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In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility,
and Bayesian incentive compatibility. These simple solution concepts relieve the (possibly unsophisticated)
bidders from the need to engage in complicated strategizing. This is a clean story when the mechanism
is “obviously” incentive compatible, as with a simple second price auction. However, when the proof of
incentive compatibility is complex, unsophisticated agents may strategize in unpredictable ways if they are
not convinced of the incentive properties. In practice, this concern may limit the mechanism designer to
simple mechanisms, simple enough that agents can easily understand.

To alleviate this problem, we propose to use techniques from computer-aided verification in order to
construct formal proofs of incentive properties. Because formal proofs can be automatically checked by
(trustworthy) computer programs, agents do not need to verify complicated paper proofs by themselves.

To confirm the viability of this approach, we present the verification of one sophisticated mechanism:
the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by
Hartline, Kleinberg, and Malekian [2011]. This mechanism presents new challenges for formal verification,
including essential use of randomness from both the execution of the mechanism and from prior type
distributions. As a by-product, we also verify the entire family of mechanisms derived via this reduction.

1. INTRODUCTION
At its heart, mechanism design is algorithm design together with a predictive model
of how agents will decide to behave. Unlike algorithm design, where correctness can
be verified in a vacuum, the success or failure of a mechanism depends not just on the
properties of the mechanism itself, but on the correctness of the behavioral model used
to describe the participants. Specifically, how rational are the agents, and what can
they be expected to do?

Different behavioral models assume different answers to this question. At one ex-
treme, we may assume that agents will coordinate to play a Nash equilibrium of
the game, and we can study concepts like the price of anarchy (see Roughgarden
[2005]; Christodoulou and Koutsoupias [2005] or Nisan, Roughgarden, Tardos, and
Vazirani [2007] for a textbook introduction). These works implicitly assume a very high
degree of rationality on the part of participants, both information theoretically and
computationally—Nash equilibria are generally not unique, and require coordination
and a high degree of communication [Hart and Mansour 2007]; even in a centralized set-
ting, they can be computationally hard to find [Daskalakis, Goldberg, and Papadimitriou
2009].
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A:2

At the other extreme, we may ask for mechanisms which are dominant strategy
truthful (in settings of complete information) or Bayesian incentive compatible (in
settings of incomplete information). These solution concepts have been gold standards
in mechanism design, in part because they require very minimal assumptions on
agent rationality: Both solution concepts guarantee that in the worst case over an
agent’s type, she can do no better (in the Bayesian setting, in expectation over the
draws of other agents) than truthfully reporting her type to the mechanism. Hence,
when interacting with these types of mechanisms, agents do not have to engage in
complicated counter-speculation, communication, or computation—they merely have to
tell the truth!

Even with dominant strategy truthful (and Bayesian incentive compatible) mecha-
nisms, however, there is a hidden assumption on agent rationality: The participating
agents trust that the mechanism is truthful. For complicated mechanisms this is no
small matter—the incentive properties of the mechanism may require detailed proofs
which require significant domain expertise to verify. Indeed, this is not merely a theoret-
ical concern: in the design of the FCC incentive auction for reallocating radio spectrum,
Milgrom and Segal [2014] advocate as a key desiderata that the auction be not merely
strategy-proof, but “obviously strategy-proof”.

However, this can be a serious restriction—many mechanisms are just too complex to
be obvious. Furthermore, requiring obviousness essentially assumes that agents can
understand the mechanism, which is an assumption about the sophistication of the
users. Is there another way to convince users of trusting the incentive properties of the
mechanisms, besides assuming that they can figure it out themselves?

Traditionally, the agents’ trust is developed via social means, e.g., through the reputa-
tion of the platform running the mechanism. However, reputation is difficult to build up,
and new market entrants may not have any reputation at all. A better solution would
be to build an infrastructure that does not rely on reputation and instead provides
digital evidence of the truthfulness properties of (even complex) mechanisms.

One natural approach is to provide formal proofs that mechanisms satisfy their
claimed properties of truthfulness. Formal proofs are digital objects that support ev-
idence of mathematical claims. They normally follow pen-and-paper proofs; however,
they are akin to computer programs in many respects: they use a formal syntax, have a
rigorous semantics (i.e., interpretation as a mathematical object), and are built with
computer assistance, using a rich palette of proof-construction tools.

Compared to pen-and-paper proofs, the major benefit of formal proofs is that they can
be checked independently and fully automatically using a proof checker, which plays the
role of a neutral judge. Therefore, agents can simply run the proof checker to build trust
in the mechanism. Moreover, by the nature of formal proofs, it is sufficient to build the
proof only once to obtain guarantees for arbitrarily many runs of the mechanisms, and
arbitrary choices of parameters, including the number of agents, their types and true
values, etc. Similarly, each agent only needs to verify the formal proof once, for instance
when it first uses the mechanism; or it can even delegate the verification of proofs to
a trusted third party. This scenario requires that agents trust the proof checker and
nothing else; this is a very reasonable assumption because proof checkers are relatively
small programs, developed by independent third parties. For instance, this assumption
lies at the core of Proof Carrying Code Necula [1997], which uses a similar architecture
for guaranteeing security of mobile code.

There are two main technical challenges to realize our vision: first, we must develop
a verification infrastructure that is sufficiently expressive for certifying incentive
properties of mechanisms. Second, we must build formal proofs for a wide class of
mechanisms. Technical details of our solution to the first challenge are beyond the scope
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of the present paper, but we give a quick overview to orient the reader (see Barthe,
Gaboardi, Gallego Arias, Hsu, Roth, and Strub [2015] for more details).

For developing a sufficiently expressive verification system, the most delicate issues
are finding a natural way to describe incentive properties, and dealing with randomized
programs (formal verification traditionally concerns deterministic programs). To solve
both problems, our high-level idea is to view truthfulness as a relational property, since
it involves the pay-offs in two runs of a mechanism: a first run in which the agents play
their true value, and a second run in which the agents play arbitrarily. If the two runs
are related in a certain way—specifically, if the first run pay-off is at least the second
run pay-off—the mechanism is truthful.

Although formal verification is traditionally focused on non-relational properties
like safety or liveness properties, researchers have recently proposed several systems
for verifying relational properties of probabilistic programs. In particular, we have
recently developed HOARe2, a programming language with a typechecker that can
verify properties in differential privacy and mechanism design [Barthe et al. 2015].
HOARe2 has been used to certify basic truthfulness properties (universal truthfulness)
in relatively simple mechanisms (e.g., the random sampling mechanism of Goldberg,
Hartline, Karlin, Saks, and Wright [2006] for digital goods auctions), and is thus a
natural starting point for our infrastructure.

In HOARe2, we have a tool that is expressive enough to verify simple incentive
properties. In this paper, we focus on the second component of our vision: constructing
formal proofs for mechanisms. We show for the first time that HOARe2 can be used to
certify much more complex incentive properties (Bayesian incentive compatibility) in
much more sophisticated mechanisms. As our paradigmatic example, we certify that the
generic reduction from algorithm design to Bayesian Incentive Compatible mechanism
design given by Hartline et al. [2011] is indeed incentive compatible. We choose this as
our proof-of-concept for several reasons:

(1) As a general reduction, it is an ideal case for computer-aided verification—certifying
its correctness once certifies the incentive properties for any mechanism generated
as an instantiation of the reduction.

(2) It is complex, and its proof of incentive compatibility is non-trivial, and hence a case
in which formal verification is wanted—it may not be “obviously strategy proof” for
non-technical users.

(3) Since it employs randomization both within the algorithm, and in its guarantees (in
the form of incentive compatibility in expectation over the known Bayesian prior), it
requires extending the state of the art in program verification, and goes substantially
beyond prior work in verification of game-theoretic properties.

(4) It uses the Vickrey-Clarke-Groves (VCG) mechanism, an interesting mechanism in
its own right. As part of our overall verification, we also verify the truthfulness of
VCG.

To complete the proof, we extend HOARe2 in two significant ways; first, we enrich its
underlying program language to support new data structures like lists of lists or lists
of functions; second and more importantly, we provide fine-grained support to reason
about equality of distributions, through a mapping to EasyCrypt, a computer-aided
tool for reasoning about the security of cryptographic constructions Barthe, Grégoire,
Heraud, and Béguelin [2011]; Barthe, Dupressoir, Grégoire, Kunz, Schmidt, and Strub
[2014].

A note about worst-case complexity. In line with the typical program verification set-
ting, we will distinguish between constructing a proof and checking it. Constructing the
proof is hard: we do not assume that a proof (or some representation, like a certificate)
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can be found automatically in worst-case polynomial time, and we will even allow a hu-
man to play a limited part in this process. However, the checking must be easy: agents
should be able to take the formal proof and efficiently verify it fully automatically.

While worst-case polynomial time for the entire verification process would be prefer-
able, it is not very realistic as we cannot really expect an algorithm to prove the
incentive properties automatically—the proof may be a research contribution; deciding
whether an incentive property holds at all may be an undecidable problem. Further-
more, relaxing the running time condition when constructing the proof is particularly
well-motivated in our application. Unlike the mechanism itself, the proof construction
procedure will not be run many times on inputs of unknown origin and varying size.
Instead, for a particular mechanism (an input of fixed size), the proof is constructed
just once. In exchange for relaxing worst-case running time, we can verify significantly
richer classes of mechanisms compared to those which we could hope to find proofs of
truthfulness in polynomial time.

2. RELATED WORK
In the appendix, we provide an introductory primer on formal verification, as well as the
related work from the formal verification literature; interested readers may also consult
a survey (e.g., Naumann [2009]). Here, we describe the related work in algorithmic
game theory. The algorithmic game theory literature has for the most part ignored the
problem of verifying the incentive properties of mechanisms (instead relying on paper
proofs), but there is a small body of related work.

Recently, Brânzei and Procaccia [2014] defined verifiably truthful mechanisms, and
studied them in the context of one-dimensional facility location games without money.
Informally, a “verifiably truthful mechanism” is a mechanism selected from a fixed
family of mechanisms, such that for every truthful mechanism in that family, there is a
certificate proving the truthfulness of that mechanism which can be found in (provably)
polynomial time. The family of mechanisms considered by Brânzei and Procaccia [2014]
are represented as polynomially sized decision trees, and they show that for the one-
dimensional facility location problem, truthfulness for mechanisms in this class can be
efficiently verified using linear programming. They also show that there is a truthful
mechanism in this class obtaining a p1 ` ✏q-approximation to social welfare for the
one-dimensional facility location problem. While this is a fascinating research direction,
our work differs in that we handle significantly more complex mechanisms in exchange
for forgoing worst-case polynomial time complexity.

Mu’alem [2005] considers the problem of property testing for truthfulness in single
parameter domains, which reduces to testing for a variant of monotonicity. Mu’alem
[2005] gives a tester that for a single parameter domain, given the ability to query a
polyp1{✏q number of arbitrary evaluations of an allocation rule, can test whether there
exist payments that guarantee that truthful reporting is a dominant strategy with
probability 1´ ✏, where the valuations of the agents are assumed to be drawn uniformly
at random. In contrast, in our work, we assume that the verifier has direct access to the
code specifying the auction (and not just black box access to the allocation rule), and we
require verification of exact truthfulness, not only approximate truthfulness. We are
also able to verify mechanisms beyond single parameter domains and in more complex
settings, where we can handle randomized mechanisms and ask for Bayesian incentive
compatibility over arbitrary priors.

Our work is also related to the literature on automated mechanism design, initiated
by Conitzer and Sandholm [2002] (see Sandholm [2003] or Conitzer [2006, Chapter
6] for an introduction). In broad strokes, automated mechanism design seeks to give
algorithmic means for computing truthful mechanisms which optimize the designer’s
objectives, while taking advantage of known specifics about the setting (e.g., prior
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information about agent types). This is often accomplished by solving explicitly for the
distribution on outcomes defining a mechanism using a mixed integer linear program
encoding the incentive constraints and objective, an NP hard problem that can often
be solved efficiently on typical instances [Conitzer 2006]. On the one hand, automated
mechanism design sets out to solve a more difficult problem than we do: it seeks not
just to verify the truthfulness of a given mechanism, but to optimize over the space of
all truthful mechanisms—when mechanisms are given as explicit distributions over
outcomes, verifying truthfulness reduces to just verifying a linear constraint over the
distribution. As a result, these techniques have some limitations: they typically produce
explicit representations of mechanisms that have size exponential in the number of
bidders, and they need to write down an explicit integer linear program, requiring a
finite type space.

In contrast, by only requiring full automation for proof verification and not proof
construction, we are able to bring to bear the much more sophisticated toolkit (which
includes symbolic manipulation, not just numeric optimization) from the computer-
aided program verification literature, and verify significantly more complex mechanisms
that don’t have concisely defined—indeed, possibly infinite—outcome and type spaces.

3. MAIN EXAMPLE: HKM
As our main proof of concept, we verify that the Replica-Surrogate-Matching (RSM)
mechanism due to Hartline et al. [2011] is Bayesian incentive compatible. The RSM
mechanism reduces mechanism design to algorithm design: given an algorithm A that
takes in agents’ reported types and selects an outcome, the RSM mechanism turns A

into a Bayesian incentive compatible mechanism. Accordingly, RSM is an attractive
target for verification—the guarantees will carry over to any instantiation of RSM.

We first review the proof of Bayesian incentive compatibility, due to Hartline et al.
[2011]. Then, we present our verification by walking through the process from the
pseudocode to a fully verified mechanism. Rather than providing all the details of the
verification process, our aim is to give a sense of what it is like to verify a mechanism,
in practice.

3.1. Preliminaries
Let’s begin with the standard notion of Bayesian incentive compatibility. We assume
there are n agents, each with a type ti drawn from some set of types T . Furthermore,
we have access to a distribution µ on types, the prior.

A mechanism is a (possibly randomized) function from the inputs—one per agent—to
a single outcome o from set O, and a real-valued payment pi for each agent. Without loss
of generality, we will assume that the agents each report a type from T as their input.
Agents have a valuation vpt, oq for type t and outcome o. Agents will have quasi-linear
utility: their utility for outcome o and payment p depends on their type t, and is vpt, oq´p.
We will write ps, t´iq for the vector obtained by inserting s into the ith slot of t.

Then, we want to check the following property.

Definition 3.1. A mechanism M is Bayesian incentive compatible (BIC) if for every
agent i and types ti, t

1
i
, we have

Et´i„µm´1rvpti,Mpti, t´iqq ´ pipti, t´iqs • Et´i„µm´1rvpti,Mpt1
i
, t´iqq ´ pipti, t´iqs.

The expectation is taken over the types t´i of the other agents (drawn independently
from µ) and any randomness that may be used by the mechanism. In other words, the
expected utility of any agent is maximized by reporting the true type (where other
agents have type independently drawn from µ).
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(1) Pick i uniformly at random from rms;
(2) Build a replica type profile ~r by sampling m ´ 1 replica types from µ for ~r´i, and by

setting ri “ t;
(3) Build a surrogate type profile ~s by sampling m surrogate types from µ;
(4) Build a bipartite graph with nodes the elements of ~r and ~s and weighted edges with

weight

wpr, sq “ Et´i„µm´1rvpr, Aps, t´iqqs;
(5) Run the VCG procedure on the generated graph, and return the surrogate s that is

matched to the replica in slot i, and the appropriate payment p.

Fig. 1: Procedure R with parameter m

3.2. The RSM mechanism
Now, let’s consider the mechanism we will verify: the RSM mechanism in the “idealized
model” by Hartline et al. [2011]. We will first reproduce their proof, before explaining in
detail how we verify it.

The mechanism. RSM is a construction for turning an algorithm A : Tn Ñ O into a
BIC mechanism. The idea is quite elegant: each agent individually transforms their
type ti to a surrogate type si by applying the Replica-Surrogate-Matching procedure R.
This procedure also produces a payment pi for the agent. Then, the obtained surrogates
s are fed into the algorithm A, which selects the final outcome.

The procedure R is described in Figure 1. Let m be an integer parameter—the number
of replicas. On input type t, we take m ´ 1 independent samples from µ, the (r)eplicas.
We then take m independent samples from µ, the (s)urrogates. Finally, we select an
index i uniformly at random from rms, and place the original type t in the i’th “slot” of
the replicas ~r.

We will consider the replicas as “buyers”, and the surrogates as “goods”, and assign a
numeric “value” for every pair of buyer and good. The value of replica r for surrogate s

is set to be

wpr, sq “ Et´i„µm´1rvpr, Aps, t´iqqs, (1)

that is, the expected utility of an agent with true type r reporting type s. Finally, RSM
runs the well-known Vickrey-Clarke-Groves mechanism [Vickrey 1961; Clarke 1971;
Groves 1973] to match each replica with a surrogate in this market. The final surrogate
output by R is the surrogate matched to replica in slot i (the original type t), along with
the payment charged.

The original proof. The proof of BIC from Hartline et al. [2011] proceeds in two steps.
First, an auxiliary lemma shows that R is distribution preserving.

LEMMA 3.2 pHARTLINE ET AL. [2011]q. Sampling a type t „ µ as input to R gives
the same distribution (µ) on the surrogates output.

PROOF. When R constructs the list of “buyers” before applying VCG, the distribution
over buyers is simply m independent samples from µ, no matter the value of i. So,
we can delay sampling i and selecting the surrogate until after running VCG (via the
principle of deferred decision).

VCG produces a perfect matching of replicas to surrogates, and the surrogates are
also m independent samples from µ. So, sampling a random replica i and returning the
matched surrogate is equivalent to taking an unbiased sample from µ.
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With the lemma in hand, we can show the BIC property.

THEOREM 3.3 pHARTLINE ET AL. [2011]q. The RSM mechanism is BIC.

PROOF. Consider bidder i with type ti, and fix the randomness for bidder i. In the
VCG procedure of R, the value of i’s replica for surrogate s is wpti, sq: the expected
utility for submitting s to A while having true type ti, assuming that all other inputs to
A are drawn from µ.

In the RSM mechanism, the other inputs to A are computed by sampling a type
tj „ µ, and taking the surrogate produced by Rptjq. By Lemma 3.2, the distribution over
surrogates is µ. Therefore, wpti, sq is bidder i’s expected utility in the RSM mechanism
for ending up matched to s. Since VCG is incentive compatible, bidder i has no incentive
to deviate to any other bid t

1
i
. By taking expectation over the randomness of i, we get

the result.

Note that Theorem 3.3 relies crucially on the truthfulness property of the VCG
mechanism. We have also verified this property but to avoid disrupting the exposition,
we present our verification of RSM in the next section, postponing our discussion of
VCG to § 5.

4. VERIFYING HKM
Now that we have reviewed the mechanism and the proof of BIC from Hartline et al.
[2011], we present our verification step by step.

We follow a rather standard approach to program verification involving five steps:

(1) We write the RSM mechanism as a program in HOARe2.
(2) We annotate the program with assertions expressing the BIC property, and some

additional facts that are used as lemmas.
(3) The tool automatically generates the verification conditions (VCs), whose validity

implies the BIC property.
(4) The tool uses automatic solvers to check the verification conditions; these tools may

fail to prove some assertions.
(5) Finally, we prove the remaining verification conditions by using an interactive

prover.

The outcome of these five steps is a formal proof that the RSM mechanism enjoys the
BIC property.

This workflow is depicted in Fig 2. In the following, we will combine the description
of different steps in the same subsection.

Step 1: Modeling the mechanism
To express RSM as a program, we will code a single agent’s utility function when running
the RSM mechanism, when all the other agents report truthfully and have types drawn
from µ. Remembering that we consider truthfulness as a relational property, we will
then reason about what happens when the agent reports truthfully, compared to what
happens when the agent deviates.

We model types and outcomes as drawn from (unspecified) sets T and O. We will
assume we are given an algorithm alg mapping T

n Ñ O. We will consider what
happens when the first bidder deviates. This is without loss of generality: if j deviates,
we can consider the RSM mechanism with alg replaced by a version alg’ that first
rotates the j’th bidder to the first slot, when proving BIC for the first bidder under alg’
implies BIC for the j’th bidder under A. For the values, we will assume an arbitrary
valuation function value mapping T ˆO Ñ R. In the code, we will write mu for the prior
distribution µ.
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program encoding the mechanism

annotated program

collection of VCs

VCs not solvable automatically

proof of incentive property

expert adds assertions

proof checker generates VCs

automatic solver checks VCs

manually solve VCs in interactive solver

Fig. 2: Verification workflow

Let’s begin by coding the RSM transformation R, which transforms an agent’s type
into a surrogate type and a payment. It will be convenient for us to separate the
randomness from R. We encode R as a deterministic function Rsmdet, which takes as
input the agent number j, the random coins coins, and the input type report. We will
have Rsmdet take an additional parameter truety. This variable does not show up in
the code (as the RSM mechanism does not actually have access to this information),
but will be useful later for expressing bayesian incentive compatibility as a relational
property. We will model the slot i as a natural number.

In § 5 we will discuss our treatment of VCG in more detail, but for now, it is enough to
know that VCG takes a list of buyers and a list of goods. VCG will output a permutation
of goods (representing the assignment), and a corresponding list of payments.
1 def Rsmdet(j, coins, truety, report) =
2 (rs´i, ss, i) = coins;
3 vcgbuyers = (report, rs´i);
4 (surrs, pays) = Vcg(vcgbuyers, ss);
5 return (surrs[j], pays[j])

For a brief explanation, line (2) names the three components of coins: the replicas rs´i,
the surrogates ss, and the slot i; line (3) puts the agent’s input type report in the
proper slot for the replicas; line (4) call VCG on the list of buyers vcgbuyers produced
at line (3) and the list of surrogates ss as goods; and the code at line (5) selects the
surrogate and payment.

The Expwts function implements the w function from Equation (1), with the additional
parameter j to indicate the agent:
1 def Expwts(j, r, s) =
2 sample others´j = mun´1;
3 algInput = (s, others´j);
4 outcome = alg(algInput);
5 return expect_num {
6 value(r, outcome)
7 }
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Line (2) samples n ´ 1 types others´j from µ for the other agents. These are the types
on which the expectation is taken in Equation (1). Line (4) uses the algorithm alg to
compute the outcome outcome when the agent j report type s. Finally, the expect_num
function at line (5) takes the expectation of a numeric distribution built by using, in
line (6), the value function value on the true type r and on the outcome of the alg.

To check the BIC property, we will code the expected utility for the first bidder, and
then check that this function is maximized by truthful reporting. To decompose the
code a bit, we will suppose that the function takes in a list of functions othermoves that
correspond to transforming each of the other bidder’s type.

1 def Utility(othermoves, myty, mybid) =
2 return (expect rsmcoins Helper)
3
4 where Helper(coins) =
5 (mysurr, mypay) = Rsmdet(1, coins, mybid);
6 myval = expect_num {
7 for i “ 1 . . . n ´ 1:
8 sample othersurrs[i] = (sample otherty = mu; othermoves[i](otherty));
9 end

10 algInput = (mysurr, othersurrs);
11 outcome = alg(algInput);
12 value(myty, outcome)
13 };
14 return (myval - mypay)

The distribution rsmcoins defines the distribution over the coins to R, i.e., sampling
the replica r, the two surrogates s1, s2, and the coin i. We encoded this distribution in
HOARe2, but we elide it for lack of space. On line (2) we take expectation of the function
Helper over these coins, with expect.

In Helper, we then call Rsmdet on line (6) to compute the surrogate and payment for
the agent, passing 1 since we are calculating the utility for the first agent. We sample
the other agents’ types and transform them on lines (8–10), and we take expectation
of the first agent’s value for the outcome on lines (7–12). Finally, we subtract off the
payment on line (14), giving the final utility for the first agent.

To complete our modeling of RSM, we plug in Others into the utility function: it
simply takes an agent number and a type as input, samples the coins from rsmcoins,
and returns the surrogate from calling Rsmdet.
1 def Others(j, t) =
2 sample coins = rsmcoins;
3 (s, p) = Rsmdet(j, coins, t);
4 return s
5
6 Utility(Others)

Of course, so far we have just written code describing how to implement the RSM
mechanism and how to calculate the utility for a single bidder. Now, we need to express
the BIC property as a property about this code and check it with HOARe2.

Step 2: Adding assertions
We specify properties in HOARe2 by annotating variable and functions with logical
formula of the form

tx :: Q | �u.
This should be read as: “x is a variable from some set Q, satisfying the logical formula
�”. These assertions serve two purposes: (1) they express facts about the code (both
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the whole program and subprograms) and (2) they assert mathematical facts about
primitive operations, like expect and expect_num. The system will then formally verify
that the first kind of annotations are correct, while assuming the assertions of the
second kind as axioms.

A key feature of HOARe2 is that the assertion � is relational: it can refer to two
“copies” of each variable x, usually written x1 and x2. The idea is that we may make
assertions about two runs of the same program, where in the first program we use
variables x1, and in the second run we use variables x2.1

For instance, to assert truthfulness, the true type must be equal on both runs:
tty :: T | ty1 “ ty2u,

the bid in the first run is equal to the true type (and is unrestricted on the second run):
tbid :: T | bid1 “ ty1u,

and the utility is higher on the first run than the second run:
tutility :: R | utility1 • utility2u.

While this is the main property we care about, we need to annotate various facts
throughout our verification. We briefly discuss the three main facts we need.

Monotonicity of expectation. Since the BIC property refers to expected utility, we need
use an expectation operation expect when computing an agent’s utility (line (2) of the
Utility code). To show BIC, we need a standard fact about monotonicity of expected
value: if we have functions f § g, then Erf s § Ergs taken over the same distribution.
This can be encoded with the following annotation for expect:

distr tc :: C | c1 “ c2u Ñ tf :: C Ñ R | @x. f1pxq § f2pxqu Ñ te :: R | e1 § e2u.
Like most assertions in HOARe2, this is read as a statement about how two runs

of the expectation function are related. The first component asserts that in the two
runs, we are taking expectation over the same distribution. The second component
asserts that the function f in the first run is pointwise less than f in the second run
(written f1, f2 respectively). The final component asserts that the expected value—a
real number—is less on the first run than on the second run (written e1, e2 respectively).

If we now think of distribution as being over the coins rsmcoins, this fact allows us to
prove deterministic truthfulness for each setting of the coins, then take expectation over
the coins in order to show truthfulness in expectation. This is what we need to prove for
the BIC property, and is precisely the first step in the original proof of Theorem 3.3.

Distribution preservation. When we consider a single agent, we cannot expect that
truthful bidding is BIC for arbitrary transformations of the other agents’ types
(othermoves in the Utility code). As indicated by Theorem 3.2, we need the transfor-
mation to be distribution preserving: the output distribution on surrogates must be the
same as the distribution on input types.

We can again capture this property with appropriate annotations. While we have
so far used rather simple formulas � that only mention variables in tx :: T | �u, the
formulas � can actually make arbitrary assertions about programs.2 As a result, we can
annotate the othermoves argument to Utility to require distribution independence:

tothermoves : list pT Ñ distr T q | @j P rns. psample ot = mu; othermoves[j](ot)q “ muu

1These annotations are known as relational refinement types in the programming language literature. We
will call them assertions or annotations to avoid clashing with agent types.
2Of course, we need to actually check the assertions, whether by automated solvers or more manual techniques.
But a priori, there is no problem in asserting (and using) the facts.
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To read this, othermoves is a list of functions fj that take a type and returns a distri-
bution on types, such that if we sample a type from mu and feed it to fj , the resulting
distribution (including randomness over the initial choice of type) is equal to mu. In
other words, this asserts the distribution preservation property of Theorem 3.2 for each
of the other agent’s actions.

Facts about VCG. Recall that Vcg takes a list of bidders and a list of goods, and
produces a permutation of the goods and a list of payments as output. In our case, the
bidders and goods are both represented as types in T , so we can annotate the Vcg as:

tbuys :: listT u Ñ tgoods :: listT u Ñ tpalloc, paysq :: listT ˆ listR | vcgTruth ^ vcgPermu.
The two assertions vcgTruth and vcgPerm in the last component reflect two facts about VCG.
The first is that VCG is incentive compatible; this can be encoded like we have already
seen, with a slight twist: We require that VCG is IC for a deviation by any player rather
than just the first player, since we are placing the possibly deviating player’s type in a
random slot. More precisely, we define the formula

vcgTruth :“ @j P rms . pbids´j,1 “ bids´j,2 q ùñ
Expwts(j, bids1[j], alloc1[j]) ´ pays1[j] • Expwts(j, bids1[j], alloc2[j])q ´ pays2[j].

We treat the bid in the first run (bids1[j]) as the true type, and the bid on the second
run (bids2[j]) as a possible deviation; this is why we evaluate the jth bidder’s expected
utility using the same “true type”. The second fact we use is that VCG matches buyers
to the goods. In fact, since the number of goods (surrogates) and the number of buyers
(replicas) are equal, VCG produces a perfect matching. We express this by asserting
that VCG outputs an assignment that is a permutation of the goods:

vcgPerm :“ isPerm goods1 alloc1 ^ isPerm goods2 alloc2 .

We verify these properties for a general version of VCG. The verification follows much
like the current verification; we will discuss the details in § 5.

Step 3: Handling proof obligations
After providing the annotations, HOARe2 is able to automatically check most of the an-
notations with SMT solvers3—fully automated solvers that check the validity of logical
formulas. Such solvers are a staple of modern formal verification; while the underly-
ing problem is clearly undecidable, modern solvers employ a variety of sophisticated
heuristics that can efficiently handle many large formulas in practice.

We are able to use SMT solvers to automatically check all proof obligations, save one:
the proof obligation corresponding to Theorem 3.2. Concretely, this arises when we try
to calculate the utility by plugging in the other agents’ moves:
1 def Others(j, t) =
2 sample coins = rsmcoins;
3 (s, p) = Rsmdet(j, coins, t);
4 return s
5
6 Utility(Others)

For the last line (6), recall that we assert that Others is distribution preserving; we
need to check this fact. This is precisely Theorem 3.2, and is a bit too complex to solve
automatically.

To handle this last problematic assertion, we used a more manual tool called Easy-
Crypt [Barthe et al. 2011, 2014]. This tool is a proof assistant that proves equivalence

3Short for Satisfiability-Modulo-Theory, see Barrett, Sebastini, Seshia, and Tinelli [2009] for a survey.
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def stage1 =
sample ot = mu;
Others(ot)

def stage2 =
sample ot = mu;
sample r’ = mu;
sample s1 = mu;
sample s2 = mu;
sample i = flip;

if i then
(r1,r2) = (ot,r’);
else
(r1,r2) = (r’,ot);

bs = (r1,r2);
gs = (s1,s2);

(ss,ps) = Vcg(bs,gs);
(o1,o2) = ss;

if i then o1 else o2

def stage3 =
sample ot = mu;
sample r’ = mu;
sample s1 = mu;
sample s2 = mu;

(r1,r2) = (ot,r’);

bs = (r1,r2);
gs = (s1,s2);

(ss,ps) = Vcg(bs,gs);
(o1,o2) = ss;

sample i = flip;
if i then o1 else o2

def stage4 =
sample s1 = mu;
sample s2 = mu;
sample i = flip;
if i then s1

else s2

Fig. 3: Code transformations to prove Theorem 3.2.

of programs by transforming the program step by step, a common proof method in
cryptographic proofs known as game hopping [Bellare and Rogaway 2006; Halevi 2005].
For our purposes, we used EasyCrypt to prove that Others is equivalent to the program
that simply samples from mu. This involves transforming the code for Others (including
the code sampling the coins of the mechanism, rsmcoins) in several stages. We present
the code in Figure 3 with just two replicas, for simplicity.

The proof boils down to showing that each step transforms a program to an exactly
equivalent program. Our starting point is stage1, the program that samples an agent’s
type from mu and runs Others on the sampled value. Unfolding the definition of Others,
Rsmdet, rsmcoins and by making explicit the code that puts the agent’s input type in
the proper slot for the replicas we have the program stage2. From there, the main step
is to show that we don’t need to place the replicas in a random order before calling Vcg.
Then, we can move the sampling for i down past the Vcg call, giving stage3. Finally,
by using that the output assignment ss of Vcg is a permutation of the goods (s1, s2),
we obtain the program stage4, and conclude that this is equivalent to taking a single
sample from mu. This chain of transformations has been verified with EasyCrypt.

5. VERIFYING THE VCG MECHANISM
The celebrated VCG mechanism is cornerstone of the mechanism design literature.
It calculates an outcome maximizing social welfare (i.e., the sum of all the agents’
valuations) and payments ensuring that truthful bidding is incentive compatible. Let’s
briefly review the definition of this mechanism.

Definition 5.1 pVickrey [1961]; Clarke [1971]; Groves [1973]q. Let O be a space of
outcomes, and let v : T ˆ O Ñ R map agent types and outcomes to real values. Given a
reported type profile t from n agents, the VCG mechanism produces the social-welfare
maximizing outcome:

o
˚ :“ argmax

oPO

ÿ

iPrns
vpti, oq,
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and prices

pj :“ max
oPO

ÿ

iPrnsztju
vpti, oq ´

ÿ

iPrnsztju
vpti, o˚q.

That is, the price for agent j is the difference between the welfare for the other agents
without j present, and the welfare for the other agents with j present.

As Vickrey, Clarke, and Groves showed, this mechanism is incentive compatible.

Let’s consider how to verify incentive compatibility for VCG in HOARe2. Like for
RSM, we will start by coding the utility function for a single bidder. We will call it VcgM
to distinguish it from the more special case we need for RSM; Figure 4 presents the full
code.

1 def VcgM(values, range) =
2 welfare = sumFuns(values);
3 outcome = findMax(welfare, range);
4
5 for i = 1 . . . n:
6 welfWithout = sumFuns(values´i);
7 outWithout = findMax(welfWithout, range);
8 prices[i] = welfWithout(outWithout) - welfWithout(outcome)
9 end

10
11 (outcome, prices)

Fig. 4: Encoding the VCG mechanism in HOARe2

The parameters to VcgM are a list of valuation functions (values), and a set of
possible outcomes (range). We use two helper functions: sumFuns takes a list of valuation
functions and sums them to form the social welfare function; findMax takes a objective
function and a set of outcomes, and returns the outcome maximizing the objective.

To encode the incentive property, we will consider two runs of VcgM. We allow any
single agent to deviate on the two runs. No matter which agent deviates, we will model
her report in the first run as her “true” valuation. Then, we want to give VcgM the
following annotation:

tvalues : O Ñ Ru Ñ trange : listOu Ñ tpout, paysq : O ˆ listR | out P range ^ vcgTruthu.
The predicate vcgTruth captures the truthfulness, and is similar to the assertion in § 4:

vcgTruth :“ @j P rms . pvalues´j,1 “ values´j,2 q ùñ
values[j]1(out1[j]) ´ pays1[j] • values[j]1(out2[j]) ´ pays2[j].

With appropriate annotations on findMax, sumFuns, and the “all-but-j” operation p´q´j ,
HOARe2 verifies VCG automatically.

6. PERSPECTIVE
Now that we have presented our verification of the RSM mechanism, it’s worth asking:
what have we learned, and what does formal verification have to offer mechanism
design going forward?

Through our experience, we have found that while formal verification of game the-
oretic mechanisms is by no means automatic, practical verification of complex mech-
anisms is within reach. By “practical”, we mean that the formal proof should be (1)
constructible by people familiar with the proof, but not expert in formal verification; (2)
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concise, bearing as much resemblance to the original proof as possible; and (3) checkable
entirely automatically. While tools like HOARe2 do not meet all these criteria exactly,
we believe they come close. Our verification of RSM, for instance, involved only coding
the utility function (directly translated from the pseudocode) and adding annotations to
be checked automatically.

On the other hand, the range of mechanisms that can be practically verified is less
clear. Since we are trying to verify proofs, the main bottleneck is the complexity of the
proof, rather than the complexity of the mechanism itself. We do not have a precise
characterization of which mechanisms or proof structures can be feasibly verified in
systems like HOARe2 , but we are optimistic that these tools are mature enough to
capture most of the mechanisms proposed today.

Of course, the process of constructing the proof may be much more difficult that we
have shown for RSM; there is often a bit of an art in encoding a mechanism in the right
way, and some mechanisms are easier to verify than others. We can only offer some
observations from our experience: Clean proofs where each step reasons about localized
parts of the program area are easier to verify; reworking an ad hoc proof to use common
patterns—like universal truthfulness—can also simplify verification.

One interesting challenge for formal verification is handling mechanisms that operate
as extensive form games, rather than one-shot games. These mechanisms are common-
place in practice (e.g., the ascending price auction), but there are several obstacles to
verification. First, extensive-form mechanisms rarely make sincere bidding a dominant
strategy, because of the possibility of threats from other agents. Hence, we may need
to work with more delicate solution concepts, like ex-post Nash equilibrium. Second,
the execution of an ascending price auction involves not just the code describing the
auction mechanism, but also the decisions of all the agents across the rounds. While
our verification of BIC already models the other agents, the agents in an extensive
form game can behave adaptively and are more difficult to model; here, we may hope to
borrow ideas from verification of cryptographic systems, which often involves modeling
adaptive agents/adversaries.

While there are many other directions for future work in formal verification, let
us conclude with implications for mechanism design. Formal verification can manage
the increasing complexity of mechanisms by formally proving incentive properties for
everyone—mechanism designers, mechanism users, and even mechanism programmers.
As we have shown, the tools to verify one-shot mechanisms are already here. So, we pro-
pose a challenge: Try using tools like HOARe2 to verify your own mechanisms, putting
formal verification techniques to the test. We hope in the near future, verification for
mechanisms will be both easy and commonplace!
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A. A PRIMER ON PROGRAM VERIFICATION
Program correctness and program verification have a venerable history. In a visionary
article, Turing [1949] presents a rigorous proof of correctness for a computer routine;
although very short, this note prefigures the current trends in deductive program
verification and introduces many fundamental ideas and concepts that still remain at

Draft., Vol. V, No. N, Article A, Publication date: January YYYY.



A:16

the core of program verification today. In particular, Turing makes a clear distinction
between the programmer and the verifier, and argues that in order to alleviate the
task of the verifier, the programmer should annotate his code with assertions, i.e.
predicates on program states. Moreover, Turing argues that it should be possible to
verify assertions locally and that the correctness of the routine should be expressed
by the initial and final assertions, i.e. the assertions attached to the entry and exit
points, which respectively capture hypotheses on the program inputs and claims about
the program outputs.

Leveraging contemporary developments in programming language theory, the semi-
nal works of Floyd [1967] and Hoare [1969] formalize verification methods that adhere
to the program proposed by Turing. Both formalisms share similar principles and make
a central use of invariants for reasoning about programs with complex control-flow; for
instance, both methods use loop invariants—assertions that hold when the program
enters a loop and remain valid during loop iterations. However, the methods differ in the
specifics of proving program correctness. On the one hand, Hoare logic provides a proof
system—a set of axioms and rules for combining axioms—that can be used to build valid
formal proofs that establish program correctness. On the other hand, Floyd calculus
computes—from an annotated program—a set of verification conditions: formulas of
some formal language such as first-order logic, whose validity implies correctness of
the program. Despite their differences, the two approaches can be proved equivalent,
and assuming that the underlying language of assertions is sufficiently expressive, are
relatively complete Cook [1978]; relative completeness reduces the validity of program
specifications to the validity of assertions.

Both Floyd [1967] and Hoare [1969] are designed to reason about properties, i.e.
sets of program executions. They cannot reason about the larger class of hyperprop-
erties Clarkson and Schneider [2008], which characterize sets of sets of program ex-
ecutions. Continuity (small variations on the input induce small variations on the
output), and truthfulness (pay-off is maximized when agents play their true value)
are prominent binary instances of hyperproperties - also named relational properties.
Reasoning about relational properties is challenging and subject of active research in
programming languages. A way for reasoning about such properties is by using rela-
tional variants of Floyd [1967] and Hoare [1969]. These variants Benton [2004] reason
about two programs (or two copies of the same program) and use so-called relational
assertions, assertions which describe pairs of states.

Another challenge in program verification is to deal with probabilistic programs.
Starting from the seminal work of Kozen [1985], numerous logics have been proposed
to reason about properties of probabilistic programs, including [Morgan, McIver, and
Seidel 1996; Chadha, Cruz-Filipe, Mateus, and Sernadas 2007]. More recently, Barthe,
Grégoire, and Zanella-Béguelin [2009] propose a relational logic for reasoning about
probabilistic programs. Barthe et al. [2015] extend and generalize the relational logic
to the setting of a higher-order programming language.

In recent years, the theoretical advances in program verification have been matched
by the emergence of computer-aided verification tools that have successfully validated
large software developments. Most tools implement algorithms for computing verifi-
cation conditions; the algorithms are similar in spirit to Floyd [1967], although they
typically use optimizations [Flanagan and Saxe 2001]. Moreover, most systems use
fully automated tools to check that verification conditions are valid. However, there
is a growing trend to complement this process with an interactive phase, where the
programmer interactively builds a proof of difficult verification conditions that can-
not be proved automatically. Contrary to automated tools, which try to find a proof
of validity, interactive tools try to check that the proof of validity built interactively
by the programmer is indeed a valid proof. This interactive phase is often required
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for proving rich properties of complex programs. It is also often helpful for proving
relational properties of probabilistic programs Barthe et al. [2014].

So far, our account of formal verification has focused on so-called deductive meth-
ods: methods where the verification corresponds to build formal proofs that can be
constructed using a finite set of rules starting from a given set of axioms. However,
there are many alternative methods for proving program correctness. In particular,
algorithmic methods, such as model-checking, have been highly successful for analyzing
properties of large systems. Algorithmic methods are fundamentally limited by the state
explosion problem, since the methods become intractable when the state space becomes
too large. Modern tools based on algorithmic verification exploit a number of insights
for alleviating the state explosion problem, including symbolic representations of the
state space, partial order reduction techniques, and abstraction/refinement techniques.

B. RELATED WORK IN COMPUTER-AIDED PROGRAM VERIFICATION
There is a small amount of work in the programming languages and computer-aided
program verification literature on verification of truthfulness in mechanism design.
Lapets, Levin, and Parkes [2008] give an interesting approach, by presenting a pro-
gramming language for automatically verifying simple auction mechanisms. A key
component of the language is a type analysis to determine if an algorithm is monotone;
if bidders have a single real number as their value (single-parameter domains), then
truthfulness is equivalent to a monotonicity property (e.g., see Mu’Alem and Nisan
[2008]). Their language can be extended by means of user-defined primitives that pre-
serve monotonicity. The paper shows the use of the language for verifying two simple
auction examples, but it is unclear how this approach scales to larger auctions, and
does not extend beyond single parameter domains.

Wooldridge, Agotnes, Dunne, and van der Hoek [2007] promote the use of automatic
verification techniques where mechanism design properties are described by means of
specification logics (like Alternating Temporal Logic [Alur, Henzinger, and Kupferman
2002]), and where the verification is performed in an automatic way by using the
model checking technique. Similarly, Tadjouddine and Guerin [2007] propose a similar
approach where first order logic is used as a specification logic. This approach works well
for simple auctions with few numbers of bidders but incurs in a state explosion when the
auctions are complex or the number of bidders is large. This situation can be alleviated
by combining different engineering techniques [Tadjouddine, Guerin, and Vasconcelos
2009], but it is unclear if this approach can be scaled to handle complex auctions with a
large number of bidders. Moreover, these automatic approaches do not work in setting
of incomplete information like the one for Bayesian Incentive Compatibility.

An alternative approach based on interactive theorem proving has been explored
by Bai, Tadjouddine, Payne, and Guan [2013]. Interactive theorem provers permit
to specify and formally reason about arbitrary auctions and different truthfulness
properties. More in general they can be used to formalize large parts of mathematics
Gonthier, Asperti, Avigad, Bertot, Cohen, Garillot, Roux, Mahboubi, O’Connor, Biha,
Pasca, Rideau, Solovyev, Tassi, and Théry [2013]. Unfortunately, verifying the required
properties can require advanced proof formalization skills that only specialized user
have. Moreover, the complete formalization of complex auctions can require a huge
amount of work also for specialized users. The examples showed by Bai et al. [2013] are
very simple mechanisms like English and Vickrey auctions.
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