Efficient Use of Differentially Private Binary Trees

James Honaker*

January 23, 2015

Abstract

Binary trees can be made differentially private by adding noise to every node and leaf. In such form
they allow multifaceted exploration of a variable without revealing any individual information. While a
differentially private binary tree can be used and read just like its conventional exact-valued analog, realizing
that different combinations of nodes contain overlapping answers to the same information allows us to bring
the statistical properties of multiple measurements under measurement error to noisy binary trees to create
statistically efficient node estimates. We construct estimators that correctly use all available information in
the tree, thus decreasing the error of nodes by up to eighty percent for the same level of privacy protection.

Differentially private binary trees are important summary statistics for a broad variety of uses and algorithms.
They are central to the algorithm of Dwork et al (2010) for releasing private streaming data, and used in
numerous adaptations of this problem, such as Chan et al (2012), Cao et al (2013), and Thakurta and Smith
(2013). A binary tree can be used to compose probability and cumulative densities of variables, range queries, as
well as means, medians, modes and variances by Monte Carlo integration. Thus the release of a private binary
tree can be a broadly useful privacy preserving means of allowing exploration of a variable, as for example in
the statistical release of a non-interactive curator (Dwork and Smith, 2009).

Due to the importance of binary trees, several heuristic adaptations of their use have been studied that
bring about some improved accuracy for the same level of privacy guarantee (Hay et al 2010, Xu et al 2012, and
relatedly Xiao et al 2010). We show here how to derive an optimally efficient use of a private binary tree, in
the precise sense of providing minimum variance unbiased estimates. That is, we show how to refine a private
tree in a manner that makes full and optimal use of all the information the tree contains. This is accomplished
by linking the tree structure to the known statistical properties of multiple measures under measurement error.

1 Problem Statements

Consider a perfect binary tree, in which every node, t;, is the sum of all leaves below that node, plus a random
draw, €; from some fixed distribution f(.), constructed to guarantee differential privacy. As represented below,
the true values are denoted a through A at the leaves, the differentially private value revealed at any node
is given to the right, and the notation for index ¢ both numbers the nodes sequentially, and also describes
the path from the top to reach that particular node, as a sequence of left (0) and right (1) progressions.

t1 Assume one desires an estimate
gt t+htea of a+b+ ¢+ d From the tree,

the most easily attainable answer is
e+ f+g+h+e the value of t19; if the tree had no
added errors, this is how the tree

11 would normally be read. However,
g+h+en

t1o t11

a+b+c+d+ €0

the sum of the two nodes below,
Differentiall 11 (t100 + t101), is also an estimate of
Private v@lugs this quantity, as is the larger sum

a+€1000 b+e1001 ¢t+€1010 dte1011 €+€1100 fter101 9+Her1io hterin

b c d e f g h (t1000 + ti001 + ti010 + t1011). We
expect these latter estimates to be
more noisy than t19, but they have
informational value. They are anal-
ogous to repeated measurements of
the same quantity, with different lev-
els of measurement error. Some cor-
rect weighting over these three esti-

Observed
Data Values

Figure 1: Ezample tree, showing leaf values a through h below, node
labels above, and differentially private values to the right. Each value
includes a draw of € from some fized distribution to ensure every value
is differentially private.

*Institute for Quantitative Social Science, Harvard University jhonaker@iq.harvard.edu

mates is more efficient, that is, makes more use of the available information, than simply using the value of
the node at t19. The optimal weighting can be determined by considering the relative amounts of measurement
error in the sums, as they contain differing numbers of random draws. A first question is, how do we derive a
correct weighting across different estimates of the same quantity from different information in the tree.

However, there are yet more
possible estimates from this
tree, that use different informa-
tion entirely. The difference,
(t; — t11) is another estimate of
a+b+c+d, as is (tlftlloftlll) abcd
or even (t; — ti100 — ti101 —
ti110 — t1111). Various other
estimates, composed by simple
sums, or sums and differences,
are shown graphically in figure
2. However, these three es-
timates are now correlated in
their errors, as they all contain
€1, the error of the top node,
so simple weighting is not effi-
cient. The second question to
answer is, how do we construct a set of estimates to weight together, that we know efficiently uses all the
available information in all the nodes (both below and not below) the node of interest.

We first show how to weight together alternate answers of the same quantity of interest from the tree. Then
we show how to construct a set of answers that make full use of all the information available in the tree. Below
we consider the distribution of error terms to be Gaussian for ease of exposition and space reasons, but all the
findings can be translated to equivalent results in the case of Laplace noise.

Figure 2: FEight of the possible ways of using the nodes on the tree to estimate
a—+ b+ c+d, the sum of the left four leaves. Nodes in green are added, and
nodes in red subtracted to create an estimate.

2 Efficiency Under Multiple Mismeasurements

Consider multiple measurements my, ..., m,, of the same quantity, y, each with their own known measurement
standard error, oy, ...,0,. An estimator is a function for mapping from a set of data to an estimate of a desired
quantity of interest. An efficient estimator for y gives estimates that are minimum variance and unbiased.
Efficient estimates have the lowest squared error from the truth, among all estimates that are unbiased. Efficiency
is one of many common desiderata of statistical estimators, and conventionally means that maximal use of the
available information in the data is being used to create the estimate of the question of interest; it is a broadly
desirable property although in some contexts or problems it might be traded for other desired properties. We
first show three properties of efficient estimators of multiple measurements that we will use throughout.

Remark 1. For a set of independent measurements, M, among all linear functions §(M) = cM, the efficient
estimator §* weights measurements inverse to their error variance.

If we construct an estimator g that uses the available measures in the form § = cymq + -+ + comy =
Steimi =Y ¢i(y + €;), the bias is given by:

bias(y) = Bly — 7] = y — y X c; — X c1Elei. (1)

If each ¢; comes from some distribution that has mean zero, then the right term in 1 disappears and zero bias
thus implies > ¢; = 1. The variance can be derived as:

var() = E[(§ — 9)?] = E[(J + Y ciE(e;) = Y cily +)] =E[(H —y > ci — Y ciei)] =E[(7 —y — X cies)?]
=E[(§ —y)* = (7 — y)cici + 2 ciei) cief] (2)

If €;, €j2; and y are uncorrelated, then many cross-products have expectation zero and this reduces to:

var(§) = E[(7 — y)* + 3 cfef] = var(y) + - cfo} 3)

Minimization of the variance with respect to ¢, under the constraint Y ¢; = 1, is a straightforward quadratic
programming problem giving:
-2
9;
=N 3 (4)
ZnZI On

Thus the optimal efficient weights of multiple measures are inversely proportional to the variances of the mea-
surement errors. [

Remark 2. The standard error of this efficient linear estimator function has two convenient simplified forms:

1/2 0_2

o402 - ;
o(3") = Zéﬁ=¢?%fg=(26ﬂ = o\ = [Vi)

Remark 3. The efficient linear estimator function is generalized associative, i.e., §*(M) = g*(g* (M), M_r).

For a sequence of measurements M =(myq, ..., my), partition the measurements into two mutually exclusive
and exhaustive sets M; and M_;. Consider the case of m; € My. Let c; be the weight of the m; measurement
for g*(M) and c;» the weight from the estimate using the subset §*(My), and o, the resulting standard error of
some efficient estimator. Then these are:

0_72 —2

¢ = s, 0= 0§ (M) = S | & = =7 ’

% — o (5 (M) = ——L
Z;cvzlo-k \/Ziv:1‘7;2 J Ekelglzz’ 7 7 (y(I)) \/Zkelglzz (6)

Let c;’ be the weight resulting when the estimate on the subset is added to the excluded data, that is from

9*(§*(M1), M_;). The weight given to the first term is o 2/(0;2 + Dokl 0, ?) therefore the total weight on
the m; measurement is:
o2 > o2
_9 J k617 k _9)
1" O C; _ 2 ker Ok 2 _ aj _ Uj — cs (7)
i T T2 -2 = —2 -2 = =3 2T &N 2 Y
Ox "+ Zkgl O doker Ok T Zkg] O dkerOr Tt Zkgl Ok 2 k=10%, :

It is even simpler to show this holds for c}’ :j € M_j, as we just change the numerator in 7. Since the weighting
on every component m; is the same under the two estimators, §*(M) = §*(g* (M), M_;). O

The first remark shows the optimal efficient weights of multiple measures are inversely proportional to the
variances of the measurement errors. We will use this to construct estimators for combining tree nodes and other
quantities. The second remark gives us two convenient simplifications for the standard error of this estimator.
The third remark shows that an efficient estimator for a vector of information, can be constructed incrementally
by adding new information, appropriately weighted, into a previously computed estimate. The order in which
we group and combine measurements does not influence the resulting estimator. We will use this to construct
iterative definitions of some quantities that act as rolling estimators sequentially adding new nodes.

3 Efficient Estimators

3.1 Notation

Let t; denote a node, where index 7 sequentially labels the nodes, at depth
d; = |logsy(7)] in a tree of depth D. Given the binary nature, to; and to;11
will be the nodes directly below t;. Let t;31 represent the node directly
above t;, and t;51 represent the adjacent node reached by changing the
path only at t;31. These can be expressed as i®1 = [i/2]| and piecewise
as iAl = {i+1, i even; i—1, i odd. If i is expressed base 2, then Al is ¢
with the last bit flipped, and i®1 is ¢ bitwise shifted to the right.

3.2 Estimation from below

Following remark 1, denote ¢; as the optimal estimate of the query at node t; using only the information at
node i or below, as constructed (along with its standard error) as:

= B D—d; -2 291 sj—z 291 , 12
t; =Y wa; olt;)= (> s) where: ¢j =) torigni W)= —pog——5 8= (U2Ji+k> :
j=0 §=0 k=0 k=0 Sk k=0

(8)

Here the ¢’s represent each possible estimate created by summing all the observations below ¢; at some particular
depth of the tree, the s’s compute the inverse variances of these sums, and ¢; the efficient weighted average of
these. From this definition, ¢; and o(¢;) can be calculated for any node i.

In the case of constant masking error, where o; = o, Vi, then s;% = 1/(2%7%5?) and the sum of all the

) converges to o/v/2.

inverse variances goes to 2/0? as the tree gets taller, and o(¢;

3.2.1 Example

In our estimate of a + b+ ¢+ d from figure 1, using ¢1¢ and all the nodes below it, if every node has equal o

then:
t10(1) + (t100 + t101)(1/2) + (1000 + t1001 + tio10 + t1011)(1/4)

7/4
In this example, t19, the most direct estimate, only gets 4/7, or approximately 0.57, of the total weight.

9)

lyy =

3.2.2 Iterative definition

Following remark 3, since any ¢; already contains all the information from nodes below it, all the node estimates
can be iteratively computed from the bottom of the tree to the top, using the new information in some node,
and the efficient estimates of the two nodes directly below it, as:

o; 2

072+ (0(t3;)?) + 0 (t5:4.1)2) 7

Ford; <D: ty =wt;+(1-w)(ty; +t3,); w=

;o o(ty) =ov/w (10)

with the terminal nodes of the tree defined simply as t; =t¢; and o(¢;) = 0;. This is equivalent to equation 8
but much simpler to compute if every node in the tree is to be efficiently estimated.

3.3 Estimation from above

Intuitively, any node can be computed as the difference between the node above it in the tree, t;31, and the
node adjacent, t;51. For example, an estimate of t1g is t; — t11. In general, an estimate of ¢; is t;e1 — tia1-
However, neither of these terms are themselves informationally efficient, nor are we using the information in t;.
This leads to the following iterative definition. Denote tj as the optimal estimate of the query at node ¢; using
no information below node 4, as:

—2
Fori>1: tf =wt+(1-w)(th —tn); w=—; - ‘71‘2 ——; ot =avu (1)
o+ (o(tfs)? + o(tiy)?)

with ¢ defined as ¢;, and o(t]) defined as o; when N is private information, and 0 when N is known.
Intuitively, the right-most terms are the most efficient estimates of the node above and the node horizontally
adjacent. Appropriately weighted with the node itself, this gives the best estimate of the node, without using
any information below the node. Calculation of ¢ is only possible after calculation of the same quantity in
nodes above this in the tree, thus this can be computed iteratively from the top down. For constant ¢ for each
node, in the limit of the best case, when ¢; is close to the top of a tall tree, this new standard error is o/+/3.
Thus in this best case, there is slightly more information in tj' than ¢; .

3.4 Fully efficient estimation

The estimates, ¢; and tj overlap informationally, as they

both contain ¢;. However, for any node, t;, the estimates / .
t;, t;a1, and titbl strictly partition the dataset. That is, O t10021
every node contributes to exactly one of these estimates. 510%1—001;1\
Therefore they have independent errors, and make full use -

of the available information in the tree. As an example the

sets of nodes that construct these for t19p are shown for a

tree in figure 3. These estimates can be weighted together ~--______» Sooooooe ’
for an optimal estimate, ¢}, as:

tr=wts + (1—w) (thy, —tiy) Fjgure 3: Tl“f sets of nodes that contribute to t{,,
N t100a1 and t0p1- Together, they cover all nodes,
a(t;) . without any overlap, and can be weighted to form

o(t;) 72+ (o(tiey)” + otinn)?) 100-
o(t]) = oty)Ww (12)

In the constant o, tall tree cases described previously, where o(t;) = o(t;,,) = 0/v/2 and o(tf,) = o/V/3 this
leads to o(t) = 0(v/2/7) ~ .202 7, or an eighty percent reduction in error, for nodes near the top of tall trees.

w

4 Simulation for Nodes

To demonstrate the estimators, we simulated ten thousand perfect binary trees of depth 5. Each of the true
values of the 16 leaves was drawn from a Poisson distribution with mean 10. Every node in the tree was then
computed, and then masking errors drawn from a mean zero Gaussian with standard deviation 3; in expectation
then, each node has squared error of 9. For each tree we computed the estimates from above, below and the
combined efficient estimates, and calculated the squared error of every node. We assume N is known.

3 — iicient

Mean Squared Error of Simple Private Value

9
I

3

%o

oo

£

“offowa
Ratio of Efficient to Simple M.Sq.Error

Mean Squared Error of Efficient Node Estimate Node node

Figure 4: The left graph shows mean squared error for each node from the fully efficient estimates compared to
the simple private values (and the center graph their ratios). On the right, the distribution for simple Gaussian
errors (red) is plotted next to the above (orange), below (yellow) and fully efficient (blue) estimators for every
node. The most dramatically reduced errors are for nodes highest in the tree.

The left of figure 4 plots the mean squared error across all simulation of the efficient estimates against the
mean squared error of the original Gaussian private values of the nodes. The errors for the efficient estimator
cluster by depth, with nodes higher up the tree containing less error. Care should taken reading the axes; the
difference in error is dramatic enough that the scaling on the y-axis does not even exist in the range of the
z-axis. The center figure shows the ratio of the squared error in the efficient estimates to the original private
nodes. We see that the high nodes have about one quarter the squared error, and even the terminal leaves
have about a one-third reduction. The right of figure 4 shows this in slightly more nuance. Here we can see
the squared error in turn for the private nodes, the below and above estimators, and finally for the efficient
estimator. We can see that while the below estimator is more intuitive, the above estimator always has slightly
less error. In the terminal nodes, we see a tie between the below estimator and the simple private node values,
because there is no information below the node to exploit; similarly, there is a tie between the above estimator
and the efficient estimator, because at these nodes the definition is exactly the same. Of course the efficient
estimator performs equal or better to all other results across all nodes.

References

Jianneng Cao, Qian Xiao, Gabriel Ghinita, Ninghui Li Elisa Bertino, Kian-Lee Tan. 2013. “Efficient and
Accurate Strategies for Differentially-Private Sliding Window Queries” EDBT/ICDT 13

Cynthia Dwork and Adam Smith. 2009. “Differential Privacy for Statistics: What we Know and What we
Want to Learn.” Journal of Privacy and Confidentiality 1(2): pp. 135-154.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. 2010. “Differential privacy under continual
observation.” In Proceedings of the 42nd ACM symposium on Theory of Computing.

T-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. 2012. “Differentially Private Continual Monitor-
ing of Heavy Hitters from Distributed Streams” PETS’12 Proceedings of the 12th International Conference
on Privacy Enhancing Technologies.

Michael Hay, Vibhor Rastogi, Gerome Miklau, Dan Suciu. 2010. “Boosting the Accuracy of Differentially
Private Histograms Through Consistency.” Proceedings of the VLDB Endowment 3(1)

Abhradeep Thakurta and Adam Smith. 2013 “(Nearly) Optimal Algorithms for Private Online Learning in
Full-information and Bandit Settings” NIPS 20185.

Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Ge Yu. 2012. “Differentially Private Histogram Publi-
cations.” ICDE’12 Proceedings of the 2012 IEEE 28th International Conference on Data Engineering. pp.
32-43.

X. Xiao, G. Wang, and J. Gehrke. 2010 “Differential privacy via wavelet transforms,” ICDE 2010, pp. 225-236.

