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Problem Definition

Mechanism design and private data analysis both study the question of performing
computations over data collected from individual agents while satisfying additional
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restrictions. The focus in mechanism design is on performing computations that are
compatible with the incentives of the individual agents, and the additional restrictions
are towards motivating agents to participate in the computation (individual rationality)
and towards having them report their true data (incentive compatibility). The focus in
private data analysis is on performing computations that limit the information leaked
by the output on each individual agent’s sensitive data, and the additional restriction is
on the influence each agent may have on the outcome distribution (differential privacy).
We refer the reader to the sections on algorithmic game theory and on differential
privacy for further details and motivation.

Incentives and privacy. In real-world settings, incentives influence how willing
individuals are to part with their private data. For example, an agent may be willing
to share her medical data with her doctor, because the utility from sharing is greater
than the loss of utility from privacy concerns, while she would probably not be willing
to share the same information with her accountant.

Furthermore, privacy concerns can also cause individuals to misbehave in oth-
erwise incentive-compatible, individually-rational mechanisms. Consider for example a
second-price auction: the optimal strategy in terms of payoff is to truthfully report val-
uations, but an agent may consider misreporting (or abstaining) because the outcome
reveals the valuation of the second price agent, and the agent does not want to risk
their valuation being revealed. In studies based on sensitive information, e.g. a medical
study asking individuals to reveal whether they have syphilis, a typical individual with
syphilis may be less likely to participate than a typical individual without the disease,
thereby skewing the overall sample. The bias may be reduced by offering appropriate
compensation to participating agents.

The Framework. Consider a setting with n individual agents, and let xi ∈ X be
the private data of agent i for some type set X. Let f : Xn → Y be a function of the
joint inputs of the agents x = (x1, . . . , xn). Our goal is to build a mechanism M that
computes f(x) accurately and is compatible with incentives and privacy as we will now
describe.

We first fix a function v that models the gain in utility that an agent derives
from the outcome of the mechanism. We restrict our attention to a setting where this
value can only depend on the agent’s data and the outcome y of the mechanism:

vi = v(xi, y).

We also fix a function λ that models the loss in utility that an agent incurs be-
cause information about her private data is leaked by the outcome of the mechanism.
Importantly, λ depends on the mechanism M , as the computation M performs deter-
mines the leakage. The loss can also depend on how much the agent values privacy,
described by a parameter pi (a real number in our modelling), on the actual data of
all the individuals, on the outcome, as well as other parameters such as the strategy of
the agent:

λi = λ(M, pi,x−i, xi, y, . . .).
The overall utility that agent i derives from participating in the computation of M is

ui = vi − λi. (1)

With this utility function in mind, our goal will be to construct truthful mech-
anisms M that compute f accurately. We note that in Equation 1 we typically think
about both vi and λi as positive quantities, but we do not exclude either of them being
negative, so either quantity may result in a gain or a loss in utility.
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We can now define the mechanism M : Xn × Rn → Y to be a randomized
function taking as inputs the private inputs of the agents x and their privacy valuations
p and returns a value in the set Y .

Modeling the privacy loss. In order to analyze specific mechanisms we will need
to be able to control the privacy loss λ. Towards this end, we will need to assume
that λ has some structure, and so we now discuss the assumptions we make and their
justifications.

One view of privacy loss is to consider a framework of sequential games : an
individual is not only participating in mechanism M , but she will also participate
in other mechanisms M ′,M ′′, . . . in the future, and each participation will cause her
to gain or lose in utility. Because her inputs to these functions may be correlated,
revealing her private inputs in M may cause her to obtain less utility in the future. For
example, an individual may hesitate to participate in a medical study because doing so
might reveal she has a genetic predisposition to a certain disease, which may increase
her insurance premiums in the future. This view is general and can formalize many
of the concerns we typically associate with privacy: discrimination because of medical
conditions, social ostracism, demographic profiling, etc.

The main drawback of this view is that it is difficult to know what the future
mechanisms M ′,M ′′, . . . may be. However, if M is differentially private, then partic-
ipating in M entails a guarantee that remains meaningful even without knowing the
future mechanisms. To see this, we will use the following definition that is equivalent
to the definition of ε-differential privacy [2]:

Definition 1 (Differential privacy). A (randomized) mechanism M : Xn → Y is
ε-differentially private if for all x,x′ ∈ Xn that differ on one entry, and for all g : Y →
[0,∞), it holds that

Exp[g(M(x))] ≤ eε · Exp[g(M(x′))],
where the expectation is over the randomness introduced by the mechanism M .

Note that eε ≈ 1 + ε for small ε, thus, if g(y) models the expected utility of an indi-
vidual tomorrow given that the result of M(x) = y today, then by participating in a
differentially private mechanism the individual’s utility will change by at most ε.

Fact 1 Let g : Y → [−1, 1]. If M is ε-differential private then Exp[g(M(x′))] −
Exp[g(M(x))] ≤ 2(eε − 1) ≈ 2ε for all x,x′ ∈ Xn that differ on one entry.

To see why this is true, let g−(y) = max(0,−g(y)) and g+(y) = max(0, g(y)).
From Definition 1 and the bound on the outcome of g we get that Exp[g+(M(x′))] −
Exp[g+(M(x))] ≤ (eε − 1) · Exp[g+(M(x))] ≤ eε − 1 and, similarly, Exp[g−(M(x))]−
Exp[g−(M(x′))] ≤ eε − 1. As g(y) = g+(y)− g−(y) we conclude that Exp[g(M(x′))]−
Exp[g(M(x))] ≤ 2(eε − 1).

With this in mind, we typically view λ as being “bounded by differential privacy”
in the sense that if M is ε-differentially private, then |λi| ≤ pi · ε, where pi (a positive
real number) is an upper bound on the maximum value of 2|g(y)|. In certain settings we
make even more specific assumptions about λi, and these are discussed in the sequel.

Generic problems

We will discuss two generic problems for which key results will be given in the next
section:
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Privacy-aware mechanism design: Given an optimization problem q : Xn ×
Y → R construct a privacy-aware mechanism whose output ŷ approximately max-
imizes q(x, ·). Using the terminology above, this corresponds to setting f(x) =
argmaxyq(x, y), and the mechanism is said to compute f() with accuracy α if (with
high probability) q(x, f(x))−q(x, ŷ) ≤ α. We mention two interesting instantiations of
q(). When q(x, y) =

∑
i v(xi, y) the problem is of maximizing social welfare. When xi

corresponds to how agent i values a digital good and Y = R+ is interpreted as a price
for the good, setting q(x, y) = y · |i : xi ≥ y| corresponds to maximizing the revenue
from the good.

Purchasing privacy: Given a function f : Xn → Y , construct a mechanism com-
puting payments to agents for eliciting permission to use (some of) the entries of x in
an approximation for f(x). Here it is assumed that the agents cannot lie about their
private values (but can misreport their privacy valuations). We will consider two vari-
ants of the problem. In the insensitive value model agents only care about the privacy
of their private values x. In the sensitive value model agents also care about the privacy
of their privacy valuations p, e.g. because there may be a correlation between xi and
pi.

Basic differentially private mechanisms

We conclude this section with two differentially private mechanisms that are used in
the constructions presented in the next section.

The Laplace Mechanism [2]. The Laplace distribution with parameter 1/ε, de-
noted Lap(1/ε) is a continuous probability distribution with zero mean and variance
2/ε. The probability density function of Lap(1/ε) is h(z) = ε

2
e−ε|z|. For ∆ ≥ 0 we get

PrZ∼Lap(1/ε)[|Z| > ∆] = e−ε∆.

Fact 2 The mechanism MLap that on input x ∈ {0, 1}n outputs y = #{i : xi = 1}+Z
where Z ∼ Lap(1/ε) is ε-differentially private. From the properties of the Laplace
distribution we get that

Pr
y∼MLap(x)

[|y −#{i : xi = 1}| > ∆] ≤ e−ε∆.

The Exponential Mechanism [7]. Consider the optimization problem defined
by q : Xn × Y → R, where q satisfies |q(x, y)− q(x′, y)| ≤ 1 for all y ∈ Y and all x,x′

that differ on one entry.

Fact 3 The mechanism MExp that on input x ∈ Xn outputs y ∈ Y chosen according
to

Pr[y = t] =
exp

(
ε
2
q(x, t)

)∑
`∈Y exp

(
ε
2
q(x, `)

) (2)

is ε-differentially private. Moreover,

Pr
y∼MExp(x)

[q(x, y) ≥ opt(x)−∆] ≥ 1− |Y | · exp (−ε ·∆/2) , (3)

where opt(x) = maxy ∈ Y (q(x, y)).

Notation. For two n-entry vectors x,x′ we write x ∼i x′ to denote that they agree
on all but the i-th entry. We write x ∼ x′ if x ∼i x′ for some i.
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Key Results

The work of McSherry and Talwar [7] was first to realize a connection between differen-
tial privacy and mechanism design. They observed that (with bounded utility from the
outcome) a mechanism that preserves ε-differential privacy is also ε-truthful, yielding
ε-truthful mechanisms for approximately maximizing social welfare or revenue. Other
works in this vein – using differential privacy but without incorporating the effect of
privacy loss directly into the agent’s utility function – include [11; 9; 5].

Privacy-aware mechanism design

The mechanisms of this section share the following setup assumptions:

Optimization problem. q : Xn × Y → [0, n] and a utility function U : X × Y → [0, 1].
Input. n players each having an input xi ∈ X and a privacy valuation pi. The players

may misreport xi.
Output. The mechanism outputs an element y ∈ Y approximately maximizing q(x, y).
Utility. Each player obtains utility U(xi, y) − λi where the assumptions on how the

privacy loss λi behaves vary for the different mechanisms below and are detailed in
their respective sections.

Accuracy. Let opt(x) = maxy∈Y (q(x, y)). A mechanism is (∆, δ)-accurate for all x it
chooses y ∈ Y such that Pr[opt(x) − q(x, y) ≤ ∆] ≥ 1 − δ where the probability
is taken over the random coins of the mechanism. (One can also define accuracy in
terms of opt(x)− Exp[q(x, y)].)

Worst-case privacy model [8] In the worst-case privacy model the privacy loss
of mechanism M is only assumed to be upper-bounded by the mechanisms privacy
parameter, as in the discussion following Fact 1:

0 ≤ λi ≤ pi · ε where ε = maxx′∼x,y∈Y ln
Pr[M(x) = y]

Pr[M(x′) = y]
. (4)

Nissim, Orlandi, and Smorodinsky [8] give a generic construction of privacy-
aware mechanisms assuming an upperbound on the privacy loss as in Equation 4. The
fact λi is only upper-bounded excludes the possibility of punishing misreporting via
privacy loss (compare with algorithms 3, 4 below), and hence the generic construction
resorts to a somewhat non-standard modeling from [9]. To illustrate the main compo-
nents of the construction, we present a specific instantiation in the context of pricing
a digital good, where such a non-standard modeling is not needed.

Pricing a digital good. An auctioneer selling a digital good wishes to design
a single price mechanism that would (approximately) optimize her revenue. Every
agent i has a valuation xi ∈ X = {0, 0.01, 0.02, . . . , 1} for the good, and privacy
preference pi. Agents are asked to declare xi to the mechanism, which chooses a price
y ∈ Y = {0.01, 0.02, . . . , 1}. Let x′i be the report of agent i. If x′i < y then agent i
does not pay nor receives the good and hence gains zero utility, i.e. vi = 0. If x′i ≥ y
then agent i gets the good and pays y and hence gains in utility. We let this gain be
vi = x′i− y+ 0.005, where the additional 0.005 can be viewed as modeling a preference
to receive the good (technically, this breaks the tie between the cases x′i = y and
x′i = y − 1). To summarize,

v(xi, x
′
i, y) =

{
xi − y + 0.005 if y < x′i
0 otherwise
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The privacy loss for agent i is from the information that may be potentially leaked on x′i
via the chosen price y. The auctioneer’s optimal revenue is opt(x) = maxt∈Y (t·|{i : xi ≥
t}|) and the revenue she obtains when the mechanism chooses price y is y ·|{i : x′i ≥ y}|.
The mechanism is presented in Algorithm 1.

Algorithm 1 (ApxOptRev)
Auxiliary input: privacy parameter ε, probability 0 < η < 1.
Input: x′ = (x′1, . . . , x

′
n) ∈ Xn.

ApxOptRev executes M1 with probability 1− η and M2 otherwise, where M1,M2 are:

M1: Choose y ∈ Y using the exponential mechanism, MExp (Fact 3), i.e.

Pr[y = t] =
exp

(
ε
2
· t · |{i : x′i ≥ t}|

)∑
`∈Y exp

(
ε
2
· ` · |{i : x′i ≥ `}|

) .
M2: Choose y ∈ Y uniformly at random.

Agent utility. To analyze agent behavior, compare the utility of a misreporting
agent to a truthful agent. (i) As Algorithm 1 is ε-differentially private, by our assump-
tion on λi, by misreporting agent i may reduce her disutility due to information leakage
by at most pi · ε. (ii) Note that v(xi, x

′
i, y) ≤ v(xi, xi, y). Using this and Fact 1 we can

bound the expected gain due to misreporting in M1 as follows:

Expy∼M1(x′−i,x
′
i)

[v(xi, x
′
i, y)]− Expy∼M1(x′−i,xi)

[v(xi, xi, y)] ≤
Expy∼M1(x′−i,x

′
i)

[v(xi, x
′
i, y)]− Expy∼M1(x′−i,xi)

[v(xi, x
′
i, y)] ≤ 2 · ε.

(iii) On the other hand, in M2, agent i loses at least g = 0.01 ·0.005 in utility whenever
x′i 6= x′i, this is because y falls in the set {xi+0.01, . . . , x′i} with probability x′i−xi ≥ 0.01
when xi < x′i, in which case she loses at least 0.005 in utility and, similarly, y falls in
the set {x′i, . . . , xi − 0.01} with probability xi − x′i ≥ 0.01 when xi < x′i, in which case
she loses at least 0.005 in utility.

We hence get that agent i strictly prefers to report truthfully when

2 · ε− η · g + pi · ε < 0. (5)

Designer utility. Let m be the number of agents for which Equation 5 does not
hold. We have opt(x′) ≥ opt(x)−m and hence, using Fact 3, we get that

Pr
y∼ApxOptRev(x′)

[y · |{i : x′i ≥ y}| < opt(x)−m−∆] ≤ |Y | · exp(−ε∆/2) + η

= 100 · exp(−ε∆/2) + η.

We omit from this short summary the discussion of how to choose the parameters
ε and η (this choice directly affects m). One possibility is to assume the pi has nice
properties [8].

Per-outcome privacy model [1] In the output specific model, the privacy loss of
mechanism M is evaluated on a per-output basis. Specifically, on output y ∈ Y is is
assumed that

|λi(x, y)| ≤ pi · Fi(x, y) where Fi(x, y) = maxx′,x′′∼ix ln
Pr[M(x′) = y]

Pr[M(x′′) = y]
. (6)

To interpret Equation 6, consider an Bayesian adversary that has a prior belief
µ on xi and fix x−i. After seeing seeing y = M(x−i, xi) the Bayesian adversary updates
her belief to µ′. For every event E defined over xi, we get that
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µ′(E) = µ(E|M(x−i, xi) = y) = µ(E) · Pr[M(x−i, xi) = y|E]

Pr[M(x−i, xi) = y]
∈ µ′(E) · e±Fi(x,y).

This suggests that λi models harm that is “continuous” in the change in adversarial
belief about i, in the sense that a small adversarial change in belief entails small harm.
(Note, however, that this argument is restricted to adversarial beliefs on xi given x−i.)

Comparison with worst-case privacy. Note that if M is ε-differentially private
then Fi(x, y) ≤ ε for all x, y. Equation 6 can hence be seen as a variant of Equation 4
where the fixed value ε is replaced with the output specific Fi(x, y). One advantage of
such a per-outcome model is that the typical gain from misreporting is significantly
smaller than ε. In fact, for all x ∈ Xn and x′i ∈ X,∣∣∣Exp

y∼M(x)
[Fi(x, y)]− Exp

y∼M(x−i,x′i)
[Fi(x, y)]

∣∣∣ = O(ε2).

On the other hand, the modeled harm is somewhat weaker, as (by Fact 1) Equation 4
also captures harm that is not continuous in beliefs (such as decisions based on the
belief crossing a certain threshold).

Assuming privacy loss is bounded as in Equation 6, Chen, Chong, Kash, Moran,
and Vadhan [1] construct truthful mechanisms for an election between two candidates,
facility location, and a VCG mechanism for public projects (the latter uses payments).
Central to the constructions is the observation that Fi is large exactly when agent i
has influence on the outcome of M(). To illustrate the main ideas in the construction
we present here the two-candidate election mechanism.

Two-candidate election. Consider the setting of an election between two can-
didates. Every agent i has a preference xi ∈ X = {A,B}, and privacy preference
pi. Agents are asked to declare xi to the mechanism, which chooses an outcome
y ∈ Y = {A,B}. The utility of agent i is then

v(xi, y) =

{
1 if x = y
0 otherwise

The privacy loss for agent i is from the information that may be potentially leaked
on her reported x′i via the outcome y. The designer’s goal is to (approximately) maxi-
mize the agents’ social welfare (i.e., total utility from the outcome). The mechanism is
presented in Algorithm 2.

Algorithm 2 (ApxMaj)
Auxiliary input: privacy parameter ε.
Input: x′ = (x′1, . . . , x

′
n) ∈ Xn.

ApxMaj performs the following:

1. Sample a value Z from Lap(1/ε).
2. Choose y = A if |{j : x′j = A}| > |{j : x′j = B}|+ Z and y = B otherwise.

Agent utility. To analyze agent behavior, we compare the utility of a misreporting
agent to a truthful agent. Notice that once the noise Z is fixed if agent i affects the
outcome then her disutility from information leakage is at most pi · ε and her utility
from the outcome decreases by 1. If agent i cannot affect the outcome then misreporting
does not change either. We hence get that agent i strictly prefers to report truthfully
when

pi · ε < 1. (7)
Note that by our analysis, Equation 7 implies universal truthfulness – agent i prefers to
report truthfully for every choice of the noise Z. In contrast, Equation 5 only implies
truthfulness in expectation.
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Social welfare. Letting m be the number of agents for which Equation 7 does not
hold, and using Fact 2, we get that Algorithm ApxMaj maximizes social welfare up to

error m + log 1/δ
ε

with probability 1 − δ. As in the previous section, we omit from this
short summary the discussion of how to choose ε (this choice affects m and hence the
accuracy of the mechanism).

Purchasing Privacy

The mechanisms of this section share the following setup assumptions, unless noted
otherwise:

Input. n players each having a data bit xi ∈ {0, 1} and a privacy valuation pi > 0. The
players may misreport pi but cannot misreport xi. We will assume for convenience
of notation that p1 ≤ p2 ≤ . . . ≤ pn.

Intermediate outputs. The mechanism selects a subset of participating players S ⊂ [n]
and a scaling factor t, and a privacy parameter ε.

Output. The mechanism uses the Laplace mechanism to output an estimate s =
1
t

(∑
i∈[S] xi + Z

)
where Z ∼ Lap(1/ε), and payments vi for i ∈ [n].

Utility. Each player obtains utility vi − λi where the assumptions on how the privacy
loss λi behaves vary for the different mechanisms below and are detailed in their
respective sections.

Accuracy. A mechanism is α-accurate if Pr[|s−f(x)| ≤ αn] ≥ 2/3 where the probability
is taken over the random coins of the mechanism.

We focus on designing mechanisms that approximate the sum function f(x) =
∑n

i=1 xi
where each xi ∈ {0, 1}, which has been the most widely studied function in this area.
As one can see from the above setup assumptions, the crux of the mechanism design
problem is in selecting the set S, choosing a privacy parameter ε, and computing
payments for the players. We note that several of the works we describe below generalize
beyond the setting we describe here (i.e. computing different f , fewer assumptions, etc).
The following presentation was designed to give a unified overview (sacrificing some
generality), but to preserve the essence both of the challenges posed by the problem of
purchasing private data as well as each mechanism’s idea in addressing the challenges.

Insensitive valuation model [4] In the insensitive valuation model the privacy loss
λi of a mechanism M is assumed to be

λi = pi · εi where εi = maxx,x′∼ix,p,s ln
Pr[M(x, p) = s]

Pr[M(x′, p) = s]
. (8)

It is named the insensitive valuation model because εi only measures the effect on
privacy of changing player i’s data bit, but not the effect of changing that player’s
privacy valuation.

Mechanisms. Two mechanisms are presented in the insensitive value model in [4],
listed in Algorithms 3, 4. Algorithm 3 (FairQuery) is given a hard budget constraint
and seeks to optimize accuracy under this constraint; Algorithm 4 (MinCostAuction)
is given a target accuracy requirement and seeks to minimize payouts under these
constraints.

Algorithm 3 (FairQuery)
Auxiliary input: budget constraint B > 0.

1. Let k ∈ [n] be the largest integer such that pk(n− k) ≤ B/k.
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2. Select S = {1, . . . , k} and set ε = 1
n−k . Set the scaling factor t = 1.

3. Set payments vi = 0 for all i > k and vi = min{B
k
, pk+1ε} for all i ≤ k.

Algorithm 4 (MinCostAuction)
Auxiliary input: accuracy parameter α ∈ (0, 1).

1. Set α′ = α
1/2+ln 3

and k = (1− α′)n.

2. Select S = {1, . . . , k} and ε = 1
n−k . Set the scaling factor t = 1.

3. Set payments vi = 0 for i > k and vi = pk+1ε for all i ≤ k.

Guarantees. Algorithms 3 and 4 are individually rational and truthful. Further-
more, Algorithm 3 achieves the best possible accuracy (up to constant factors) for the
class of envy-free and individually rational mechanisms, where the sum of payments to
players does not exceed B. Algorithm 4 achieves the minimal payout (up to constant
factors) for the class of envy-free and individually rational mechanisms that achieve
α-accuracy.

Sensitive value model Ghosh and Roth [4] also defined the sensitive value model
where λ1 is as in Equation 8, except that εi is defined to equal

maxx,p,(x′,p′)∼i(x,p),s ln
Pr[M(x, p) = s]

Pr[M(x′, p′) = s]
. (9)

Namely, we also measure the effect on the outcome distribution of the change in a single
player’s privacy valuation. It was shown in [4] and subsequent generalizations [10] that
in this model and various generalizations where the privacy valuation itself is sensi-
tive, it is impossible to build truthful, individually rational, and accurate mechanisms
with worst case guarantees and making finite payments. To bypass these impossibility
results, several relaxations were introduced.

Bayesian relaxation [3]. Fleischer and Lyu use the sensitive notion of privacy
loss given in Equation 9. In order to bypass the impossibility results about sensitive
values, they assume that the mechanism designer has knowledge of prior distributions
P 0, P 1 for the privacy valuations. They assume that all players with data bit b have

privacy valuation sampled independently according to P b, namely that pi
R← P xi ,

independently for all i. Their mechanism is given in Algorithm 5.

Algorithm 5 (Bayesian mechanism from [3])
Auxiliary input: privacy parameter ε.

1. Compute c = 1− 2
ε2n

. Compute αb for b ∈ {0, 1} such that Pr
p
R←P b

[p ≤ αb] = c.

2. Set S be the set of players i such that pi ≤ αxi. Set the scaling factor t = c.
3. For each player i ∈ S, pay εαxi. Pay the other players 0.

Algorithm 5 is truthful and individually rational. Assuming that the prior beliefs
are correct, the mechanism is O( 1

εn
)-accurate. The key use of knowledge of the priors

is in accuracy: the probability of a player participating is c independent of its data bit.

Take-it-or-leave-it mechanisms [6]. Ligett and Roth put forward a setting
where the privacy loss is decomposed into two parts

λi = λpi + λxi ,

where λpi is the privacy loss incurred by leaking information of whether or not an
individual is selected to participate (i.e. whether individual i is in the set S), and
where λxi is the privacy loss incurred by leaking information about the actual data bit.
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The interpretation is that a surveyor approaches an individual and offers them
vi to participate. The individual cannot avoid responding to this question and so un-
avoidably incurs a privacy loss λpi without compensation. If he chooses to participate,
then he loses an additional λxi , but in this case he receives vi in payment. While this
is the framework we have been working in all along, up until now we have not distin-
guished between these two sources of privacy loss, rather considering only the overall
loss. By explicitly separating them, [6] can make more precise statements about how
incentives relate to each source of privacy loss.

In this model the participation decision of an individual is a function (only) of
its privacy valuation, and so we define

λpi = piε
p
i where εpi = maxx,p,p′∼ip,s ln

Pr[M(x, p) = s]

Pr[M(x, p′) = s]
. (10)

We define λxi = piε
x
i where εxi is as in the insensitive model, Equation 8. The mechanism

is given in Algorithm 6.

Algorithm 6 (Take-it-or-leave-it mechanism [6])
Auxiliary input: accuracy parameter α ∈ (0, 1), payment increment η > 0.

1. Set j = 1 and ε = α.
2. Repeat the following:

a) Set Ej = 100(log j + 1)/α2 and Sj = ∅.
b) For i = 1 until Ej:

i. Sample without replacement i
R← [n].

ii. Offer player i a payment of (1 + η)j.
iii. If player i accepts, set Sj = Sj ∪ {i}.

c) Sample ν
R← Λ(1/ε). If |Sj|+ν ≥ (1−α/8)Ej, then break and output selected set

S = Sj, privacy parameter ε, and normalizing factor t = Ej. For every j′ ≤ j,
pay (1 + η)j

′
to each player that accepted in round j′ and pay 0 to all other

players.
d) Otherwise, increment j and continue.

Algorithm 6 is α-accurate. It is not individually rational since players cannot
avoid the take-it-or-leave-it offer, which leaks information about their privacy valuation
that is not compensated. However, it is “one-sided truthful” in the sense that rational
players will accept any offer vi satisfying vi ≥ λpi − λxi . [6] also prove that for appro-
priately chosen η, the total payments made by Algorithm 6 not much more than that
of the optimal envy-free mechanism making the same take-it-or-leave-it offers to every
player.

Monotonic valuations [10]. Nissim, Vadhan, and Xiao [10] study a relaxation of
sensitive values that they call monotonic valuations, where it is assumed that

λi(x, p) ≤ pi · εmon
i (x, p) where εmon

i (x, p) = max(x′,p′)∼mon
i (x,p),s ln

Pr[M(x, p) = s]

Pr[M(x′, p′) = s]
.

(11)
Here, (x′, p′) ∼mon

i (x, p) denotes that (x′, p′), (x, p) are identical in all entries except
the i’th entry and in the i’th entry it holds that either xi > x′i and pi ≥ p′i both hold,
or xi < x′i and pi ≤ p′i both hold.

The intuition behind the definition is that for many natural settings, xi = 1 is
more sensitive than xi = 0 (for example, if xi represents whether an individual tested
positive for syphilis), and it is therefore reasonable to restrict attention to the case
where the privacy valuation when xi = 1 is at least the privacy valuation when xi = 0.
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There are two other aspects in which this notion is unlike those used in the
earlier works on purchasing privacy: (i) the definition may depend on the input, so the
privacy loss may be smaller on some inputs than others, and (ii) we assume only an
upper bound on the privacy loss, since εmon

i does not say which information is leaked
about player i, and so it may be that the harm done to player i is not as severe as εmon

i

would suggest. The mechanism is given in Algorithm 7.

Algorithm 7 (Mechanism for monotonic valuations [10])
Auxiliary inputs: budget constraint B > 0, privacy parameter ε > 0.

1. Set τ = B
2εn

.
2. Output selected set S = {i | pi ≤ τ}, output privacy parameter ε, and scaling factor
t = 1.

3. Pay B/n to players in S, pay 0 to others.

Algorithm 7 is individually rational for all players and truthful for all players
satisfying pi ≤ τ . Assuming all players are rational, on inputs where there are h players
having pi > τ , the mechanism is (O( 1

εn
) + h)-accurate. The accuracy guarantee holds

regardless of how the players with pi > τ report their privacy valuations.
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