Securing Dataverse with an Adapted Command
Design Pattern

Gustavo Durand
Institute for Quantitative Social Science
Harvard University
Cambridge, MA

Abstract—In order to bake security into application design,
we introduce an adaptation to the Command pattern: command
instances are tagged with the permissions required to perform
them for each object they manipulate. Prior to executing
a command instance issued by a given user, an execution
engine validates the user has the required permissions over
the objects the command is about to operate on. Stating the
required permissions can often be declarative. In addition to
the usual advantages offered by the command pattern (such
as standardized operation handling), this adaptation creates
a single checkpoint for validating permissions throughout the
application. This, in turn, enhances application security and
reduces code duplication, for example between the API and
UI controllers. Disadvantages include the lack of framework
support, and a learning curve for existing developers. We have
used this design in implementing Dataverse, a widely-used
institutional data repository developed at Harvard University,
which has been in production use since May 2015. As this design
differs significantly from common web application design, we
also look at how the development team adapted to it, and at
how using it affected our development process.

I. INTRODUCTION

It is often argued that application security should be
addressed at all stages of design, rather than as an af-
terthought. While engineering best practices are slowly
inching towards this goal, they leave much to be desired.
One area where they fall short is enforcing policies at the
application-semantic level (as opposed to, e.g., a transport-
protocol level). Current practices make it easy to state that
only users with permission P can access resource R, but more
useful statements, such as fo perform action A over objects
X and Y, users need permission Pl on X and P2 on Y are
not possible.

This paper proposes a design that addresses this void,
using an adaptation of the venerable Command Pattern [3].
Commands, used to encapsulate actions on model objects,
are additionally tagged with the permissions required to
carry them out, the model objects involved, and the entity
submitting them for execution. This allows the permission
enforcement logic to be concentrated in a single place in
the application, rather than being scattered in many places
in code. Thus, the permission enforcement logic is easier
to test, and code duplication is reduced. More importantly,
the chances of missing a permission check somewhere in
the codebase is reduced.

Michael Bar-Sinai
Computer Science Dept.
Ben-Gurion University of the Negev
Be’er-Sheva, Israel

Merce Crosas
Institute for Quantitative Social Science
Harvard University
Cambridge, MA

We have been using the design proposed in this paper
in production since Mid 2015, in Dataverse, an on-line
dataset repository. We can report that we did not find any
security vulnerabilities caused by this design, and that the
development team was able to adjust to it, even though
it is non-standard and has a non-trivial learning curve.
This learning curve may be a problem with temporary
collaborators, which might be less willing to invest time
in learning project-specific patterns.

The rest of this paper is organized as follows: Section II
presents the Dataverse system and the security challenges
such systems pose. Section III presents the proposed design
in detail. Section IV presents our experience using the
proposed design in a real-world project. Sections V looks
at related work, and Section VI concludes.

II. MEET DATAVERSE AND ITS DESIGN CHALLENGES

Dataverse [2] [5], developed at Harvard’s Institute for
Quantitative Social Science (IQSS) since 2006 under co-PIs
King and Crosas, is a web-based research data repository.
Dataverse enables researchers to share their datasets with
the research community through an easy-to-use, customiz-
able web interface, while keeping control of and gaining
credit for their data. The underlying infrastructure, whose
part of its design is discussed in this paper, provides
robust support for good data archival and management
practices. The Dataverse software serves as a research
data repository in more than 20 institutions worldwide.
The Dataverse repository hosted at Harvard University
(http://dataverse.harvard.edu) is open to all researchers,
and holds more than 340K data files organized in nearly
74K datasets’.

Design Challenges

Data curation and publishing is a complex domain,
swarming with subtleties and inherent complexities. A user
can get permissions directly, by being a member of a group,
or by using a specific IP address (e.g. when accessing the
system from within a university campus or a lab computer).
Institutional logins, scripting via API, maintaining audit-
ing log, and journal publication workflows add their own

IFigures collected on May 30th, 2017.

complexities. Our deign also had to prepare for supporting
multiple data handling policies, towards being DataTags
compliant [7], which adds another non-trivial layer of
requirements, many of which pertain to access restrictions.
A good data curation system needs to allow accurate
specification of permissions users have over data objects,
and then to enforce those permissions throughout the
application. As these systems offer many features, available
both thorough UI and through API, they have a large
attack surface that needs to be protected. Having permis-
sion checks sprinkled throughout the application creates
a security risk, since omitting a single check results in a
vulnerability, either for direct data breach, or for permission
escalation that can be exploited to create a data breach. The
current version of Dataverse contains more than 90K lines
of java code?, and is worked on by core team members and
external contributors. Hence, the fear of missing just one
check somewhere in the application is not unfounded.

ITI. ADAPTING THE COMMAND PATTERN

The command pattern adaptation we present in this pa-
per circumvents the need for sprinkling multiple permission
checks at various place in the code, by directly modeling
the notion of actions and the permissions they require. In
effect, it allows developers to use Java code to succinctly
phrase statements such as action X on object O can only be
issued by users with permission P over O. This type of formal
statements are validated at runtime prior to carrying an
action out. In case no required permissions were defined,
the system throws a runtime exception. Thus, permissions
must be explicitly specified, and are tested in a single place
in the code, even though the actions are initiated from
multiple places.

In terms of security guaranties, this design ensures that,
as long as the described mechanism is used:

1) Users are only able to perform actions they have
permissions to perform

2) Developers must explicitly state which permissions
are required to run each command

3) To the extent that static permissions declaration is
used, the permissions required to run each command
are documented in the code.

The described design protects against security issues
caused by accidental developer oversight or negligence. It
does not protect against malicious code or interference with
underlying data stores (e.g. direct database access).

The classic Command pattern, as defined by Gamma
et. al. in [3], “encapsulates a request as an object”. In
the context of an application like Dataverse, a request
means “an operation on model objects”, such as a dataset.
It involves receivers, the model objects which are acted
upon, concrete commands, which implement operations on
the receivers and implement the command interface, an
invoker, which invokes the command, and finally the client,

2Statistic generated using David A. Wheeler’s ‘SLOCCount’.

which is the code that creates the commands and submits
them to the invoker.

In the context of Dataverse, the receivers are the model
objects: Dataverse, Dataset, and DataFile. For familiarity
reasons the invoker is called “Engine”. Our code contains
two implementations of such engine: one for unit tests, and
one for normal application use. Finally, there are three types
of client code that invoke commands: the back-end of the
user interface (“backing beans” in Java EE terms), the API
implementation code (“JAX-RS beans”), and system events
that run on a scheduled timer.

The classic pattern already achieves a few of our design
goals:

1) Code reuse across Ul and API As operations on
the models are performed by command instances,
all client code has to do is to generate appropriate
command for the user request, and submit it for
execution. As interpreting user request in the UI is
very different from interpreting it in the API, there is
no code duplication in the interpretation part.

2) Logging Commands work at the application-semantic
level (as opposed to HTTP and database logs, which
can only serve as a proxy to it). Thus, a command
log is a strong tool for auditing the activity history
of a repository. When using the Command Pattern,
commands are executed at a single location in the
code, and have a common set of fields. Thus, logging
all commands — in effect, logging all operation on
the model objects — becomes an almost trivial task.

However, the classic Command Pattern leaves a few
things to be desired. First, a way of enforcing permissions:
the design needs to ensure that users can only perform
certain operations on certain model objects — exactly
what operations and which objects should be decided at
runtime, based on the user’s permissions on a given object.
Second, as the commands run in an application container,
the design needs to make the resources supplied by the
container available to the commands — if it decides to
invoke them.

The second goal is easily achievable by introducing a
CommandContext parameter to the command’s execute method.
A context object allows commands to interact with server
resources (mainly database operations) via its methods.
This design also lends itself to unit testing: all a test engine
has to do to test a command is to supply it with a context
object that links to mock resources. For achieving the
first goal, though, we need to add some metadata to the
concrete commands.

A. Annotating Required Permissions

The three pieces of information needed to decide
whether a user can perform an action — which translates
to executing a command instance on model objects — are
a) which model objects are involved, b) what permissions
is the user required to have over each of these objects, and
c) what permissions does the user actually have over them.

©Reques(© CommandEngine
user:User
ipAddress 1 submit(c:Command<R>): R
o w
/
/
, executes
/
L\ 14
@ Compand ©CommandCon(ex(
©User issues uses
— — —>| o getRequiredPermissions():Map<String,Permission> [~ — — > O serverComponentl
| © getAffectedObjects():Map<String,Object> o serverComponent2
© getRequest() O ..
o execute(c:CommandContext): R
4 R
, \ RS
\ S
/ \ ~
©rermissorse] (@«] [©commanamez] (@ commanaman
o permissions[] I ! |
1.
©DataUn|t

Fig. 1. Participants of the Secure Command pattern. In addition to
the added security methods, the interfaces of the classic Command
have been modernized a bit. The execute () method returns a value,
so the set (command); execute(); result = get () sequence in the
original command, which is based on state, can be replaced with
result=execute (command). Some classes were removed for brevity.

Given this information, the command engine can decide
whether to execute or reject the command. Figure 1 shows
a class diagram of this design.

To add metadata to the commands, we have added three
methods to the “classic” command object:

1) getrequest Returns the request context of the com-

mand, which includes the user and some request
metadata, such as a source IP address.

2) getaffectedobjects returns the objects the command
would operate on.
3) getRequiredPermissions returns the permissions re-

quired to operate on the affected objects.

The two latter methods return maps, mapping a
key with semantic significance to their respective val-
ues (model objects and sets of permissions). For ex-
ample, a copy command may require a reap permission
on the ‘‘source’’ object, and a wriTe permission on the
‘‘target’’ One. ThllS, the requiredPermissions IMap would
include the bindings source — READ, target — WRITE,
and the affectedobjects map the bindings source —
<source object>, target— <target object>.

For a given command, stating which permissions are
required over what target objects should ideally be done
in a declarative way. This makes it easier for developers to
assign the correct permissions, and for code reviewers and
re-users to see what permissions are needed at a glance.

To this end, we have developed a set of class-level
annotations®, that allow developers to statically assign re-
quired permissions to specific command subclasses. For
example, when annotating a concrete command class with
a.@RequiredPermissions(Permission.PublishDataset),the dEVEI-

3In Java, class annotations could be thought of as machine readable
code comments that can be available at runtime.

oper states that instances of this command will be executed
only for users who have a PublishDataset permission over
the affected objects. Listing 1 shows declaration and usage
of a typical command class that uses statically specified
permissions? .

Listing 1. Declaration and usage of a concrete command class that uses
statically specified permissions. The GetDraftDatasetVersionCommand
class is a command class that retrieves an unpublished version of a
given dataset. As these versions are not public, they can only be viewed
by users who have the viewUnpublishedDataset permission over the
dataset whose draft version is being retrieved. This is declared as a class-
level annotation (line 2), and enforced by the command execution engine
(line 10).
// class declaration
QRequiredPermissions (Permission.ViewUnpublishedDataset)
public class GetDraftDatasetVersionCommand

extends AbstractCommand<DatasetVersion>{

}

// class usage
try |
Dataset d = engine.submit (
new GetDraftDatasetVersionCommand (user,
} catch (CommandException ex) {

ds));

}

Commands that work on multiple model objects require
a more complex annotation, as the user might need
different permissions over each object to be allowed to
execute such command. This is achieved by specifying
a map whose keys are model object role names, and
values are required permissions. Listing 2 shows an
example of static permission specification for more than a
single object, using the erequiredpermissionsMap annotation.
In effect, shorthand for

@RequiredPermissionsMap{@RequiredPermission (name="",value=X) }.

QRequiredPermission (X) is a

Listing 2. A concrete command class that uses complex statically specified
permissions. The class annotations specify the map of object role names
to required permissions (lines 1-8). The class constructor maps the same
object role names to actual model object instances, using a map generator
mechanism called dv (lines 13-15).
@RequiredPermissionsMap ({
QRequiredPermissions (name="moved",
value=Permission.GrantPermissions),
@RequiredPermissions (name="source",
value=Permission.UndoableEdit),
@RequiredPermissions (name="destination",
value=Permission.DestructiveEdi)

I

NG W =

0N W =

public class MoveDataverseCommand extends AbstractVoidCommand{ 9

public MoveDataverseCommand (User aUser,
Dataverse moved,
Dataverse destination) {
moved) ,
moved.getParent ()),
destination));

super (aUser, dv("moved",

dv ("source",
dv ("destination",

}

Stating permissions declaratively has its downsides,
though. For example, it may lead to code duplication when
required permissions depend on application state. Consider
a command that retrieves a dataset. Before executing the
command, the command engine has to validate that the
requesting user has the required permissions to view said

4Code listings in this paper were slightly altered for brevity and clarity.
Actual code is available at https://github.com/IQSS/dataverse/.

XN U WD -

dataset. These permissions depend on that dataset’s state.
Specifically, on whether that dataset is published, or still
being worked on.

It is possible to accommodate this situation using declar-
ative, class-level annotations only: One can create an ab-
stract base class for retrieving a dataset, and create two
subclass, one for published datasets, and another for un-
published datasets. The dataset retrieval code would reside
in the base class, and the subclasses will only contain the
permission annotations. However, this approach results in
three classes instead of one, and requires correct selection
of the concrete class at every place in the application where
a dataset is retrieved. Furthermore, in the general case,
where combining multiple permissions, this may lead to
an exponential number of subclasses.

Thus, our design allows command objects to specify their
required permissions dynamically, when needed. This is
done in the normal object oriented manner: The abstract
command base class builds a required permission map
based on the annotations of the instance’s concrete class.
Concrete commands may override the relevant methods
and decide on the required permission map based appli-
cation state at runtime (see Listing 3 for an example). Our
experience shows that while dynamic permission require-
ments are useful, most cases can be accommodated using
the static, class-level declarations (see Table IV-B).

Listing 3. A command may specify the its required permission dynamically.
Shown here is the permission specification logic for GetDatasetCommand,
a command that retrieves a dataset. The application requirements are
that a published dataset may be viewed by anyone, whereas viewing non-
published datasets requires a special permission. Thus, for unpublished
datasets, this logic returns a set containing the required permission. For
published datasets, the method returns an empty set. Note that it is not
acceptable to return null in this case, since the engine would interpret
this as a programmer error of not specifying required permissions.
public class GetDatasetCommand implements Command<Dataset>{

éé\;erride

public Map<String, Set<Permission>>

getRequiredPermissions () {
if (dataset.isReleased()) {
return Collections.<Permission>emptySet ();
} else {
return Collections.singleton(
Permission.ViewUnpublishedDataset));

B. Command Execution

When client code submits a command to the engine,
the engine first reads the command’s metadata, and tests
whether the request meets the requirement posed by the
command: does the user have the correct permissions over
the affected objects? If the request meets the requirements,
the engine invokes the command. Otherwise, the engine
throws and exception stating which permissions are missing
over what receiver objects (see Figure 2).

This design can easily be extended to support more com-
plex data handling policies. Consider a new requirement,
stating that some datasets are can only be viewed through
a secure connection. To implement this, one needs to add

Client Code

i

! Command

! > |
! "

Model Object

new

submit(command)

|

|

X getRequiredPermissions

. >
: getAffectedObjects
|

|

|

|

getRequest
Verify Permissions

alt [Permissions OK] |
g |
! execute(context) !
| |
! «work» 1
| '
| |
! leresult !
eresult
[Insufficiept Permissions] '
< PermissionException |
1 e
Client Code | Command l | Model Object
Fig. 2. Sequence of executing a command. The client code creates a

command and submits it for execution. The Engine verifies that the user
has sufficient permissions to issue the command over the model objects.
If so, the engine executes the command and returns the result. Otherwise,
an exception is thrown, detailing which permission is missing.

an issecureconnection flag to the request, and update the
engine’s logic. The rest of the code remains unaffected.

C. Client Code Examples

All permission verification is done at the command
execution engine. Thus, client code using the engine is
free to focus on creation and submission of commands,
rather than on permission checking and model updates.
Thanks to the modernized command interface API (see
Subsection III-A) and to the usage of Java’s generics, it
is easier for developers to use the framework than it is
to bypass it. This is important, since after learning to
work with the updated command pattern, the path of least
resistance for developers is also the correct one. This section
contains examples of client code using a command engine.

Simple Command Submission

try f
engine.submit (new DeleteDatasetCommand (user,
} catch (CommandException ce) {

dataset));

}

Deleting a dataset is an example of a basic command
usage. The client code retrieves the dataset object and the
user, generates a NEW bDeleteDatasetCommand instance with
using both, and submits it to the engine for execution. The
engine will check whether user has the correct permissions
over dataset, and execute or discard the command instance
accordingly. Discarding the command will result in an

g W N =

W N

XN U WD -

©

exception of class permissionException being thrown. This
exception is a subclass of commandexception, and thus will be
caught by the caten block, giving the client code a way of
reporting the problem back to the user.

Retrieving a List of Model Objects

engine.submit (new ListVersionsCommand (user,
.stream/()
.map(d -> json(d))
.collect (toJsonArray()))

dataset))

The above code generates a JSON® string containing the
list of versions of a dataset. Since the static return type
of ListversionsCommand’s execute resolves to a list of dataset
versions (List<patasetversion> IN Java notation), the entire
process of command generation, submission, permission
validation, and execution can be performed in a single Java
expression. The result of this expression may be passed to
a containing expression or a calling function.

Higher Order Commands

@RequiredPermissions ({})
public class GetLatestAccessibleDatasetVersionCommand
extends AbstractCommand<DatasetVersion>{

@Override
public DatasetVersion execute (CommandContext context)
throws CommandException{

DatasetVersion result = null;
try f{
result = user, dataset.engine () .submit (
new GetDraftDatasetVersionCommand (user, dataset));
} catch(PermissionException ex) {}
if (result == null) {
result = dataset.engine () .submit (new
GetLatestPublishedDatasetVersionCommand (user,
dataset));

}

return result;

Commands can be composed of other commands. This
allows developers to re-use the permission verification logic
as part of regular business logic. The above example, shows
a command that retrieves the latest dataset version a user
is allowed to view. This is implemented by first attempting
to issue a command that retrieves an unpublished version
of the said dataset (lines 10-11). This operation may fail
for two reasons: a) there is no such version, or b) the user
is not allowed to view it. Either way, if no dataset version
was retrieved, the composed command retrieves the latest
published version (lines 15-17).

The above command does not require any permis-
sions to run, since no permissions are required to view
published datasets. Thus, it is annotated with an empty
(line 1). Omitting this annotation
would result in a runtime error, where the command engine
complains that no required permissions were specified for
the command.

@RequiredPermissions

5A textual data interchange format, acronym for JavaScript Object
Notation. See http://json.org.

IV. THE PATTERN IN PRACTICE

The largest effort of course, was coding the engine and
infrastructure for the pattern. When it was finished, we
provided it and a few basic examples to the developers.

We started by taking existing code and refactoring it to
use the new Pattern. This was overall straightforward, as a
new basic command is fairly simple. The guts are really in
the business logic, and for existing code, we were able to
transfer much of that from the classic business logic layer®
to the Command classes.

The team was already well experienced with annotations
in general, so explaining how to assign the correct permis-
sions via annotation was also relatively straightforward.

One challenging part to teach was to provide a good
understanding of each of the different kinds of exceptions,
and when it was proper to use each one.

Another minor challenge was with making sure devel-
opers would use this new Pattern with new functionality.
It was not so much an issue of how to use it, but in
making sure to provide the motivation, as the effort for
using the new Commands was (marginally) more than the
traditional effort. Once it was clear, though that the new
Pattern provided a solid architecture and actually made
code maintenance easier (for example, if a permission
needed to be modified), the developers were generally
enthusiastic.

Using the adapted command pattern became more of
an issue with external development. In one collaboration,
code was written for an alternative way to edit datasets
that did not use the pattern. It worked well, but it was
redundant in a lot of permission checking. The problem
with this was that if we decided to change the required
permission for dataset editing, we would need to remember
to change more than just the Command.

In this particular case, the external developer was hes-
itant to change the code to the command pattern, as it
worked well for what they needed and there were many
other requirements to be completed. Since merging their
changes was critical part of the project we were able
to convince them to make the change. Unfortunately in
doing that a new performance issue arose, and rather than
attempt to solve it by fixing this issue with the command,
the developer chose to revert to the previous code.

This is likely to be a rare case, however, as we later
learned that the developer was leaving the project and
wanted to reach a certain milestone before his final date. To
be sure, though, with future external development we need
to make sure we introduce the reasoning and benefits of the
new Pattern upfront, so that the functionality gets originally
coded this way and does not have to be rewritten.

Additionally, in the beginning we wrote too many new
commands and/or duplicated the same functionality in
multiple commands, instead of trying to find commonality

6As Dataverse is a Java EE application, this layer was implemented using
Enterprise Java Beans (EJBs).

between existing commands. One example of this is that
we have separate commands with duplicate code for Create
Dataset, Update Dataset, Create Dataset Version, and Up-
date Dataset Version. One code cleanup task we have is to
chain these commands to call each other, for example have
Create Dataset calls Create Dataset Version calls Update
Dataset Version, which reduce a lot of the duplicate code.

While developing these commands in practice, this is
how we discovered that in addition to the static permission
annotation, we needed the ability to define the permission
at runtime. We solved this with the dynamic permissions
previously described.

From a performance standpoint, the presented design
does not incur a substantial overhead for most operations,
as the permission testing has to be performed whether
this design is used or not. One case where manually
written permission checks can significantly outperform the
command pattern is when the same user’s permissions are
being repeatedly tested against the same model object, for
example when running a command in a loop. In such cases,
manually written code is likely to calculate the permissions
only once, before the loop starts.

One way of tackling this issue is by adding short-term
permission cache to the engine.

Overall, the new Command pattern has been a good
addition to our core infrastructure. If we spend some
time up front onboarding new developers and external
collaborators, the effort to use the new pattern is minimal,
while the benefits are substantial.

A. Security Vulnerabilities And the Command Pattern

At the moment, Dataverse is not meant to store sen-
sitive data. As such, Dataverse instances are not subject
to detailed security scrutiny. However, as an open-source
project with more than 20 installations worldwide, it enjoys
an involved community that reports bugs and vulnerabili-
ties, in addition to security issues found by the Dataverse
development team. Over the years, some vulnerabilities
were found. Examples include tokens leaked by a sys-
tem interfacing with Dataverse, cross site scripting (XSS),
issues stemming from included libraries (such as Weld)
and from using the Glassfish server, and a vulnerability
that allowed an attacker to pretend a request is coming
from a specific IP address, when a Dataverse system was
behind a proxy server. This was possible by forging the
x-rorwaRDED-FOR HTTP header. The latter was found by a
community member who reported an issue through the
projects’s repository”.

However, none of the issues reported so far was caused
by the command pattern adaptation presented here.

https://github.com/IQSS/dataverse/issues/2826

B. Command Statistics

At the time of this writing, the development version®

of Dataverse contains 73 classes implementing the command
interface. Table IV-B lists some statistics about their traits.

TABLE 1
STATISTICS ON COMMAND CLASSES IN THE DEVELOPMENT VERSION OF
DATAVERSE, MAY 28, 2017.

Command interface implementations 73

Abstract 3
Concrete 70
Uses dynamic permissions 8

V. RELATED WORK

Enforcing permission-based policies is an issue both in-
dustry and academia have been dealing with for a while. On
the industrial side, modern application authentication and
authorization frameworks such as the one offerred by Java
EE® or Deadbolt2!? for Play framework!! have solved au-
thentication and role-based permission assignment. These
are the basic building blocks that allow application develop-
ers to verify a given user was granted a certain permission.
However, this check has to be performed at each location
in code where an action that required said permission is
attempted. Furthermore, stating for permissions in code
is harder to review and audit, compared to declarative
statements.

Protecting web resources (such as URLs) can be done
with declarative syntax (for example, using XML in Java EE
and method composition in Play). These approaches are
well suited to protect on-line resources (e.g. web pages)
from unauthenticated users, but they do not operate in the
application-semantic level, and the roles are system-wide
rather than in the context of specific model objects. In other
words, they are good for stating Only users with role X can
access resource Y, but not for stating Users need permission
Y over object Z in order to perform action W, which is what
the proposed design allows developers to state.

Academic work offers detection of data leaks using formal
methods. PIDGIN [4], by Johnson et. al., analyses data flow
in an application, thus allowing developers to detect leaks
and enforce access policies. Yang et. al. [8] use dynamic
information flow control to formally guarantee program
properties such as non-interference. In [9], Yang et. al.
present a functional constraint language named Jeeves,
which allows tagging variables as sensitive, and condition-
ally redacting them. These approaches are more oriented
towards data flows within an application, and less towards
actions on model objects.

8Dataverse is developed using Git with a per-feature branching strategy.
This, this term refers to the develop branch in the main Dataverse
repository.

9http:/ /www.oracle.com/technetwork/java/javaee/overview/index.html

Ohttps://github.com/schaloner/deadbolt-2

Whttps://playframework.com

Moore et. al. [6] present the concept of Authority En-
vironments which uses execution contexts and associates
them with rights. This allows extensible access control using
software contracts, and can also restrict actions.

Another project that adds security guarantees to an
application is RESIN [10]. RESIN takes a complementary
approach to the command pattern adaptation presented
here, by focusing on data flows rather than on actions.
While giving stronger security guarantees, RESIN is a lan-
guage runtime rather than a design pattern. Each in its
own way, both projects allow developers to declare security-
related policies. Passe [1], which also aims to restrict illegal
data flows within an applications, takes a different approach
on specifying a security policy: it uses learning rather than
explicit specification by a developer.

VI. CONCLUSION

In this paper, we present an application design that
enforces permission-based policies, based on an adaptation
of the classic Command Pattern. By allowing commands to
specify a) which permissions are required to execute them,
b) which model objects are involved, and c) what is the
context in which the command was submitted, a central
command execution engine can verify that a command
should indeed be executed prior to invoking it. We have
used this design in practice since 2015 in Dataverse, a
web-based research data repository platform. Refactoring
Dataverse to use this design was not trivial, both in terms
of coding and in adapting the development team to use
it. However, almost three years in, this architectural switch
has proved itself beneficial.

ACKNOWLEDGMENT

The authors thank Stephen Chong for reviewing an early
version of the proposed design, our anonymous reviewers,
and the entire Dataverse team at IQSS.

1

[2]

3]

(4

[5

[6

[7

[8

9

(10]

REFERENCES

Aaron Blankstein and Michael] Freedman. Automating isolation and
least privilege in web services. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 133-148. IEEE, 2014.

Merce Crosas. The dataverse network®: an open-source application
for sharing, discovering and preserving data. D-lib Magazine, 17(2),
2011.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1 edition, 1994.

Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong.
Exploring and enforcing security guarantees via program dependence
graphs. In ACM SIGPLAN Notices, volume 50, pages 291-302. ACM,
2015.

Gary King. An introduction to the dataverse network as an infrastruc-
ture for data sharing. Sociological Methods and Research, 36:173-199,
2007.

Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt,
and Stephen Chong. Extensible access control with authorization
contracts. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 214-233. ACM, 2016.

Latanya Sweeney, Merce Crosas, and Michael Bar-Sinai. Sharing sen-
sitive data with confidence: The datatags system. http://techscience.
org/a/2015101601/, 2015.

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama,
Cormac Flanagan, and Stephen Chong. End-to-end policy-agnostic
security for database-backed applications. CoRR, abs/1507.03513,
2015.

Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language
for automatically enforcing privacy policies. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL '12, pages 85-96, New York, NY, USA,
2012. ACM.

Alexander Yip, Xi Wang, Nickolai Zeldovich, and M Frans Kaashoek.
Improving application security with data flow assertions. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 291-304. ACM, 2009.

