pγpb;λq
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is ε-differentially private when γ is drawn from the distribution with density
pγpb;λq :“ exp

´

}b}2
λ

¯

where λ :“ 2ζ
ε

Because Dθ is a convex function of θ, ` is also convex. The continuity of the
hessian follows from the assumption that the activation function σ has continous
second derivatives. We can bound }∇˜̀

ipθq} ď }X} “ ζ. Finally, note that as the
above lemma only applies to a single iteration of FTPL, the ε is not the total ε
for T rounds of QueryGAN, but instead ε0, the privacy loss for a single iteration.

Plugging the above values, as well as the constants ε0 and λ from Algorithm 4
into 5.0.3, proves that each iteration is ε0-DP.

Finally, we bound the privacy loss of T iterations of Algorithm 4. Recall that by
??, running T compositions of an ε0-DP mechanism is pε, δq-DP for

ε “
a

2 logp1{δqTε0 ` Tε0pexppε0q ´ 1q

Assuming that ε0 ă 1, we can use that inequality exppε0q ď 2ε0 ` 1 to obtain
ε “

a

2 logp1{δqTε0`2Tε20. Plugging our choice of ε0 :“ ε{p
a

2T logp1{δqq suffices
to prove the result.

Theorem 5.0.1 (Utility). Algorithm 4 is a (F1, RpT q)-ODO, for

RpT q ď O

ˆ

ε
?
T }θ}8 log´

1
2 p

1
δ
q ` }θ}8}X}8 logppqlog 1

2 p
1
δ
q

˙

Proof. We make use of the following theorem

Lemma 5.0.4 ([KV05]). For K ´ Lipchitz, convex losses, FTPL instantiated
with Laplacian noise with parameter 1

λ has regret

ErRpT qs ď
p1` 2KqL˚T

λ
` 2}θ}8p1` logppqλq

where L˚T :“ minθ
ř

tăT `tpθq

Plugging in λ lets us obtain the desired bound.

We have just shown that Algorithm 4 is an a (F1, RpT q, εpT q, δ)-ODO.

The above lemma, combined with Theorem 4.0.1 shows that QueryGAN instanti-
ated with and αg-generator oracle, with high probability produces synthetic data
that α-approximates x̂ for all q P F1, where
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α “ O

¨

˝

?
T ` α` C ` ε

b

T { logp 1
δ q ` }X}8 logppqlog 1

2 p 1
δ q

T

˛

‚

While the class of one layer networks F1 is very limited, it does contain a number
of useful query classes. F1, the set of thresholded linear functions, which can
represent, for example, the class of discrete marginals.

5.1 Case study: Marginals
Consider a database that contains records with boolean features such as whether
a person is male or female, or whether they have a certain disease. We may be
interested in studying some subset of those features. A natural question to ask is
how many records in the database have those attributes (eg. ”how many men in
the database have a heart condition”). This can be captured by a marginal query:

Definition 5.1.1 (Marginal). A marginal m : X Ñ t0, 1u over a row x P t0, 1up
is a monotone conjunction, parametrized by some subset S of the input features.

mSpxq “
ź

iPS

xi

We extend this to a dataset S of n rows by defining mpXq “
ř

xPX mpxq. A k-way
marginal is a marginal restricted to k features.

[DR13]

Marginals are a useful way of providing a synopsis of a dataset that still cap-
tures complex relationships between features. Producing a differentially private
synthetic dataset that agrees with all k´way marginals of the true dataset is an
extremely well-studied problem in the field, which can be shown to be hard in the
worst case [Dwo+09].

However, we can show that if QueryGAN succeeds, it is able to match all k´way
marginals. This follows from the fact that a linear discriminator can contain all
marginals.

This theorem relies on the use of a Rectified Linear Unit activation function

Definition 5.1.2 (ReLU). The ReLU activation function Rpxq : R Ñ R` :“
maxp0, xq

This non-linearity allows us to approximate the nonlinear marginal query with a
linear neural network:
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Theorem 5.1.1. Let D be single layer discriminator parametrized by θ with a
ReLU activation function s.t. Dθpxq “ σpθTx ` bq. For any single-row marginal
m, there exists θ, b s.t. Dθpxq “ mpxq for all x.

Proof. This follows from the definition of a marginal. Let mS be the marginal
over the features S. Let θi “ 1iPS . Setting b “ 1´ |S|, it’s clear that

Dθpxq “

#

1,
ś

iPS xi “ 1
0, otherwise

+

“ mSpxq

Theorem 5.1.2. Let x, α be the output of running QueryGAN with for T steps.
Then x is a private dataset with all marginal counts accurate to within α.

The proof of this theorem follows directly from Theorem 4.0.1 and Theorem 5.1.1.
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Conclusion

In this thesis, we’ve shown how to apply Generative Adversarial Networks to the
query release problem with certifiable accuracy bounds, despite the fundamentally
non-convex nature of the problem. This is an important step towards enabling
differential privacy to be deployed in more challenging settings, with stronger
accuracy requirements and larger datasets. The accuracy guarantees (so far) only
hold for one-layer discriminators, but the privacy guarantees hold regardless. This
setup alone is powerful enough to allow for certifiable generation of synthetic data
that is accurate for all k-way marginals, a strong, if conditional result.

In addition, to the best of our knowledge we are the first to use the recent result
per Agarwal, Gonen, and Hazan [AGH19a] that FTPL is no-regret in order to
provide an oracle efficient synthetic private data generation framework. Further,
some of our proof techniques to show utility for online learning over batch losses
in Chapter 4 may be of independent interest.

The largest open question that remains is whether the one-layer discriminator
limitations could be relaxed. The introduction of FTPL removes the need to
induce a semi-convex game, as in [Grn+17]. The only barrier to more powerful
discriminators that better resemble real world GANs is the need for training
algorithms that provably converge, in order to allow us to track the generator
regret. Unfortunately, training deep neural is necessarily hard in general, but there
is very active research into obtaining provable convergence for deep neural net that
circumvent those hardness requirements [Li+14; MS18; AXK17]. In particular,
training neural networks via greedy boosting, rather than backpropagation is
theoretically promising, if not quite practical yet [Bey+15; Bac; Mar19]. This is
doubly promising given the effectiveness of boosted decision trees at classifying
discrete and tabular data.

In addition, perhaps better guarantees could be obtained with a discriminator
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other than a neural network. While it is hypothesized that some of the effectiveness
of GANs comes from the symmetry of the discriminator and generator architecture
[Sal+16], expanding our function class would allow us to represent many more
queries before running into an NP-Hard optimization problem. If we abandon our
desideratum that the discriminator be trained in time sub-linear in the size of the
query universe, there are a number of existing differentially private algorithms in
the literature that could easily be plugged into this framework, such as differentially
private multiplicative weights [HR10].

Finally, this framework is no stronger than the ability of the generator to learn
distributions. There is much more room for empirical testing, and for tailoring
the generator and training procedure for this particular setup, rather than the
more typical visual learning problems.
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GAN”. en. In: arXiv:1701.07875 [cs, stat] (Dec. 2017). arXiv: 1701.
07875 [cs, stat].

[AGH19a] Naman Agarwal, Alon Gonen, and Elad Hazan. “Learning in Non-
Convex Games with an Optimization Oracle”. en. In: arXiv:1810.07362
[cs, stat] (May 2019). arXiv: 1810.07362 [cs, stat].

[AGH19b] Naman Agarwal, Alon Gonen, and Elad Hazan. “Learning in Non-
Convex Games with an Optimization Oracle”. en. In: arXiv:1810.07362
[cs, stat] (May 2019). arXiv: 1810.07362 [cs, stat].

[AXK17] Brandon Amos, Lei Xu, and J. Zico Kolter. “Input Convex Neural
Networks”. In: arXiv:1609.07152 [cs, math] (June 2017). arXiv: 1609.
07152 [cs, math].

[Bac] Francis Bach. “Breaking the Curse of Dimensionality with Convex
Neural Networks”. en. In: (), p. 53. arXiv: 1412.8690.

[BDS19] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale
GAN Training for High Fidelity Natural Image Synthesis”. en. In:
arXiv:1809.11096 [cs, stat] (Feb. 2019). arXiv: 1809 . 11096 [cs,
stat].

[Bey+15] Alina Beygelzimer et al. “Online Gradient Boosting”. en. In: arXiv:1506.04820
[cs] (Oct. 2015). arXiv: 1506.04820 [cs].

39

https://doi.org/10.1007/978-3-030-10925-7_31
https://doi.org/10.1007/978-3-030-10925-7_31
https://doi.org/10.1145/3219819.3226070
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1810.07362
https://arxiv.org/abs/1810.07362
https://arxiv.org/abs/1609.07152
https://arxiv.org/abs/1609.07152
https://arxiv.org/abs/1412.8690
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1506.04820


40 BIBLIOGRAPHY

[BLR11] Avrim Blum, Katrina Ligett, and Aaron Roth. “A Learning Theory
Approach to Non-Interactive Database Privacy”. In: arXiv:1109.2229
[cs] (Sept. 2011). arXiv: 1109.2229 [cs].

[CMS] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. “Dif-
ferentially Private Empirical Risk Minimization”. en. In: (), p. 41.

[DR13] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of
Differential Privacy”. en. In: Foundations and Trends R© in Theoretical
Computer Science 9.3-4 (2013), pp. 211–407. issn: 1551-305X, 1551-
3068. doi: 10.1561/0400000042.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. “Boosting and
Differential Privacy”. en. In: 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science. Las Vegas, NV, USA: IEEE,
Oct. 2010, pp. 51–60. isbn: 978-1-4244-8525-3. doi: 10.1109/FOCS.
2010.12.

[Dwo+09] Cynthia Dwork et al. “On the Complexity of Differentially Private
Data Release: Efficient Algorithms and Hardness Results”. en. In:
Proceedings of the 41st Annual ACM Symposium on Symposium on
Theory of Computing - STOC ’09. Bethesda, MD, USA: ACM Press,
2009, p. 381. isbn: 978-1-60558-506-2. doi: 10 . 1145 / 1536414 .
1536467.

[FS99] Yoav Freund and Robert E. Schapire. “Adaptive Game Playing Using
Multiplicative Weights”. In: Games and Economic Behavior 29.1-2
(1999), pp. 79–103.

[Gab+14] Marco Gaboardi et al. “Dual Query: Practical Private Query Release
for High Dimensional Data”. In: arXiv:1402.1526 [cs] (Feb. 2014).
arXiv: 1402.1526 [cs].

[Goo+14] Ian J. Goodfellow et al. “Generative Adversarial Networks”. In: arXiv:1406.2661
[cs, stat] (June 2014). arXiv: 1406.2661 [cs, stat].

[Grn+17] Paulina Grnarova et al. “An Online Learning Approach to Genera-
tive Adversarial Networks”. en. In: arXiv:1706.03269 [cs, stat] (June
2017). arXiv: 1706.03269 [cs, stat].

[GRU11] Anupam Gupta, Aaron Roth, and Jonathan Ullman. “Iterative Con-
structions and Private Data Release”. In: arXiv:1107.3731 [cs] (July
2011). arXiv: 1107.3731 [cs].

[HLM12] Moritz Hardt, Katrina Ligett, and Frank Mcsherry. “A Simple and
Practical Algorithm for Differentially Private Data Release”. In: Ad-
vances in Neural Information Processing Systems 25. Ed. by F. Pereira
et al. Curran Associates, Inc., 2012, pp. 2339–2347.

https://arxiv.org/abs/1109.2229
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.1145/1536414.1536467
https://arxiv.org/abs/1402.1526
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1706.03269
https://arxiv.org/abs/1107.3731


BIBLIOGRAPHY 41

[HR10] M. Hardt and G. N. Rothblum. “A Multiplicative Weights Mechanism
for Privacy-Preserving Data Analysis”. In: 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science. Oct. 2010, pp. 61–
70. doi: 10.1109/FOCS.2010.85.

[HRU13] Justin Hsu, Aaron Roth, and Jonathan Ullman. “Differential Privacy
for the Analyst via Private Equilibrium Computation”. In: Proceed-
ings of the 45th annual ACM symposium on Symposium on theory
of computing - STOC ’13 (2013), p. 341. doi: 10.1145/2488608.
2488651. arXiv: 1211.0877.

[JY19] James Jordon and Jinsung Yoon. “PATE-GAN: GENERATING SYN-
THETIC DATA WITH DIFFERENTIAL PRIVACY GUARANTEES”.
en. In: (2019), p. 21.

[KST] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. “Private Con-
vex Empirical Risk Minimization and High-Dimensional Regression”.
en. In: (), p. 40.

[KV05] Adam Kalai and Santosh Vempala. “Efficient Algorithms for Online
Decision Problems”. en. In: Journal of Computer and System Sciences
71.3 (Oct. 2005), pp. 291–307. issn: 00220000. doi: 10.1016/j.
jcss.2004.10.016.

[Li+14] Chao Li et al. “A Data- and Workload-Aware Algorithm for Range
Queries under Differential Privacy”. en. In: Proceedings of the VLDB
Endowment 7.5 (Jan. 2014), pp. 341–352. issn: 21508097. doi: 10.
14778/2732269.2732271.

[Loh10] Steve Lohr. “Netflix Cancels Contest After Concerns Are Raised
About Privacy”. en-US. In: The New York Times (Mar. 2010). issn:
0362-4331.
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