Differential Privacy: An Overview

Salil Vadhan

Center for Research on Computation & Society

School of Engineering & Applied Sciences

Harvard University

"Privacy Tools for Sharing Research Data"

Summer 2014 Orientation

Data Privacy: The Problem

Given a dataset with sensitive information, such as:

- Census data
- Health records
- Social network activity
- Telecommunications data

- Academic research
- Informing policy
- Identifying subjects for drug trial
- Searching for terrorists
- Market analysis
- •

How can we:

- enable "desirable uses" of the data
- while protecting the "privacy" of the data subjects?

Approach 1: Encrypt the Data

Name	Sex	Blood	•••	HIV?	
Chen	F	В	•••	Υ	
Jones	M	Α	•••	N	
Smith	M	0	•••	N	
Ross	M	0	•••	Υ	
Lu	F	Α	•••	N	
Shah	M	В	•••	Υ	

Name	Sex	Blood	•••	HIV?
100101	001001	110101	•••	110111
101010	111010	111111	•••	001001
001010	100100	011001	•••	110101
001110	010010	110101	•••	100001
110101	000000	111001	•••	010010
111110	110010	000101	•••	110101

Problems?

Approach 2: Anonymize the Data

Name	Sex	Blood	•••	HIV?
Chen	F	В	•••	Υ
Jones	M	Α	•••	N
Sm(th	M	0	•••	N
Ross	M	0	•••	Υ
Lu	F	Α	•••	N
Shah	M	В	•••	Υ
/				

[Sweeney `97]

"re-identification" often easy

Problems?

Approach 3: Mediate Access

Problems?

Privacy Models from CS

Model	Utility	Privacy	Who Holds Data?	
Differential Privacy	statistical analysis of dataset	individual-specific info	trusted curator	
Secure Function Evaluation	any query desired	everything other than result of query	original users (or semi-trusted delegates)	
Fully Homomorphic (or Functional) Encryption	any query desired	everything (except possibly result of query)	untrusted server	

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: effect of each individual should be "hidden"

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Sex	Blood	•••	HIV?	Q ₁	
F	В	•••	Υ	a_1	
M	Α	•••	N	q_2	14
M	0	•••	N	a_2	TY T
M	0	•••	Υ	a_3	
F	Α	•••	N		
M	В	•••	Υ	curator	adversary

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

Simple approach: random noise

- Very little noise needed to hide each person as $n\to\infty$.
- Limited to answering ≈*n1*2 queries [Dwork-Naor-Vadhan '12]

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

Requirement: for all D, D' differing on one row, and all $q_1, ..., q_t$

Distribution of $C(D,q_1,...,q_t) \approx l_{\varepsilon}$ Distribution of $C(D',q_1,...,q_t)$

Some Differentially Private Algorithms

- histograms [DMNS06]
- contingency tables [BCDKMT07, GHRU11, TUV12, DNT14],
- machine learning [BDMN05,KLNRS08],
- regression & statistical estimation [CMS11,S11,KST11,ST12,JT13]
- clustering [BDMN05,NRS07]
- social network analysis [HLMJ09,GRU11,KRSY11,KNRS13,BBDS13]
- approximation algorithms [GLMRT10]
- singular value decomposition [HR12, HR13, KT13, DTTZ14]
- streaming algorithms [DNRY10,DNPR10,MMNW11]
- mechanism design [MT07,NST10,X11,NOS12,CCKMV12,HK12,KPRU12]

• ...

See Simons Institute Workshop on Big Data & Differential Privacy 12/13

Differential Privacy: Interpretations

Distribution of $C(D,q_1,...,q_t) \approx l_{\varepsilon}$ Distribution of $C(D',q_1,...,q_t)$

- Whatever an adversary learns about me, it could have learned from everyone else's data.
- Mechanism cannot leak "individual-specific" information.
- Above interpretations hold regardless of adversary's auxiliary information.
- Composes gracefully (k repetitions) kε differentially private)

But

- No protection for information that is not localized to a few rows.
- No guarantee that subjects won't be "harmed" by results of analysis.

Simple approach: random noise

- Very little noise needed to hide each person as $n\to\infty$.
- Limited to answering ≈*n1*2 queries [Dwork-Naor-Vadhan '12]

Amazing possibility: synthetic data

[Blum-Ligett-Roth '08]

Utility: preserves fraction of people with *every* set of attributes!

Challenge: make this computationally feasible for highdimensional datasets

Amazing Possibility II: Statistical Inference & Machine Learning

Theorem [KLNRS08,S11]: Differential privacy for vast array of machine learning and statistical estimation problems with little loss in convergence rate as $n\rightarrow\infty$.

 Optimizations & practical implementations for logistic regression, ERM, LASSO, SVMs in [RBHT09,CMS11,ST13,JT14].

Challenges for DP in Practice

- Accuracy for "small data" (moderate values of n)
- Modelling & managing privacy loss over time
 - Especially over many different analysts & datasets
- Analysts used to working with raw data
 - One approach: "Tiered access"
 - DP for wide access, raw data only by approval with strict terms of use (cf. Census PUMS vs. RDCs)
- Cases where privacy concerns are not "local" (e.g. privacy for large groups) or utility is not "global" (e.g. targeting)
- Matching guarantees with privacy law & regulation

• ...

Some Efforts to Bring DP to Practice

- CMU-Cornell-PennState "Integrating Statistical and Computational Approaches to Privacy"
 - See http://onthemap.ces.census.gov/
- UCSD "Integrating Data for Analysis, Anonymization, and Sharing" (iDash)
- UT Austin "Airavat: Security & Privacy for MapReduce"
- UPenn "Putting Differential Privacy to Work"
- Stanford-Berkeley-Microsoft "Towards Practicing Privacy"
- Duke-NISSS "Triangle Census Research Network"
- Harvard "Privacy Tools for Sharing Research Data"

• ...

Privacy tools for sharing research data

http://privacytools.seas.harvard.edu/

Computer Science, Law, Social Science, Statistics

Integrated Privacy Tools

Tools to be developed during project

* = Tools directly contributed to by Year 1 activities

Create Account

Log In

Murray Research Archive Original Collection Dataverse

INTERGENERATIONAL STUDIES, 1932-1982

hdl:1902.1/00627UNF:3:jYQzhUZ5MxpaKGMvlojITA= Version: 5- Released: Tue Jun 19 13:50:23 EDT 2012

For non-restricted datasets, can run many statistical analyses ("Zelig methods") through the Dataverse interface, without downloading data.

RIVATE ECONOMY LABOR QUALITY, AND UNDERLYING MATRICES

:1902.1/OYSLSQBRJPUNF:3:IWnju7EDKIloCWqKzdb3ig== rsion: 1- Released: Wed Nov 28 00:00:00 EST 2007 ta File: datafile.tab **ADVANCED STATISTICAL ANALYSIS Descriptive Statistics** Download Subset Recode & Case-Subset Selected Variables Private Logistic Reg for Binary Dep Vars More Information about the Model **Output Options** Dependent ✓ Include Summary Statistics ✓ Include Plot ✓ Include Replication Data Explanatory class **Analysis Options** ed2hour Simulations ed1hour Run Model We'd make PrivateZelig an option, the interface would stay roughly the same •For sensitive datasets PrivateZelig might be the only

option

Dataverse Analysis

The following are the results of your requested analysis.

Summary Results

You could get information about what alg we ran, the privacy param, etc.

privatezelig(formula=..., model="logit", DPalg="smith", eps=0.1)

• Call: zelig(formula = sex ~ class + age + ed1hour + ed2hour, model = "logit", data = data)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-8.4904	0.0000	0.0000	0.0001	8.4904

Coefficients:

	Estimate	Std. Error	z value	Pr(> z
(Intercept)	2.0761e+13	2.5442e+13	0.8160	0.4145
class	5.9152e-03	3.9310e-01	0.0150	0.9880
age	-2.0761e+13	2.5442e+13	-0.8160	0.4145
ed1hour10012835	4.1522e+13	5.0883e+13	0.8160	0.4145
ed1hour100285552	8.3044e+13	1.0177e+14	0.8160	0.4148
ed1hour1004600704	6.2283e+13	7.6325e+13	0.8160	0.4145
ed1hour100926200	6.2283e+13	7.6325e+13	0.8160	0.4145
ed1hour1011177792	1.0381e+14	1.2721e+14	0.8160	0.4145
ed1hour1011535104	1.0381e+14	1.2721e+14	0.8160	0.4145

Analysis would come back in the same format

Our Implementation Goals

This summer: differentially private summary statistics

- Means, quantiles, histograms, (co)variances/PCA
- Computed at time of dataset deposit
- Depositor decides how to allocate "privacy budget"
- Enough to support interactive least-squares regressions

Future: interactive and/or more sophisticated statistics

- Synthetic data
- Contingency tables
- Other regressions
- Interactive queries

Privacy Models from CS

Model	Utility	Privacy	Who Holds Data?	
Differential Privacy	statistical analysis of dataset	individual-specific info	trusted curator	
Secure Function Evaluation	any query desired	everything other than result of query	original users (or semi-trusted delegates)	
Fully Homomorphic (or Functional) Encryption	any query desired	everything (except possibly result of query)	untrusted server	

For other two topics, see Shafi Goldwasser's talk at White House-MIT Big Data Privacy Workshop 3/3/14

Differential Privacy: Summary

Differential Privacy offers

- Strong, scalable privacy guarantees
- Compatibility with many types of "big data" analyses
- Amazing possibilities for what can be achieved in principle

There are some challenges, but reasons for optimism

- Intensive research effort from many communities
- Some successful uses in practice already
- Differential privacy easier as $n \rightarrow \infty$

Schedule for Tomorrow (in MD323)

- 12-12:30 Lunch
- 12:30-1:30 Introduction to R (Vito)
- 1:30-2:00 Software Engineering, R, Zelig (James)
- 2:30-2:45 Break
- 2:45-4:15 More Differential Privacy (Sofya)

Future Weeks:

- every Mon 1:30-2:30: all-hands meeting
- 2x/week TBD: more tutorials & research mtgs on differential privacy, R, and statistics
- TBD: project-wide social activities (a hike?)