Faster Private Release of Marginals on Small Databases

Karthekeyan Chandrasekaran¹, Justin Thaler², Jonathan Ullman³, Andrew Wan²

CD Computation and Society at Harvard School of Engineering and Applied Sciences

C Center for Research on

¹ Simons Postdoc - Harvard University, ² Postdoc - Simons Institute for the Theory of Computing, ³ Postdoc - Harvard University

		<u>Results</u>
st	ion: Can we exp	loit structure of k-way marginal queries to design
<u>r</u>	private algorithr	ms that are accurate on databases of size $\tilde{O}(kd^{\frac{1}{2}})$?
		Minimum DB size needed for constant accuracyRuntime per query
Marg	-way This work	$kd^{\frac{1}{2}+o(1)}$ $2^{O\left(\frac{d}{\log^{0.99} d}\right)}$
	eries This work	$\widetilde{O}\left(kd^{\frac{1}{2}+0.01}\right) \qquad 2^{d^{1-\Omega\left(\frac{1}{\sqrt{k}}\right)}}$
	Disjunction Que ecified by a subset	ery et $S \subseteq [d]$ of size at most k
•	•	ion of records x in the database for which at least one
of t	the attributes of t	the set S is TRUE
		Approach
	0 11	h to Designing Private Algorithms
Foi	t each $D \in (\{0,1\})$	$f_D: \{0,1\}^d \to [0,1]$, there is an underlying function
np	out to the function	$f_D: \{0,1\}^{\alpha} \rightarrow [0,1]$ on is the indicator vector <i>s</i> of the query set <i>S</i>
-wa	y disjunction queri	ies \Rightarrow inputs to the function have at most k bits set to $TRUE$
The	e function value	$f_D(s)$ is the answer to the query S on the database D
[G]	RU12] Good onl	line learning algorithm to learn a hypothesis that
	aluates close to <i>f</i> vate and accurate	$f_D(s)$ on the queries of interest can be used to derive e algorithms
<u> </u>		
	Online Learni	ing Algorithm
		Minimum database size = (Number of mistakes) ^{$\frac{1}{2}$}
		 Per Query Run Time = Time to return each guess Accuracy = Accuracy of the learner
	↓ Differentially Pr	v rivate Algorithm
		ximations for Learning polynomial p_D for each function $f_D: \{0,1\}^d \rightarrow [0,1]$
Dal	• $ p_D(s) - $	$ f_D(s) \le 0.01$ for every input s
	Sum of aDegree(p	absolute values of the coefficients of $p_D(s)$ is at most W $(p_D) \le t$
Cai	n derive a learnir	
		mples $(s, f_D(s))$, need to learn a hypothesis h satisfying $h(s) - f_D(s) \le 0.01 \forall s$
		ypothesis among the possible p_D , learn the coefficients of the polynomial
		iplicative Weights Method h monomial is an expert
		e weight on the expert is the coefficent of the monomial
	Polynomial A	approximation
		$\succ \text{ Number of mistakes} \leq W^2 \log \binom{d}{t}$ $[\text{Multiplicative Weights}] \qquad \succ \text{ Time to return each guess is } \binom{d}{t}$
		$\begin{bmatrix} -LW94 \end{bmatrix}$
	Online Learni	ing Algorithm

Privacy Tools for Sharing Research Data A National Science Foundation

Polynomial Approximations

 $H_k \subset \{0,1\}^d$ be the subset of inputs with at most k bits set to TRUE bal: Find a polynomial p_D for each function $f_D: H_k \rightarrow [0,1]$ $|p_D(s) - f_D(s)| \le 0.01$ for every input $s \in H_k$ Sum of absolute values of the coefficients of $p_D(s)$ is at most W $\text{Degree}(p_D) \leq t$

Question: What is the least possible *W* and *t*?

Simplifying the problem

Sufficient to find approximating polynomials for $OR_x: H_k \rightarrow \{0,1\}$

$$OR_{x}(s) = \bigvee_{i \in S} x_{i}$$

- > This is because $f_D(s) = \frac{1}{n} \sum_{x \in D} OR_x(s)$
- > Average of approximating polynomials gives the required approximating polynomial for f_D

In fact, sufficient to find <u>one</u> approximating polynomial for $OR: H_k \rightarrow$ {0,1}

$$OR(s) = \begin{cases} 1, & s \neq \emptyset \\ 0, & o.w. \end{cases}$$

 \succ Can express the OR_x functions in terms of OR and vice-versa Seeking low-weight low-degree polynomial to approximate disjunction over low-Hamming weight inputs

Results for the polynomial approximation problem

Explicit Construction to achieve

$$\gg W = poly(d)$$

 $\gg t = \min\left\{d^{1-\frac{1}{\sqrt{k}}}, \frac{d}{\log^{0.99} d}\right\}$
Lower bound for $k = o(\log d)$
 $\gg \text{If } W = poly(d), \text{ then } t \ge d^{1-d}$

Construction: View disjunction as a disjunction of *m* disjunctions (choose $m = d^{1 - \frac{1}{\sqrt{k}}}$ to optimize the final parameters) Input to the outer level disjunction has Hamming weight at most k

Lower bound: express the existence of the polynomial as a linear program Show infeasibility by constructing a feasible solution to the dual Dual construction by combining dual solutions witnessing:

- Any Polynomial approximating *OR* has high degree
- Any low-degree polynomial that approximates OR on inputs of
- Hamming weight at most "1" has large weight

- monomials

- 2005.
- 2008.
- 1311.3158.
- 2010.
- 2012.

The Institute for Quantitative Social Science at Harvard University

Secure and Trustworthy Cyberspace Project

Future Directions

• Used polynomial approximations for $(OR_x)_{x \in \{0,1\}^d}$ to derive good online algorithms and in turn *faster* private and accurate algorithms • The polynomial approximations can be viewed as linear combination of

• A linear combination of some other small set of functions with similar properties can be used by the same approach to improve run-time

• Is there a collection of functions $\Gamma_1, \Gamma_2, \dots, \Gamma_r: H_k \to [-1,1]$ such that

- > For each $x \in \{0,1\}^d$, there exists a linear combination $p_{\chi}(s) = \sum_{j=1}^{r} \Gamma_j(s) \cdot c_j^{\chi}$
- $\geqslant |p_x(s) OR_x(s)| \le 0.01 \ \forall s \in H_k, \forall x \in \{0,1\}^d$
- $\succ \sum_{j=1}^{r} |c_j^{\chi}| \le W \ \forall \chi \in \{0,1\}^d$
- $\succ r = O\left(d^{\sqrt{k}}\right), W = O\left(kd^{\frac{1}{2}}\right)?$

References

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq framework. In PODS, pages 128–138,

[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive database privacy. In STOC, pages 609–618,

[BUV13] Mark Bun, Jonathan Ullman, Salil P. Vadhan. Fingerprinting Codes and the Price of Approximate Differential Privacy. arXiv:

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data analysis. In TCC '06, pages 265–284, 2006.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS, pages 202–210, 2003.

[GRU12] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data release. In TCC, pages 339–356, 2012.

[HR10] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS, pages 61–70,

[HRS12] Moritz Hardt, Guy N. Rothblum, and Rocco A. Servedio. Private data release via learning thresholds. In SODA, pages 168–187, 2012. [LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority

algorithm. Information and Computation, 108(2): 212–261, 1994.

[TUV12] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for privately releasing marginals. In ICALP, pages 810–821,

[U13] Jonathan Ullman. Answering $n^{2+o(1)}$ counting queries with differential privacy is hard. In STOC, pages 361–370, 2013.

Contact

{karthe,jthaler, jullman, atw12}@seas.harvard.edu

Karthekeyan Chandrasekaran – supported by Simons Fellowship

TA PRIVACY LAB

Justin Thaler – supported by NSF Graduate Research Fellowship and NSF grants CNS-1011840 and CCF-0915922.

Jonathan Ullman – supported by NSF grant CNS-1237235 and Siebel Scholarship Andrew Wan – supported by NSF grant CCF-0964401 and NSFC grant 61250110218