
• Data analysts need statistical information about the database 

• Analysts ask counting queries 

 E.g., What fraction of the patients are smokers? 

• Most queries from the analysts focus on a small number of attributes 

• 𝑘-way marginal queries: What fraction of the records have a 

given set of values for a chosen set of 𝑘 attributes 

• Goal of the server: Return accurate answers without revealing 

information about individual records 

Introduction 

Differential Privacy 

Results 

Let 𝐻𝑘 ⊂ 0,1
𝑑 be the subset of inputs with at most 𝑘 bits set to TRUE 

Goal: Find a polynomial 𝑝𝐷 for each function fD: 𝐻𝑘 → [0,1] 

 𝑝𝐷 𝑠 − 𝑓𝐷 𝑠 ≤ 0.01 for every input 𝑠 ∈ 𝐻𝑘 

 Sum of absolute values of the coefficients of 𝑝𝐷 𝑠  is at most 𝑊 

 Degree 𝑝𝐷 ≤ 𝑡 

Polynomial Approximations Future Directions 

• Used polynomial approximations for 𝑂𝑅𝑥 𝑥∈ 0,1 𝑑 to derive good 

online algorithms and in turn faster private and accurate algorithms 

• The polynomial approximations can be viewed as linear combination of 

monomials 

• A linear combination of some other small set of functions with similar 

properties can be used by the same approach to improve run-time 

• Is there a collection of functions Γ1, Γ2, … , Γ𝑟: 𝐻𝑘 → [−1,1] such that 

 For each 𝑥 ∈ 0,1 𝑑, there exists a linear combination 

𝑝𝑥 𝑠 =  Γ𝑗 𝑠 . 𝑐𝑗
𝑥𝑟

𝑗=1  

 𝑝𝑥 𝑠 − 𝑂𝑅𝑥 𝑠 ≤ 0.01 ∀𝑠 ∈ 𝐻𝑘 , ∀𝑥 ∈ 0,1
𝑑 

  |𝑐𝑗
𝑥|𝑟

𝑗=1 ≤ 𝑊 ∀𝑥 ∈ 0,1 𝑑 

 𝑟 = O 𝑑 𝑘 ,𝑊 = 𝑂 𝑘𝑑
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Related Work 

• Database 𝐷 contains 𝑛 records, each containing 𝑑 attributes,  

D ∈ 0,1 𝑑
𝑛

 

• Query family 𝑄 

• Server employs a randomized algorithm 𝐴: 0,1 𝑑
𝑛
→ 0,1 |𝑄| 

• (𝜖, 𝛿)-Privacy: For any database D, every record 𝑥 ∈ 𝐷, 𝑦 ∈ 0,1 𝑑,  
                             𝐷′ = 𝐷 − 𝑥 + 𝑦, for every subset 𝑆 ⊆ 0,1 |𝑄|,  

                                   Pr 𝐴 𝐷 ∈ 𝑆 ≤ 𝑒𝜖 Pr 𝐴 𝐷′ ∈ 𝑆 + 𝛿 

• (0.01, 0.01)-Accuracy: For every query 𝑞 in the family 𝑄 of queries, 

𝐴 𝐷 𝑞 − 𝑞 𝐷 ≤ 0.01 

                             with probability at least 0.99 for every database 𝐷 
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This work 

This work 

Question: Can we exploit structure of k-way marginal queries to design 

faster private algorithms that are accurate on databases of size 𝑂 𝑘𝑑
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k-way Disjunction Query 

• Specified by a subset 𝑆 ⊆ [𝑑] of size at most 𝑘 

• Answer is the fraction of records 𝑥 in the database for which at least one 

of the attributes of the set 𝑆 is 𝑇𝑅𝑈𝐸 

Approach 

𝑘-way 

Marginal 

queries 

Differentially Private Algorithm 

Online Learning Algorithm 

Polynomial Approximation 

[GRU12] 

(1) Learning Approach to Designing Private Algorithms 

• For each 𝐷 ∈ 0,1 𝑑
𝑛

, there is an underlying function 

fD: 0,1
d → [0,1] 

• Input to the function is the indicator vector 𝑠 of the query set 𝑆 

 

 

• The function value 𝑓𝐷 𝑠  is the answer to the query 𝑆 on the database 𝐷 

• [GRU12] Good online learning algorithm to learn a hypothesis that 

evaluates close to 𝑓𝐷 𝑠  on the queries of interest can be used to derive 

private and accurate algorithms 

𝑘-way disjunction queries ⇒ inputs to the function have at most 𝑘 bits set to 𝑇𝑅𝑈𝐸 
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 Minimum database size = (Number of mistakes)
1

2 

 Per Query Run Time = Time to return each guess 

 Accuracy = Accuracy of the learner 

 

(2) Polynomial Approximations for Learning 

• Suppose we have a polynomial 𝑝𝐷for each function fD: 0,1
d → [0,1] 

• 𝑝𝐷 𝑠 − 𝑓𝐷 𝑠 ≤ 0.01 for every input 𝑠 

• Sum of absolute values of the coefficients of 𝑝𝐷 𝑠  is at most 𝑊 

• Degree 𝑝𝐷 ≤ 𝑡 

• Can derive a learning algorithm: 

• Given samples 𝑠, 𝑓𝐷 𝑠 , need to learn a hypothesis h satisfying  

ℎ 𝑠 − 𝑓𝐷 𝑠 ≤ 0.01 ∀𝑠 

• Find a hypothesis among the possible 𝑝𝐷 

• i.e., learn the coefficients of the polynomial 

• Use Multiplicative Weights Method 

• Each monomial is an expert 

• The weight on the expert is the coefficent of the monomial 

Online Learning Algorithm 

 Number of mistakes ≤ 𝑊2 log 𝑑
𝑡

 

 Time to return each guess is 𝑑
𝑡

 

 Accuracy of the learner 
1
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[Multiplicative Weights  

– LW94] 

Question: What is the least possible 𝑊 and 𝑡? 

Simplifying the problem 

 Sufficient to find approximating polynomials for 𝑂𝑅𝑥: 𝐻𝑘 → 0,1  

𝑂𝑅𝑥 𝑠 = 𝑥𝑖
𝑖∈𝑆

 

 This is because 𝑓𝐷 𝑠 =
1

𝑛
 𝑂𝑅𝑥(𝑠)𝑥∈𝐷  

 Average of approximating polynomials gives the required 

approximating polynomial for 𝑓𝐷 

 In fact, sufficient to find one approximating polynomial for 𝑂𝑅:𝐻𝑘 →
0,1  

𝑂𝑅 𝑠 =  
1,  𝑠 ≠ ∅
0,  𝑜. 𝑤. 

 

 

 Can express the 𝑂𝑅𝑥 functions in terms of 𝑂𝑅 and vice-versa 

 Seeking low-weight low-degree polynomial to approximate disjunction 

over low-Hamming weight inputs 

 

Explicit Construction to achieve 

 𝑊 = 𝑝𝑜𝑙𝑦(𝑑)  

 𝑡 = min 𝑑
1−
1

𝑘,
𝑑

log0.99 𝑑
 

Lower bound for 𝑘 = 𝑜 log 𝑑  

 If 𝑊 = 𝑝𝑜𝑙𝑦(𝑑), then 𝑡 ≥ 𝑑
1−
1

√𝑘 

Results for the polynomial approximation problem 

• Construction: View disjunction as a disjunction of 𝑚 disjunctions 

(choose 𝑚 = 𝑑
1−
1

𝑘 to optimize the final parameters) 

• Input to the outer level disjunction has Hamming weight at most 𝑘 

𝑂𝑅 

𝑂𝑅 𝑂𝑅 

𝑑

𝑚
 

𝑑

𝑚
 

Input still has 

Hamming weight at 

most 𝑘 

𝑚 

Total degree = product of degrees  = 
𝑑

𝑚
√𝑘 

Total weight ≤ 𝑤𝑖𝑛𝑛𝑒𝑟
𝑑𝑒𝑔𝑟𝑒𝑒𝑜𝑢𝑡𝑒𝑟 × 𝑤𝑜𝑢𝑡𝑒𝑟 = 𝑚

𝑘 

Compute exactly using low-

weight polynomial 

Approximate using low-degree 

polynomial (use 𝑘-th order 

Chebyshev polynomial) 

• Lower bound: express the existence of the polynomial as a linear program 

• Show infeasibility by constructing a feasible solution to the dual 

• Dual construction by combining dual solutions witnessing: 

• Any Polynomial approximating 𝑂𝑅 has high degree 

• Any low-degree polynomial that approximates 𝑂𝑅 on inputs of 

Hamming weight at most “1” has large weight 

𝐷𝑒𝑔 𝑞2 = 𝑂 𝑘  

𝑊 𝑞2 ≤ 𝑚
𝑘 

𝐷𝑒𝑔 𝑞1 =
𝑑

𝑚
 

𝑊 𝑞1 = 3 
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