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Abstract14

Sampling schemes are fundamental tools in statistics, survey design, and algorithm design. A fundamental result15

in differential privacy is that a differentially private mechanism run on a simple random sample of a population16

provides stronger privacy guarantees than the same algorithm run on the entire population. However, in practice,17

sampling designs are often more complex than the simple, data-independent sampling schemes that are addressed18

in prior work. In this work, we extend the study of privacy amplification results to more complex, data-dependent19

sampling schemes. We find that not only do these sampling schemes often fail to amplify privacy, they can20

actually result in privacy degradation. We analyze the privacy implications of the pervasive cluster sampling and21

stratified sampling paradigms, as well as provide some insight into the study of more general sampling designs.22
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1 Introduction26

Sampling schemes are fundamental tools in statistics, survey design, and algorithm design. For27

example, they are used in social science research to conduct surveys on a random sample of a28

target population. They are also used in machine learning to improve the efficiency and accuracy29

of algorithms on large datasets. In many of these applications, however, the datasets are sensitive30

and privacy is a concern. Intuition suggests that (sub)sampling a dataset before analysing it provides31

additional privacy, since it gives individuals plausible deniability about whether their data was32

included or not. This intuition has been formalized for some types of sampling schemes (such as33

simple random sampling with and without replacement and Poisson sampling) in a series of papers34

in the differential privacy literature [23, 33, 11, 31]. Such privacy amplification by subsampling35

results can provide tight privacy accounting when analysing algorithms that incorporate subsampling,36

e.g. [32, 1, 21, 28, 19]. However, in practice, sampling designs are often more complex than the37

simple, data independent sampling schemes that are addressed in prior work. In this work, we extend38

the study of privacy amplification results to more complex and data dependent sampling schemes.39

We consider the setting described in Figure 1. We have a population P and a historic or auxiliary40

data set H which is used to inform the sampling design. We think about the sampling scheme as a41

1 Corresponding author

© anonymous;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mbun@bu.edu
mailto:Joerg.Drechsler@iab.de
mailto:gaboardi@bu.edu
mailto:audra_mcmillan@apple.com
mailto:jsarathy@g.harvard.edu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Controlling Privacy Loss in Sampling Schemes

P,H P, C(H) S M(S) =MC(H,P )

Historic or auxiliary data
is used to design

the sampling scheme

End-to-end process
described byMC

Sampling scheme C(H) is
used to sample dataset S

from population P

ε-differentially private
mechanismM

is run on input S

Figure 1 The structure of using a data-dependent sampling scheme.

function C(H) of the historic or auxiliary data H . Using this sampling scheme, we draw a sample42

S from the population P , on which we run the differentially private mechanismM. We can think43

about these multiple steps as comprising a mechanismMC(H,P ) working directly on the population44

P and the historic data H whose privacy depends on the privacy of the mechanismM and on the45

properties of the sampling scheme C(H). While this is the general framework for the problem we46

study, we state the technical results in this paper for the simplified case where H = P ; see Section 2.147

for further discussion.48

1.1 Our contributions49

We primarily focus on two classes of sampling schemes that are common in practice: cluster sampling50

and stratified sampling. In (single-stage) cluster sampling, the population arrives partitioned into51

disjoint clusters. A sample is obtained by selecting a small number of clusters at random, and then52

including all of the individuals from those chosen clusters. In stratified sampling, the population is53

partitioned into “strata.” Individuals are then sampled at different rates according to which stratum54

they belong to.55

For these more complex schemes, we find that privacy amplification can be negligible even when56

only a small fraction of the population is included in the final sample. Moreover, in settings where57

the sampling design is data dependent, privacy degradation can occur – some sampling designs can58

actually make privacy guarantees worse. Intuitively, this is because the sample design itself can reveal59

sensitive information. Our goal in this paper is to explain how and why these phenomena occur and60

introduce technical tools for understanding the privacy implications of concrete sampling designs.61

Understanding randomised and data-dependent sampling. It is simple to show that deterministic,62

data-dependent sampling designs do not achieve privacy amplification, and can suffer privacy degrad-63

ation. Motivated by this observation, we start by studying the privacy implications of randomised and64

data-dependent sampling, attempting to isolate their effects in the simplest possible setting.65

Specifically, we aim to understand sampling schemes of the following form: For a possibly66

randomised function f (an “allocation rule”), sample f(P ) individuals uniformly from P without67

replacement. In Section 3, we study the case where f is randomised but data-independent, i.e., the68

number of individuals samples is drawn from a distribution that does not depend on P . We give69

an essentially complete characterization of what level of amplification is possible in terms of this70

distribution.71

In Section 4, we turn our attention to data-dependent sampling. We identify necessary conditions72

for allocation rules f to enable privacy amplification by way of a hypothesis testing perspective;73

intuitively, for f to be a good amplifier, every differentially private algorithm must fail to distinguish74

the distributions of f(P ) and f(P ′) for neighboring P, P ′. We also study a specific natural allocation75

rule called proportional allocation that is commonly applied in stratified sampling. We design a76

simple randomised rounding method that offers a minor change to the way proportional allocation is77

generally implemented in practice, but that offers substantially better privacy amplification.78
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Cluster sampling. In Section 5, we study cluster sampling where a population partitioned into k79

clusters is sampled by selecting m clusters uniformly at random without replacement. Our results80

give tradeoffs between the privacy amplification achievable and the sizes of the clusters. In particular,81

privacy amplification is possible when all of the clusters are small. As the cluster sizes grow, the best82

achievable privacy loss rapidly approaches the baseline of the privacy guarantee ofM. We provide83

some insight into these results by connecting the privacy loss to the ability of a hypothesis test to84

determine from a differentially private output which clusters were included in the sample.85

Stratified sampling. Building on our randomised rounding method for the “single-stratum” case, we86

show that stratified sampling with the proportional allocation rule amplifies privacy. Unfortunately, as87

in the single stratum case, there are natural lower bounds which limit extending this approach to other88

common allocation rules.89

A common goal when choosing an allocation function f (a function which decides how many90

samples to draw from each stratum) is to minimise the variance of a particular statistic. For example,91

the popular Neyman allocation is the optimal allocation for computing the population mean. A natural92

question then is how to define and compute the optimal allocation when privacy is a concern? In93

this work, we will formulate the notion of an optimal allocation under privacy constraints. This94

formulation is somewhat subtle since the privacy implications of different allocation methods need to95

be properly accounted for. Our goal is to initiate the study of alternative allocation functions that may96

prove useful when privacy is a concern.97

1.2 Related work98

Several works have studied the privacy amplification of simple sampling schemes. Kasiviswanathan99

et al. [23] and Beimel et al. [9] showed that applying Poisson sampling before running a differentially100

private mechanism improves its end-to-end privacy guarantee. Subsequently, Bun et al. [11] analyzed101

simple random sampling with replacement in a similar way. Beimel et al. [10], Bassily et al. [7], and102

Wang et al. [34] analyzed simple random sampling without replacement. Imola and Chaudhuri [20]103

provide lower and upper bounds on privacy amplification when sampling from a multidimensional104

Bernoulli family, a task which has direct applications to Bayesian inference. Balle et al. [5] unified105

the analyses of privacy amplification of these mechanisms using the lenses of probabilistic couplings,106

an approach that we also use in this paper. The effects that sampling can have on differentially private107

mechanisms is also studied from a different perspective in [13]. However, none of the prior works108

consider the privacy amplification of more complex, data-dependent sampling schemes commonly109

used in practice. To the best of our knowledge, this paper is the first to do so.110

2 Background111

2.1 Data-dependent sampling schemes112

In the data-driven sciences, data is often obtained by sampling a fraction of the population of interest.113

This sample can be created in a wide variety of ways, referred to as the sample design. Sample114

designs can vary from simple designs such as taking a uniformly random subset of a fixed size, to115

more complex data-dependent sampling designs like cluster or stratified sampling. Data-dependent116

sampling designs achieve accuracy and meet budgeting goals by using historic or auxiliary data to117

exploit structure in the population. The privacy implications of simple random sampling are quite well118

understood from prior work. In this work, we will move beyond simple random sampling to analyse119

the privacy implications of more complex sampling designs, including data-dependent sampling.120

An outline of the schema for data dependent sampling designs is given in Figure 1. There are121

ostensibly two datasets: H , the historic or auxiliary data that is used to design the sampling scheme122

CVIT 2016



23:4 Controlling Privacy Loss in Sampling Schemes

C(H), and P , the current population that is sampled from. For the remainder of this paper, we123

make the simplifying assumption that H = P . That is, we will not distinguish between the historic124

or auxiliary data and the “current” data. Even if we only care about maintaining the privacy of125

the individuals in population P , this assumption is required if we have no information about the126

relationship between H and P . Thus, we view the functionMC(P,H) as simply a function of P . We127

will refer to the size of the sample S as the sample size, and the fraction |S|/|P | as the sampling rate.128

More refined models can be obtained by imposing specific assumptions on the relationship129

between H and P , for example, by modeling the temporal correlation between historic and current130

data. We leave this for future work.131

2.2 Differential privacy132

Differential privacy (DP) is a measure of stability for randomised algorithms. It bounds the change in133

the distribution of the outputs of a randomised algorithm when provided with two datasets differing134

on the data of a single individual. We will call such datasets neighboring. In order to formalise what135

a “bounded change” means, we define (ε, δ)-indistinguishability. Two random variables P and Q136

over the same probability space are (ε, δ)-indistinguishable if for all sets of outcomes E over that137

probability space,138

e−ε(Pr(Q ∈ E)− δ) ≤ Pr(P ∈ E) ≤ eε Pr(Q ∈ E) + δ.139

If δ = 0 then we will say that P and Q are ε-indistinguishable. For any n ∈ N, let Un be the set of all140

datasets of size n over elements of the data universe U . Let U∗ = ∪n∈NUn be the set of all possible141

datasets. We discuss two privacy definitions in this work corresponding to two different neighboring142

relations: unbounded differential privacy and bounded differential privacy. We will say two datasets143

are unbounded neighbors if one can be obtained from the other by adding or removing a single data144

point, and bounded neighbors if they have the same size, and one can be obtained from the other by145

changing the data of a single individual.146

I Definition 1. A mechanismM : U∗ → O is (ε, δ)-unbounded (resp. bounded) differentially147

private (DP) if for all pairs of unbounded (resp. bounded) neighboring datasets P and P ′,M(P )148

andM(P ′) are (ε, δ)-indistinguishable.149

We will use both bounded and unbounded DP throughout the paper as they are appropriate in150

different settings. When considering which notion to choose, it is important to consider which151

guarantees are meaningful in context. For example, it will be common in the sample designs we cover152

for the size of the sample S (see Figure 1) to be data-dependent. When considering these sampling153

designs, we will focus on mechanismsM that satisfy unbounded DP since bounded DP does not154

protect the sample size. However, bounded DP may be more appropriate for the privacy guarantee on155

MC in applications where it is unrealistic to assume that an individual can choose not to be part of156

the auxiliary dataset or the population. For example, the auxiliary data may be administrative data,157

data from a mandatory census, or data from a monopolistic service provider. Results and intuition are158

often similar between unbounded and bounded DP, although care should be taken when translating159

between the two notions. We note in particular that any ε-unbounded DP mechanism is 2ε-bounded160

DP.161

2.3 Privacy amplification with uniform random sampling162

Sampling does not provide strong differential privacy guarantees on its own. But when employed as a163

pre-processing step in a differentially private algorithm, it can amplify existing privacy guarantees.164

Intuitively, this is because if the choice of individuals is kept secret, sampling provides data subjects165
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the plausible deniability to claim that their data was or was not in the final data set. This effect was166

first explicitly articulated in [29], and a formal treatment of the phenomenon was given in [5]. Three167

types of sampling are analysed in [5]: simple random sampling with replacement, simple random168

sampling without replacement, and Poisson sampling. In all three settings the privacy amplification is169

proportional to the probability of an individual not being included in the final computation. To gain170

some intuition before we move into the more complicated sampling schemes that are the focus on171

this paper, let us state and discuss the results from [5].172

I Theorem 2. [5] Let C be a sampling scheme that samples m values out of n possible values173

without replacement. Given an (ε, δ)-bounded differentially private mechanismM, we have that174

MC is (ε′, δ′)-bounded differentially private for ε′ = log(1 + m
n (eε − 1)) and δ′ = m

n δ.175

To consider the implications of this result, notice that ε′ ≤ ε for all values of m ≤ n so the176

sampled mechanismMC is strictly more private than the original mechanismM. Further, taking177

into account the following two approximations which hold for small x,178

ex − 1 ≈ x (1)179

log(1 + x) ≈ x, (2)180
181

we have that for small ε, ε′ ≈ m
n ε. So the degree of amplification in both parameters is roughly182

proportional to the sampling rate m/n.183

2.4 How do people use subsampling amplification results?184

Suppose we have a dataset that contains n records, and we want to estimate the proportion of185

individuals that satisfy some attribute in an ε-DP manner. Let us set our target privacy guarantee to be186

ε = 1. To do this, we can simply compute the proportion non-privately and add Laplace noise with187

scale 1/n. But, if we know that the dataset is a secret and simple random sample from a population188

of 100n individuals, then adding Laplace noise with scale 1/n as before will actually yield a stronger189

privacy guarantee of ε′ = 0.01 for the underlying population. To get ε′ = 1, we will need to add190

noise with scale only 1/(100n). In other words, the secrecy of the sample means that the computation191

has more privacy inherently, and therefore, we can add less noise in order to achieve the desired192

privacy guarantee.193

Existing DP data analysis tools such as DP Creator [18, 17] employ privacy amplification results194

to provide better statistical utility. For example, the DP Creator interface prompts the user to input the195

population size if the data is a secret and random sample from a larger population of known size and196

take advantage of the resulting boost in accuracy without changing the privacy guarantee.197

As we discussed before, privacy amplification results are also used to analyse algorithms that198

incorporate subsampling as one of their components. Privacy amplification results permit a tighter199

analysis of the privacy that these algorithm can guarantee. In particular, these algorithms are quite200

common in learning tasks, e.g. [32, 1, 21, 28, 19].201

3 Randomised data-independent sampling rates202

While we are ultimately interested in data-dependent sampling designs, we begin with an extension of203

Theorem 2 to non-constant but data-independent sampling rates. Prior results on privacy amplification204

by subsampling [23, 33, 11, 31, 6] all focus on constant sampling rates where the sampling rate (the205

fraction of the data set sampled) is fixed in advance. However, we will eventually see that randomising206

the sample rate is essential to privacy amplification when the target rate is data dependent. To work207

toward this eventual discussion, we first study the data-independent case to gain intuition for what208

CVIT 2016
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properties of the distribution on sampling rates characterize how much privacy amplification is209

possible.210

Suppose that there is a random variable t on [n] and the sampling scheme is as follows: given a211

dataset P , a sample m is drawn from t, and then m subjects are drawn without replacement from212

P to form the sample S. In this section we consider unbounded differential privacy2 forM and213

bounded differential privacy forMC , where the total number of cases, n, is known and fixed. A214

simple generalisation of Theorem 2 immediately implies that the privacy loss of this randomised215

scheme is no worse than if t was concentrated on the maximum value in its support. However, prior216

work does not give insight into what happens when t is concentrated below its maximum or is evenly217

spread. What property of the distribution characterises its potential for privacy amplification? The218

following theorem characterizes the privacy amplification of sampling without replacement with219

data-independent randomised sampling rates.220

I Theorem 3. Let P be a dataset of size n, let t be a distribution over {0, 1, . . . , n}, and let221

C : X → U∗ be the randomised, dataset-independent sampling scheme that randomly draws222

m ∼ t and samples m records from P without replacement. Define the distribution t̃ on [n] where223

t̃(m) ∝ eεm · t(m) for all m ∈ [n].224

Upper bound: LetM : U∗ → O be an ε-unbounded DP algorithm. Then,MC is ε′-bounded DP,225

where226

ε′ = log
(

1 + 1
n
· Em∼t̃[m] · (eε − 1)

)
.227

Lower bound: There exists neighboring datasets P and P ′ of size n, and an ε-unbounded DP228

mechanismM such that ifMC(P ) andMC(P ′) are ε′-indistinguishable then229

ε′ ≥ − log
(

1− 1
n
· Em∼t̃[m] · (1− e−ε)

)
230

First notice that Theorem 3 comports with the generalization of Theorem 2; as expected, if the231

support of t is contained within [0,m′] then Em∼t̃[m] ≤ m′, so the randomised scheme is at least as232

private as if t was concentrated on m′. It also determines that the property of t that determines the233

privacy amplification is Em∼t̃[m], the expectation of an exponential re-weighting of the distribution234

that gives more weight to larger sample sizes. When ε is small, the simple approximations ex−1 ≈ x,235

1− e−x ≈ x, and log(1 + x) ≈ x mean that both the upper and lower bounds amount to236

ε′ ≈ Em∼t̃[m]
n

· ε.237

Due to the exponential re-weighting,238

Em∼t̃[m] =
∑n
m=0 e

εm Pr(t = m)m∑n
m=0 e

εm Pr(t = m)
239

rapidly approaches n as the weight of t on values close to n increases. Intuitively, this means that240

even a small probability of sampling the entire dataset can be enough to ensure that there is no privacy241

amplification, even if the mode of t is much smaller than n. Conversely, if t is a light tailed distribution242

(say, subgaussian) concentrated on a value much smaller than n, then privacy amplification is possible.243

For example, suppose that t is a truncated Gaussian on [0, n] with mean n/2 and standard deviation244

σ. If t is highly concentrated then we expect the privacy guarantee ofMC to be ≈ ε/2. As σ grows245

2 Note that we must use the unbounded differential privacy definition for M in this setting; otherwise, the sample size
m would be fixed.
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Figure 2 Numerical computation of the upper and lower bounds from Theorem 3 when t is truncated
Gaussian supported on [0, n] with mean n/2, where n = 104 and standard deviation σ varies from 1 to 103.
The privacy parameter of the mechanism M is 0.01.

we expect the privacy guarantee to tend towards ε as more weight is placed near n. In Figure 2, we246

illustrate the bounds of Theorem 3 numerically with this Gaussian example. We can see that when247

n = 10, 000 and σ ≈ 800, the privacy guarantee ofMC is already close to ε = 0.01, the privacy248

guarantee ofM.249

4 Data-dependent sampling rates250

We now turn our attention to sampling schemes where sampling rates may depend on the data. The251

results in this section are motivated by stratified sampling, where the population is stratified into252

k disjoint sub-populations called strata, and an allocation function is used to determine how many253

samples to draw from each stratum. We will discuss stratified sampling with k > 1 in Section 6, but254

for simplicity and clarity, we first focus on the “single stratum” case. In this section, we develop tools255

and statements that we expect to be more broadly useful in understanding complex sampling designs.256

Specifically, we consider the sampling design where one selects a number of cases according to a257

data-dependent function, and then samples that many cases via simple random sampling. That is, let258

f̃ : U∗ → N be a possibly randomised function and let Cf be the sampling function that on input P259

samples f(P ) data points uniformly without replacement from P . IfM is an ε-DP algorithm, then260

how private isMCf
?261

4.1 Sensitivity and privacy degradation262

We first observe that if the function f used to determine sample size is highly sensitive, then privacy263

degradation may occur. That is, if the number of cases sampled may change dramatically on264

neighboring populations, then the output of a DP mechanism can immediately be used to distinguish265

between those populations. For example, suppose P and P ′ are neighboring populations, and f is266

a function where f(P ) = m and f(P ′) = m + ∆. (That is, the local sensitivity of f at P is at267

least ∆.) Consider the ε-DP algorithmMcount that, on input a sample S, outputs the noisy count268

|S|+Lap(1/ε) of the number of cases in the sample. ThenMcount
Cf

(P ) is distributed asm+Lap(1/ε)269

whereasMcount
Cf

(P ′) is distributed as m+ ∆ + Lap(1/ε). When ∆� 1, these distributions are270

far apart; the privacy loss between these two populations is ∆ · ε� ε.271

CVIT 2016
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Thus, a necessary condition for achieving privacy amplification (rather than degradation) is that272

the function f has low sensitivity. In the following sections, we explore other conditions on low273

sensitivity functions that are necessary and sufficient for amplification.274

4.2 Data dependent sampling and hypothesis testing275

We established in the previous section that using a deterministic function to determine sample size276

results in privacy degradation. This raises the question: how much randomness is necessary to ensure277

privacy control? That is, what can we say about a randomised function f̃ : U∗ → N with the property278

thatMCf
is ε′-DP for every ε-DP mechanismM? In this section we establish a connection between279

the amplification properties of a function f̃ and hypothesis testing.280

A simple hypothesis testing problem is specified by two distributions X and Y . A hypothesis test281

H for this problem attempts to determine whether the samples given as input are drawn i.i.d from X282

or from Y . If a hypothesis test is only given a single sample then we define the advantage of H to be283

adv(H;X,Y ) = Pr
m∼X

[H(m) = X]− Pr
m∼Y

[H(m) = X].284

That is, the advantage is a measure of how likely the hypothesis test H is to correctly guess which285

distribution the sample was drawn from. The closer the advantage is to 1, the better the test is at286

distinguishing X from Y .287

One common explanation of differential privacy is that an algorithm is differentially private if it is288

impossible to confidently guess from the output which of two neighbouring datasets was the input289

dataset. This interpretation can be formalised, following [35], by noting that ifM is ε-DP and P and290

P ′ are neighbouring populations then for every hypothesis test H ,291

adv(H;M(P ),M(P ′)) ≤ eε − 1 ≈ ε.292

We can establish a similar bound and interpretation of what it means for f̃ to amplify or pre-293

serve privacy. Suppose that f̃ is such that MCf̃
is ε′-DP for every ε-DP mechanism M. Then294

in particular, for every ε-DP hypothesis test H , we have that H(MCf̃
(P )) and H(MCf̃

(P ′)) are295

ε′-indistinguishable. Now, if we consider only hypothesis tests H : N→ {f̃(P ), f̃(P ′)} that simply296

look at the size of the sample Cf̃ (·), then we can formalise this statement in the following way.297

I Proposition 4. Suppose f̃ : U∗ → N is such that for all ε-DP mechanismsM, we have that298

MCf̃
is ε′-DP. Then for all neighboring datasets P, P ′, we have299

max adv(H; f̃(P ), f̃(P ′)) ≤ eε
′
− 1,300

where the optimisation is over all hypothesis tests H such that for all x ∈ N, and b ∈ {0, 1},301

e−ε Pr(H(x) = b) ≤ Pr(H(x+ 1) = b) ≤ eε Pr(H(x) = b).302

This result helps us build intuition for what type of survey designs could possibly amplify privacy.303

If f̃ results in privacy amplification then for any pair of neighbouring populations P and P ′, the304

distributions f̃(P ) and f̃(P ′) must be close enough that they can not be distinguished between by305

any hypothesis test H such that logH is ε-Lipschitz. From this perspective the result in Section 4.1306

follows from the fact that if f̃ is deterministic with high sensitivity then we can define an appropriate307

hypothesis test with large advantage based onMcount. This is a useful perspective to keep in mind308

throughout the remainder of the paper.309

One consequence of this perspective is a lower bound on how well we can emulate a desired310

deterministic function f while controlling or amplifying privacy. Suppose that absent privacy concerns,311

an analyst has determined that they want to use a function f to determine the sample size. However,312
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to avoid privacy degradation they replace f with a randomised function f̃ . How close can f̃ get to f313

while maintaining or amplifying the original privacy level? We can obtain a lower bound on expected314

closeness of f(P ) and f̃(P ) by relating it to the well studied problem of estimation lower bounds in315

differential privacy.316

I Proposition 5. Let f : U∗ → R and ε, ε′ > 0. Suppose f̃ : U∗ → N is a randomised317

function such that for all ε-unbounded DP mechanismsM, it holds thatMCf̃
is ε′-bounded DP.318

If α ≥ 0 is such that for every ε′-unbounded DP mechanism A, there exists a dataset P such that319

E[|A(P )− f(P )|2] ≥ α, then there exists a dataset P such that320

E[|f̃(P )− f(P )|2] ≥ α−
(

1
ε

)2
.321

The problem of lower bounding differentially private function estimation is well-studied [30, 4]322

in the privacy literature. The lower bounds essentially arise from the fact that A(P ) and A(P ′) must323

be similar distributions for neighbouring databases, even if f(P ) and f(P ′) are far apart. Since we324

know from Proposition 4 that f̃(P ) and f̃(P ′) must also be close, we obtain the related lower bound.325

The slackness of (1/ε)2 is a result of the fact that while A(P ) and A(P ′) must be indistinguishable326

with respect to any hypothesis test, f̃(P ) and f̃(P ′) need only be indistinguishable with respect to327

any ε-DP hypothesis test.328

4.3 Privacy amplification from randomised rounding329

Many functions used to determine data-dependent sampling rates have high sensitivity, but at least330

one common sampling method has low sensitivity: proportional sampling. In proportional sampling,331

a constant, data-independent fraction of the population is sampled independently from each stratum.332

This method is similar to simple random sampling, but a small amount of data dependence is333

introduced by the fact that the total number of samples across all strata must be an integer. In this334

section, we will show that while naïve implementations of proportional sampling can result in privacy335

degradation, a minor change in the sampling size function results in privacy amplification comparable336

to that afforded by simple random sampling.337

Let r ∈ [0, 1] and f(P ) = r|P | for some constant r ∈ (0, 1). Since the output space of f is not338

N, in practice, this is typically replaced with the deterministic function f̃det,r(P ) = round(r|P |),339

where round(·) rounds its input to the nearest integer. Unfortunately, deterministic rounding can be340

problematic for privacy, as we can see through a simple example. Suppose P and P ′ are neighbouring341

populations such that |P | = 14, |P ′| = 15, and r = 1/10. Then, deterministic rounding always342

results in one case being sampled from P and two cases being sampled from P ′. As discussed in343

Section 4.1, such a data-dependent deterministic function can never result in privacy amplification.344

We propose a simple and practical change to the rounding process that does guarantee roughly345

the expected level of privacy amplification. We replace the ideal function f with a randomised346

rounding function f̃rand,r. That is, let p = r|P | − br|P |c so f̃rand,r(P ) = dr|P |e with probability347

p, and f̃rand,r(P ) = br|P |c with probability 1 − p. The following proposition shows that, up to a348

constant factor, randomised rounding recovers the expected factor of r in privacy amplification.349

I Theorem 6 (Privacy Amplification from Randomised Rounding). Let r ∈ (0, 1). Then for350

every ε-unbounded DP mechanismM, the mechanismMCf̃rand,r
is ε′-unbounded DP when restricted351

to datasets of size at least 1/r, where ε′ = log
(
1 + 2r(e2ε − 1)

)
+ log(1 + r(e2ε − 1)) ≈ 6rε.352

The approximation at the end of the proposition follows from applying (1) and (2), which give that353

log(1+2r(exp(2ε)−1)) ≈ 2r ·2ε and log(1+r(exp(2ε)−1)) ≈ r ·2ε. The constant 6 can perhaps354

be optimized through a more careful analysis. Randomised rounding is a practical modification since355
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it does not change the size of the sample very much; if traditional proportional allocation would356

typically assign m samples, then the modified algorithm allocates at most m+ 1.357

5 Cluster sampling358

In cluster sampling, the population is partitioned into disjoint subsets, called clusters. A subset of the359

clusters is sampled and data subjects are selected from within the chosen clusters. If the sampling360

scheme uses a single stage design, all data subjects contained in the selected clusters will be included361

in the sample. Otherwise, a random sample of data subjects might be selected from each of the362

selected clusters (multi-stage design). Cluster sampling produces accurate results when the clusters363

are mutually homogeneous; that is, when the distributions within each cluster are similar to the364

distribution over the entire population.365

In the survey context, cluster sampling is often performed due to time or budgetary constraints366

which make sampling many units from a few clusters cheaper and/or faster than sampling a few367

units from each cluster. A typical example in the survey context is when clusters are chosen to be368

geographic regions. Sampling a few geographic clusters and interviewing everybody in those clusters369

saves traveling costs compared to interviewing the same number of people based on a simple random370

sample from the population. In algorithm design, cluster sampling is often performed to improve the371

performance and accuracy of classifiers. In this setting, sampling often involves a two-step approach372

where the data is first clustered, using some clustering classifier, and then a subset of the clusters373

is selected. Forms of cluster samplings have been applied in several learning areas, for example in374

federated learning [16] and active learning [27].375

5.1 Privacy implications of single-stage cluster sampling with376

simple random sampling377

We focus here on a simple cluster sampling design that is commonly used in survey sampling and378

which naïvely appears to be a good candidate for privacy amplification: simple random sampling379

without replacement of clusters. That is, suppose the dataset P is divided into k clusters,380

P = C1 t · · · t Ck381

and the sampling mechanism C` : U∗ → U∗ chooses a random subset I ⊂ [k] of size ` < k, then382

maps P to ti∈ICi.383

Since simple random sampling at the individual level provides good privacy amplification, one384

might expect the same to happen when the clusters are sampled in a similar way. In fact, this is true385

when the size of each cluster is small. However, if the clusters are large this sampling design achieves386

less amplification than might be expected. This is characterized by the following theorem showing a387

lower bound in this setting.388

I Theorem 7 (Lower Bound on Privacy Amplification for Cluster Sampling). For any sequence389

ni > 0 and privacy parameter ε > 0, there exist neighboring populations P = C1t· · ·Cit· · ·tCk390

and P ′ = C1 t · · ·C ′i t · · · t Ck (with |Ci| = ni and C ′i = Ci ∪ {x} for some x ∈ U) and an391

ε-unbounded DP mechanismM such that ifMC`
(P ) andMC`

(P ′) are ε′-indistinguishable then392

ε′ ≥ ln
(

1 +
`
k(

`
k +

(
1− `

k

)
e−(ni+nmin)ε

) (eε − 1)
)
,393

where ni = |Ci| and nmin = minj∈{1,··· ,i−1}∪{i+1,··· ,k} nj .394
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We can compare the expression in the theorem above with the one we have for simple random395

sampling without replacement (cf. Theorem 14 from [6]):396

ε′ = ln
(

1 + m

n
(eε − 1)

)
,397

where m samples are drawn from a population of size n. We see that the two expressions coincide if398

ni + nmin = 0, which is an unrealistic corner case. Let us instead consider the case in which all the399

clusters are small. In this case, the quantity ni + nmin will also be small, and if ε < 1, we can still400

expect some privacy amplification. However, as the clusters grow in size, the quantity ni + nmin will401

also increase, and the lower bound converges very quickly to ε, giving essentially no amplification.402

Next, we present a corresponding upper bound.403

I Theorem 8 (Upper Bound on Privacy Amplification for Cluster Sampling). For any sequence404

ni > 0, privacy parameter ε > 0, ε-unbounded DP mechanism M : U∗ → O, and pair of405

neighboring populations P and P ′ such that P = C1t· · ·Cit· · ·tCk and P ′ = C1t· · ·C ′it· · ·tCk406

(with |Ci| = ni and C ′i = Ci ∪ {x} for some x ∈ U), the mechanismsMC`
(P ) andMC`

(P ′) are407

ε′-indistinguishable where408

ε′ ≤ ln
(

1 +
`
k(

`
k +

(
1− `

k

)
e−(ni+nmax)ε

) (eε − 1)
)
,409

and nmax = maxj∈{1,··· ,i−1}∪{i+1,··· ,k} nj ,410

Once again it is worth comparing the expression in the theorem above with the one we have for simple411

random sampling without replacement:412

ε′ = ln
(

1 + m

n
(eε − 1)

)
.413

Similar to the lower bound, the upper bound will quickly approach ε if the quantity ni + nmax is414

large. If each cluster contains a single data point, the two bounds are close. This is not surprising415

since in this case the type of cluster sampling we considered is just simple random sampling without416

replacement. Note that while `/k is the fraction of clusters included in the final sample and m/n is417

the fraction of data points, these are approximately the same when the clusters are small. If all the418

clusters are the same size, then nmax = nmin and the upper and lower bounds we gave above match.419

The proofs of these results are contained in the Appendix.420

5.2 Discussion and hypothesis testing421

Privacy amplification by subsampling is often referred to as secrecy of the sample due to the intuition422

that the additional privacy arises from the fact that there is uncertainty regarding which user’s data is423

in the sample. The key intuition then for Theorem 7 is that the larger the clusters are, the easier it is424

for a differentially private algorithmM to reverse engineer which clusters were sampled, breaking425

secrecy of the sample. Intuitively, if the clusters are different enough that a private algorithm can426

guess which clusters were chosen as part of the sample, then any amplification due to secrecy of the427

sample is negligible. We can formalize this intuition using once again using the lens of hypothesis428

testing. Note the framing in this section differs slightly from the framing in Section 4, although the429

underlying idea in both settings is that if a particular hypothesis test is effective, then there is a lower430

bound on the privacy parameter. In addition, note that privacy is also conserved in this setting, as431

MC`
is at least as private asM. The question is: when isMC`

more private thanM?432
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I Theorem 9. Let ε > 0, ` ∈ [0, k],M : U∗ → O be ε-DP and the sampling mechanism C` be as433

defined in Section 5.1. Suppose there exists a hypothesis testH : O → {0, 1} such that434

Pr(H(MC`
(P )) = 0 | Ci ∈ C`(P )) ≥ eε

′
Pr(H(MC`

(P )) = 0 | Ci /∈ C`(P )).435

Then there exists an event E in the output space ofM such that for any neighboring population P ′436

that differs from P in Ci, if437

ε′′ = log Pr(MC`
(P ) ∈ E|Ci ∈ C`(P ))

Pr(M(C`(P ′)) ∈ E|Ci ∈ C`(P ′))
∈ [0, ε],438

andMC`
(P ) andMC`

(P ′) are ε̃-indistinguishable, then439

ε̃ ≥ log
(

1 + (eε
′′
− 1) `/k

`/k + e−ε′(1− `/k)

)
.440

The key take-away of this theorem is that for any ε-DP mechanismM, if there exists a hypothesis441

test that, when given the output ofMC`
(P ), can confidently decide whether cluster Ci was chosen as442

part of the final sample, then the privacy guarantee ofMC`
is no better than the privacy guarantee443

would be if we knew for certain that Ci was chosen as part of the sample. That is, in this setting, we444

gain no additional privacy as a result of secrecy of the sample. The parameter ε′ controls how well445

the hypothesis test can determine whether Ci ∈ C`. As ε′ increases, ε̃ approaches ε′′, the privacy446

parameter if Ci is known to be part of the sample, so privacy amplification is negligible.447

This view is consistent with Theorem 7. Consider a population where only data points in cluster i448

have a particular property and letM is an ε-DP mechanism that attempts to count how many data449

points with the property are in the final sample. If cluster i is large, then it is easy to determine from450

the output of the mechanism whether Ci is in the final sample. This example required cluster i to be451

distinguishable from the remaining clusters using a private algorithm. While examples as extreme as452

the one above may be uncommon in practice, clusters being different enough for a private algorithm453

to distinguish between them is not an unrealistic assumption.454

In Section 5.1, we analysed a single stage design. All subjects contained in the selected clusters455

were included in the sample. In practice, multi-stage designs are common, where a random sample456

of subjects are selected from within each chosen cluster. If the sampling within each cluster is457

sufficiently simple then the privacy amplification from this stage can be immediately incorporated458

into the upper bound in Theorem 8. For example, if each subject within the chosen clusters is sampled459

with probability r andM is ε-DP, i.e., we perform Poisson sampling with probability r, then we460

immediately obtain an upper bound that is approximately rε. However, if the sampling within clusters461

is more complex, then further analysis is required. One can also imagine more complicated schemes462

for selecting the chosen clusters. If these designs depend on properties of the data, then they are likely463

to result in privacy degradation. We leave this study for future work.464

6 Stratified sampling465

Finally, we turn our attention to another common sampling design: stratified sampling. In stratified466

sampling, the data is partitioned into disjoint subsets, called strata. A subset of data points is then467

sampled from each stratum to ensure the final sample contains data points from every stratum.468

Stratified sampling is common in survey sampling where it is used to improve accuracy and to ensure469

sufficient representation of sub-populations of interest. A classic use case of stratified sampling is470

business surveys, where businesses are typically stratified by industry and number of employees, or471

by similar measures of establishment size. Stratification by establishment size results in substantial472

gains in accuracy compared to simple random sampling, while stratification by industry ensures473
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that reliable estimates can be obtained at the industry level. Stratified sampling has several other474

applications; for example it is used in algorithm design to improve performance [2, 24], in private475

query design and optimization to improve accuracy [8], and to improve search and optimizations [25].476

We focus here on one-stage stratified sampling using simple random sampling without replacement477

within each stratum to select samples. We also assume that the stratum boundaries have been fixed in478

advance. Given a target sample size m, the only design choice in this model is the allocation function,479

which determines how many samples to take from each stratum. Different allocation functions are480

used in practice. Which method is selected depends on the goals to be achieved (for example, ensuring481

constant sampling rates across strata or minimizing the variance for a statistic of interest).482

Before we describe allocation functions in detail, let us establish some notation for stratified483

sampling. Suppose there are k strata in the population, and that each data point is a pair (s, x)484

where s ∈ [k] denotes which stratum the data subject belongs to, and x ∈ U denotes their data.485

Let f = (f1, . . . ,fk) : ([k] × U)∗ → Nk denote the allocation rule, so fi(P ) samples are drawn486

uniformly at random without replacement from the ith stratum, Pi = {(s, x) ∈ P | s = i}. The final487

sample S is the union of the samples from all the strata.488

An important feature of stratified sampling is that the sampling rates can vary between the strata.489

This means that data subjects in strata with low sampling rates may expect a higher level of privacy490

than data subjects in strata with high sampling rates. This leads us to define a variant of differential491

privacy that allows the privacy guarantee to vary between the strata. This generalisation of differential492

privacy is tailored to stratified datasets and allows us to state more refined privacy guarantees than the493

standard definition is capable of.494

I Definition 10. Let k ∈ N and suppose there are k strata. A mechanism A satisfies (ε1, · · · , εk)-495

stratified bounded differential privacy if for all datasets P , data points (s, x) and (s′, x′), A(P ∪496

{(s, x)}) and A(P ∪ {(s′, x′)}) are max{εs, εs′}-indistinguishable. The mechanism A satisfies497

(ε1, · · · , εk)-stratified unbounded differential privacy if for all datasets P , data points (s, x), A(P )498

and A(P ∪ {(s, x)}) are εs-indistinguishable.499

This definition is an adaptation of personalized differential privacy [22, 14, 3]. Note that it protects500

not only the value of an individual’s data point, but also which stratum they belong to.501

6.1 Optimal allocation with privacy constraints502

In this section, we will discuss how to think about choosing an allocation function when privacy is a503

concern. A common goal when choosing an allocation f is to minimise the variance of a particular504

statistic. That is, suppose that Cf represents one-stage stratified sampling with allocation function f .505

Then, given a population P and desired sample size m, the optimal allocation function f∗(P ) with506

respect to a statistic θ is defined as507

f∗(P ) = arg min
f

var(θCf
(P )), (3)508

where the randomness may come from both the allocation function and the sampling itself, and the509

minimum is over all allocation functions such that ‖f(P )‖1 ≤ m for all P . 3
510

A natural question then is: what is the optimal allocation when one wants to compute the statistic511

of interest differentially privately? This is a simple yet subtle question. Our results in the previous512

sections indicate that the landscapes of optimal allocations in the non-private and private settings513

3 As an aside, we note that the notion of optimal allocations implicitly assumes that the historic or auxiliary data, H ,
used to inform the sampling design and the population data P are the same, or at least similar enough that f∗(H) is
a good proxy for f∗(P ). This provides further justification for the assumption that H = P in our statements.
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may be very different. This is a result of the fact that allocation functions that do not amplify well514

typically need to add more noise to achieve privacy (see discussion in Section 2.4). The additional515

noise needed to achieve privacy may overwhelm any gains in accuracy for the non-private statistic.516

Additionally, it is not immediately obvious how to define the optimal allocation in the private setting.517

In this section, we formulate the notion of an optimal allocation under privacy constraints. Our518

goal is to initiate the study of alternative allocation functions that may prove useful when privacy is a519

concern. A full investigation of this question is outside the scope of this paper, but we provide some520

intuition for why this may be an interesting and important question for future work.521

Given a statistic θ, we wish to define the optimal allocation for estimating θ privately. Let522

θ̃λ be an λ-DP algorithm for estimating θ, so θ̃λ(P ) is an approximation of θ(P ). The smaller λ523

is, the noisier θ̃λ is. The scale of λ needed to ensure that θ̃λCf
is ε-DP depends on the allocation524

function f . Allocation functions that are very sensitive to changes in the input dataset will require525

more noise (smaller λ) to mask changes in the allocation. For any allocation f , we will define the526

optimal parameter λ as that which minimises the maximum variance of θ̃λCf
over all datasets P , while527

maintaining privacy:528

λf =arg min
λ>0

sup
P

var(θ̃λCf
(P ))

var(θCf
(P )) (4)529

s.t. θ̃λCf
is (ε1, · · · , εk)-stratified DP.530

531

Now, by definition, θ̃λf

Cf
is (ε1, · · · , εk)-stratified DP for any allocation function f . We minimise532

the multiplicative increase in variance so that the supremum is not dominated by populations P for533

which var(θCf
(P )) is large. Given privacy parameters ε1, · · · , εk ≥ 0, we now define the optimal534

allocation as the allocation function that minimises the maximum variance over all populations P :535

f∗ε = arg min
f

sup
P

var(θ̃λf

Cf
(P )). (5)536

537

where the minimum again is over all allocations f such that ‖f(P )‖1 ≤ m for all P , and the538

supremum is over all populations of interest. This optimisation function has a different form to Eqn 3,539

which performs the optimisation independently for each population P . This difference is necessary in540

the private setting as we need to ensure that the choice of allocation function f∗ε is not data dependent,541

since this would introduce additional privacy concerns. We can view the optimal allocation as the542

optimal balancing between the variance of the non-private statistic, and the scale of the noise needed543

to maintain privacy.544

We believe that examining the difference between the optimal allocation in the non-private setting545

(Eqn (3)) and in the private setting (Eqn (5)) is an important question for future work. The main546

challenge is computing the parameter λf for every allocation f . Analysing the privacy implications547

of f in the style of the previous sections gives us an upper bound on λf , although this bound may be548

loose for specific statistics θ̃λ. So, while the previous sections developed our intuition for λf , we549

believe new techniques are required to understand this parameter enough to solve Eqn (5).550

6.2 Challenges with optimal allocation551

Optimal allocations are defined to perform well for a specific statistic of interest. However, in practice,552

a wide variety of analyses will be performed on the final sample. The chosen allocation function may553

be far from optimal for these other analyses. While this problem exists in the non-private setting, it554

becomes more acute in the private setting. An allocation function that is optimal for one statistic may555

result in privacy degradation (and hence low accuracy estimates) for another.556
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We illustrate this challenge using Neyman allocation, which is often employed for business557

surveys. Neyman allocation is the optimal allocation method for the weighted mean [26]:558

θµ(S) = 1
|P |

k∑
i=1

|Pi|
|Si|

∑
x∈Si

x,559

where |Pi| is the size of stratum i, and Si = S ∩ Pi. The estimator θµ(S) is an unbiased estimate of560

the population mean for any stratified sampling design. Given a desired sample size m, let fNeyman561

be the allocation function corresponding to Neyman allocation. Provided each stratum is sufficiently562

large, fNeyman(P ) = (m1, · · · ,mk), where563

mi = |Pi|σ(Pi)∑k
j=1 |Pj |σ(Pj)

·m,564

σ2(Pi) is the empirical variance in stratum i and sufficiently large means that mi ≤ |Pi|. Neyman565

allocation is deterministic and can be very sensitive to changes in the data due to its dependence566

on the variance within each stratum. So, while it can provide accurate results for some statistics, it567

provides very noisy results for other statistics of potential interest (e.g. privately computing strata568

sizes).569

To demonstrate the sensitivity of Neyman allocation, we analysed the sensitivity on a real data570

set. The population is based on the County Business Patterns (CBP) data published by the U.S.571

Census Bureau [15].4 Each data point is an establishment and the establishments are stratified by572

establishment size into k = 12 strata. With a target final sample size of m = 10, 000, and using the573

weighted mean of the establishment size as the target statistic, the Neyman allocation for this popula-574

tion is [1261, 621, 517, 1969, 833, 1947, 1058, 762, 257, 248, 306, 225]. We can find a neighbouring575

population with Neyman allocation [1259, 620, 516, 1965, 831, 1943, 1056, 761, 257, 247, 306, 244].576

While these allocations are not wildly different, they do differ by 19 samples in the top stratum, which577

might not have a large impact on the weighted mean, but could lead to more substantial changes578

for other statistics. As an illustrative example, we can consider the goal of privately estimating the579

stratum sizes in the sample, for which this allocation would lead to significant privacy degradation.580

6.3 Privacy amplification from proportional sampling581

Proportional sampling is an alternative allocation function that is used to provide equitable repres-582

entation of each sub-population, or stratum. Given a desired sample size m ∈ [n], proportional583

sampling samples an r = m
n fraction of the data points (rounded to an integer) from each stratum.584

Proportional sampling is not an optimal allocation in the non-private setting but, when implemented585

with randomised rounding, it has good privacy amplification. Now that we consider stratified sampling586

with number of stratums k ≥ 1, we can state the following generalisation of Theorem 6.587

I Theorem 11 (Privacy Amplification for Proportional Sampling). Let r ∈ [0, 1], ε > 0,M588

be an ε-DP mechanism, and P = S1 t · · · t Sk and P ′ = S′1 t · · · t S′k be stratified neighboring589

datasets that differ on stratum i. If for all j ∈ [k], r|Sj | ≥ 1 and r|S′j | ≥ 1, thenMCfr,prop
is ε′-DP590

where591

ε′ ≤ log
(
1 + 2r(e2ε − 1)

)
+ log(1 + r(e2ε − 1)).592

4 The data released by the U.S. Census Bureau is a tabulated version of the true micro data from the Business Register
(BR), a database of all known single and multi-establishment employer companies. The data set we use is micro data
generated to be consistent with the tabulated version. Each data point in this population is the size of an establishment
in the US. In order to compute the sensitivity, we need to top code the data, we top code the data at 10,000.
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Note that given a private statistic θ̃λ as defined as above, this allows us to set λfr,prop ≈ ε
6r , which593

is considerably larger than ε for small sampling rates. Thus, while proportional sampling may not594

minimise the variance of any single statistic, it may be a good choice since it performs reasonably595

well for all statistics.596

7 Conclusion597

In this paper, we have considered the privacy guarantees of sampling schemes, extending previous598

results to more complex and data-dependent sampling designs that are commonly used in practice. We599

find that considering these sampling schemes requires developing more nuanced analytical tools. In600

this work, we characterize the privacy impacts of randomized and data-dependent sampling schemes.601

Then, we apply our insights to analyze cluster and stratified sampling and to consider the question602

of optimal allocations under privacy. To the best of our knowledge, this work is the first to initiate603

study into these designs. As such, we hope to see future work in three areas. First, future work604

should tighten and optimize the constants in our theorems. Second, our results should be extended605

from pure to approximate (and other variants) of differential privacy. Finally, we hope to see further606

investigation into near-optimal allocations under privacy constraints.607
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A Basic facts about indistinguishability718

I Definition 12. Let the LCS distance between two data sets P and P ′, denoted dLCS(P, P ′), be719

the minimal k such that if we let P = P0 and P ′ = Pk, there exist data sets P1, P2, · · · , Pk−1 where720

for all i = 0, · · · , k − 1, Pi and Pi+1 are unbounded neighbors.721

I Lemma 13. [12] Let X,Y and Z be random variables. For any ε, ε′ > 0, if X and Y are ε-722

indistinguishable, and Y and Z are ε′-indistinguishable, then X and Z are ε+ ε′-indistinguishable.723

Many of our proofs use couplings so let us briefly describe on the main method we will use to724

construct a coupling of two random variables. Let X be a random variable taking values in ΩX725

and Y be a random variable taking values in ΩY . Suppose there exists a (possibly randomised)726

transformation f : ΩX → ΩY such that Y = f(X). That is, for all y ∈ ΩY ,727

Pr(Y = y) =
∑
x∈ΩX

Pr(X = x) Pr(f(x) = y).728

Then we can construct a coupling of X and Y by µ(x, y) = Pr(X = x) Pr(f(x) = y). A short729

calculation confirms that this defines a coupling. Further, notice that µ(x, y) 6= 0 if and only730

Pr(f(x) = y) 6= 0.731

I Lemma 14. Let X and Y be random variables taking values in U∗ such that there exists a732

coupling µ such that if µ(x, y) 6= 0 then the LCS distance between x and y is at most A. Then ifM733

is ε-unbounded DP thenM(X) andM(Y ) are Aε-indistinguishable.734

Proof.

Pr(M(X) ∈ E) =
∑
x∈U∗

Pr(X = x) Pr(M(x) ∈ E)735

=
∑
x∈U∗

∑
y∈U∗

µ(x, y) Pr(M(x) ∈ E)736

≤
∑
y∈U∗

∑
x∈U∗

µ(x, y)eAε Pr(M(y) ∈ E)737

= eAε
∑
y∈U∗

Pr(Y = y) Pr(M(y) ∈ E)738

= eAε Pr(M(Y ) ∈ E).739
740

J741

I Lemma 15 (Advanced joint convexity, [6]). Let X and Y be random variables satisfying742

X = (1 − q)X0 + qX1 and Y = (1 − q)Y0 + qY1 for some q ∈ [0, 1] and random variables743

X0, X1, Y0 and Y1. If744

X0 and Y0 are ε-indistinguishable,745

X1 and Y1 are ε+ ε′-indistinguishable and746

X1 and Y0 are ε+ ε′-indistinguishable747

X0 and Y1 are ε+ ε′-indistinguishable748

then X and Y are ε+ log(1 + q(eε′ − 1))-indistinguishable.749
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Proof.

Pr(X ∈ E) = (1− q) Pr(X0 ∈ E) + qPr(X1 ∈ E)750

= (1− q) Pr(X0 ∈ E) + qe−ε
′
Pr(X1 ∈ E)751

+ q(1− e−ε
′
)(1− q) Pr(X1 ∈ E) + q(1− e−ε

′
)qPr(X1 ∈ E)752

≤ (1− q)eε Pr(Y0 ∈ E) + qeε Pr(Y1 ∈ E)753

+ q(1− e−ε
′
)(1− q)eε+ε

′
Pr(Y0 ∈ E) + q(1− e−ε

′
)qeε+ε

′
Pr(Y1 ∈ E)754

= (eε + qeε(eε
′
− 1)) Pr(Y ∈ E)755756

J757

B Randomized data-independent sampling758

I Lemma 16. Given m ∈ N, define Cm : U∗ → Um be defined as follows: given a dataset P , form759

a sample S by sampling m data points randomly without replacement from P , then Cm(P ) = S. Let760

P and P ′ be unbounded neighboring datasets and m,m′ ∈ N, thenMCm(P ) andMCm′ (P
′) are761 (

log
(

1 + m

|P |+ 1(e2ε − 1)
)

+ |m−m′|ε
)

- indistinguishable.762

Proof. Let P ′ = P ∪ {x}. First, let us focus on the case where m′ = m. Now,763

MCm
(P ′) =

(|P |
m

)(|P |+1
m

)MCm
(P ) +

(
1−

(|P |
m

)(|P |+1
m

))M(Cm(P ′)|x∈S)764

=
(

1− m

|P |+ 1

)
MCm

(P ) + m

|P |+ 1M(Cm(P ′)|x∈S),765

766

where Cm(P ′)|x∈S denotes the random variable Cm(P ′) conditioned on the event that x ∈ S. Now,767

we can define a coupling of Cm(P ) and Cm(P ′)|x∈S by first sampling S from Cm(P ), then replacing768

a random element of S by x. This coupling has LCS distance at most 2, so by Lemma 14,MCm(P )769

andM(Cm(P ′)|x∈S)) are 2ε-indistinguishable. Thus, by Lemma 15,MCm
(P ) andMCm

(P ′) are770

log
(

1 + m

|P |+ 1(e2ε − 1)
)

-indistinguishable.771

Next, let us consider the case |m − m′| = 1 and P = P ′. We can define a coupling of772

Cm(P ) and Cm′(P ) as follows: first sample S from Cm(P ), then add a random element of P\S773

to S. This coupling has LCS distance at most 1, so by Lemma 14, MCm
(P ) andMCm′ (P ) are774

ε-indistinguishable.775

Finally, we’ll use Lemma 13 to complete the proof. Note that MCm(P ) and MCm(P ′) are776

log
(

1 + m
|P |+1 (e2ε − 1)

)
-indistinguishable. Then there exist m1, · · · ,m`−1 such that if we set777

m0 = m andm|m−m′| = m′ then for all i, |mi−mi−1| ≤ 1 and soM(Cmi−1(P ′)) andM(Cmi
(P ′))778

are ε-indistinguishable. Therefore, by Lemma 13,MCm(P ) andMCm′ (P
′) are779 (

log
(

1 + m

|P |+ 1(e2ε − 1)
)

+ |m−m′|ε
)

- indistinguishable.780

J781
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I Definition 17 (log-Lipschitz functions). A function q : [n]→ R≥0 is ε-log-Lipschitz if for all782

m ∈ {0, 1, . . . , n− 1},783

|log q(m)− log q(m+ 1)| ≤ ε784

I Lemma 18. Let w : [n]→ R≥0 be nondecreasing, and let p : [n]→ R≥0 be any function. Then,785

max
q:[n]→R≥0 is ε-log-Lipschitz

∑n
m=0 q(m)w(m)p(m)∑n

m=0 q(m)p(m)
≤
∑n
m=0 e

εmw(m)p(m)∑n
m=0 e

εmp(m)
786

Proof. We will show by induction on k = 0, 1, . . . , n that we can assume w.l.o.g. that the maximizer787

has the form q(0) = 1, q(1) = eε, . . . , q(k) = eεk. This holds for k = 0 by simply normalizing. Then,788

assuming it holds for some k > 0, and given any ε-log-Lipschitz q such that q(0) = 1, . . . , q(k) = eεk,789

let us define q′ as follows.790

q′(m) =
{
q(m) for m = 0, 1, . . . , k
eεq(k)q(m)
q(k+1) for m = k + 1, . . . , n

791

792

By construction, q′ is ε-log-Lipschitz. In particular, q′(k+ 1) = eεq(k) = e(k+1)ε. In addition, since793

q is ε-log-Lipschitz, we have that794

eεq(k)
q(k + 1) ≥ 1,795

796

which means that q′(k + 1) ≥ q(k + 1).797

Next, we use the inequality (a slight generalization of the mediant inequality) that for a, b, c, d > 0798

and t ≥ 1 such that a/b ≤ c/d,799

a+ c

b+ d
≤ a+ tc

b+ td
800

Let a =
∑k
m=0 q(m)w(m)p(m), b =

∑k
m=0 q(m)p(m), c =

∑n
k+1 q(m)w(m)p(m), and d =801 ∑n

k+1 q(m)p(m), and t = eεq(k)/q(k + 1). By the non-decreasing property of w, we have that802

a/b ≤ w(k) ≤ w(k + 1) ≤ c/d.803
804

Therefore, the inequality above, and by definition of q′, we have that805

∑n
m=0 q(m)w(m)p(m)∑n

m=0 q(m)p(m)
≤
∑k
m=0 q(m)w(m)p(m) + eε(q(k)/q(k + 1)) ·

∑n
m=k+1 q(m)w(m)p(m)∑k

m=0 q(m)p(m) + eε(q(k)/q(k + 1)) ·
∑n
m=k+1 q(m)p(m)

806

=
∑n
m=0 q

′(m)w(m)p(m)∑n
m=0 q

′(m)p(m)
.807

808

So, by induction, we can assume that the maximizer has the form q(0) = 1, q(1) = eε, . . . , q(n) =809

eεn, which completes the proof. J810

Proof of Theorem 3. Let Cm : U∗ → Um be the sampling scheme that given a dataset P , returns811

S where S is a uniformly random subset of P of size m (drawn without replacement). Let y ∈ O be812
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any outcome, and let P ∼ P ′ be neighboring datasets. Then, we have that813

Pr[MC(P ) = y] =
n∑

m=0
Pr[MCm

(P ) = y] · Pr[|C(P )| = m]814

≤
n∑

m=0

(
1 + m

n
(eε − 1)

)
· Pr[MCm

(P ′) = y] · t(m)815

≤
∑n
m=0

(
1 + m

n (eε − 1)
)
· eεm · t(m)∑n

m=0 e
εmt(m)

·
n∑

m=0
Pr[MCm(P ′) = y] · t(m)816

=
(

1 + Em∼t̃[m]
n

(eε − 1)
)
· Pr[MC(P ′) = y]817

818

where the first inequality follows from Lemma 16. Then, note that (1 + (m/n)(eε − 1)) is non-819

decreasing, and that Pr[MCm
(P ′)) = y] is ε-log-Lipschitz by definition, so the second inequality820

follows by Lemma 18. After rearranging and simplifying, we obtain the desired result.821

Finally, for the lower bound, suppose the data universe U = [0, 1]. Let P = {1, · · · , 1} consist822

of n 1s and P ′ be the neighboring dataset P ′ = P\{1} ∪ {0}. LetM : U∗ → R be defined by823

M(S) =
∑
x∈S 1{x = 1}+ Lap (1/ε) soM is ε-unbounded DP. Then824

Pr(MC(P ′) = n)
Pr(MC(P ) = n) =

∑n
m=0 Pr(t = m)

(
m
n e
−(n−m+1)ε +

(
1− m

n

)
e−(n−m)ε)∑n

m=0 Pr(t = m)e−(n−m)ε825

=
∑n
m=0 Pr(t = m)

(
m
n e

(m−1)ε +
(
1− m

n

)
emε

)∑n
m=0 Pr(t = m)emε

826

=
∑n
m=0 Pr(t = m)emε

(
1− m

n (1− e−ε)
)∑n

m=0 Pr(t = m)emε
827

= 1− 1
n

(1− e−ε)
∑n
m=0 Pr(t = m)emεm∑n
m=0 Pr(t = m)emε

.828

829

Thus, taking the reciprocal,830

log Pr(MC(P ) = n)
Pr(MC(P ′) = n) = − log

(
1− 1

n
(1− e−ε)

∑n
m=0 Pr(t = m)emεm∑n
m=0 Pr(t = m)emε

)
.831

J832

C Data-dependent sampling833

Proof of Proposition 4: hypothesis testing perspective. Let H : N → {0, 1} be the hy-834

pothesis test such that for all x ∈ N, and b ∈ {0, 1}, e−ε Pr(H(x) = b) ≤ Pr(H(x + 1) =835

b) ≤ eε Pr(H(x) = b). Then H ′ : U∗ → {0, 1} defined by H ′(S) = H(|S|) is ε-unbounded DP.836

By assumption, H ′Cf̃
is ε′-DP. This implies that H(f̃(P )) and H(f̃(P ′)) are ε′-indistinguishable.837

Therefore,838

adv(H) = Pr[H(f̃(P )) = 0]− Pr[H(f̃(P ′)) = 0] ≤ Pr[H(f̃(P ′)) = 0](eε
′
− 1) ≤ eε

′
− 1.839

The result follows from taking the supremum over all ε-DP H . J840

Proof of Theorem 6: proportional allocation with randomized rounding. LetP be a data-841

set, x be a data point and P ′ = P ∪ {x}. Let m = r|P |, m′ = r|P ′|, mL = bmc, m′L = bm′c,842

p = m −mL and p′ = m′ −m′L. Now, m′ −m = r < 1 so we have two cases, mL = m′
L or843

mL = m′
L − 1.844
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As in Lemma 16, let Cm : U∗ → Um be the sampling scheme that given a dataset P , returns S845

where S is a uniformly random subset of P of size m (drawn without replacement). Note that by846

Theorem 2, for m,m′ ∈ N,Mm(P ) andMm′(P ) are |m−m′|ε-indistinguishable, andMCm
(P )847

andMCm′ (P
′) are log

(
1 + m

|P |+1 (e2ε − 1)
)

+ |m−m′|ε-indistinguishable.848

Firstly, suppose mL = m′
L. Let849

µ0 = 1
1− r ((1− p− r)MCmL

(P ) + pMCmL+1
(P )),850

µ′0 = 1
1− r ((1− p− r)MCmL

(P ′) + pMCmL+1
(P ′)),851

µ1 =MCmL
(P ),852

µ′1 =MCmL+1
(P ′).853

854

Notice that855

MCr
(P ) = (1− r)µ0 + rµ1 and MCr

(P ′) = (1− r)µ′0 + rµ′1.856
857

Now, by Lemma 15 and Lemma 14, µ0 and µ′0 are log(1+ mL+1
|P |+1 (e2ε−1))-indistinguishable. Further,858

all the pairs (µ′0, µ1), (µ1, µ
′
1) and (µ0, µ

′
1) are

(
log(1 + mL+1

|P |+1 (e2ε − 1)) + ε
)

-indistinguishable.859

Therefore, by Lemma 15,MCr
(P ) andMCr

(P ′) are ε′-indistinguishable where860

ε′ ≤ log
(

1 + mL + 1
|P |+ 1 (e2ε − 1)

)
+ log(1 + r(eε − 1))861

≤ log
(

1 +
(
r + 1
|P |+ 1

)
(e2ε − 1)

)
+ log(1 + r(eε − 1)).862

863

Next, suppose m′L = mL + 1. Let 1− q = min{p, 1− p′} and864

µ0 =MCmL+1
(P ),865

µ′0 =MCmL+1
(P ′),866

µ1 = 1
q

((p− 1 + q)MCmL+1
(P ) + (1− p)MCmL

(P ), )867

µ′1 = 1
q

((1− p′ − 1 + q)MCmL+1
(P ′) + p′MCmL+2

(P ′)).868

869

Notice that870

MCr
(P ) = (1− q)µ0 + qµ1 and MCr

(P ′) = (1− q)µ′0 + qµ′1.871
872

Now, by Lemma 2, µ0 and µ′0 are log
(

1 + mL+1
|P |+1

)
-indistinguishable. Further, all the pairs (µ′0, µ1),873

(µ1, µ
′
1) and (µ0, µ

′
1) are

(
log(1 + mL+1

|P |+1 (e2ε − 1)) + 2ε
)

-indistinguishable. Also, note that q ≤ r.874

Then by Lemma 15,MCr (P ) andMCr (P ′) are ε′-indistinguishable where875

ε′ ≤ log
(

1 + mL + 1
|P |+ 1 (e2ε − 1)

)
+ log(1 + p(e2ε − 1))876

≤ log
(

1 +
(
r + 1
|P |+ 1

)
(e2ε − 1)

)
+ log(1 + r(e2ε − 1)).877

878

J879
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D Cluster sampling880

Proof of Theorem 8. Without loss of generality, let i = 1. Notice that conditioned on cluster881

1 /∈ I , the distribution of outputs ofMC(P ) andMC(P ′) are identical. Let E be a set of outcomes.882

Then883

Pr(MC(P ) ∈ E) = `

k
Pr(MC(P ) ∈ E | 1 ∈ I) +

(
1− `

k

)
Pr(MC(P ) ∈ E | 1 /∈ I)884

= `

k
Pr(MC(P ) ∈ E | 1 ∈ I) +

(
1− `

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I).885

886

Now, we have that887

`

k
Pr(MC(P ) ∈ E | 1 ∈ I) = `

k

∑
|I|=`,1∈I

1(
k
`

) Pr(M(PI) ∈ E)888

≤ `

k

∑
|I|=`,1∈I

1(
k
`

)eε Pr(M(P ′I) ∈ E)889

= `

k
eε Pr(MC(P ′) ∈ E | 1 ∈ I),890

891

where the inequality follows from the fact that the LCS distance between PI and P ′I is 1. Thus,892

Pr(MC(P ) ∈ E) ≤ `

k
eε Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1− `

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I)893

= Pr(MC(P ′) ∈ E) + `

k
(eε − 1) Pr(MC(P ′) ∈ E | 1 ∈ I).894

895

Now, we need to relate Pr(MC(P ′) ∈ E | 1 ∈ I) to Pr(MC(P ) ∈ E). For a set I such that 1 /∈ I896

and index i ∈ I , let I ∪ {1}\{i} be the set where index i has been replaced with 1. Then,897 (
1− `

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I) =

∑
|I|=`,1/∈I

1(
k
`

) Pr(M(PI) ∈ E)898

=
∑

|I|=`,1/∈I

∑
i∈I

1
`

1(
k
`

) Pr(M(PI) ∈ E)899

≥
∑

|I|=`,1/∈I

∑
i∈I

1
`

1(
k
`

)e−(n1+ni)ε Pr(M(PI∪{1}\{i}) ∈ E)900

≥ e−(n1+nmax)ε 1
`

∑
|I|=`,1/∈I

∑
i∈I

1(
k
`

) Pr(M(PI∪{1}\{i}) ∈ E),901

902

where the first inequality follows from the fact that the LCS distance between PI and PI∪{1}\{i} is at903

most n1 + ni. Now, notice that the sets I ∪ {1}\{i} in the above sum all contain 1, and each index I ′904

such that |I ′| = ` and 1 ∈ I ′ appears in the sum k − ` times (corresponding to the k − ` possible905

choices for the swapped index i). Therefore, we can rewrite the sum as906 (
1− `

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I) ≥ e−(n1+nmax)ε k − `

`

∑
|I|=`,1∈I

1(
k
`

) Pr(M(PI) ∈ E)907

= e−(n1+nmax)ε k − `
`

`

k
Pr(MC(P ′) ∈ E | 1 ∈ I)908

= e−(n1+nmax)ε
(

1− `

k

)
Pr(MC(P ′) ∈ E | 1 ∈ I).909

910
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Thus,911

Pr(MC(P ′) ∈ E) = `

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1− `

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I)912

≥ `

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1− `

k

)
e−(n1+nmax)ε Pr(MC(P ′) ∈ E | 1 ∈ I)913

=
(
`

k
+
(

1− `

k

)
e−(n1+nmax)ε

)
Pr(MC(P ′) ∈ E | 1 ∈ I).914

915

Finally,916

Pr(MC(P ) ∈ E) ≤ Pr(MC(P ′) ∈ E) + `

k
(eε − 1) Pr(MC(P ′) ∈ E | 1 ∈ I)917

≤ Pr(MC(P ′) ∈ E) + `

k
(eε − 1) 1(

`
k +

(
1− `

k

)
e−(n1+nmax)ε

) Pr(MC(P ′) ∈ E)918

≤

(
1 + `

k
(eε − 1) 1(

`
k +

(
1− `

k

)
e−(n1+nmax)ε

))Pr(MC(P ′) ∈ E)919

920

J921

Now we turn our attention to the lower bound.922

Proof of Theorem7. Let C1 = {1, · · · , 1} and Cj = {−1, · · · ,−1} for all j ∈ {2, · · · , k}.923

Let C ′1 = C1\{1} ∪ {−1} be the same as C1 except with one 1 switched to a -1. LetM(S) =924 ∑
x∈S x + Lap(1/ε), soM is ε-unbounded DP. Notice thatM has the property that if

∑
x∈S′ x =925 ∑

x∈S x + a, for some a ∈ R then Pr(M(S) =
∑
x∈S x) = e|a|ε Pr(M(S′) =

∑
x∈S x). This926

equality allows us to tighten many of the inequalities that appeared in the proof of Theorem 8, and927

give a lower bound.928

Pr (MC(P ) = n1 + 1) = `

k
Pr (MC(P ) = n1 + 1 | 1 ∈ I) +

(
1− `

k

)
Pr (MC(P ) = n1 + 1 | 1 /∈ I)929

= `

k
eε Pr (MC(P ′) = n1 + 1 | 1 ∈ I) +

(
1− `

k

)
Pr (MC(P ′) = n1 + 1 | 1 /∈ I)930

= Pr (MC(P ′) = n1 + 1) + `

k
(eε − 1) Pr (MC(P ′) = n1 + 1 | 1 ∈ I) .931932

Now,933 (
1− `

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I) =

∑
|I|=`,1/∈I

1(
k
`

) Pr(M(PI) ∈ E)934

=
∑

|I|=`,1/∈I

∑
i∈I

1
`

1(
k
`

) Pr(M(PI) ∈ E)935

=
∑

|I|=`,1/∈I

∑
i∈I

1
`

1(
k
`

)e−(n1+ni)ε Pr(M(PI∪{1}\{i}) ∈ E)936

≤ e−(n1+nmin)ε 1
`

∑
|I|=`,1/∈I

∑
i∈I

1(
k
`

) Pr(M(PI∪{1}\{i}) ∈ E)937

= e−(n1+nmax)ε k − `
`

∑
|I|=`,1∈I

1(
k
`

) Pr(M(PI) ∈ E)938

= e−(n1+nmax)ε
(

1− `

k

)
Pr(MC(P ′) ∈ E | 1 ∈ I).939

940

CVIT 2016



23:26 Controlling Privacy Loss in Sampling Schemes

Thus,941

Pr(MC(P ′) ∈ E) = `

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1− `

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I)942

≤ `

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1− `

k

)
e−(n1+nmin)ε Pr(MC(P ′) ∈ E | 1 ∈ I)943

=
(
`

k
+
(

1− `

k

)
e−(n1+nmin)ε

)
Pr(MC(P ′) ∈ E | 1 ∈ I).944

945

Finally,946

Pr(MC(P ) ∈ E) = Pr(MC(P ′) ∈ E) + `

k
(eε − 1) Pr(MC(P ′) ∈ E | 1 ∈ I)947

≥ Pr(MC(P ′) ∈ E) + `

k
(eε − 1) 1(

`
k +

(
1− `

k

)
e−(n1+nmin)ε

) Pr(MC(P ′) ∈ E)948

=
(

1 + `

k
(eε − 1) 1(

`
k +

(
1− `

k

)
e−(n1+nmin)ε

))Pr(MC(P ′) ∈ E).949

950

J951

Proof of Theorem 9. Let D = C`(P ) and D′ = C`(P ′). For an event E ∈ O, define the952

probabilities p, q, p′ and q′ as follows.953

p = Pr(M(D) ∈ E|C1 ∈ D) q = Pr(M(D) ∈ E|C1 /∈ D)954

p′ = Pr(M(D′) ∈ E|C1 ∈ D′) q′ = Pr(M(D′) ∈ E|C1 /∈ D′)955
956

By the existence of H described in the lemma statement, there must exist an event E such that957

q ≤ e−ε′p. Since P and P ′ only differ onC1, the distributions ofM(D)|C1 /∈D andM(D′)|C1 /∈D′ are958

identical, which means that q = q′. Then, we can compute a lower bound on the indistinguishability959

ofM(D) andM(D′) as follows. Without loss of generality, assume p′ > p960

Pr(M(D′) ∈ E)
Pr(M(D) ∈ E) = p′ · Pr(C1 ∈ D′) + q · Pr(C1 /∈ D′)

p · Pr(C1 ∈ D) + q · Pr(C1 /∈ D)961

=
p′ · `k + q · (1− `

k )
p · `k + q · (1− `

k )
962

=
p · `k + q · (1− `

k ) + (p′ − p) · `k
p · `k + q · (1− `

k )
963

= 1 +
(p′ − p) `k

p · `k + q · (1− `
k )

964

≥ 1 +
(p′ − p) `k

p · ( `k + e−ε′(1− `
k ))

965

= 1 +
(
p′

p
− 1
) `

k
`
k + e−ε′(1− `

k )
966

967

where the final inequality follows from the fact thatM is ε-DP, so p′/p ≥ eε′′ by definition. J968

E Stratified sampling969

Proof of Theorem 11: proportional allocation for stratified sampling. GivenM : ([k]×970

U)∗ → Y , for all datasets T2, · · · , Tk ∈ U∗, define MT2,··· ,Tk : U∗ → Y by MT2,··· ,Tk (S) =971
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M(S t T2 t · · · t Tk). Then since M was (ε, · · · , ε)-stratified unbounded DP, MT2,··· ,Tk is ε-972

unbounded DP. Let Cr be as in Lemma 6 so for all S, S′ unbounded neighbours such that r|S| ≥ 1973

and r|S′| ≥ 1,MT2,··· ,Tk

Cr
(S) andMT2,··· ,Tk

Cr
(S′) are ε′-indistinguishable where974

ε′ ≤ log
(
1 + 2r(e2ε − 1)

)
+ log(1 + r(e2ε − 1)).975

Now, let P = S1 t S2 t · · · t Sk and P = S′1 t S2 t · · · t Sk be unbounded stratified neighboring976

datasets that differ in the first stratum. Since S2 t · · · t Sk are shared between P and P ′, and the977

datasets Ti only dependent on strata Si, the distribution of T2, · · · , Tk are identical given inputs P and978

P ′. Let q be the distribution of T2, · · · , Tk so q(T2, · · · , Tk) = Pr(Cr(S2) = T2, · · · , Cr(Sk) = Tk).979

Then given an event E,980

Pr(MCfprop,r
(P ) ∈ E) =

∫
T2,··· ,Tk

q(T2, · · · , Tk) Pr(MT2,··· ,Tk

Cr
(S1) ∈ E)981

≤
∫
T2,··· ,Tk

q(T2, · · · , Tk)eε
′
Pr(MT2,··· ,Tk

Cr
(S′1) ∈ E)982

= eε
′
Pr(MCfprop,r

(P ′) ∈ E).983
984

J985

F Instantiating the estimation-based lower bound986

For any function f , the accuracy to which one can privately estimate f depends on the sensitivity of987

f , i.e., how much changing the input dataset can change the output.988

Proof of Proposition 5. DefineMSS : U∗ → N as follows. For all P ∈ U∗,989

M(P ) = |P |+ Lap(1/ε).990

Then M is ε-unbounded DP. Suppose that f̃ : U∗ → N is such that for all ε-unbounded DP991

mechanisms A, ACf̃
is ε′-bounded DP. This implies that992

MCf̃
(P )) = f̃(P ) + Lap(1/ε)993

is ε′-bounded DP. Therefore, by the definition of α, there exists a population P such that994

sup
P∈Un

E[|MCf̃
(P ))− f(P )|2] ≥ α.995

Also996

α ≤ E[|MCf̃
(P ))− f(P )|2] = E[|f̃(P ) + Lap(1/ε)− f(P )|2]997

= E[(f̃(P )− f(P ))2 + Lap(1/ε)(f̃(P )− f(P )) + (Lap(1/ε))2]998

= E[]|f̃(P )− f(P )|2] + (1/ε)2.9991000

After a small amount of rearranging we arrive at the result. J1001

G Experimental Setup1002

G.1 Figure 21003

In this experiment, recall that we letM be an ε-DP exponential mechanism that returns a noisy count1004

of the number of ones in a dataset from {0, 1}n, and Pr[M(P ) = i] ∝ exp (ε · |i−#ones in P | /2).1005
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Then, we let t be the following randomised function which determines the size of the sample. For a1006

given γ ∈ (0, 1), we define t as follows.1007

t =
{

2 w.p. 1− γ
n w.p. γ

1008

1009

We define neighboring datasets P, P ′, where P has n/2 zeroes and n/2 ones, and P ′ has n/2 zeroes1010

and n/2 + 1 ones. Let Ct(P ) (resp. Ct(P ′)) sample m ∼ t records randomly without replacement1011

from P (resp. P ′). In Figure 2, we vary γ from 10−25 and 10−15 and compute the empirical privacy1012

loss ε′ of (M◦ Ct)(P ) and (M◦ Ct)(P ′).1013
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