Sample Complexity of Differential Privacy

Mark Bun*

Harvard University (2 ${ }^{\text {nd }}$ year Ph.D., supported by an NDSEG fellowship)

Privacy Tools

for Sharing Research Data
A National Science Foundation
Secure and Trustworthy Cyberspace Project

MAIN QUESTION

How many data samples do we need to achieve both differential privacy and statistical accuracy?
i.e. How big a study do we need to conduct to answer our questions and preserve privacy?

DIFFERENTIAL PRIVACY

D and D^{\prime} are neighbors if they differ only on one user's data

An algorithm San is (ε, δ)-differentially private if for all neighbors D, D^{\prime} and every $S \subseteq \operatorname{Range}(S a n)$,
$\operatorname{Pr}[\operatorname{San}(D) \in S] \leq \mathrm{e}^{\varepsilon} \operatorname{Pr}\left[\operatorname{San}\left(D^{\prime}\right) \in S\right]+\delta$

Think of $\varepsilon=\Theta(1)$ and $\delta=\mathrm{o}(1 / n)$

ACCURACY FOR COUNTING QUERIES
Counting queries: What fraction of rows in a database satisfy property q ?
e.g. $q(x)=$ LikesBread AND LikesToast

Answers a_{q} are α-accurate if $\left|a_{q}-q(D)\right|<\alpha$ for every $q \in Q$

SAMPLE COMPLEXITY UPPER BOUNDS

For general queries Q,

$$
\mathrm{O}\left(\sqrt{d} \log |Q| / \alpha^{2}\right)
$$

samples suffice [HR10], using the analysis in [GRU12]

But for certain Q, the sample complexity can be much lower:

Point queries: $\operatorname{POINT}_{y}(x)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}$

$\log |\mathrm{Q}|=d$, but just $\mathrm{O}(1 / \alpha)$ samples suffice

Threshold queries: $\operatorname{THRESH}_{y}(x)= \begin{cases}1 & \text { if } x \geq y \\ 0 & \text { otherwise }\end{cases}$

Again, $\log |Q|=d$, but $\ll d / \alpha^{2.5}$ samples suffice.[BNS13]

- Extend to upper bounds on the sample complexity of differentially private PAC learning.
- Sample complexity is much smaller than what is needed for pure (i.e. $\delta=0$) privacy.
- Relevant quantity seems to be the VC-Dimension of Q

SAMPLE COMPLEXITY LOWER BOUNDS

Our contributions [BUV13]

- To answer arbitrary queries, $\Omega\left(\sqrt{d} \log |Q| / \alpha^{2}\right)$ samples are necessary (nearly tight)
- If α is a constant, this lower bound still holds for conjunction queries

Tool 1: Fingerprinting Codes

Coalition of users $S \subseteq[n]$,

- Sensitive database = traceable codebook
- Traceability is the "opposite" of privacy
- Yields a lower bound of $\Omega(\sqrt{d})$ for estimating the mean of each column

Tool 2: Reconstruction Attacks [DN03]

COMPOSITION OF LOWER BOUNDS

Random stack of "sensitive databases"

\section*{| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| | | 1 | | | 0 | | |
 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 |} "names" for each D_{i}

Goal is to answer (most) l-way
conj's on at least one D_{i} \Rightarrow privacy breach

REFERENCES

[BUV13] Mark Bun, Jonathan Ullman, and Salil Vadhan. Fingerprinting codes and the price of approximate differential privacy. Manuscript, 2013 [BNS13] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: pure vs. approximate differential privacy. In RANDOM, 2013.

DN03| Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS, 2003
[GRUIO] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data release. In TCC, 2012.
mechanism fordt and Guy Rothblum. A multiplicative weights
mechanism for privacy-preserving data analysis. In FOCS, 2010.

ACKNOWELEDGMENTS
*Based mostly on joint work with Jonathan Ullman and Salil Vadhan [BUV13]

Most slides are courtesy of Jonathan Ullman

CONTACT
mbun@seas.harvard.edu
Harvard School of Engineering and Applied Sciences
Maxwell Dworkin 138
33 Oxford St.
Cambridge, MA 02138

BERKMAN CENTER FOR INTERNET \& SOCIETY

