
Differentially Private Ridge
Regression

The Cost of a Hyperparameter

Tyler Piazza

An undergraduate thesis submitted to the The School of
Engineering and Applied Sciences in partial fulfillment of the

requirements for the joint degree of Bachelor of Arts in Computer
Science and Mathematics with Honors

Harvard University
Cambridge, Massachusetts

March 26, 2021.



Differentially Private Ridge Regression
The Cost of a Hyperparameter

Tyler Piazza

Abstract

Studying problems of interest, like finding trends in medical data, can require analyzing data which contains
sensitive and personally identifying information. As a result, it is often infeasible to release these datasets to
researchers or to the general public. In this paper, we study algorithms that are differentially private, where
there are theoretical guarantees that the mechanisms studied will reveal only limited amounts of information
about individual people while still providing insights about large groups. This thesis discusses various forms
of linear and ridge regression in this differentially private setting, with the goal of studying sensitive data to
make predictions about future sensitive data. In particular, we will discuss the internal privacy-loss budgeting
of the differentially private ridge regression technique adaSSP. This thesis provides 3 contributions. First, we
discuss the existing SSP and adaSSP algorithms, and provide detailed proofs that they are each differentially
private. Second, we introduce the two new algorithms adaSSPbudget and constSSPfull and prove that these
are each differentially private. Third, we conduct experiments using synthetic and real world data to explore
whether the precise privacy-loss budgeting used within these algorithms could improve their performance.
These experiments will explore the tradeoff between the accuracy of a hyperparameter and the accuracy of
the other releases. Through the experimental results, we find that the performance is often insensitive to
the particular privacy-loss budgeting and that for certain datasets, no choice of privacy-loss budget allows
for the adaptive adaSSPbudget to outperform the standard SSP algorithm.
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1 Introduction
Linear regression is an old technique, published by Legendre in 1805 and Gauss in 1809 [28]. 200 years later,
linear regression remains a common form of data analysis, where coefficients are assigned to the different
parameters of our dataset to reduce some pre-defined loss. In the case where linear regression is used to
predict new, unseen data, the linear regression model is fit on a training set of data and is often evaluated
on a different testing set of data. Using the existing least squares loss metric, one can analytically solve for
the coefficients which minimize the loss on the training set [15].

The issue with this approach is that what is best for the training set may not be best for the testing
set. In particular, the coefficients assigned to the linear regression model may be highly dependent on the
particular configuration of the training set, in such a way that the coefficients do not generalize to data
that was generated in a similar way. One way to prevent this over fitting is to penalize the size of the
coefficients of the model in the loss function. This way, the coefficients may not grow to improbably large
values in order to make marginal gains in the loss function on the training set. One way to perform this
penalization is to use ridge regression [22] [16], which penalizes the model with the L2 norm of the linear
regression coefficients. One challenge with ridge regression is that the L2 penalty needs to be scaled (relative
to the squared error loss), and the optimal scalar depends on the data. This scalar in ridge regression is
a special case of a machine learning hyperparameter, which is a parameter in a machine learning model
that is not automatically learned along with the rest of the model, so it must be input to the model before
training begins. In ridge regression, neural networks, support vector machines, and other machine learning
techniques, the task of choosing the optimal hyperparameters can appear ad-hoc and may require several
different interactions with the dataset [8].

Of course, data science is not always done in a vacuum, and we cannot interact with sensitive data as
much as we may want for the model’s accuracy. Machine learning has become popular, even in cases with
sensitive data. For example, some hospitals use machine learning to decide the likelihood of a re admit-
tance of a patient [30], and web mail providers detect spam using machine learning [27]. Furthermore, some
datasets seem private but actually reveal sensitive information. As an example, consider Amazon’s [17]
product recommendation system, which informs users that customers who bought some particular item also
bought some list of several other items. Researchers in 2011 were able to observe these recommendations
change over time, cross-reference with customers’ public reviews of items, and then infer if a particular
customer bought some specific item on a given day, even if the customer did not review the item [17]. These
aggregate recommendations and customer reviews at first seem to be private, but clearly some sensitive
information was able to leak through. Therefore, a need exists for a formalized way to ensure that released
values about a dataset do not reveal personal information.

Differential privacy (DP) [11] is a formalized approach at studying sensitive data, such that the study
produces accurate results, but the identities of the data subjects remain obscured. This paper focuses on the
definition of differential privacy with the (ϵ, δ) parameters to describe how much privacy is lost when the al-
gorithm is called (see Definition 3). Differential privacy aims to capture some idea of “plausible deniability”,
where the results of an algorithm do not change by very much if one particular row of the dataset changes.
Since differential privacy’s inception, it has connected to a variety of fields. Applications of differential
privacy include eye-tracking software [4] and graph theory [3], and differential privacy also has deep the-
oretical connections to cryptography [24], through fingerprinting codes, traitor tracing, and digital signatures.

One fortunate feature of differential privacy is that if multiple algorithms satisfy differential privacy,
then calling all algorithms (independently) has privacy-loss parameters which are at most the sum of the
individual privacy-loss parameters (see Theorems 4, 5). In other words, the privacy loss of the whole is the
sum of the privacy losses of its parts. Another benefit of differential privacy is that we can start with a
pre-defined privacy-loss budget (ϵ, δ), and construct multiple algorithms with their own budgets such that
the composition of the algorithms satisfies the overall budget. This setup leads to situations where the
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privacy loss is split between the different algorithms. In differential privacy, accuracy and privacy come at
a trade off, so making one algorithm more accurate may cause a different algorithm to be less accurate, if
the overall privacy-loss budget must be satisfied.

Tying these notions of ridge regression and privacy-loss budgeting together, Wang [26] presents a differ-
entially private ridge regression technique adaSSP. The algorithm releases 3 quantities, each release output
from standalone differentially private algorithms. Then, the algorithm combines the releases together to out-
put regression coefficients. adaSSP builds on the foundations of Sufficient Statistics Perturbation (SSP) [25]
[13] by releasing an extra quantity to adaptively compute the ridge regression hyperparameter. Intuitively,
this one privately released quantity could let ridge regression implementers sidestep the issue of returning to
the data multiple times to choose the best ridge regression coefficient. A potential downside to this approach
is that the differentially private release of this value to help the hyperparameter will reduce the privacy-loss
budget of the other releases of the algorithm. With this framework, the use of a well tuned hyperparameter
has a cost to the accuracy of the quantities used in the original model.

1.1 Contributions of this Thesis
This thesis aims to study differentially private ridge regression algorithms and how the privacy-loss bud-
get impacts the performance of the model on real and synthetic data. In particular, this paper surveys
the proposed differentially private ridge regression algorithm adaSSP which splits its privacy-loss budget to
compute an eigenvalue in the hopes of using an adaptive hyperparameter.

The theoretical contributions of this paper are two new proposed ridge regression algorithms, adaSSPbud-
get and constSSPfull, along with proofs that they are differentially private. This paper also provides detailed
proofs for other differentially private regression techniques which have been studied elsewhere, adaSSP and
SSP. The main tools involved in proving these claims come from quantifying the l2 sensitivity (Definition 6)
of the internal releases of these algorithms. Then, with l2 sensitivity, we appeal to the Gaussian Mechanism
(Lemma 7) to argue that each release is differentially private. Finally, we can combine Composition of DP
and Post Processing of DP (Theorems 4 and 5) to conclude that the entire algorithm is differentially private.

The experimental contributions of this paper are the study of the privacy-loss budget of the ridge regres-
sion mechanism adaSSP under different data conditions, including synthetic data and real UCI (University
of California Irvine) data. To measure performance, we use metrics of relative efficiency and prediction
error. By exploring the performance of our algorithms under different privacy-loss parameters, data sizes,
and datasets, these experiments aim to describe how and when the benefit of the adaptively chosen ridge
regression hyperparameter of adaSSP is worth the corresponding privacy-loss budget cost to the other re-
leases within the algorithm.

2 Notation and Setup
2.1 Matrix and Regression Notation
In this thesis, we will assume that there is a dataset X ∈ Rn×d, with n rows (i.e. n participants, n data
points) and d columns (i.e. d features, d predictors). There is a corresponding response vector y ∈ Rn. || · ||2
denotes the Euclidean norm for vector inputs. For matrix inputs, there are two primary norms used in this
paper: || · ||F is the Frobenius norm (the square root of the sum of the squared entries of the matrix), and
|| · ||2 for a matrix will be the spectral norm ||A||2 = supx∈Rd,||x||2=1 ||Ax||2. In general, upper case letters
(X,A, etc.) refer to matrices, bold letters (y,xi, etc.) refer to vectors, and lower case letters (y, λ, etc.)
refer to scalars in R.
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It is also the case that || · ||, when applied to subsets of Euclidean space, will refer to the radius of the
smallest Euclidean ball containing that set. We are concerned with X ⊂ Rd, the set of all possible row
vectors x of a dataset X, and Y ⊂ R, the set of all possible y ∈ R values. Thus, we assume finite bounds on
these domains, ||X || = supx∈X ||x||, ||Y|| = supy∈Y |y|. For this paper, the values of ||X || and ||Y|| are fixed
and known ahead of time.

When discussing eigenvalues, λmin(X
TX) (or λmin) denotes the smallest eigenvalue of XTX. Below are

two propositions that provide the solution to ordinary least squares and ridge regression.

Proposition 1.
(

Ordinary Least Squares Solution [15]
)

Given X ∈ Rn×d,y ∈ Rn,

θ∗ = (XTX)−1XTy

is the (non-private) least squares solution, which is the vector θ ∈ Rd that minimizes

L(θ) = ||y −Xθ||22

the ordinary least squares loss.

Proposition 2.
(

Ridge Regression Solution [15]
)

Given X ∈ Rn×d,y ∈ Rn, λ ≥ 0,

θ∗
λ = (XTX + λI)−1XTy

is the (non-private) optimal solution to the ridge regression problem, minimizing

Lλ(θ) = ||y −Xθ||22 + λ||θ||22

This value λ here is the ridge regression hyperparameter.

Note that ridge regression has the added benefit of numerical stability, which was one of the original mo-
tivations of ridge regression [22] [16]. The solution to ordinary least squares (Proposition 1) involves taking
the inverse of XTX, but there may not be guarantees ahead of time that this matrix is in fact invertible.
As a result, by instead taking the inverse of XTX + λI in Proposition 2, ridge regression can aim to avoid
this invertibility problem by adding λ to the eigenvalues of XTX.

θ0 refers to the true θ value, if it is known (such as in synthetic data, where the θ value is known ahead
of time and used to generate the data). In the procedure which is formally described in the experimental
section, a random θ0 ∈ Rd is generated alongside a random X ∈ Rn×d, and a y ∈ Rn vector is generated
with Xθ0 plus random Gaussian noise. θ̂ will refer to some predicted value of θ (from one of the algorithms,
for example).

In this paper, one metric for success of a linear regression (or ridge regression) algorithm will be relative
efficiency:

E
[
||θ̂ − θ0||22

]
E
[
||θ∗ − θ0||22

]
This metric rewards being close to the true parameter, and normalizes by what the non-private linear

regression could accomplish.

The randomness is over the cross validation trials. In the experiments, we use cross validation to split
the data into training data and test data, where the algorithms perform procedures on the training data and
then may do calculations using the remaining test data. Cross validation works by specifying the number of
folds k in the cross validation, where the data is randomly divided into k equally sized chunks. Then, the
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algorithm will use k − 1 chunks to train, and then possibly the remaining last chunk to use as some sort
of benchmark, as a test set. When using cross validation in this paper, we divide the data such that the
training set is 90% of the data, and the test set is the remaining 10%. In the various experiments, we use
32 trials. This system means that 32 times, the data is split into a new, random train set and a test
set, and the algorithms are used accordingly (with fresh randomness).

Another metric for success is prediction error, or mean squared error (MSE). For this metric, the data
X,y must first be divided into an Xtrain,ytrain and Xtest,ytest. This splitting would happen as described
with cross validation. Next, θ̂ is computed using Xtrain,ytrain, and then define

ypred := Xtestθ̂

Then, if there are ntest elements of ytest, compute the prediction error (MSE) as

1

ntest

ntest∑
i=1

(ypred,i − ytest,i)
2

Unlike relative efficiency, prediction error is not normalized with a value involving non-private ordinary
least squares.

2.2 Principal Components and Eigenvalues
The algorithms described in later sections will involve XTX, eigenvalues, and ridge regression, so to gain an
intuition for how these quantities are connected, we can consider the singular value decomposition (SVD) of
X. We have from SVD that

X = UDV T

[15] where we still operate with X ∈ Rn×d, so D ∈ Rd×d is a diagonal matrix, and U ∈ Rn×d and V ∈ Rd×d

are each orthogonal matrices. Let the diagonal entries of D be given by d1 ≥ d2 ≥ · · · ≥ dd ≥ 0. These are
called the singular values of X. Let the column vectors of U and V be represented as uj ,vj .

Using this decomposition, we can see what X applied to the ordinary least squares solution is. Recall that
X applied to the ordinary least squares solution also corresponds to the predicted ŷ values in this setting.

Xθ∗ = X(XTX)−1XTy = UUTy

Interpreting this result, we see that UTy are the projected coordinates of y with respect to the orthogonal
coordinates U . In contrast, when we try the same procedure for ridge regression with hyperparameter λ, we
find

Xθ∗
λ = X(XTX + λI)−1XTy = UD(D2 + λI)−1DUTy

=

d∑
j=1

(uj

d2j
d2j + λ

uT
j )y

Because U is orthogonal, we see that Xθ∗
λ computes y in the new coordinate system U , and then shrinks

the jth coordinate by d2
j

d2
j+λ

. Notice that more shrinkage is applied to the coordinate with the smallest sin-
gular value (in this notation, dd).

To interpret these dj values, we can reason through principal component analysis. The sample covariance
matrix is given by S = XTX

n ∈ Rd×d, and we know

XTX = V D2V T
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This is the eigen decomposition of XTX. The columns of V ∈ Rd×d, vj , happen to be the eigenvectors,
and they are called the principal components of X. Notice that the eigenvalues of XTX are precisely the
d2j values, so λmin(X

TX) = d2d. It happens that v1 has the property such that z1 = Xv1 has the largest
sample variance among all normalized linear combinations of the columns of X [15]. What we find is that
for each j, if we set zj = Xvj , then

Var(zj) = Var(Xvj) =
d2j
n

As a result, zd has the minimum variance, so small eigenvalues values d2j of XTX correspond to directions
in the column space of X having small variance, so ridge regression shrinks these directions the most. The
interpretation for such a result is that ridge regression “assumes” that directions with higher variance of X
will be more useful in predicting the y response.

With this framework, we can see that the minimum eigenvalue of XTX, λmin(X
TX) = d2d, is an indicator

of how much shrinkage is applied to any of the coordinates. If this minimum eigenvalue is small (compared
to the other eigenvalues), then at least one direction should be shrunk to amplify the effect of the other
directions on the regression. Thus, a larger λ hyperparameter should be chosen. In the other direction, if
this minimum eigenvalue value is large, then a smaller λ should be chosen because there is less of a need to
dampen some directions so that others can play a larger role.

As we shall see in the algorithms adaSSP and adaSSPbudget, they operate in a framework where a
larger λmin(X

TX) corresponds to a smaller λ hyperparameter in ridge regression, and vice versa for smaller
λmin(X

TX).

2.3 Differential Privacy Results
Differential privacy is defined as follows:

Definition 3.
(

Differential Privacy [9]
)

Let (X,y) ∼ (X ′,y′) denote when dataset (X ′,y′) can be
constructed by adding or removing one row (x, y) from (X,y).

A randomized algorithm M satisfies (ϵ, δ)-DP if for all X,y, X ′,y′ such that (X,y) ∼ (X ′,y′), and for
any measurable set S, over the probability of the algorithm

P (M((X,y)) ∈ S) ≤ eϵP (M((X ′,y′)) ∈ S) + δ

The parameter ϵ represents the amount of privacy lost from running the algorithm, and δ denotes the
small probability of failure. These are input by a user, and they are often considered to provide meaningful
privacy protection if ϵ ≤ 1, δ � 1/n.

Note that for small ϵ values, eϵ ≈ 1 + ϵ, so this definition captures an idea that no differentially private
algorithm (for reasonably small ϵ, δ values) can with high probability detect whether some individual is in the
dataset. Our procedure may be intended for some other use, like computing a median value of our dataset,
but this differential privacy definition provides statistical guarantees that individual information is not also
released with high accuracy. One interpretation of this probability relation is in comparing the utility of
joining or not joining an experiment [5].

Suppose that we could assign numeric value to the outcome of the experiment - perhaps you win or
lose some amount of money depending on the mechanism’s output. If the probability that the mechanism
outputs some particular value is similar regardless of your choosing or abstaining from participating in the
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experiment, it follows that the expected utility (money) will remain largely the same (if δ = 0, the util-
ities are within a factor of eϵ). Thus, a participant stands to individually lose very little by joining the
experiment. Observe that this behavior rules out mechanisms which would accurately assess “is John Doe
in this dataset?”, because the answer to this question changes with the addition or subtraction of one person.

Note that the definition of differential privacy only assures a statistical guarantee about related datasets
- it does not guarantee that the mechanism actually releases a value that someone would find useful. A
mechanism that always outputs 0 will satisfy differential privacy for arbitrary ϵ, δ values. As a result, when
a new differentially private mechanism is proposed, great care must be taken in demonstrating or proving
that it computes, with some accuracy, a quantity of interest.

When we have multiple DP algorithms, we may wonder if we can combine them and still have a DP
algorithm. This next theorem describes a case where the answer is yes and we can describe new privacy-loss
parameters.

Theorem 4.
(

Composition of DP [9]
)
. Let Mi be an (ϵi, δi)-DP algorithm for i ∈ {1, 2, · · · , k}. Then if

M[k] is defined as M[k](X,y) = (M1(X,y), · · · ,Mk(X,y)), using independent randomness in each algorithm
Mi, then M[k] is (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP.

Theorem 5.
(

Post-processing of DP [32]
)

. Let M be a (ϵ, δ)-DP algorithm, and let g be an arbitrary
mapping from the set of possible outputs of M to an arbitrary set. Then g ◦M is (ϵ, δ)-DP.

With composition and post-processing, it is clear that any function of multiple independent releases is
still DP (if the multiple releases are each DP ).

To satisfy the constraints of differential privacy, many of the algorithms considered in this paper use the
addition of Gaussian noise. Below is one such mechanism, which is mindful of the sensitivity of the function
in question. Note that N (µ, σ2) denotes a Normal random variable with mean µ and variance σ2 (and thus
standard deviation σ). In higher dimensions, N (0, Id) corresponds to a set of d independent variables, each
distributed as N (0, 1).

Definition 6.
(
l2 sensitivity [14]

)
Let f be a vector Rd valued function and let

∆f = sup
(X,y)∼(X′,y′)

||f(X,y)− f(X ′,y′)||2

denote its l2-sensitivity.

Lemma 7.
(

Gaussian mechanism [14]
)

Let f be a vector Rd valued function and let Id denote the d×d

identity matrix. The Gaussian mechanism

M(X,y) = f(X,y) +

√
2 log(2/δ)

ϵ
∆fN (0, Id)

satisfies (ϵ, δ)-differential privacy.

The proof that this Gaussian mechanism satisfies (ϵ, δ)-differential privacy can be found in [9]. Note that
even though the definition of the Gaussian mechanism uses an exact l2 sensitivity, we can see that the result
will hold even if we replace the ∆f with an upper bound on the l2 sensitivity. This is the case because differ-
ential privacy (Definition 3) is a definition that applies over a set of possible datasets X ∈ Rn×d,y ∈ Rn. If
differential privacy applies to some entire set S of datasets, then it follows that differential privacy (with the
same ϵ, δ) will apply over a subset S′ ⊂ S. The Gaussian mechanism’s differential privacy parameters will
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still hold if we replace ∆f with an upper bound on this l2 sensitivity, because the l2 sensitivity on a subset
S′ will be at most the l2 sensitivity on the overall set S (given that l2 sensitivity has to do with supremums
over the entire set S). Therefore, if we can say that a mechanism is (ϵ, δ)-DP over some set S of datasets
that have some l2 sensitivity ∆f , then it follows that the same mechanism is (ϵ, δ)-DP over a subset S′ ⊂ S,
even if that subset S′ had a smaller l2 sensitivity.

3 Survey of Prior Work
Given that linear regression is a common tool to solve a variety of problems, differentially private linear re-
gression has been studied in various contexts. Sheffet [19] discusses the use of ordinary least squares (OLS)
as a descriptive tool to study a dataset. This work with ordinary least squares also extends to releasing
t-values and confidence intervals. There has been work on the task of differentially private Bayesian linear
regression [2], where the goal is to obtain a distribution for θ using X and y. However, this Bayesian
approach requires distribution assumptions about θ and various underlying independent variables. When
considering various sizes of data, [6] provides a framework for computing OLS regression, especially if the
data comes in pre-grouped “cells”.

There has also been work [1] to study various approaches to linear regression in a single dimensional
setting, such as by computing sufficient statistics for least squares linear regression or by finding the me-
dian slope between pairs of points in a dataset. Another approach from [31] involves a perturbation of
the objective function itself. Instead of modifying the parameters that minimize some objective function,
that approach would model the objective function using polynomials, and then perturb the coefficients in
that polynomial representation of the objective function. Then, the algorithm returns the argument that
minimizes this perturbed objective function, and it can be proven that the overall algorithm is differentially
private. In this paper, we largely focus only on algorithms that release statistics privately to combine to-
gether, but it is clear that there are different techniques in differential privacy to compute a best fit line.
Moving beyond linear regression, more Bayesian work was conducted in [18], where hyperparameters of a
wider class of machine learning models are considered. In particular, their work with hyperparameters aims
to find differentially private techniques to release the optimal hyperparameter and achieved accuracy of a
model, and their techniques hinge on either a Gaussian process assumption or on Lipschitz and convexity
assumptions.

The most direct influence on this paper comes from Wang’s work with differentially private ridge regres-
sion techniques [26]. In his paper, Wang introduces differentially private algorithms that privately release the
eigenvalue of the covariance matrix XTX of the data to be used to set the ridge regression hyperparameter.
One such algorithm is Wang’s adaSSP algorithm, which divides its privacy-loss budget between the release
of an eigenvalue and the release of other statistics for ridge regression. In this paper, we will use Wang’s
adaSSP algorithm and study how it performs when its privacy-loss budget is altered from its current fixed
setting.

In many differentially private linear regression techniques, the covariance matrix of the data is privately
released. This paper will focus on the Analyze Gauss approach, discussed by Dwork [10]. The Analyze Gauss
approach, as we shall see, simply adds symmetric Normal noise to XTX. Sheffet discusses another approach
to release the covariance matrix [20], the Johnson-Lindenstrauss Transform (JLT). In his paper, Sheffet
proposes a new differentially private ridge regression mechanism which uses this JLT. Broadly speaking, the
JLT will take as input some dimension r and a matrix A, generate a matrix R with r rows where each entry
is from an independent Normal distribution, and output 1

r (RA)T (RA) (which is supposed to approximate
ATA). This approach is a notably different way to generate a second moment of a matrix without just
adding noise to the output. The JLT approach was proven to be differentially private in [3], with particular
focus to a graph theory question involving cuts.
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4 Algorithms
Two of the main algorithms presented, SSP and adaSSP, have been introduced elsewhere and have been
studied theoretically and experimentally. We include the proofs of DP here for completeness and so that
the proofs of DP for the novel algorithms, such as adaSSPbudget, make sense in context of these other
algorithms. This paper includes detailed proofs of the l2 sensitivity of various releases within the SSP and
adaSSP algorithms.

4.1 Existing Algorithms
4.1.1 SSP

Sufficient Statistics Perturbation (SSP) [25] [13] is one method of privately computing ridge regression, where
we privately release two parts of the ridge regression formula (Proposition 2) with λ = 1 using the above
Gaussian mechanism (Theorem 7). As we shall discuss, this algorithm is meant to represent an “ordinary least
squares approach” to regression, even if we are technically using ridge regression with a fixed hyperparameter.

Algorithm 1: SSP
Input: ϵ ∈ R>0, δ ∈ (0, 1], X ∈ Xn,y ∈ Yn for X ⊂ Rd,Y ⊂ R, ||X || ∈ R≥0, ||Y|| ∈ R≥0

1. Set Zsym ∈ Rd×d as a symmetric matrix where every element from the upper triangular matrix is
distributed independently as N (0, 1).

2. Privately release X̂TX := XTX +

√
2 log(4/δ)·||X ||2

ϵ/2 Zsym

3. Set zr ∼ N (0, Id)

4. Privately release X̂Ty = XTy +

√
2 log(4/δ)·||X ||·||Y||

ϵ/2 zr

5. Set θ̂ := (X̂TX + I)−1X̂Ty

Result: θ̂

Lemma 8. SSP is (ϵ, δ)-DP.

Before proving that SSP is (ϵ, δ)-DP, we must first reason about the l2 sensitivity of the releases within
the algorithm:

Lemma 9. The l2 sensitivity of X 7→ XTX is ||X ||2, and thus Step 2 of SSP is (ϵ/2, δ/2)-DP.

Proof. Proof of l2 sensitivity of XTX
Let f1(X) := XTX. Consider adjacent datasets X ∈ Rn×d, X ′ ∈ R(n+1)×d, where X ′ has an additional

row entry v ∈ X ⊂ Rd. Note that the Frobenius norm || · ||F treats a matrix as if we are performing the L2
norm upon its values, treated as a single vector.

We can see that
f1(X

′)− f1(X) = vTv ∈ Rd×d

Then, we find that

||f1(X ′)− f1(X)||2F = ||vTv||2F =
∑

1≤i,j≤d

(vivj)
2 =

 ∑
1≤i≤d

v2i

2

= (||v||22)2

11



⇒ ∆f1 = sup
X∼X′

||f1(X ′)− f1(X)||F = sup
v∈X

||v||22 = ||X ||2

where, as we recall, ||X || = supv∈X ||v||2 is the greatest possible norm of a row vector.

Therefore, the l2 sensitivity of f1 is ||X ||2, so step 2 of the SSP algorithm is (ϵ/2, δ/2)-DP by the Gaussian
mechanism, Lemma 7.

Technically, we are not adding d×d independent normal variables to f1(X), given that we add a symmetric
normal matrix (in step 2 of SSP, for example), so we only add d(d+1)

2 independent normal variables. This is
justified because f1(X) = XTX is also a symmetric matrix, so we could restrict the output of f1 to just the
upper triangular entries: it is clear that the l2 sensitivity of the upper triangular entries are upper bound
by the l2 sensitivity of the entire matrix, for∑

1≤i≤j≤d

(vivj)
2 ≤

∑
1≤i,j≤d

(vivj)
2 ≤ (||X ||2)2

As we see, we actually satisfy a potentially tighter l2 sensitivity with this symmetric matrix, because we
can ignore everything below the diagonal, for example:

∑
1≤i≤j≤d

(vivj)
2 ≤

(||v||22)2 +
∑d

j=1 v
4
j

2
≤

(||X ||2)2 +
∑d

j=1 v
4
j

2

Thus, if you had some bound on the L4 norm of row vectors in X , you could have a stronger overall l2
sensitivity. Note that in the worst case, the l2 sensitivity is still the same, even if we use this symmetric
matrix. To see this worst case behavior, consider if d = 2 and we had vector v = [||X ||, 0]. In this case,∑

1≤i≤j≤d(vivj)
2 =

∑
1≤i,j≤d(vivj)

2 = (||X ||2)2, so no improvement could be made on the l2 bound without
stronger conditions on the elements of X .

Lemma 10. The l2 sensitivity of (X,y) 7→ XT y is ||X || · ||Y||, and hence Step 4 of SSP is (ϵ/2, δ/2)-DP.

Proof. Proof of l2 sensitivity of XTy
Let f2(X, y) := XTy. Again, suppose that we have some dataset X ∈ Rn×d,y ∈ Rn, and adjacent

datasets X ′ ∈ R(n+1)×d,y′ ∈ Rn+1, where v ∈ X ⊂ Rd is the new row, and w ∈ Y ⊂ R is the new value in
y′. We then find that

f2(X
′,y′)− f2(X,y) = X ′Ty′ −XTy = wv ∈ Rd

As a result, it follows that

||f2(X ′,y′)− f2(X,y)||2 = ||wv||2 = |w| · ||v||2

⇒ ∆f2 = sup
(X,y)∼(X′,y′)

||f2(X ′,y′)− f2(X,y)||2 = sup
w∈Y,v∈X

|w| · ||v||2 = ||Y|| · ||X ||

⇒ ∆f2 = ||Y|| · ||X ||

where, as we recall, ||X || = supx∈X ||x||2 and ||Y|| = supy∈Y |y|.

Proof. Proof that SSP is (ϵ, δ)-DP
Lemma 8 follows from Lemmas 9 and 10 by the Composition of DP Theorem 4 and Post-Processing of DP
Mechanisms Theorem 5, which tell us that the release of θ̂ is overall (ϵ, δ)-DP.
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Note that for numerical stability, SSP actually adds the identity matrix I to X̂TX to help ensure
that X̂TX had an inverse when computing θ̂. Observe that the eigenvalues of A + I are precisely the
eigenvalues of A plus 1, which we can see in the following argument: λ is an eigenvalue of A if and
only if det(A − λI) = 0 = det((A + I) − (λ + 1)I), and λ is an eigenvalue of (A + I) if and only if
det((A+ I)− λI) = 0 = det(A− (λ− 1)I). Thus, if XTX plus a random matrix was not invertible, adding
the identity matrix could help to remove zero eigenvalues. This technique of adding a multiple of the identity
matrix to allow for numerical stability was one of the motivations for ridge regression [22] [16] in the first
place. Here, SSP adheres to a ridge regression with hyperparameter equal to 1 (Proposition 2). All other
algorithms studied in this paper (adaSSP, adaSSPbudget, constSSPfull) will use a ridge regression hyper-
parameter that is at least 1, so SSP is the closest among the studied algorithms to ordinary least squares
(which would have a corresponding ridge regression hyperparameter of 0).

This convention of adding an identity matrix to XTX was adopted throughout Wang’s [26] implemented
code, so we are using it here for consistency. Note that this added constant value does not change the the-
oretical properties that are proven in this paper. Observe in the later adaptive algorithms, such as adaSSP
and adaSSPbudget, that the minimum eigenvalue computed is also of XTX + I, which just corresponds to
adding 1 to the minimum eigenvalue of XTX. Future work could explore what happens when the identity
matrix is not added to XTX inside of these algorithms, where SSP would adhere to a literal ordinary least
squares formula (Proposition 1). This cleaner algorithm would be more in line with ordinary least squares,
but perhaps the algorithms would have more failure states if X̂TX were not invertible. As we discuss in the
experiments, failures (such as a non-invertible matrix) return θ̂ = 0, but with the algorithms as written this
is an extremely rare event.

4.1.2 adaSSP

Wang [26] proposes a way to use ridge regression where the hyperparameter is chosen based on the smallest
eigenvalue of XTX. In particular, this is a variant of SSP with adaptive dampening.

Algorithm 2: adaSSP
Input: ϵ ∈ R>0, δ ∈ (0, 1], X ∈ Xn,y ∈ Yn for X ⊂ Rd,Y ⊂ R, ||X || ∈ R≥0, ||Y|| ∈ R≥0, ρ ∈ (0, 1)

1. Calculate the minimum eigenvalue λmin(X
TX + I)

2. Set ze ∼ N (0, 1)

3. Privately release λ̃min = max
{
λmin(X

TX + I) +

√
2 log(6/δ)

ϵ/3 ||X ||2ze − 2 log(6/δ)
ϵ/3 ||X ||2, 0

}
4. Set λ = max

{
0,

√
2d log(6/δ) log(2d2/ρ)·||X ||2

ϵ/3 − λ̃min

}
5. Set Zsym ∈ Rd×d as a symmetric matrix where every element from the upper triangular matrix is

distributed independently as N (0, 1).

6. Privately release X̂TX := XTX +

√
2 log(6/δ)·||X ||2

ϵ/3 Zsym

7. Set zr ∼ N (0, Id)

8. Privately release X̂Ty = XTy +

√
2 log(6/δ)·||X ||·||Y||

ϵ/3 zr

9. Set θ̂ := (X̂TX + (λ+ 1)I)−1X̂Ty

Result: θ̂
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Lemma 11. adaSSP is (ϵ, δ)-DP.

Before proving that adaSSP is DP, we must argue about the l2 sensitivity of the eigenvalue λmin(X
TX),

which will require some technical arguments about eigenvalues and matrix norms.

Lemma 12.
(

Weyl’s eigenvalue inequality
)

Let B and B′ be symmetric real matrices in Rd×d, and let
λj(B), j = 1, · · · , d (resp. λj(B

′)) denote the eigenvalues of B (resp. B′), with λ1(B) ≥ · · · ≥ λd(B). Then

λi+j−1(B +B′) ≤ λi(B) + λj(B
′)

whenever i, j ≥ 1, i+ j − 1 ≤ n.

Proof found in [7].

Lemma 13.
(

Relation of matrix norms
)

If || · ||F is the Frobenius norm of a matrix (the square root
of the sum of the squared entries of the matrix), and || · ||2 is defined for matrix A ∈ Rn×d as

||A||2 = max
x∈Rd,||x||2=1

||Ax||2

then
||A||2 ≤ ||A||F

Note that the Frobenius norm is the same norm that we have been using on matrices earlier in this paper
(ex. in proving l2 sensitivity of XTX in Lemma 9).

Proof. Proof of relation of matrix norms
Let A ∈ Rn×d,x ∈ Rd. Then

||Ax||22 =

n∑
i=1

 d∑
j=1

Ai,jxj

2

Let Aj,: ∈ Rd be the jth row vector of A. Then the Cauchy-Schwarz inequality gives that

||Ax||22 =

n∑
i=1

 d∑
j=1

Ai,jxj

2

=

n∑
i=1

〈Ai,:,x〉2

≤
n∑

i=1

〈Ai,:,Ai,:〉〈x,x〉

= 〈x,x〉
n∑

i=1

d∑
j=1

A2
i,j

= 〈x,x〉 · ||A||2F
= ||x||22 · ||A||2F

Therefore,
||A||2 = max

x∈Rd,||x||2=1
||Ax||2 ≤ (1) · ||A||F = ||A||F

as desired.
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With these results, we can prove an upper bound on the l2 sensitivity of λmin(X
TX).

Lemma 14. The l2 sensitivity of λmin(X
TX) is upper bound by ||X ||2

Proof. Proof of l2 sensitivity of λmin(X
TX)

Let f3(X) := λmin(X
TX). Consider adjacent datasets X ∈ Rn×d, X ′ ∈ R(n+1)×d, where X ′ has an

additional row entry v ∈ X ⊂ Rd.

In the language of Weyl’s inequality (Lemma 12), set

B = XTX, B′ = X ′TX ′ −XTX, i = d, j = 1

Thus,
λmin(X

′TX ′)− λmin(X
TX) ≤ λmax(X

′TX ′ −XTX)

By symmetry, it follows that

λmin(X
TX)− λmin(X

′TX ′) ≤ λmax(X
TX −X ′TX ′)

It is either the case that λmin(X
′TX ′)−λmin(X

TX) ≥ 0, or λmin(X
TX)−λmin(X

TX) ≥ 0 (or possibly
both, at 0). Thus,

|λmin(X
′TX ′)− λmin(X

TX)| ≤ max
{
|λmax(X

TX −X ′TX ′)|, |λmax(X
′TX ′ −XTX)|

}
Because the set of eigenvalues of XTX −X ′TX ′ is precisely the additive inverses of the set of eigenvalues of
X ′TX ′ −XTX, we have

|λmin(X
′TX ′)− λmin(X

TX)| ≤ max
{
|λmax(X

′TX ′ −XTX)|, |λmin(X
′TX ′ −XTX)|

}
≤ max

x∈Rd,||x||2=1
||(X ′TX ′ −XTX)x||2

Thus
|f3(X)− f3(X

′)| ≤ max
x∈Rd,||x||2=1

||(X ′TX ′ −XTX)x||2 ≤ ||X ′TX ′ −XTX||F

where this last inequality comes from Lemma 13. Hence,

∆f3 = sup
X∼X′

|f3(X)− f3(X
′)| ≤ ||X ′TX ′ −XTX||F

⇒ ∆f3 ≤ ||X ||2

where this last inequality is justified from the l2 sensitivity of X 7→ XTX, ||X ||2 (Lemma 9).

Now that there are bounds on the l2 sensitivity of the eigenvalue release, we can prove the main result
about adaSSP.

Proof. Proof that adaSSP is (ϵ, δ)-DP.
Like with SSP, this adaSSP algorithm can be seen as 3 releases, and we can prove that each release is

(ϵ/3, δ/3)-DP.
Based on the l2 sensitivity of λmin(X

TX) (Lemma 14) it follows that the mechanism that releases the
quantity

λmin(X
TX + I) +

√
2 log(6/δ)
ϵ/3

||X ||2ze = λmin(X
TX) + 1 +

√
2 log(6/δ)
ϵ/3

||X ||2ze

is (ϵ/3, δ/3)-DP by the Gaussian mechanism (and by Post Processing Theorem 5, where adding a 1 does
not change the DP property). It then follows that the λ value from step 4 is likewise (ϵ/3, δ/3)-DP by post
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processing (the other values are all constants, none depend on the data itself: we assume ||X || is fixed and
known ahead of time).

The releases in step 6 and 8 are similarly each (ϵ/3, δ/3)-DP by the same reasoning that was used in SSP
(Lemmas 9, 10).
Therefore, the Composition Theorem 4 tells us that the release of these 3 quantities, λ, X̂TX, X̂Ty, is
overall (ϵ, δ)-DP. We can then use the Post Processing Theorem 5 to see that the final release of θ̂ is still
(ϵ, δ)-DP.

It is clear that adaSSP contains many terms that are not cleanly explained through the Gaussian mech-
anism bounds or through the formula for the ridge regression coefficients. To understand certain properties
of adaSSP and where the constants come from, below we prove the following lemma about the eigenvalue
release:
Lemma 15. Let δ′ > 0, ϵ′ > 0, Z ∼ N (0, 1). Then

P

(√
2 log(2/δ′)

ϵ′
||X ||2Z − 2 log(2/δ′)

ϵ′
||X ||2 > 0

)
≤ δ′

4
√

π · log(2/δ′)

In other words, this Lemma 15 asserts that with high probability the eigenvalue release in adaSSP’s step
3 is an underestimate. Hence, the value

P (λ̃min ≤ λmin(X
TX + I))

is close to 1. We will soon quantity exactly how close to 1 this probability is.

Proof. First, we can rephrase this problem as

P

(√
2 log(2/δ′)

ϵ′
||X ||2Z − 2 log(2/δ′)

ϵ′
||X ||2 > 0

)
= P (Z −

√
2 log(2/δ′) > 0) = P (Z >

√
2 log(2/δ′))

At this point, we can turn to a common tail bound for Normal variables, where for x > 0, Z ∼ N (0, 1),

P (Z > x) ≤ e−x2/2

x
√
2π(

Because we know that t
x ≥ 1 for t ≥ x,

P (Z > x) =

∫ ∞

x

1√
2π

e−t2/2dt ≤
∫ ∞

x

t

x
√
2π

e−t2/2dt =
e−x2/2

x
√
2π

The proof for this Normal tail bound and for more general results of this form can be found at [21].
)

With this tail bound, we have

P (Z >
√
2 log(2/δ′)) ≤ exp(−2 log(2/δ′)/2)√

2 log(2/δ′)
√
2π

≤ exp(−2 ln(2/δ′)/2)√
2 log(2/δ′)

√
2π

=
1

(2/δ′)
√

2 log(2/δ′)
√
2π

=
δ′

4
√
π · log(2/δ′)
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Therefore,

⇒ P

(√
2 log(2/δ′)

ϵ′
||X ||2Z − 2 log(2/δ′)

ϵ′
||X ||2 > 0

)
≤ δ′

4
√

π · log(2/δ′)

as desired.

In the context of adaSSP, this Lemma 15 has δ′ = δ/3. In adaSSP and the soon-to-be described adaSSP-
budget, this Lemma 15 tells us about the probability that the minimum eigenvalue is an overestimate. As we
shall see with the adaSSPbudget algorithm, the greatest such δ′ value is no greater than 1

3001.1 (the smallest
dataset size considered has more than 300 entries). We see that this bound monotonically decreases to 0 as
δ′ goes to zero, so the probability that the minimum eigenvalue released is an overestimate is upper bound
by

1
3001.1

4
√
π · log(2/ 1

3001.1 )
≈ 0.000084 < 10−4

As a result, the eigenvalue release in adaSSP (and, as we will see, in adaSSPbudget) is almost always an
underestimate. Following through adaSSP, this eigenvalue underestimate corresponds to a larger λ hyper-
paramater used.

Parsing the other elements of adaSSP, the value ρ that appears in line 4 has to do with a claim [26] that
with probability 1−ρ, a bound can be made on the difference between L(θ∗) and L(θ̂). In particular, Wang
proves the following (if XTX + I is replaced by XTX in the adaSSP algorithm):

Proposition 16. [26] Assuming ||Y|| ≲ ||X || · ||θ∗||, with probability at least 1− ρ,

L(θ̂)− L(θ∗) ≤ O
(

max
{√d log(d2

ρ ) · ||X ||2 · ||θ∗||2

ϵ/
√

log( 6ρ )
,
||X ||4 · ||θ∗||2tr[(XTX)−1]

ϵ2/(log( 6ρ ) log(d2

ρ ))

})

where θ̂ is the output of adaSSP, and θ∗ is the non-private linear regression output.

Proof. Proof is omitted here, but it can be found in [26].

Because the non-private linear regression value θ∗ is defined as the value achieving the minimum of L,
L(θ̂)− L(θ∗) in this theorem is nonnegative. Proving this Proposition 16 requires various technical results
which we will not fully explore in this paper. In broad terms, the proof first asserts that for any θ ∈ Rd,

L(θ)− L(θ∗) = (θ − θ∗)TXTX(θ − θ∗) = ||θ − θ∗||2XTX

using a Taylor expansion of L(θ) = ||y − Xθ||22 at θ∗. With this result, the proof creates upper bounds
on ||θ − θ∗||2XTX using quantities involving XTX. Next, θ is replaced by the random output of adaSSP θ̂,
so the upper bound involves various high probability bounds on random symmetric matrices. At the end,
there is a bound on L(θ̂) − L(θ∗) which involves the true value of λmin(X

TX) and the value of λ chosen
by adaSSP. In order to minimize the upper bound on L(θ̂)−L(θ∗) without knowing ahead of time the true
λmin(X

TX), Wang uses results like the bound on the probability that the released eigenvalue is an overes-
timate of λmin(X

TX). Additionally, various additive constants are included, like
√

2d log(6/δ) log(2d2/ρ)·||X ||2

ϵ/3 ,
because they are the functions of ϵ, δ, ||X ||,Y||, ρ (up to constant factor) that happen to help minimize this
upper bound on L(θ̂)− L(θ∗).

At a high level, the various maximum operations applied to the minimum eigenvalue λmin(X
TX) are

meant to sanitize the eventual λ parameter in the ridge regression. Invertibility of (X̂TX+(λ+1)I)−1 could
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break down if λ < 0, for example. The reason that λ shrinks as λmin grows (up to a point) is that if XTX
is suitably well conditioned (with little correlation in the data), then its smallest eigenvalue is not too close
to zero; therefore, in this “good” condition, λ̃min would be larger, so λ would be smaller (or 0). If λ = 0,
then θ̂ reduces to SSP (but with different privacy-loss parameters for the released quantities), which relies
on ridge regression with a small hyperparameter. On the other hand, if XTX has a small eigenvalue, then
we may believe that the data has correlations that ridge regression with larger hyperparameters can address.
In this case, λ is likely large when λmin(X

TX) is small, so the hyperparameter in the ridge regression plays
a larger role in handling covariances.

4.2 New Algorithms
In this paper, we propose and evaluate two new variants of adaSSP, where the privacy-loss budget is not
necessarily evenly split between the three privately released quantities. In particular, the privacy-loss budget
is divided to go to the release of λ̃min, or to the releases of X̂TX, X̂Ty (with these two quantities receiving
equal privacy-loss budget). The motivation for this split of the budget was to compare the “necessary” parts
of linear regression, such as the release of XTX and XTy, with the “unnecessary” part that had to do with
the hyperparameter of ridge regression, like the release of the minimum eigenvalue of XTX. The parameter
γ, an element of (0, 1), partitions the privacy-loss budget. γ is directly proportional to how much of the
privacy-loss budget goes to the release of the eigenvalue.

4.2.1 adaSSPbudget

Algorithm 3: adaSSPbudget
Input: ϵ ∈ R>0, δ ∈ (0, 1], γ ∈ (0, 1), X ∈ Xn,y ∈ Yn for
X ⊂ Rd,Y ⊂ R, ||X || ∈ R≥0, ||Y|| ∈ R≥0, ρ ∈ (0, 1)

1. Set ϵhyp = γϵ, δhyp = γδ.

2. Calculate the minimum eigenvalue λmin(X
TX + I)

3. Set ze ∼ N (0, 1)

4. Privately release λ̃min = max
{
λmin(X

TX + I) +

√
2 log(2/δhyp)

ϵhyp
||X ||2ze − 2 log(2/δhyp)

ϵhyp
||X ||2, 0

}
5. Set λ = max

{
0,

√
2d log(2/δnec) log(2d2/ρ)·||X ||2

ϵnec
− λ̃min

}
6. Set ϵnec =

(1−γ)
2 ϵ, δnec =

(1−γ)
2 δ

7. Set Zsym ∈ Rd×d as a symmetric matrix where every element from the upper triangular matrix is
independently distributed as N (0, 1).

8. Privately release X̂TX := XTX +

√
2 log(2/δnec)·||X ||2

ϵnec
Zsym

9. Set zr ∼ N (0, Id)

10. Privately release X̂Ty = XTy +

√
2 log(2/δnec)·||X ||·||Y||

ϵnec
zr

11. Set θ̂ := (X̂TX + (λ+ 1)I)−1X̂Ty

Result: θ̂

Lemma 17. adaSSPbudget is (ϵ, δ)-DP.
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Proof. Proof that adaSSPbudget is (ϵ, δ)-DP.
Like the adaSSP algorithm, this adaSSPbudget algorithm consists of 3 differentially private releases, and

each release is differentially private by similar reasoning as with adaSSP. This time, instead of an even split
of (ϵ/3, δ/3) between the three releases, we have that the release of λ̃min had a privacy-loss budget of (γϵ, γδ),
and the releases of X̂TX and X̂Ty are each ( 1−γ

2 ϵ, 1−γ
2 δ)-DP. Again, based on the Composition Theorem 4

and Post Processing Theorem 5, the adaSSPbudget algorithm is (ϵ, δ)-differentially private (γ + 2 1−γ
2 = 1).

Notice that if γ = 1/3, then adaSSPbudget reduces to adaSSP. However, it is not the case that as γ goes
to 0, adaSSPbudget goes to SSP (which would correspond to the ridge regression hyperparameter coefficient
being 1): one main difference is that adaSSPbudget (and adaSSP) use a ridge regression parameter λ + 1,
where λ is only partly determined by the release of λmin(X

TX). Indeed, if γ goes to 0, then the ϵhyp, δhyp
values used for the release of λmin(X

TX) go to zero, which causes for high instability in the release of λ̃min

(step 4) which is truncated at 0. Then, the ridge regression parameter λ may still just use the constant value
within step 5 (which in particular does not set λ to be 0 in the ridge regression algorithm). This constant
in step 5 shrinks down to some nonzero constant as γ goes to zero (because ϵnec, δnec will increase to ϵ, δ)
which depends on ϵ, δ, d, ρ, ||X ||. As γ goes to 1, this constant in step 5 goes to infinity, because ϵnec, δnec
will shrink to zero. Noticing how often λ is equal to this constant value in step 5 of adaSSPbudget, or how
often λ is set to 0, may help us understand the circumstances when adaSSPbudget outperforms SSP. We
shall explore this behavior in Figure 4.

4.2.2 constSSPfull

In order to examine the behavior of adaSSPbudget, we introduce constSSPfull below, which ignores the eigen-
value calculations of adaSSPbudget, and instead defaults to the constant value from step 5 of adaSSPbudget
(which corresponds to if the released value λ̃min were 0).

Algorithm 4: constSSPfull
ϵ ∈ R>0, δ ∈ (0, 1], X ∈ Xn,y ∈ Yn for X ⊂ Rd,Y ⊂ R, ||X || ∈ R≥0, ||Y|| ∈ R≥0, ρ ∈ (0, 1)

1. Set ϵnec =
1
2ϵ, δnec =

1
2δ

2. Set λ =

√
2d log(2/δnec) log(2d2/ρ)||X ||2

ϵnec

3. Set Zsym ∈ Rd×d as a symmetric matrix where every element from the upper triangular matrix is
independently distributed as N (0, 1).

4. Privately release X̂TX := XTX +

√
2 log(2/δnec)||X ||2

ϵnec
Zsym

5. Set zr ∼ N (0, Id)

6. Privately release X̂Ty = XTy +

√
2 log(2/δnec)·||X ||·||Y||

ϵnec
zr

7. Set θ̂ := (X̂TX + (λ+ 1)I)−1X̂Ty

Result: θ̂

Lemma 18. constSSPfull is (ϵ, δ)-DP.

Proof. Proof of constSSPfull is (ϵ, δ)-DP.
This proof follows similarly as for adaSSPbudget. Now that the ϵ, δ values used in the releases of XTX

and XTy are full (i.e. ϵnec =
ϵ
2 and not ϵnec = 1−γ

2 ϵ), each of these two releases is ( ϵ2 ,
δ
2 )-DP (Lemmas 9, 10).

Thus, from Composition Theorem 4 and Post-Processing Theorem 5, the overall mechanism is (ϵ, δ)-DP.
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Note that constSSPfull does not take γ as an input. No privacy-loss budget is spent on an eigenvalue
release.

This algorithm is proposed so that, experimentally, we can see if or when the release of the eigenvalue
is worth the privacy-loss budget that could go to the releases of XTX and XTy. In other words, maybe
the default constant used is all that is useful about adaSSPbudget. This constSSPfull also stands in as a
proxy for an algorithm which would compute ridge regression (with some standard large ridge regression
hyperparameter), and we can compare this algorithm to SSP, which we might think of as a standard for an
ordinary least squares approach. Yes, it is true that the implementation of SSP includes a ridge regression
parameter of 1, but given that the other algorithms adaSSP, adaSSPbudget, constSSPfull all have a ridge
regression hyperparameter of at least 1, this SSP is the “closest” to the ordinary least squares defined in
Proposition 1.

5 Experimental Outline
The goal of this experimental work is to understand the role of dividing the privacy-loss budget in adaSSP-
budget between the eigenvalue release, used for the ridge regression parameter, and the other regression
components (X̂TX and X̂Ty). Throughout these discussions, the “necessary” components of ridge re-
gression are the X̂TX and X̂Ty releases, and the “hyperparameter” component is the released minimum
eigenvalue of XTX used in the ridge regression hyperparameter.

All code used for these experiments can be found on GitHub at https://github.com/TPiazza21/
Thesis.

5.1 Motivating Questions
Below is a list of motivating questions that guide the experiments and the surrounding discussion. The
finer questions are grouped into broader categories, concerning the sensitivity of the performance to the
setting of γ, the comparisons of the various algorithms, and the performance of adaSSPbudget in different
circumstances.

(I) Is the performance of adaSSPbudget sensitive to the choice of γ, or does adaSSPbudget perform
similarly for a wide range of γ?

(a) Is the choice of γ = 1/3 (corresponding to adaSSP) a particularly strong choice of γ?
(b) What happens near the extreme values of γ ∈ {0, 1} for adaSSPbudget?

(II) How does adaSSPbudget compare against SSP and constSSPfull?

(a) When does adaSSPbudget outperform the vanilla SSP algorithm?
(b) Does the release of the eigenvalue in adaSSPbudget provide a benefit over just using a default

ridge regression parameter (like in constSSPfull, or SSP with a smaller hyperparameter of 1)?
(c) When does adaSSPbudget reduce to the same ridge regression calculation as SSP in the release

of θ̂ (by setting λ = 0 in step 5 of the algorithm)?

(III) How does the performance of adaSSPbudget change under different data and privacy conditions?

(a) How does adaSSPbudget perform under different dataset sizes n?
(b) How does adaSSPbudget perform under different ϵ values?

20

https://github.com/TPiazza21/Thesis
https://github.com/TPiazza21/Thesis


(c) How does adaSSPbudget perform under synthetic data and UCI data?

There were two types of data used in the experiments, which are referred to as “synthetic data” and
“UCI data” (or “real data”).

5.2 Synthetic Data
The synthetic data was generated as follows:

1. Set d = 10

2. Set θ0 ∈ Rd as a vector where every entry is independently from N (0, 1)

3. Standardize the θ0 by dividing by its vector norm, θ0 := θ0

||θ0||2 .

4. Repeat the remaining steps for n ∈ {1280, 20480, 327680}:

(a) Set X ∈ Rn×d as a matrix where every entry is independently from N (0, 1).
(b) Standardize the X such that each row has a vector norm of 1.
(c) Set Z ∈ Rn to be a vector where each element is independently from N (0.0, (0.1)2).
(d) Set

y = Xθ0 +Z

In other words, once θ0 and X are fixed, the y is distributed as N (Xθ0, (0.1)
2In). The point of this

data is that there should be no strong correlations between the input dimensions of each row vector of X.
This is the problem that (ordinary) linear regression is supposed to solve, so we can analyze what happens
when a ridge regression approach is used instead. We might thus expect that SSP would perform better
than adaSSPbudget (for most γ values) in this setting.

This setting is useful also because we know ahead of time the true θ0 value, and so we can directly
compare this value to a predicted θ̂.

5.3 UCI Data
Following Wang [26], we use the UCI (University of California Irvine) datasets [29]. These datasets are often
used as a standard machine learning benchmark, and they contain real world data. As an example, the
“bike” dataset [23] has 17 attributes like “temperature”, “hour”, and “humidity”, with a response variable
of how many bikes were rented on a given day in Maryland.

In contrast to the synthetic data, we would expect UCI data to have correlations within the dataset
(like “humidity” and “temperature”), so these datasets may respond better to a ridge regression approach
(instead of a linear regression approach). Therefore, we may expect adaSSPbudget to perform better than
SSP here. Because we do not have an underlying “true” θ0 value, we cannot perform a relative efficiency
calculation with this dataset.

We arbitrarily chose 3 datasets to explore the behavior of the algorithms on this potentially correlated
data. These results are not meant to be exhaustive of all possible UCI datasets, but they are supposed to
provide a meaningful alternative to the synthetic data. Future work could include exploring the properties
of the other UCI datasets, in particular as the dimension d changes.
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5.4 Procedures Taken With Both Datasets
Even with different datasets and different performance metrics, a similar pattern is followed in all cases. The
number of cross validation trials is set to 32, with 90% training size and 10% test size. The variable ρ used
in the algorithms (such as in adaSSP, adaSSPbudget, and constSSPfull) is set to 0.05.

For both synthetic data and UCI data, we repeat experiments for ϵ ∈ {0.001, 0.01, 0.1, 1.0} and for various
γ values between 0 and 1. In all cases, we set δ = 1/n1.1 (where n is the number of rows in the given dataset).
For synthetic data, the performance metric is relative efficiency and prediction error, and for UCI data, the
performance metric is just prediction error. The plots for these values represent the mean values between
the cross validation trials, with error bars representing the standard deviation across these cross validation
trials (note that the error bar is only shown on top). If the y-axis is a log scale, the size of the standard
deviation corresponds to the numeric difference between the top and bottom of the standard deviation line
according to the y-axis.

The algorithms tested for these two datasets for different ϵ and γ values are adaSSPbudget, constSSPfull,
and SSP. Note that SSP and constSSPfull do not change with γ, so their roles in the graph are copied for
various γ values. Within adaSSPbudget, step 5 sets the value λ to be used as the ridge regression parameter
(and then plus 1). To study the behavior of how the algorithm uses this ridge regression parameter, we count
the number of times across the cross validation trials (for a certain ϵ, γ, n combination) that λ was set to
zero within the algorithm. This is the plotted “Lambda Zero Proportion” values. As we will explore, there
is no such plot for the UCI data because λ was never set to zero for the UCI data in any of our experiments.

6 Results
6.1 Existing Results
One of the motivating experiments for the work done in this thesis is seen in Figure 4 of Wang’s paper on
adaSSP [26] (represented here, in Figure 2). In his paper, the adaSSP algorithm was introduced as an adap-
tive and potentially more effective version of SSP. Using similarly defined synthetic and UCI data, Wang
found that the adaSSP algorithm outperformed the SSP algorithm in various UCI datasets (Wang’s Figure
3, reproduced here as Figure 1).

In this Figure 1, we see that for small ϵ values (less than ϵ = 0.1), adaSSP outperforms SSP on this UCI
data. Note that similar results hold for almost all of the 36 UCI datasets that Wang tested, see his Tables 3
and 4 [26]. This dominance of adaSSP could be explained by the fact that this UCI data may have several
correlations that adaSSP’s eigenvalue release helps to tackle with a ridge regression approach.

However, in Wang’s Figure 4 (this paper’s Figure 2), SSP outperforms adaSSP on the synthetic data in
relative efficiency.

He proposes that this unexpected dominance of SSP over adaSSP in this setting was perhaps due to the
privacy-loss budget within the algorithms. After all, adaSSP spends 1/3 of its privacy-loss budget releasing
λmin, but SSP wastes none of its privacy-loss budget on a similar calculation. Wang suggests that, perhaps if
the privacy-loss budget within adaSSP were different, then the adaptive ridge regression approach may out-
perform the SSP approach. The purported beauty of the adaSSP algorithm is its adaptive property: it can
scale up or down the ridge regression coefficient dynamically with the data. In this situation, the synthetic
data was generated such that its datasets were relatively well behaved (compared to the UCI data), so an or-
dinary least squares approach would probably perform as well as a ridge regression approach. If, however, the
cost of having this adaptive property takes away accuracy from the XTX and XTy releases, then the eigen-
value release of adaSSP may not be worth the privacy-loss budget cost. Therefore, this thesis aims to explore
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Wang’s Prediction Error in UCI Datasets

Figure 1: Existing Figures, Figure 3 in [26]. Wang operated using the same adaSSP and SSP definitions,
as well as data from the UCI dataset (“bike” is the same that we use later). δ = 1/n2. He studies a larger
selection of regression algorithms, such as AdaOPS and OPS. For this paper, we focus primarily on adaSSP
and SSP. Standard deviation over trials is shown as vertical bars. Both the y-axis and x-axis are log scale.

Wang’s Relative Efficiency of adaSSP and SSP in Synthetic Data

Figure 2: Existing Figures, Figures 4c,d in [26]. Wang operated using the same adaSSP and SSP
definitions, as well as a similar construction of synthetic data. d = 10 for all synthetic data, and the dataset
size n is on the x-axis. δ = 1/n2. He studies a larger selection of regression algorithms, such as AdaOPS
and OPS. For this paper, we focus primarily on adaSSP and SSP. By the definition of relative efficiency,
non-private linear regression is at 1. Both the x-axis and y-axis are log scale.

whether a new privacy-loss budget actually could demonstrate if adaSSP generally outperforms SSP. Yes, it
may be the case that if every quantity in each algorithm had the same privacy-loss budget (ex. the XTX and
XTy releases), then having extra privacy-loss budget to release an eigenvalue may outperform SSP. However,
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this paper is concerned with the situation where a maximum privacy-loss budget is set, and adaSSP or SSP
must be chosen, meaning that choices must be made about the privacy-loss budget allocated to each of the
released quantities within the algorithms. This budget concern motivates Question (I), and Question (II)
aims to solve whether SSP or an adaptive variant (adaSSP or adaSSPbudget) is always preferable. constSSP-
full is meant to be a stand-in for an algorithm that is always using a ridge regression approach with large
hyperparameter, so comparisons to constSSPfull help tease out when a ridge regression approach, adaptive
or otherwise, is preferable. Finally, Question (III) hopes to discuss the subtlety of whether the answer to
the other questions depends on some features of the situation, like dataset size or overall privacy-loss budget.

Also, in Figure 2 we see that for small n values, adaSSP still does outperform SSP. We will see similar
behavior in the later synthetic data experiments, which will help answer Question (III). In this graph,
this behavior may be explained if small n leads to datasets that are not well behaved: if XTX has small
eigenvalues for low n, then a ridge regression approach used in adaSSP may be more valuable than the
limited privacy-loss budget cost in the release of XTX and XTy. As n goes to infinity, it appears that both
SSP and adaSSP approach the non-private linear regression. Similarly, it appears that larger ϵ values mean
that adaSSP and SSP each are closer to the non-private linear regression, which makes sense given that
larger ϵ corresponds to less random noise. In the synthetic dataset, we would expect for adaSSP to generate
a large eigenvalue and set a low ridge regression coefficient - this claim will be explored in later experiments
(discussed with Figure 4). In this case, adaSSP and SSP would be computing a similar algorithm, just with
different privacy budgets for the other quantities. Thus, as ϵ increases, both algorithms are dealing with
smaller random noise, it just happens that SSP has slightly less noise per released quantity.

6.2 Synthetic Data
6.2.1 Synthetic Data: Relative Efficiency

To tackle these questions, Figure 3 explores how the privacy-loss budget within adaSSPbudget effects its
performance on the synthetic data. Recall that γ corresponds to the proportion of the overall privacy-loss
budget that is allocated to the eigenvalue release in adaSSPbudget. There is one plot per ϵ value, where
different colored lines correspond to different sized datasets (i.e. the n value). Because neither SSP nor
constSSPfull releases an eigenvalue, their budgets do not vary with γ so their performances do not change
with γ. As a result, each of these two algorithms was computed once for every n, ϵ value, and their results
were repeatedly displayed at each γ value. The red vertical line at γ = 1/3 marks where adaSSP would
perform (adaSSP is a special case of adaSSPbudget). Based on the definition of relative efficiency, the base-
line non-private linear regression is at 1 = 100 because the numerator and denominator of relative efficiency
would be the same.

Moving question by question, we can discuss the sensitivity of the performance of adaSSPbudet to the
choice of γ in Figure 3, reminding us of Question (I). For small ϵ, it appears that the performance of adaSSP-
budget does not vary significantly as γ changes (see the curves when ϵ = 0.001). That said, as ϵ increases,
a more pronounced shape in the adaSSPbudget curves emerge, where the performance is worse for γ near
1, and the optimal γ seems to be close to 0 (see the green curve in ϵ = 1). As long as γ is a “reasonable”
value (γ ≤ 0.5), the performance appears to be within one order of magnitude away from the optimal value
achieved by adaSSPbudget for each various n, ϵ combination. Thus, while γ = 1/3 is not always an optimal
choice, in this case it is not that far away from the optimal relative efficiency.

However, once γ grows towards 1 (see again the green curve in ϵ = 1, Figure 3), this worse performance
could be explained by the fact that the benefit of increasing the accuracy of the releases of XTX and XTy
exceeds some benefit of improving the accuracy of the eigenvalue release. Additionally, the additive constant
used in step 5 of the adaSSPbudget algorithm will increase as γ goes to 1, so perhaps this behavior would
cause for the output θ̂ to be closer and closer to 0 as γ approaches 1. For some (but not all) combinations
of ϵ, n, it appears that as γ approaches 0, the relative efficiency increases (and thus performance worsens),
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Figure 3: Relative Efficiency for Synthetic Data. d = 10 for all synthetic data. δ = 1/n1.1. 32 cross
validation trials, split randomly into training size of 90%, test size of 10%. The lambda zero proportions from
Figure 4 correspond to the ϵ, γ, n values from this experiment. Vertical error bars indicate standard deviation
across the cross validation trials, where in the log scale, the numeric value of the error bar corresponds to
the numeric difference on the y-axis between the top and bottom values of the error bar.

which may be explained by unreliable eigenvalue releases with a small privacy-loss budget allocated to its
release (see the orange curve in ϵ = 1).

Thinking of Question (II) (which also covers Question (III) when considering n, ϵ), we see that for small
ϵ and small n values, adaSSPbudget consistently outperforms SSP. See this performance in all curves when
ϵ = 0.001, in the blue and orange curves when ϵ = 0.01, and the blue curve when ϵ = 0.1 (Figure 3). This
result is coherent with Wang’s results that we saw in Figure 2. Perhaps low n corresponds to unstable XTX
values which benefit from a ridge regression approach (like adaSSPbudget) instead of an approach like SSP
which uses the smallest ridge regression coefficient among the discussed algorithms, and is thus closest to
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ordinary least squares. Also, for low ϵ, the SSP values seem to have high variance (see ϵ = 0.001, or the
orange and blue curve in ϵ = 0.01), indicating that these small ϵ trials cause for large amounts of noise
within the SSP and adaSSPbudget algorithms, so a ridge regression approach could help to dampen such
noise (especially in the release of XTX). The idea that adaSSPbudget performs more like ridge regression
(with a large ridge regression coefficient λ) is evidenced by the fact that for low ϵ, n values, the constSSPfull
and adaSSPbudget values are closely aligned. Thus, even though constSSPfull allocates more privacy-loss
budget to the XTX,XTy releases than adaSSPbudget, its ridge regression coefficient is the main similarity
with adaSSPbudget.

However, as n and ϵ grow, a new pattern emerges where the adaSSPbudget algorithm is consistently
performing worse than SSP, where adaSSPbudget becomes within a margin of error of SSP at some optimal
value of γ (which may depend on n, ϵ). See this behavior in the ϵ = 1 curves, or the green and orange curves
of ϵ = 0.1 of Figure 3. This pattern confirms what we saw in Wang’s results in Figure 2: that in many cases
in the synthetic data, SSP actually outperforms adaSSPbudget. These results in Figure 3 go further, saying
that the particular choice of γ = 1/3 is not the only budget with this behavior. Indeed, once n or ϵ are large
enough, there appears to be no such γ value where adaSSPbudget outperforms SSP. This result indicates
that adaSSP’s poor performance against SSP in Figure 2 is not due to the restrictions of some arbitrary
privacy-loss budgeting, but perhaps due to a feature of the data and the general approach of the algorithm
that no budget could resolve.

As we consider general patterns in n, ϵ that have not been discussed to answer Question (III), we see that
all algorithms (SSP, adaSSPbudget, constSSPfull) benefit from increases in ϵ, where it appears that each
algorithm approaches the non-private linear regression benchmark as more privacy-loss budget is allotted
(follow where the green curves are along the y-axis as ϵ increases, for example). It is also interesting to
note that the ordering of the lines by dataset size n does not cleanly appear until larger ϵ values, again
highlighting the increased random noise for smaller ϵ values.

For small ϵ or n, we see that in these events where adaSSPbudget outperforms SSP, constSSPfull similarly
outperforms SSP (see ϵ = 0.001 in Figure 3). This behavior may again be explained by a stability argument,
where the larger ridge coefficient of constSSPfull helps to stabilize the low privacy-loss budget releases of the
other quantities when ϵ is overall small. This argument is further supported by noticing that in these early ϵ
values, the standard deviation of the SSP graph is much larger than for adaSSPbudget or constSSPfull, im-
plying that SSP (with its smaller ridge regression coefficient) faces unstable releases and would benefit from
a larger regularization term in computing its θ̂. Furthermore, we see that constSSPfull and adaSSPbudget
in Figure 3 begin to move apart as ϵ and n increase, where adaSSPbudget can outperform constSSPfull (see
in particular the green curve when ϵ = 1). This behavior again suggests that adaSSPbudget eventually (for
large enough n, ϵ) uses a small λ value in its ridge regression approach, whereas constSSPfull uses a larger
constant coefficient.

To verify this internal behavior of adaSSPbudget, we turn to Figure 4.

6.2.2 Synthetic Data: Lambda Zero Proportion

To understand the behavior of adaSSPbudget in Figure 3, especially as it relates to constSSPfull, we can look
at the proportion of times that λ (used in ridge regression of adaSSPbudget, where the ridge hyperparameter
is this λ plus 1) was set to zero within adaSSPbudget’s step 5, as we see in Figure 4. This exploration will
help explain the internal behavior of the algorithm adaSSPbudget, so we can see how and when it uses the
eigenvalue release to influence the ridge regression calculation. As stated earlier, the synthetic data was
generated with the understanding that its XTX value would be relatively well behaved, meaning that its
smallest eigenvalue should be large. Thinking through the steps of adaSSPbudget, a large minimum eigen-
value release corresponds to a small λ value used within adaSSPbudget. Thus, a “Lambda Zero Proportion”
of 1 corresponds to a setting where every trial of adaSSPbudget released a large minimum eigenvalue, and
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a proportion of 0 corresponds to every trial of adaSSPbudget releasing a small minimum eigenvalue.

Figure 4: Lambda Zero Proportions. These graphs demonstrate how many times λ from step 5 of
adaSSPbudget was set to 0 while running the algorithm on various γ, ϵ, n values on the synthetic data (so
these γ, ϵ, n values correspond to those in Figure 3, in the same situation; δ = 1/n1.1). The y-axis is a
proportion (between 0 and 1) of how many of the 32 cross-validation trials had the behavior where the
adaSSPbudget algorithm set this λ to zero. Standard deviation for estimated proportion p̂ is

√
p̂(1− p̂)/32,

[12].

As we see in Figure 4, as ϵ increases it becomes more frequent for the λ to be set at 0 (follow what happens
with the green curve as ϵ increases). A similar phenomenon seems to happen as n increases (larger n values,
like the green curves, achieve this 1 proportion faster than the orange curve). All of these behaviors make
sense in the context of the synthetic data: it was generated with the hypothesis that ordinary least squares
linear regression would handle the data better, so with higher ϵ, n, values, the privately released minimum
eigenvalue will be more accurate to the correct large value of the data. The flat-line zero result in Figure 4
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for the smallest ϵ = 0.001 may indicate that there was, for no γ value, a sufficient amount of the privacy-loss
budget ever devoted to the eigenvalue for the released eigenvalue to be reliably close to the correct large
λmin(X

TX) value in this low privacy-loss budget setting. For higher ϵ, n values, when we trace through the
adaSSPbudget algorithm, a large released minimum eigenvalue corresponds to a small λ parameter (possibly
zero) used in the ridge regression. In a sense, one should hope that the algorithm has a high zero proportion
on this synthetic data, given that a zero ridge regression hyperparameter will mimic simple linear regression.
In the context of Question (I), this behavior implies that in this synthetic data, adaSSPbudget (with large
enough ϵ, n) uses the same approach that SSP does (ridge regression with small hyperparameter), with the
caveat that SSP did not waste any privacy-loss budget releasing an eigenvalue. This result would explain
why, for large enough ϵ, n, adaSSPbudget seems to never outperform SSP in Figure 3.

Interestingly, thinking of Question (I), this behavior of adaSSPbudget setting λ = 0 seems to be mostly
insensitive to the choice of γ; the only curve that suggests otherwise is the green plot from ϵ = 0.01 in Figure
4, where small changes in γ may correspond to releasing mostly zero or nonzero λ values. In most of the
plots, the behavior is either a proportion of 0 or 1 for all but the most extreme (near γ = 0 or γ = 1) values
of γ. This behavior again suggests that the behavior of adaSSPbudget is not highly sensitive to the choice
of γ, where the behavior of the adaSSPbudget is relatively consistent, provided that γ is in some reasonable
range (γ ≤ 0.5).

6.2.3 Synthetic Data: Prediction Error

In addition to testing the relative efficiency of adaSSPbudget, we also tested the prediction error of adaSSP-
budget on the synthetic data in Figure 5. As we shall see, many of the same conclusions can be made
for relative efficiency and prediction error with synthetic data. Furthermore, prediction error allows us to
compare performance on synthetic data and UCI data, given that prediction error does not require that we
have knowledge of the “true” θ0. The set up to Figure 5 is the same as that of Figure 3, with similar graph
conventions. Note that by the way that the data was standardized, a prediction error of 1 = 100 should
correspond to a prediction of the mean y value.

Considering Question (II), Figure 5 illustrates again a behavior where, for large enough ϵ, n values,
adaSSPbudget can never outperform SSP (see ϵ = 1, or the orange and green curves in ϵ = 0.1). It is
interesting to note that in this setting of prediction error, the adaSSPbudget curve no longer strictly ad-
heres to the shape it had in Figure 3 where adaSSPbudget would come into contact with SSP only at some
particular γ value. As we saw in Figure 3, adaSSPbudget’s θ̂ was relatively close to the SSP value of θ̂ for
a large range of γ values. Therefore, thinking of Question (I), the performance of adaSSPbudget may not
be highly sensitive to γ, provided it is within some acceptable range, where the returned values of θ̂ from
adaSSPbudget and SSP are close enough together that their predictions are close. We also see in Figure 5
that constSSPfull’s returned θ̂ may also be within some close range of the SSP’s returned θ̂, given that it
too performs similarly to SSP in prediction error for large enough n, ϵ.

Concerning Question (III), we see that the prediction error improves for increased n and ϵ values across
the different regression algorithms. This behavior again makes sense if the data is better behaved for larger
n and the algorithms have less internal random noise for larger ϵ. In the next section, we consider the effect
of a new dataset on the performance of adaSSPbudget.

6.3 UCI Data
Next, we consider the performance of these regression algorithms on UCI data, with prediction error in
Figure 6. Note that in this case, each color corresponds to an entirely different dataset, which each has
a unique n and d value. Recall that in Figure 1, Wang showed that for large enough ϵ values, adaSSP
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Figure 5: Prediction Error for Synthetic Data. d = 10 for all synthetic data. 32 cross validation
trials, with a random split into a training batch size of 90%, test size of 10%. δ = 1/n1.1. By the way that
the y values were standardized, a prediction error of 1 corresponds to a model that only predicts the mean
of the y values. Vertical error bars indicate standard deviation across the cross validation trials. y-axis is
log scale.

outperformed SSP in these UCI datasets (including the “bike” dataset seen here in Figure 6). The reasoning
for this behavior was because in the UCI datasets, we expected for there to be correlations in the X matrix,
such as between columns like “temperature” and “humidity” in the “bike” dataset.

What we see for the UCI data in Figure 6 is that the adaSSPbudget algorithm almost always outper-
forms the SSP version, even for large n, ϵ values. The fact that adaSSPbudget fares better here (under more
conditions) than it did in the synthetic data makes sense, given that the UCI data would likely have more
covariances in the data and would thus respond better to a ridge regression approach with large hyperpa-
rameter. Thus, thinking of Questions (II) and (III), adaSSPbudget outperforms SSP at least in this UCI
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Figure 6: UCI for different Gamma values. One plot per ϵ value. Different colors correspond to
different datasets, which have their own n and d values (d is no longer constant across different dataset sizes
n). δ = 1/n1.1. The error bars correspond to standard deviation between the 32 cross validation trials.
Note that this paper does not include the corresponding “lambda zero proportion” graphs for the UCI data
because they were always 0 (for all γ, ϵ, data combinations); that would have been the corresponding UCI
figure for Figure 4.

data setting.

The fact that the Lambda Zero Proportions for all UCI data results were always zero (as stated in Figure
6) drives home the idea that the UCI data would have generated very small minimum eigenvalues (within
the adaSSPbudget algorithm), corresponding to high correlation. As a result, in this UCI data setting where
we expect high correlation in the data, adaSSPbudget and constSSPfull should actually be close (closer than
in the synthetic data setting), because both algorithms would reduce to a ridge regression approach with a
similarly large λ value. This understanding of the data is indeed illustrated in Figure 6, where constSSPfull
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seems to almost always be a lower bound for the prediction error of adaSSPbudget.

Also, the performance of adaSSPbudget on UCI data seems to not vary significantly, except for γ values
close to 1 (see the curves in ϵ = 0.1 and ϵ = 1). This trend is similar for the synthetic data in Figure 5, where
the adaSSPbudget performance was worse for these very large γ values. Considering Question (I), the fact
that the performance worsens for large γ values makes sense, where the releases of XTX and XTy have more
internal randomness with large γ values. Also, as γ approaches 1, the coefficient in step 5 of adaSSPbudget
approaches infinity, which would set θ̂ to zero, thus reducing the prediction error to a prediction of the mean.

It is also interesting that in the UCI data in Figure 6, the standard deviation of the SSP performance is
consistently large, even for large n, ϵ values. This too may be an indicator that an approach closer to ordinary
least squares has structural limitations in a setting where ridge regression with a large hyperparameter may
perform better. Compare this high standard deviation to the seemingly stable values of SSP in Figure 5
with the synthetic data.

7 Discussion
To structure the discussion, we return to the motivating questions with answers from the data.

7.1 Question (I): Sensitivity of Performance to γ

With Question (I) concerning the sensitivity of performance to γ in adaSSPbudget, it appears that as long
as γ is some “reasonable” value (perhaps 0.05 ≤ γ ≤ 0.5), the performance of adaSSPbudget does not change
significantly, as we see in Figures 3, 5, 6. Even in Figure 4, we see that the behavior of setting the λ value
from step 5 of adaSSPbudget to 0 is consistent for most γ values in this range. As a result, the choice of
γ = 1/3, when adaSSPbudget and adaSSP are the same, is a sensible choice of γ.

The fact that performance may worsen as γ approaches 1 makes sense, where as γ goes to 1, the internal
randomness of the releases of XTX,XTy increases; thus, if these releases are unreliable, a well chosen hyper-
parameter may not be able to overcome the high variance of these other components. In Figure 3, we see that
for large enough n, ϵ, increasing γ towards 1 drastically worsens the performance of adaSSPbudget. Another
explanation for this behavior may be that the constant used in Step 5 of the adaSSPbudget algorithm will
go to infinity as γ approaches 1. In this case, adaSSPbudget may be computing a θ̂ with smaller and smaller
vector norm.

At first glance, it is perhaps surprising that, generally speaking, performance does not worsen signifi-
cantly as γ approaches 0. One might think that an unstable eigenvalue release would effect the other aspects
of the program. However, because adaSSPbudget contains two maximum operations to assert that the final
λ is in a certain nonnegative range (from 0 to the constant in step 5 of adaSSPbudget), the instability coin-
ciding with this eigenvalue release is dampened. Note that the releases of XTX and XTy do not have any
such flattening operations (applying a minimum or maximum), so instability in their releases can potentially
destabilize the output θ̂ from adaSSPbudget.

7.2 Question (II): adaSSPbudget Compared to SSP and to constSSPfull
Now considering Question (II) and the comparison of adaSSPbudget against the other algorithms SSP and
constSSPfull, there is a clear distinction between the different datasets. In the synthetic data, adaSSP-
budget initially outperforms SSP for small ϵ, n values, as we see in Figures 3 and 5. However, once ϵ or n
increase, a general pattern emerges in these plots that the performance of SSP in synthetic data is better
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than adaSSPbudget for all γ values.

An explanation for this behavior is that with the synthetic data, where little covariance is expected in the
XTX matrix, an ordinary least squares approach may be preferred to a ridge regression approach. Indeed,
as we saw in Figure 4, adaSSPbudget does set its λ value to 0 (for large enough ϵ, n), so its behavior should
mimic the behavior of SSP. The primary difference between the two algorithms at this point is that SSP
did not have to waste any of its privacy-loss budget on an eigenvalue release, so its releases of XTX,XTy
were on balance more accurate than the same releases from adaSSPbudget. Notice also in the synthetic data
in Figure 3 that, for large enough n, ϵ, the constSSPfull algorithm performs worse than adaSSPbudget for
the previously mentioned “reasonable” choices of γ. This result again indicates that an approach closest to
ordinary least squares fared better than a ridge regression approach with larger hyperparameter, because
constSSPfull and SSP release XTX,XTy with the same privacy-loss parameters.

The behavior in the UCI data tells a different story. In Figure 6, we see that adaSSPbudget outperforms
SSP for almost all γ values, even γ at extreme ends. We also observe that constSSPfull outperforms adaSSP-
budget here, where for large enough n, ϵ, adaSSPbudget can achieve the value that constSSPfull does only
at a narrow range of γ values. Both of these results with the UCI data suggest that in this setting where
high covariance is expected, a ridge regression approach indeed outperforms an approach close to ordinary
least squares.

There is an interesting parallel between the synthetic data and UCI data results, where for large enough
n, ϵ values, adaSSPbudget can barely achieve the better performance of SSP or constSSPfull, respectively.
This result demonstrates the potential power of the adaptive hyperparameter calculation inherent to adaSSP-
budget and adaSSP. When the regression algorithm would benefit from a large ridge regression parameter,
adaSSPbudget can adaptively set the λ accordingly. Similarly, when the regression algorithm would benefit
from an approach close to ordinary least squares, the adaptive eigenvalue calculation allows for adaSSPbud-
get to set λ = 0.

However, the fact that the performance of adaSSPbudget compared to SSP differs in synthetic data and
UCI data informs us that, contrary to Wang’s suggestion about the sensitivity of the performance of adaSSP
to its privacy-loss budgeting, there may be features inherent to the data that prevent adaSSPbudget from
outperforming SSP. This result has potential implications to other differentially private algorithms that
spend part of their privacy-loss budgets to improve a hyperparameter. Sure, having a well-tuned hyperpa-
rameter in a model may be preferable to the original model, “all else equal”, but because a fixed privacy-loss
budget must be divided between the releases of the algorithm, it is not the case that all else is equal if
various releases have a now smaller privacy-loss budget. Faced with the choice to privately release a quantity
to make a hyperparameter well tuned, it may be more worthwhile to improve the accuracy of the values
used in the base model. In this problem, this has to do with ordinary least squares versus ridge regression,
but one might find similar results in other machine learning techniques which take advantage of well tuned
hyperparameters on top of an existing model.

7.3 Question (III): adaSSPbudget Under Different Conditions
When we considered Question (III) as we discussed the synthetic data in Figures 3, 4, 5, a similar trend
appeared: for large enough n or ϵ values, the algorithms behaved in the way that one might expect given
the dataset descriptions. The observation that as ϵ increases, the behavior of the algorithms becomes more
coherent makes sense given that as ϵ increases, the magnitude of the internal randomness inside adaSSP-
budget, SSP, and constSSPfull will decrease. The idea that similar behavior occurs as n increases may also
correspond to the generated XTX matrix for the synthetic data being better behaved when n increases.
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It also appears to be a general trend, even with the UCI data in Figure 6, that as n increases, all 3 of
adaSSPbudget, SSP, and constSSPfull perform better (compared to a smaller n). Note that this comparison
in UCI comes with the caveat that these are 3 different datasets, and the number of features d happens
to increase with n in these datasets. This ordering by size (again, once ϵ is large enough) may be another
reflection of this idea that XTX may more accurately represent the entire dataset for larger n. After all,
these figures are computed using cross validation: if the training set is too small, its XTX value may not
actually match the corresponding XTX from the test set.

When considering differences between how these algorithms perform on the synthetic data and UCI data,
we also noted that the variance of SSP in Figure 6 is much higher in the UCI data than in the synthetic
data in Figure 5. This observation again highlights the earlier idea that the UCI data may benefit from a
ridge regression approach instead of an approach close to ordinary least squares.

8 Conclusion
In summary, this paper provided 3 contributions. First, we discussed the existing SSP and adaSSP algo-
rithms and filled in the details of the proofs that they were each DP using l2 sensitivity and the composition
of differential privacy. Second, we introduced the two new algorithms adaSSPbudget and constSSPfull and
proved that these were each differentially private, again by appealing to l2 sensitivity and composition.
Third, we conducted experiments using synthetic and UCI data to explore whether the precise privacy-loss
budget used within adaSSP could help adaSSP outperform SSP.

Adaptive differentially private ridge regression techniques do indeed perform well for a robust choice of
privacy-loss budgets in synthetic and in real UCI data, not just γ = 1/3 as adaSSP was originally set. This
ridge regression technique performs better under conditions where high covariance in the data is likely, like
in the UCI data. However, in settings where the original ordinary least squares approach worked better
than a ridge regression approach, like in the synthetic data, no new budget could help the adaSSPbudget
outperform SSP. This bound on performance demonstrates that the cost of the hyperparameter calculation
may in fact not be universally worthwhile. Thus, implementers of differentially private algorithms should be
mindful of their dataset before using a technique which spends part of its privacy-loss budget on a potentially
wasteful hyperparameter calculation.

Given that this paper assesses only one adaptive ridge regression algorithm, adaSSP, future work would
include the study of other differentially private ridge regression techniques, like Sheffet’s Algorithm 2 [20].
The problem can be generalized to include other differentially private regression algorithms that consist of
various private releases, where there is a distinction in the releases between “necessary” components and
hyperparameters.

Within the context of the study of adaSSP, we still made the arbitrary choice to provide the same privacy-
loss budget to the release of XTX and XTy, putting both in the same bucket as “necessary”. Perhaps one
of these releases, especially for small ϵ, exhibits behavior where any marginal increase to its privacy-loss
budget has more benefit than the accuracy cost to the other releases. Given that much attention in this
paper was paid to the properties of XTX, it may be the case that XTX and the hyperparameter should
have comparable privacy-loss budgets. Also, the various constants (in terms of ϵ, δ, γ, ρ) used within adaSSP,
adaSSPbudget, and constSSPfull should be assessed.

Lastly, we tested various dataset sizes for the synthetic data, but we never changed the other dimension
of the synthetic data (the d variable). Studying changes in d (and not just changes in n for X ∈ Rn×d)
could be a worthwhile follow up to this work. Similarly, it may make sense to change some of the particulars
of the set up to these calculations, such as the choice of γ = 1/n1.1. Also, the synthetic data now is the
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standard bearer for “clean” datasets, but future work could include synthetically generated data that had
high correlations. This correlated synthetic data could be studied using relative efficiency, given that the
true θ0 would be known ahead of time.
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