Faster Private Release of Marginals on Small Databases
Karthekeyan Chandrasekaran ${ }^{1}$, Justin Thaler ${ }^{2}$, Jonathan Ullman³, Andrew Wan²
${ }^{1}$ Simons Postdoc - Harvard University, ${ }^{2}$ Postdoc - Simons Institute for the Theory of Computing,
${ }^{3}$ Postdoc - Harvard University

Results

Question: Can we exploit structure of k -way marginal queries to design faster private algorithms that are accurate on databases of size $\tilde{O}\left(k d^{\frac{1}{2}}\right)$?

		$\begin{gathered} \text { Minimum DB size } \\ \text { needed for constant } \\ \text { accuracy } \\ \hline \end{gathered}$	Rumtime per query
	This work	$k^{\frac{1}{2}+o(1)}$	
	This work	$\tilde{\sim}\left(k d^{\frac{1}{2}+0.01}\right)$	$2^{a^{\text {max }}}$

k-way Disjunction Query
Specified by a subset $S \subseteq[d]$ of size at most k
Answer is the fraction of records x in the database for which at least one
of the attributes of the set S is TRUE

Approach

) Learning Approach to Designing Private Algorithms
For each $D \in\left(\{0,1\}^{d}\right)^{n}$, there is an underlying function $\mathrm{f}_{\mathrm{D}}:\{0,1\}^{\mathrm{d}} \rightarrow[0,1]$

- Input to the function is the indicator vector s of the query set S
k-way disjunction queries \Rightarrow inputs to the function have at most k bits set to $T R U E$
The function value $f_{D}(s)$ is the answer to the query S on the database D [GRU12] Good online learning algorithm to learn a hypothesis that private and private and accurate algorithms

Online Learning Algorithm

$=D-x+y$, for every subset $S \subseteq[0,1]$ 价,
$\operatorname{Pr}(A(D) \in S) \leq e^{\epsilon} \operatorname{Pr}\left(A\left(D^{\prime}\right) \in S\right)+\delta$
($0.01,0.01$)-Accuracy: For every query q in the family Q of queries,
$|A(D)[q]-q(D)| \leq 0.01$
with probability at least 0.99 for every database D

Related Work

Accuracy and Privacy are conflicting goals
Conflicting nature is especially perceived in databases with small
number of records number of records

Polynomial Approximations

Let $H_{k} \subset\{0,1\}^{d}$ be the subset of inputs with at most k bits set to TRUE Goal: Find a polynomial p_{D} for each function $\mathrm{f}_{\mathrm{D}}: H_{k} \rightarrow[0,1]$ $>\left|p_{D}(s)-f_{D}(s)\right| \leq 0.01$ for every input $s \in H_{k}$ $>$ Sum of absolute values of the coefficients of $p_{D}(s)$ is at most W $>{ }^{>}$Degree $\left(p_{D}\right) \leq t$

Question: What is the least possible W and t ?
Simplifying the problem
$>$ Sufficient to find approximating polynomials for $O R_{x}: H_{k} \rightarrow\{0,1\}$

$$
O R_{x}(s)=\bigvee_{i \in S} x_{i}
$$

This is because $f_{D}(s)=\frac{1}{n} \Sigma_{x \in D} \in R_{x}(s)$
Average of approximating polynomials gives the required
approximating polynomial for f_{0}

- In fact, sufficient to find one approximating polynomial for $O R: H_{k} \rightarrow$

$$
O R(s)= \begin{cases}1, & s \neq \emptyset \\ 0, & \text { o.w. }\end{cases}
$$

> Can express the $O R_{x}$ functions in terms of $O R$ and vice-versa $>$ Seeking low-weight low-degree polynomial to approximate disjunction over low-Hamming weight inputs

Results for the polynomial approximation problem

Explicit Construction to achieve
 > $W=\operatorname{poly}(d)$
 $>t=\min \left\{d^{1-\frac{1}{\sqrt{K}}} \frac{d}{\log ^{0.99} d}\right\}$
 Lower bound for $k=o(\log d)$
 $>$ If $W=\operatorname{poly}(d)$, then $t \geq d^{1-\frac{1}{\sqrt{k}}}$

Construction: View disjunction as a disjunction of m disjunctions (choose $m=d^{1-\frac{1}{\sqrt{k}}}$ to optimize the final parameters)

- Input to the outer level disjunction has Hamming weight at most k

Computctexactly ying low.
weight polynomila
 $\underset{\substack{\text { Inpup still has } \\ \text { Hamming weight at } \\ \text { moat } k}}{ }$

Lower bound: express the existence of the polynomial as a linear progra Show infeasibility by constructing a feasible solution to the dual Dual construction by combining dual solutions witnessing: Any Polynomial approximating $O R$ has high degree
Any ow-degree polynomia "t that approximates
Hamming weight at most " 1 h has large weight

Future Directions

Used polynomial approximations for $\left(O R_{x}\right)_{x \in\{0,1\}^{d}}$ to derive good online algorithms and in turn faster private and accurate algorithms The polynomial approximations can be viewed as linear combination of monomials
A linear combination of some other small set of functions with similar properties can be used by the same approach to improve run-time - Is there a collection of functions $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{r}: H_{k} \rightarrow[-1,1]$ such that $>$ For each $x \in\{0,1\}^{d}$, there exists a linear combination $p_{x}(s)=\sum_{j=1}^{r} \Gamma_{j}(s) . c_{j}^{x}$
$>\left|p_{x}(s)-O R_{x}(s)\right| \leq 0.01 \forall s \in H_{k}, \forall x \in\{0,1\}^{d}$
> $\sum_{j=1}^{r}\left|c_{j}^{x}\right| \leq W \forall x \in\{0,1\}^{d}$
$>r=0\left(d^{\sqrt{k}}\right), W=o\left(k d^{\frac{1}{2}}\right)$?

References

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq framework. In PODS, pages 128-138, 2005.
[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive database privacy. In STOC, pages 609-618, 2008.
[BUV13] Mark Bun, Jonathan Ullman, Salil P. Vadhan. Fingerprinting Codes and the Price of Approximate Differential Privacy. arXiv: 1311.3158.
[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In TCC ' 06 pages 265-284, 2006.
[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS, pages 202-210, 2003.
[GRU12] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data release. In TCC, pages 339-356, 2012. [HR 10] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS, pages 61-70, 2010.
[HRS12] Moritz Hardt, Guy N. Rothblum, and Rocco A. Servedio. Private data release via learning thresholds. In SODA, pages 168-187, 2012. [LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and Computation, 108(2): 212-261, 1994. [TUV12] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for privately releasing marginals. In ICALP, pages 810-821, 2012.
[U13] Jonathan Ullman. Answering $n^{2+o(1)}$ counting queries with differential privacy is hard. In STOC, pages 361-370, 2013.

Contact
karthe,jthaler, jullman, atw12\}@seas.harvard.edu
Karthe eyan Chandrased by SSF Graduate Research Fellowship and NSF grants CNSLusin 1840 and CCFF-0115922.
Ionathan U Ulman - supported by NSF grant CNS- 1237235 and Siebel Scholarship Jonathan Ullman - supported by NSF grant CNS-1237235 and Siebel Scholarship
Andrew Wan - supported by NSF grant CCF-096401 and NSFC grant 61250110218

