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Abstract—Let π be an efficient two-party protocol that
given security parameter κ, both parties output single bits
Xκ and Yκ, respectively. We are interested in how (Xκ, Yκ)
“appears” to an efficient adversary that only views the
transcript Tκ. We make the following contributions:
• We develop new tools to argue about this loose notion,

and show (modulo some caveats) that for every such
protocol π, there exists an efficient simulator such
that the following holds: on input Tκ, the simulator
outputs a pair (X ′

κ, Y
′
κ) such that (X ′

κ, Y
′
κ, Tκ) is

(somewhat) computationally indistinguishable from
(Xκ, Yκ, Tκ).

• We use these tools to prove the following dichotomy
theorem: every such protocol π is:
– either uncorrelated — it is (somewhat) indistin-

guishable from an efficient protocol whose parties
interact to produce Tκ, but then choose their out-
puts independently from some product distribution
(that is determined in poly-time from Tκ),

– or, the protocol implies a key-agreement protocol
(for infinitely many κ’s).

Uncorrelated protocols are uninteresting from a
cryptographic viewpoint, as the correlation between
outputs is (computationally) trivial. Our dichotomy
shows that every protocol is either completely unin-
teresting or implies key-agreement.

• We use the above dichotomy to make progress on
open problems on minimal cryptographic assump-
tions required for differentially private mechanisms
for the XOR function.

• A subsequent work of Haitner et al. uses the above
dichotomy to makes progress on a long-standing open
question regarding the complexity of fair two-party
coin-flipping protocols.

We highlight the following ideas regarding our technique:
• The simulator algorithm is obtained by a carefully

designed “competition” between efficient algorithms
attempting to forecast (Xκ, Yκ)|Tκ=t. The winner is
used to simulate the outputs of the protocol.

• Our key-agreement protocol uses the simulation to
reduce to an information theoretic setup, and is in
some sense non-black box.

Keywords-computational correlation; key agreement;
differential privacy;

I. INTRODUCTION

In this paper we discuss “computational correlation”

of efficient single-bit output two-party protocols. We

start with some notation for such protocols.
Two-party protocols with single bit output. We are

interested in probabilistic polynomial-time (PPT), two-

party, no-input, single-bit output protocols: the PPT

parties receive a common input 1κ (i.e., a security

parameter), and each party outputs a single bit. For such

protocols π = (A,B) we use the notation:

π(1κ) = (A,B)(1κ) = (Xκ, Yκ, Tκ).

where Xκ is the output of A, Yκ is the output of B, and

Tκ is the transcript of the protocol. Loosely speaking,

we are interested in the correlation that an execution

of π(1κ) generates between Xκ and Yκ, when viewed

from the point of view of a PPT algorithm that receives

only the transcript Tκ as input.
Key-agreement protocols: We will be interested in

“computational correlation” between the outputs of a

protocol. It is instructive to consider the example of

key-agreement protocols. The latter are PPT protocols

with the following properties:

• Secrecy: Pr [E(Tκ) = Xκ] ≤ 1
2 + s(κ) for every

PPT algorithm (eavesdropper) E. (Here the standard

choice for s(κ) is a negligible function, but we

will also consider versions where s(κ) = s is a

constant).

• Agreement: Pr [Xκ = Yκ] ≥ 1
2 + a(κ). (Here the

standard choice for a(κ) is half minus a negligible

function, but we will also consider versions where

a(κ) = a is a constant, and a > s).

The reader is referred to [2] for a survey on key-

agreement protocols. We remark that by [2], a key-

agreement protocol for constants s and a with s <
a2/10, implies a full-fledged key-agreement protocol

(i.e., with the standard choices of agreement and se-

crecy).
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Computational correlation: Loosely speaking,

from the “point of view” of a PPT algorithm E that

only sees the transcript t of a key-agreement protocol,

the probability space (Xκ, Yκ)|Tκ=t “should look like”

(R,R), for R being a uniform bit (unknown to E). This

in contrast to the view of an unbounded E: since for

any protocol, and every transcript t, (Xκ, Yκ)|Tκ=t is a

product distribution.

An important contribution of this paper is developing

tools to formalize the vague notion of “computational

correlation” in a rigorous (and as we shall explain)

useful way. Specifically, we show that (modulo some

caveats and technicalities that we soon explain) for

every single-bit output, two-party protocol, there exists

a PPT algorithm (simulator) Sim such the the following

holds: on input Tκ, Sim outputs two bits (simulated

outputs) (X ′
κ, Y

′
κ) such that the simulated experiment

(X ′
κ, Y

′
κ, Tκ) is computationally indistinguishable from

(real) experiment (Xκ, Yκ, Tκ).

The simulated experiment represents the “best under-

standing” that a PPT can obtain on the real experiment.

We find it quite surprising that such a clean notion

exists. One could have expected that different PPT’s

have “different views” or “different understanding” of

the real execution, and it is impossible to come up with

a single simulated distribution that represents the “col-

lective understanding” of all PPT’s. Loosely speaking,

the above yields that such two-party protocols can be

classified as follows:

• Protocols in which the simulated distribution

(X ′
κ, Y

′
κ, Tκ) has the property that (X ′

κ, Y
′
κ) are

independent, conditioned on every fixing of Tκ. We

will call such protocols “uncorrelated”.

• Protocols in which the simulated distribution

(X ′
κ, Y

′
κ, Tκ) has the property that (X ′

κ, Y
′
κ) are

correlated given Tκ (at least for some fixings of

Tκ).

Uncorrelated protocols are cryptographically unin-
teresting: Uncorrelated protocols are uninteresting from

a cryptographic viewpoint; whenever we have such a

protocol π, we can imagine that the parties use the

following alternative trivial protocol π̂ = (Â, B̂): party

Â samples a transcript Tκ (on his own) and sends Tκ to

B̂. Then each party samples its output (independently)

by applying the simulator for π on Tκ.

As is often the case in simulation, if a PPT adversary

E is able to perform some task (that is defined in terms

of the original triplet (Xκ, Yκ, Tκ)), then it achieves

roughly the same success on the simulated triplet

(X ′
κ, Y

′
κ, Tκ). Specifically, if π is a key-agreement pro-

tocol, then π̂ is also a key-agreement protocol. The

latter, however, is obviously false. This is because given

Tκ, the adversary E can use the simulator to sample X ′
κ

with probability that is at least as large as Pr [X ′
κ = Y ′κ].

This means that in π̂ secrecy is less than agreement,

ruling out any meaningful form of key-agreement.

Correlated protocols yield key-agreement: In this

paper we prove that (again, modulo some caveats and

technicalities that we soon explain) if a protocol is

correlated, then it can be transformed into a key-

agreement protocol. This can be interpreted as the

following dichotomy theorem:

Every PPT single-bit output two-party pro-

tocol is either uncorrelated (and is indistin-

guishable from a trivial and cryptographically

uninteresting protocol), or it implies a key-

agreement protocol.

We find this quite surprising. Intuitively, key-

agreement protocols and trivial protocols represent two

extremes in the spectrum of two-party protocols, and

one may expect that there are many interesting inter-

mediate types in between the two extremes.1

A. Our Results

1) Every two-party single bit output protocol has
a simulator and a forecaster: We show that every

protocol has a PPT simulator that, seeing only the

transcript, produces a simulated distribution simulating

the (real) output distribution of the protocol.

Theorem I.1 (Existence of PPT simulators (informal)).
Let π = (A,B) be a PPT no-input, single-bit output
two-party protocol. For every ρ > 0 there exists a PPT

Sim such that when given (1κ, t), Sim(1κ, t) outputs two
bits, (x′, y′) such that the following holds: Let REAL =
{REALκ}κ∈N and SML = {SMLκ}κ∈N be ensembles
defined as follows: REALκ = π(1k) = (Xκ, Yκ, Tκ) and
let SMLκ = (X ′

κ, Y
′
κ, Tκ) for (X ′

κ, Y
′
κ) = Sim(1κ, Tκ).

For infinitely many κ ∈ N, REAL cannot be distinguished
from SML with advantage ρ by PPT algorithms.

(A precise formal definition of computational indistin-

guishability with advantage ρ is given in Definition II.1.

Theorem I.1 is formally stated in Section III in a more

general form.)

Theorem I.1 comes with two caveats:

1One illuminating “intermediate setup” is “defective key-agreement
protocols” in which the agreement and secrecy properties above hold,
but with a < s (namely, agreement is smaller than secrecy, and this
is not a cryptographically meaningful key-agreement). Such protocols
can be uncorrelated (and trivial), but they can also be correlated,
and thus, by our result, imply key-agreement. As we shall explain,
this approach yields several new results, as in some cases it was
previously unknown whether key-agreement protocols are implied,
but it is possible to show that the protocol is not uncorrelated.
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• The simulated ensemble SML is only guaranteed to

resemble the real ensemble REAL on some infinite

subset I of κ ∈ N.

• For κ ∈ I, REAL and SML are only weakly indis-

tinguishable as ρ is not negligible.

We do not know whether the theorem can be proven

without these caveats. We mention that most the ma-

chinery that we develop (with one notable exception)

can be used towards proving a version without the

caveats. As we will demonstrate, in some cases, the

caveats do not affect applications, and we can prove

clean results using the theorem.

Remark I.2 (Auxiliary input simulators, and the leak-

age simulation lemma). Theorem I.1 is similar in spirit
to the so called “leakage simulation lemma” [3, 4, 5,
6, 7, 8].

In the leakage simulation lemma one considers a
pair (T, Z) of random variables, and a finite class
C of “distinguisher functions” (which is typically the
class of circuits of some size s, and so we will assume
this for this discussion). The lemma states that there
is a “simulator function” Sim of circuit complexity s′,
which on input T produces a string Z ′ such that no
distinguisher D from C can distinguish (T, Z) from
(T, Z ′) with advantage greater than some parameter
ρ > 0. The complexity s′ is some polynomial in s, �, 1

ρ
(where � is the bit length of Z). The reader is referred
to [8] for a discussion of works in this framework.

There are two differences between the leakage simu-
lation lemma and Theorem I.1:

• The class of distinguishers C that we consider
are randomized polynomial time machines, and we
show the existence of a simulator Sim that belongs

to this class. This is crucial in our applications.
In contrast, in the leakage simulation lemma the
simulator is a circuit of size s′ > s and does not

belong to the class C. Moreover, there are negative
results [3, 8] showing limitations on proving the
leakage simulation lemma with s′ ≤ s.

• In Theorem I.1 we can only achieve ρ > 0 that
is constant, whereas the leakage simulation lemma
can achieve much smaller ρ (and this is crucial in
some of its applications).

Forecasters. In applications, it will be useful to as-

sume that the simulators work in the following specific

fashion: there is a “forecaster algorithm” F which on

input t, generates a description of the probability space

(X ′
κ, Y

′
κ)|Tκ=t. For technical reasons, it is helpful to

think of the forecaster F as a deterministic poly-time

algorithm that receives its random coin r, as an addi-

tional input. Given input (1κ, t, r) the forecaster outputs

three numbers:

• pA which is a “forecast” for Pr [Xκ = 1 | Tκ = t].
• pB|0 which is a “forecast” for

Pr [Yκ = 1 | Tκ = t,Xκ = 0].
• pB|1 which is a “forecast” for

Pr [Yκ = 1 | Tκ = t,Xκ = 1].

All that is left for the simulator is to sample according

to this forecast. For p ∈ [0, 1], we will use the notation

Up to denote the distribution of a biased coin that is one

with probability p. We can now restate Theorem I.1 in

the following more general form:

Theorem I.3 (Existence of PPT forecasters, infor-

mal). Let π = (A,B) be a PPT no-input, single-
bit output two-party protocol. For every ρ >
0 there exists a deterministic poly-time machine
F that on input (1κ, t, r) outputs three numbers
pA, pB|0, pB|1 ∈ [0, 1] such that the following holds:
let Rκ be a uniform polynomially long string (intu-
itively R serves as the random coins of F), and let
REAL =

{
REALκ = (π(1k), Rκ) = (Xκ, Yκ, Tκ, Rκ)

}
and SML = {SMLκ = (X ′

κ, Y
′
κ, Tκ, Rκ)} be the distri-

bution ensembles obtained by:
• (pA, pB|0, pB|1) = F(1κ, Tκ, Rκ).
• X ′

κ ← UpA
and Y ′κ ← UpB|X′

κ
.

Then for infinitely many κ ∈ N, REAL cannot be distin-
guished from SML with advantage ρ by PPT algorithms.

(Theorem I.3 is formally stated in Section III.)

Theorems I.1 and I.3 may be of independent interest,

and we believe that they will find more applications.

This is because the simulator induces a single distri-

bution that is computationally indistinguishable (albeit

only with advantage ρ = o(1)) from the real output

distribution of the protocol. Moreover, in the simulated

distribution (X ′
κ, Y

′
κ, Tκ) (sampled using the forecaster)

the variables (X ′
κ, Y

′
κ) have information theoretic un-

certainty conditioned on {Tκ = t}. This enables us to

use tools and techniques from information theory on

the simulated distribution, and obtain results about the

computational security of the original protocol (and

protocols that we construct from it). Indeed, we use this

approach in our applications.

We believe that a helpful analogy is the notion of

computational entropy: which in some cases, given a

distribution X assigns a distribution X ′ that is compu-

tationally indistinguishable from X and has information
theoretic uncertainty.

2) A Dichotomy of Single-bit Output Two-Party Pro-
tocols: We now give a precise definition of uncor-

related protocols. For that purpose we introduce the
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following notion of a “decorrelator”. Loosely speaking,

a decorrelator is a forecaster that forecasts that (Xκ, Yκ)
are independent conditioned on T . Once again, for

technical reasons, it is helpful to think of a decorrelator

as a deterministic poly-time algorithm that receives its

random coin r, as an additional input.

Definition I.4 (ρ-decorrelator, and ρ-uncorrelated pro-

tocols, informal). A deterministic poly-time algorithm
Decor(t, r) is a ρ-decorrelator for protocol π = (A,B)
if the following holds: let REAL = {REALκ}κ∈N and
UCR = {UCRκ}κ∈N be ensembles defined as follows:
REALκ = (π(1k);Rκ) = (Xκ, Yκ, Tκ, Rκ) where Rκ

is a uniformly chosen independent polynomially long
string (that intuitively serves as the random coins of
Decor). Let UCRκ = (X ′

κ, Y
′
κ, Tκ, Rκ) where (pA, pB) =

Decor(Tκ, Rκ), and (independently sampled) X ′
κ ←

UpA
and Y ′κ ← UpB

. It is required that for infinitely
many κ ∈ N, REAL cannot be distinguished from UCR

with advantage ρ by PPT algorithms.
A protocol π is ρ-uncorrelated if it has a ρ-
decorrelator.

(Definition I.4 is formally stated in Section III.)

Loosely speaking, the fact that the randomness Rκ

appears in the two experiments, prevents the decorrela-

tor from using Rκ to correlate between X ′
κ and Y ′κ. In

the definition the latter should appear independent, even

after seeing Rκ.

We observe that ρ-uncorrelated protocols are uninter-

esting from a cryptographic viewpoint in the following

sense (that is made precise in Section III):

• A ρ-uncorrelated protocol cannot be a key-

agreement protocol for s < a+ 2ρ.

• If a “black-box construction” that makes � invo-

cations to a ρ-uncorrelated protocol, yields a key-

agreement protocol with s < a + 3 · � · ρ, then

the black-box construction itself can be used to

give a key-agreement (with the standard choices

of secrecy and agreement) that does not use the

original protocol. This means that a ρ-uncorrelated

protocol cannot be converted into an “interesting”

protocol by a black-box construction that invokes

it few times.

Loosely speaking, both properties follow because an un-

correlated protocol is somewhat indistinguishable from

one in which one party samples (Tκ, Rκ) on his own,

sends them to the other party, and each of the parties

runs Decor(Tκ, Rκ) and samples its output indepen-

dently (party A samples X ← UpA
, and party B samples

Y ← UpB
). The latter protocol can be easily attacked,

and by indistinguishability, this attack also succeeds on

the original protocol.

We prove the following classification theorem:

Theorem I.5 (Dichotomy theorem, informal). Let π =
(A,B) be a PPT no-input, single-bit output two-party
protocol. Then at least one of the following hold:

• π can be transformed into a key-agreement proto-
col (for infinitely many κ ∈ N).

• For every constant ρ > 0, π is ρ-uncorrelated (for
infinitely many κ ∈ N).

(Theorem I.5 is formally stated in Section III.)

The fact that we have statements on “infinitely many

κ’s” is unavoidable: it could be the case that on even

κ, the protocol is a key agreement, and on odd κ, the

protocol is trivial and performs no interaction.2

Once again, a caveat is the fact that we only get the

result for ρ = o(1) and not for negligible ρ (as is the

standard in computational indistinguishability). It is an

interesting open problem to extend our results to

small ρ.

We demonstrate the usefulness of Theorem I.5 below.

It is important to emphasize that the caveats in Theo-

rem I.5 (and specifically, the limitation on ρ) do not

matter for some of our suggested applications.

3) Perspective: Comparison to Impagliazzo and Luby
Dichotomy Theorem: A celebrated result of Impagli-

azzo and Luby [9] is that distributional one-way func-

tions imply one-way functions. This can be loosely

stated this way:

Theorem I.6 (Impagliazzo and Luby [9], informal). Let
f be a poly-time computable function, then at least one
of the following holds:

• f can be transformed into a one-way function.
• f has a PPT inverter (for infinitely many κ ∈ N).

Namely, for every constant c, there exists a PPT Inv
such that for infinitely many κ ∈ N the following
holds: let Xκ ← Uκ and Tκ = f(Xκ). It holds
that (Xκ, Tκ) is (ρ = κ−c)-close to (X ′

κ, Tκ), for
X ′

κ = Inv(Tκ).

This theorem is celebrated for (at least) two reasons:

first, it gives a dichotomy of poly-time functions (ruling

out intermediate cases). Second, it gives a methodology

to show that cryptographic primitives imply one-way

functions: it is sufficient to show that the primitive has

a component that cannot be inverted.

2However, the fact that we have “for infinitely many κ” in the two
items, and not just in one, is an artifact of our proof technique, and
it is natural to ask whether the result can be improved to have such
a statement in only one of the items (as in the case of the Theorem
of Impagliazzo and Luby [9] that we mention in the next section).
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Our Theorem I.5 can be viewed as an analogous

theorem for two-party protocols: either a protocol π
implies key-agreement or it has a PPT decorrelator.

Indeed, Theorem I.5 gives a dichotomy of two-party

protocols, and in order to show that a protocol implies

key-agreement, it is now sufficient to show that it is

not uncorrelated. We will present applications of this

methodology in Section I-B.

We remark that many of the applications of the

Impagliazzo and Luby [9] classification do not require

that ρ is small, and would have worked just the same

for constant ρ.3 Analogously, the fact that ρ is not

very small in our theorem is sometimes unimportant

in applications.

B. Consequences of our Dichotomy Theorem

We demonstrate the usefulness of our result by show-

ing that it can be used to answer some open problems

regarding differentially private protocols and coin flip-

ping protocols. We now elaborate on these results.

1) Application to Differentially Private XOR: In a

symmetric differentially private computation, the parties

wish to compute a joint function of their inputs while

keeping their inputs somewhat private. This is somewhat

different from the classical client-server setting that is

commonly addressed in the differentially privacy litera-

ture, where the the server, holding the data, answers the

client’s question while keeping the the data somewhat

private.

A natural question is what assumptions are needed

for such (symmetric) differentially private computation

achieving certain level of accuracy. A sequence of work

showed that for certain tasks, achieving high accuracy

requires one-way functions [10, 11, 12, 13]; some

cannot even be instantiated in the random oracle model

[14]; and some cannot be black-box reduced to key

agreement [15]. See Section I-D for more details on

these results. Recently, see more details below, [16]

have shown that a protocol for computing the XOR

of optimal accuracy (i.e., that matches the client server

accuracy for XOR) implies the existence of oblivious

transfer protocols (that are also sufficient for this task).

We show that the existence of a symmetric differ-

ential private protocol for computing Boolean XOR

that achieves non-trivial accuracy (i.e., better that what

3Loosely speaking, this happens whenever we have a cryptographic
primitive where security can be amplified. For such protocols, a
weaker version of [9] yields that either the primitive implies one-
way functions or it has a PPT ρ-inverter for some constant ρ > 0.
Then, using security amplification we obtain a more secure target
primitive, such that an adversary that breaks the target primitive with
small success ρ′ = κ−c can be transformed into one that breaks the
original protocol with large success ρ > 0.

can be achieved when the eavesdropper is unbounded),

implies the existence of a key-agreement protocol.

To prove the above result we consider protocols in

which the two parties receive inputs x, y ∈ {0, 1} and

each outputs a bit. A two-party protocol π = (A,B) for

computing the XOR functionally is α-correct, if

Pr [(A(X),B(Y )) = (X ⊕ Y,X ⊕ Y )] ≥ 1

2
+ α

Such a protocol is (computationally) ε-differentially
private, if for every x and efficient distinguisher D

Pr
[
D(viewA

π(x, 0)) = 1
]

Pr
[
D(viewA

π(x, 1)) = 1
] ∈ e±ε

letting viewA
π(x, y) being A’s view in a random execu-

tion of (A(x),B(y));4 namely, the input of B remains

somewhat private from the point of view of A. And the

same should hold for the privacy of A.

The protocol has perfect agreement, if the parties’

output is always the same (though might be different

from the XOR). The results below are all stated with

respect to such perfect agreement protocols, though the

lower bound (including ours) allows disagreement in the

magnitude of the differential privacy parameter ε.

Theorem I.7. [Differentially private XOR to key agree-
ment, informal] For every ε > 0, the existence of 21ε2-
correct ε-differentially private protocol for computing
XOR, implies the existence of an infinitely-often secure
key-agreement protocol.

The above dependency between ε and α is tight

since a Θ(ε2)-correct, ε-differential private, protocol

for computing XOR can be constructed (with informa-

tion theoretic security) using the so-called randomized
response approach Warner [18]. It improves, in the

(ε, α) dependency aspect, upon Goyal et al. [16] who

showed that, for some constant c > 0, a cε-correct

ε-differentially private XOR implies oblivious transfer,

and upon Goyal et al. [13] who showed that cε2-correct

ε-differentially XOR implies one-way functions.

Theorem I.7 extends for a weaker notion of privacy

in which differential privacy is only guaranteed to

hold against an external observer (assuming that the

protocol’s transcript explicitly states the parties common

output). For such protocols, key agreement is a sufficient

assumption.5 Finally, we mention that since we use

4A more general definition allows also an additive error term. We
address this definition in the full version [17].

5One party sends its encrypted input to the other party, who in turn
computes the XOR of both inputs and publishes a noisy version (e.g.,
flipped with probability 1

2
− ε) of the outcome.
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Theorem I.5, the reduction we use to prove Theorem I.7

is non black box in the adversary.

2) Application to Fair Coin Flipping: In a follow-

up work, Haitner, Makriyannis, and Omri [1] used

Theorem I.5 to prove that key-agreement is a necessary

assumption for two-party r-round coin-flipping protocol

of bias smaller than 1/
√
r (as long as r is independent

of the security parameter). This partially answers a long-

standing open question asking whether the existence

of such two-party fair-coin flipping implies public-key

cryptography. Previous to Haitner et al. [1] result, it

was not even known that such protocols cannot be

constructed in the random oracle model [19, 20].

In a very high level, [1] took the following approach.

Assume key-agreement protocols do not exists, then

the main result of this paper (Theorem I.5) yields that

any protocol, and in particular an r-round coin-flipping

protocol, has a decorrelator. Haitner et al. [1] showed

how to use this decorrelator to mount an efficient variant

of the Cleve and Impagliazzo [21] attack to bias the

outcome of one of the parties by 1/
√
r. (The bound of

[1] only holds for constant-round protocols, since for

the attack to go through the decorrelator’s error has to

be smaller than 1/
√
r, which can only be achieved, at

least using Theorem I.5, for constant r.)

C. Our Technique

1) A Competition of Forecasters: In this section

we explain the high level idea behind the proof of

Theorem I.3. Our goal is to understand “how Xκ and Yκ

are distributed from the point of view of a PPT algorithm

that receives Tκ as input”. For this purpose, we set up

a competition between all PPT forecasters. We will use

the winner in this competition as our forecaster.

Given a transcript t, a participant forecaster is re-

quired to output three numbers pA, pB|0, pB|1 ∈ [0, 1].
For every forecaster F and every κ ∈ N, we associate

a price priceκ(F). The minimal price is obtained by a

forecaster that outputs pA = Pr [Xκ = 1 | Tκ = t] and

pB|b = Pr [Yκ = 1 | Tκ = t,Xκ = b]. Note however,

that a PPT forecaster might not be able to compute these

quantities.

Existence of optimal forecasters. We will not give a

precise definition of the price function in this overview.

At this point, we observe that for every choice of price

function where prices are in [0, 1], this competition has

winners, in the following sense: we say that F is μ-
optimal, if there exists an infinite subset I ⊆ N such

that priceκ(F) ≤ priceκ(F
′) + μ for every other PPT

F′ and sufficiently large κ ∈ I. This intuitively says

that F cannot be significantly improved on the subset

I. We claim that for every constant μ > 0 there exists

a μ-optimal forecaster.

This follows as we can imagine the following iterative

process: we start with some forecaster F and I = N.

At each step, either F cannot be improved by μ, on

infinitely many κ ∈ I (which means that F is μ-

optimal), or else, there exists an infinite I ′ ⊆ I, and

a forecaster F′ that improves F by μ in I ′. In that case

we set I = I ′, F = F′ and continue. It is clear that at

every iteration we improve the price by μ, and this can

happen only 1/μ times, this process shows the existence

of a μ-optimal forecaster.6

Indistinguishability for optimal forecasters: Let

F be a μ-optimal forecaster, we can use F to pro-

duce a forecasted distribution (as in Theorem I.3).

Namely, given t ← Tκ, we apply F(t) to compute

pA(t), pB|0(t), pB|1(t), and use these forecasts to pro-

duce a distribution (X ′
κ, Y

′
κ) by sampling X ′

κ ← UpA(t)

and Y ′κ ← UpB|X′
κ
(t). This can indeed be done in

poly-time (and in this informal discussion we omit the

additional random input r).

We show that if a PPT D distinguishes (Xκ, Yκ, Tκ)
from (X ′

κ, Y
′
κ, Tκ), then D can be used to construct

an improved PPT F′ whose priceκ(F
′) is smaller than

priceκ(F) by some function of the distinguishing ad-

vantage ρ.7 This is a contradiction to the μ-optimality

of F if ρ is sufficiently large.

At the risk of getting too technical, let us try to

explain how this argument works. The reader can skip to

Section I-C2 that does not depend on the next paragraph.

It is helpful to note that (X ′
κ, Y

′
κ, Tκ) can be seen as

(X ′
κ, g(X

′
κ, Tκ), Tκ) where g is a probabilistic function.

It is helpful to consider the hybrid distribution H =
(Xκ, g(Xκ, Tκ), Tκ). Using a hybrid argument, we have

that one of the following happens:

• D distinguishes (X ′
κ, g(X

′
κ, Tκ), Tκ) from H =

(Xκ, g(Xκ, Tκ), Tκ). This induces a D′ that distin-

guishes (X ′
κ, Tκ) = (UpA(Tκ), Tκ) from (Xκ, Tκ)

• D distinguishes (Xκ, Yκ, Tκ) from

H = (Xκ, g(Xκ, Tκ), Tκ). This gives that

there exists b ∈ {0, 1}, and a D′ such

6A drawback of the argument above is that it only works for
constant μ > 0. The distinguishing parameter ρ, will be selected to
be say μ1/10, and this is why we only get the result in Theorem I.1,
Theorem I.3 and Theorem I.5 for constant ρ > 0. Consequently, if we
could guarantee the existence of an optimal forecaster for smaller μ,
we will immediately improve our results. Another drawback is that
this argument only works on some infinite subset I ⊆ N and this
is the reason we get “for infinitely many κ” in our theorems. The
remainder of our machinery does not require these caveats.

7This overall approach is also taken by some proofs of the “leakage
simulation lemma” that was mentioned in remark I.2.
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that D′ distinguishes (Yκ, Tκ)|Xκ=b from

(Y ′κ, Tκ)|Xκ=b = (UpB|b(Tκ), Tκ)|Xκ=b.

We have made progress, in that in both cases we have re-

duced the number of variables from three to two, while

obtaining a distinguisher D′ that distinguishes between

a “real distribution” and a “forecasted distribution”.

Let’s assume without loss of generality that the first

case happens. Note that D′ obtains no distinguishing

advantage on t if D′(t, 0) = D′(t, 1).
Assume without loss of generality that D′ is more

likely to answer one on the real distribution than on

the forecasted distribution. This intuitively means that

on average, given a t← Tκ, by trying out D′(t, 0) and

D′(t, 1) we can figure out what “D′ thinks” is more

likely to be the bit of the forecasted distribution, and

improve the forecast of F. Specifically,

• If D′(t, 0) = D′(t, 1) then D does not gain on t,
and we won’t modify the forecast of F on t.

• If D′(t, 1) = 1 and D′(t, 0) = 0 then “D′ thinks”

that F’s forecast for Pr [Xκ = 1 | Tκ = t] was too

low, and it makes sense to increase it.

• If D′(t, 0) = 1 and D′(t, 1) = 0 then “D′ thinks”

that F’s forecast for Pr [Xκ = 1 | Tκ = t] was too

high, and it makes sense to decrease it.

By using this rationale, we can guarantee that the

modified forecast (which can be computed in poly-

time) improves upon F’s forecast (at least on average

t ← Tκ). We choose the price function carefully, so

that this translates to a significant reduction in price,

contradicting F’s μ-optimality.

2) Using the Forecaster to Prove the Dichotomy:
In this section we explain how to prove Theorem I.5

given Theorem I.3. Given a protocol π, we consider the

optimal forecaster F from Theorem I.3 (which is F from

the previous section). We will once again oversimplify

and ignore the random coin string r. Recall that on

input t← Tκ, F computes three numbers pA, pB|0, pB|1,

and induces a forecasted distribution (X ′
κ, Y

′
κ, Tκ) that

is ρ-indistinguishable from π(1κ) = (Xκ, Yκ, Tκ),
and furthermore, that Pr [X ′

κ = 1 | Tκ = t] = pA, and

Pr [Y ′κ = 1 | Tκ = t,X ′
κ = b] = pB|b.

Note that if for every possible transcript Tκ it holds

that F(Tκ) produces pB|0 = pB|1, then by setting

Decor(Tκ) = (pA, pB|0) we obtain a ρ-decorrelator.

Increasing ρ slightly, this also extends to the case where

with high probability over t ← Tκ, pB|0 is “not far”

from pB|1. If the condition above does not hold, we

will want to use F to convert π into a key-agreement

π′. We can use the forecaster as follows (and in fact

this methodology seems quite general):

• When using π as a component in π′, we can

imagine that the output distribution of π is the fore-

casted distribution. More precisely, we are allowed

to work in the following “information theoretic

setting”: party A receives X ′
κ, party B receives Y ′κ

and the adversary receives Tκ. Note that X ′
κ and Y ′κ

have information theoretic uncertainty given Tκ,

and so we can now apply techniques and protocols

from the information theoretic world. Information

theoretic security in the latter setup translates into

computational security in the original setup (with

an additive loss of ρ).

• Consequently, we can use information theoretic

methods to construct key-agreement to construct

π′ from the “simulation of” π. This then translates

into computational security (with a constant loss ρ
in security). By using security amplification for key

agreement [2], we can amplify this security to give

key-agreement with standard choices of secrecy

and agreement. (This demonstrates that the fact that

ρ cannot be made negligible, is not a problem, and

we can get computational security with respect to

negligible functions).8

• Moreover, when we work in the information the-

oretic setup, the honest parties are allowed to see

T , and run the forecaster (that runs in polynomial

time). This is in some sense “non-black-box” as

the parties gain access to specific properties of

the probability space (X ′
κ, Y

′
κ, Tκ) by applying

the forecaster on Tκ and can use its outputs

pA, pB|0, pB|1 when constructing information the-

oretic key-agreement.

The one-sided von-Neumann protocol. The informa-

tion theoretic setup described above can be thought of as

follows: whenever the two parties invoke the protocol π,

we can imagine that A receives variable X ′
κ, B receives

variable Y ′κ and the eavesdropper receives Tκ. Moreover,

A and B can use F to compute all probabilities in the

probability space (X ′
κ, Y

′
κ)|Tκ=t. We now explain how

to construct a key-agreement protocol.

• The two parties receive X ′
κ and Y ′κ by running π,

they also receive the transcript Tκ.

8Continuing the analogy to computational entropy, this approach
can be thought of as analogous to the constructions of Håstad et al.
[22] and following work [23, 24] of pseudorandom generators from
one-way functions. Indeed, a key idea in these works is that of
“computational entropy” which given a distribution X (with low
real entropy) presents an indistinguishable distribution X′ (with a
lot of entropy). This allows the construction to apply “information
theoretic tools” (e.g., randomness extractors) on X and argue that the
result is pseudorandom, by imagining that the information theoretic
tools are applied on X′. Continuing this analogy, it is often the case
that “pulling the result back” to the computational realm, suffers a
significant loss in security, and computational amplification of security
is performed to obtain stronger final results.
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• The two parties use F to compute F(Tκ) =
(pA, pB|0, pB|1). Party A samples an independent

random variable X ′′
κ ← UpA

(that is, an indepen-

dent variable that is distributed like X ′
κ).

• The two parties can use the von-Neumann trick

[25] to obtain a shared random coin as follows: A
informs B whether X ′

κ = X ′′
κ .

– If X ′
κ = X ′′

κ , the parties output independent

uniform bits.

– If X ′
κ 	= X ′′

κ , party A outputs X ′
κ and party B

outputs Y ′κ.

For every t ∈ Supp(Tκ),
Pr [X ′

κ = 1, X ′′
κ = 0 | Tκ = t] =

Pr [X ′
κ = 0, X ′′

κ = 1 | Tκ = t], and consequently:

Pr [X ′
κ = 1 | Tκ = t,X ′

κ 	= X ′′
κ ] =

1
2 .

This means that this information theoretic key-

agreement protocol has perfect secrecy. We now con-

sider the agreement property. Recall that we are assum-

ing that X ′
κ and Y ′κ are correlated conditioned on some

fixings of t ← Tκ. This can be used to show that the

output bits of our protocol are correlated. (In the actual

proof, we need a slightly more complicated protocol

which also relies on pB|0, pB|1 to guarantee agreement,

rather than just correlation).

Thus, this protocol is an information theoretic key

agreement with secrecy s = 0 and agreement a > 0. By

controlling the parameters, the gap between agreement

and secrecy can be made significantly larger than ρ so

that we can implement our overall plan.

D. Related Work

We now discuss some related work that was not yet

mentioned in the previous sections.

Characterization of two-party computations: The

most relevant result is the classification of two-party

protocols in the random oracle model (ROM) given in

Haitner, Omri, and Zarosim [14]. In this model, the

parties and the adversary are given an oracle access

to a common random function, that they can query a

limited number of times. The ROM is typically used

to analyze the security of cryptographic protocols in

an idealistic model, and to prove impossibility results

for such protocols. In particular, an impossibility result

in the ROM yields that the security of protocol in

consideration cannot be based in a black-box way on

one-way functions or collision resistant hash functions.

In their seminal work Impagliazzo and Rudich [26]

proved that a key-agreement protocols cannot be con-

structed in the ROM. That is, they show that for any

query efficient protocol (i.e., polynomial query com-

plexity) in the ROM, there exists a query efficient eaves-

dropper that finds the common key. Haitner et al. [14],

using techniques developed by Barak and Mahmoody

[27], showed that for any no-input two-party random

oracle protocol there exists a query efficient mapping

into a no oracle protocol such that the distribution

of the transcript and parties output are essentially the

same. Since in the non-input setting the parties output

are always uncorrelated (as far as no input protocol

are concerned), the existence of such efficient mapping

also tell us that interesting correlation cannot exits

in the ROM. Our main result capturing the minimal

assumption for (output) correlation in actual protocol

(rather than the hypothetical random oracle, model)

is in a sense the non black-box version of the above

characterization.

Other relevant results are amplifications of weak

primitives into a full-fledge ones, and in particular that

of key-agreement [2] and obvious transfer [28, 29, 30].

Such results aims to classify the different functionalities

into groups of equivalent expression power, and many of

them are achieved via the study of information-theoretic

two-party correlation (also known as, channels): each

party, including the observer, is given random variable

from a predetermined distribution, and their goal is

to use them to achieve a cryptographic task (i.e., key

agreement). Our result demonstrates that going solely

through the above information theoretic paradigm, is

sometimes a too limited approach.

Minimal assumptions for differentially private sym-
metric computation: An accuracy parameter α is trivial
with respect to a given functionality f and differential

privacy parameter ε, if a protocol computing f with

such accuracy and privacy exists information theoret-

ically (i.e., with no computational assumptions). The

accuracy parameter is called optimal, if it matches

the bound achieved in the client-server model. Gaps

between the trivial and optimal accuracy parameters

have been shown in the multiparty case for count

queries [10, 11] and in the two-pary case for inner

product and hamming distance functionalities [12]. [14]

showed that the same holds also when a random oracle

is available to the parties, implying that non-trivial

protocols (achieving non-trivial accuracy) for computing

these functionalities cannot be black-box reduced to

one-way functions. [13] initiated the study of Boolean

functions, showing a gap between the optimal and trivial

accuracy for the XOR or the AND functionalities, and

that non-trivial protocols imply one-way functions. [15]

have shown that optimal protocols for computing the
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XOR or AND, cannot be black-box reduced to key

agreement. Recently, [16] have shown that optimal pro-

tocols for computing the XOR imply oblivious transfer.

Paper Organization

Standard notions and definitions are given in Sec-

tion II. In Section III we formally define simulators,

forecasters, decorrelators, and uncorrelated protocols,

and state there our main results. This version is an

extended abstract. Due to space limitations it only

contains a high level description of our results and

techniques. The reader is referred to the full version

[17] for precise details and full proofs.

II. PRELIMINARIES

Distributions and random variables: For 0 ≤
p < 1, let Up denote the distribution of a biased

coin which is one with probability p. Given jointly

distributed random variables X,Y and x ∈ X , let

Y |X=x denote the distribution of Y induced by the

conditioning X = x (set arbitrarily if Pr [X = x] = 0).

The statistical distance between two random variables

X and Y over a finite set U , denoted SD(X,Y ), is

defined as 1
2 ·

∑
u∈U |Pr [X = u]− Pr [Y = u]|.

Computational indistinguishability (and infinitely-
often variant): We first need the following variance

of computational indistinguishability where the distin-

guishing advantage ρ is a parameter. We also discuss

infinitely often indistinguishability.

Definition II.1 (Computational indistinguishability with

a parameter ρ). For a function ρ : N → R, two
distribution ensembles X = {Xκ}κ∈N, Y = {Yκ}κ∈N
are ρ-indistinguishable, denoted X

C≈ρ Y , if for every
PPTM D, for every sufficiently large κ ∈ N,

|Pr[D(1κ, Xκ) = 1]− Pr[D(1κ, Yκ) = 1]| ≤ ρ(κ)

We omit 1κ when the security parameter κ is clear from
the context.

For an infinite set I ⊆ N, the two ensembles X and
Y are ρ-indistinguishable in I, denoted X

C≈ρ,I Y , if
the condition above holds when replacing the condition
“for every sufficiently large κ ∈ N” with “for every
sufficiently large κ ∈ I”. We say that X and Y are io-
ρ-indistinguishable, if there exists an infinite set I ⊆ N

such that X and Y are ρ-indistinguishable in I.

A. Protocols

We will mainly focus on no-input two-party protocol

single-bit PPT output protocol: the two PPT parties only

input is the common security parameter, given in unary,

and at the end of the protocol each party output a single

bit. Throughout, we assume without loss of generality

that the transcript contains 1κ as the first message.
Let π = (A,B) be such two-party single-bit protocol.

For κ ∈ N, let πκ be protocol π with the common

security parameter fixed (i.e., hardwired) to 1κ. Protocol

π has transcript length m(·), if the transcript of πκ

is of length at most m(κ). We will assume without

loss of generality that the protocol of consideration

have fixed transcript length per security parameter. For

κ ∈ N, let (Xπ
κ , Y

π
κ , Tπ

κ ) denote the A and B outputs

respectively, and the execution transcript, in a random

execution of πκ. We sometimes denote this triplet of

random variables by π(1κ).
1) Key-Agreement Protocols (and Infinitely Often

Variant): We focus on single bit key agreement pro-

tocols.

Definition II.2 (Key-agreement protocols). A PPT

single-bit output two-party protocol π = (A,B) is a
secure key-agreement with respect to a set I ⊆ N, if
the following hold for κ’s in I.
• Agreement: Pr [Xπ

κ = Y π
κ ] ≥ 1− neg(κ).

• Secrecy: For every PPT E, Pr [E(Tπ
κ ) = Xπ

κ ] ≤
1/2 + neg(κ).

Let s, a : N �→ R be functions. A PPT single-bit
output two-party protocol π = (A,B) is an (s, a)-key
agreement if the following two conditions hold.
• Agreement: Pr [Xπ

κ = Y π
κ ] ≥ 1/2+ a(κ) for suffi-

ciently large κ ∈ N.
• Secrecy: For every PPTM E, Pr [E(Tπ

κ ) = Xπ
κ ] ≤

1/2 + s(κ) for sufficiently large κ ∈ N.
If we omit (s, a) then we mean that the key-agreement
has standard choices for secrecy and agreement, namely
it is a (neg(κ), 1/2− neg(κ))-key agreement.

Protocol π is an (s, a)-key agreement in an infinite
set I ⊆ N, if the security and agreement conditions
hold when replacing N above with I. The protocol is
an io-(s, a)-key agreement if there exits an infinite set
I ⊆ N for which the protocol is an (s, a)-key agreement
in I.

III. CLASSIFICATION OF BOOLEAN TWO-PARTY

PROTOCOLS

In this section we formally define simulator, forecast-

ers, decorelators and uncorrelated protocols discussed

in Section I, and formally state the main results of this

paper. Throughout this section we focus on no-input,

single-bit output, two-party protocols.

A. Simulators and Forecasters
The results of this section holds for any no-input,

single-bit output two-party protocols, even inefficient

ones.
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1) Simulators: Recall that a simulator seeing the

protocol transcript, outputs a pair of bits that looks

indistinguishable from the parties’ real outputs, from the

point of view of an efficient distinguisher that sees only

the protocol’s transcript. We now define this concept

precisely, and state our results.

Definition III.1 (Simulator). A simulator is a PPT

algorithm that on input in (1κ, t) ∈ 1∗×{0, 1}∗ outputs
two bits.

We associate the following two distribution ensem-

bles with a two-party protocol and a simulator.

Definition III.2 (Real and simulated distributions). Let
π = (A,B) be a single-bit output two-party protocol,
and let Sim be a simulator. We define the real and
simulated distribution ensembles REAL

π and SML
π,Sim

as follows. For κ ∈ N, let Xκ, Yκ and Tκ be the parties’
outputs and protocol transcript in a random execution
of πκ. Then

• Real: REAL
π
κ = (Xκ, Yκ, Tκ).

• Simulated: SML
π,Sim
κ = (Simκ(Tκ), Tκ).

(Recall that Simκ(t) denotes the output of Sim on

input (1κ, t).)

The following theorem states that every single-bit

output two-party protocol (even inefficient one) has a

simulator.

Theorem III.3 (Existence of simulators). For every
single-bit output, two-party protocol π, ρ > 0 and
infinite set I ⊆ N, there exist a simulator Sim and an
infinite set I ′ ⊆ I such that

REAL
π C≈ρ,I′ SML

π,Sim.

Theorem III.3 is an immediate corollary of the existence

of forecasters theorem given below.

2) Forecasters: A forecaster seeing the protocol tran-

script, outputs a description of a two bits distribu-

tion, that looks indistinguishable from the parties’ real

outputs, from the point of view of an an efficient

distinguisher that sees only the protocol’s transcript.

Thus, a forecaster is a specific method for constructing

simulators: the resulting simulator outputs the two bits

according the the distribution described by the fore-

caster.

Definition III.4 (Forecasters). A forecaster F is a
PPTM that on input (1κ, t) ∈ 1∗ × {0, 1}∗, outputs
a triplet in [0, 1]3. We use F(1κ, t; r) to denote the
instantiation of F(1κ, t) when using the string r as

random coins.9

We associate the following two distribution ensem-

bles with a two-party protocol and a forecasters. To

define these distributions, we associate triplets in [0, 1]3

with distribution over {0, 1}2 in the following way.

Notation III.5. For p = (pA, pB|0, pB|1) ∈ [0, 1]3, let
Up denote the random variable over {0, 1}2 defined
by Pr [Up = (x, y)] = Pr [UpA

= x] · Pr [UpB|x = y
]
.

For p = (pA, pB) ∈ [0, 1]2, let Up denote the random
variable U(pA,pB,pB).

With this notation, the variable Up = (X ′, Y ′) is

composed of two random variables such that Pr[X ′ =
1] = pA and for b ∈ {0, 1}, Pr[Y ′ = 1|X ′ = b] = pB|b.

In particular, if pB|0 = pB|1 then (X ′, Y ′) are indepen-

dent.

Definition III.6 (Real and forecasted distributions). Let
π = (A,B) be a single-bit output two-party protocol
and let F be a forecaster. We define the real and fore-
casted distribution ensembles REAL

π,F and FST
π,F as

follows. For κ ∈ N, let Xκ, Yκ and Tκ be the parties’
outputs and protocol transcript in a random execution
of πκ, and let Rκ be a uniform and independent string
whose length is the (maximal) number of coins used by
Fκ. Then,
• Real: REAL

π,F
κ = (Xκ, Yκ, Tκ, Rκ).

• Forecasted: FST
π,F
κ = (Up, Tκ, Rκ)

for p = Fκ(Tκ;Rκ) = (pA, pB|0, pB|1).

(Recall that Fκ(t; r) denotes the output of F on input

(1κ, t) when using randomness r.)

The computational distance between the real and

forecasted distribution measures how well the forecaster

realizes the real distribution, in the eyes of a computa-

tionally bounded distinguisher.

Definition III.7 (Forecaster indistinguishability). A
forecaster F is (ρ, I)-indistinguishable, for ρ > 0 and
infinite subset I ⊆ N, with respect to protocol π, if

REAL
π,F C≈ρ,I FST

π,F.

That is, for sufficiently large κ ∈ I, the forecasted

and real distributions are ρ indistinguishable for poly-

time distinguishers.

The following theorem states that every single-bit

output two-party protocol (even inefficient one) has a

forecaster.

9 Since we only care about PPT algorithms, we will implicitly
assume that the number of coins used by them on a given security
parameter is efficiently computable.
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Theorem III.8 (Existence of forecasters). For every
single-bit output two-party protocol π, ρ > 0 and infi-
nite set I ⊆ N, there exist a forecaster F and an infinite
set I ′ ⊆ I, such that F is (ρ, I ′)-indistinguishable with
respect to π.

B. Decorrelators and the Dichotomy Theorem

In the introduction we explained the concept of

decorrelators and uncorrelated protocols, in informal

Definition I.4. We now repeat the definition using more

precise language.

Definition III.9 (Decorrelators). A decorrelator Decor
is a PPTM that on input (1κ, t) ∈ 1∗ × {0, 1}∗, outputs
two numbers in [0, 1]. We use Decor(1κ, t; r) to denote
the instantiation of Decor(1κ, t) when using the string
r as random coins.

We associate the following two distribution ensem-

bles with a two-party protocol and a decorrelator.

Definition III.10 (Real and uncorrelated distributions).
Let π = (A,B) be a single-bit output two-party proto-
col, and let Decor be a decorrelator. We define the real
and uncorrelated distribution ensembles REAL

π,Decor

and UCR
π,Decor as follows. For κ ∈ N, let Xκ, Yκ and

Tκ be the parties’ outputs and protocol transcript in
a random execution of πκ, and let Rκ be a uniform
and independent string whose length is the (maximal)
number of coins used by Decorκ (see Footnote 9). Then,

• Real: REAL
π,Decor
κ = (Xκ, Yκ, Tκ, Rκ).

• Uncorrelated: UCR
π,Decor
κ =

(UpA
, UpB

, Tκ, Rκ)(pA,pB)=Decorκ(Tκ;Rκ).

(Recall that Decorκ(t; r) denotes the output of Decor
on input (1κ, t) when using randomness r.) Uncorre-
lated protocols, are those protocols for which the above

distributions are computational close.

Definition III.11 (Uncorrelated protocols). Let π =
(A,B) be a single-bit output two-party protocol, let
ρ > 0 and I ⊆ N. Decorrelator Decor is a (ρ, I)-
decorrelator for π, if

REAL
π,Decor C≈ρ,I UCR

π,Decor.

Protocol π is (ρ, I)-uncorrelated, if it has a (ρ, I)-
decorrelator. Protocol π is io-ρ-uncorrelated, if there
exists an infinite set I ⊆ N such that π is (ρ, I)-
uncorrelated.

This is the formal statement of our main theorem (that

restates Theorem I.5 from Section I).

Theorem III.12 (Dichotomy of two-party protocols).
For every PPT single-bit output two-party protocol, one
of the following holds:
• For every constant ρ > 0 and every infinite I ⊆ N,

there exists an infinite set I ′ ⊆ I such that the
protocol is ρ-uncorrelated in I ′.

• Exists a two-party io key-agreement protocol.

IV. CONCLUSION

V. CONCLUSION AND OPEN PROBLEMS

In this paper we prove a dichotomy theorem (Theo-

rem III.12) for PPT two-party protocols with no inputs

and single bit outputs: every such protocol is either ρ-

uncorrelated (for every ρ > 0, on infinitely many κ) or

it implies key agreement (on infinitely many κ). The

theorem comes with caveats: it has “infinitely many

κ” in both statements (rather than just in one), and it

only achieves constant ρ > 0. A natural open problem

is to remove these caveats from Theorem III.12 (it is

natural to try to first try to remove the caveats from

Theorem III.3 and Theorem III.8).

Other interesting open problems are related to our

applications. What is the minimal assumption needed

for differentially private computation of the XOR (and

other natural) functions? (This question can be asked

for various ranges of accuracy and differential privacy

parameters). Can the coin tossing result of [1] be

extended to hold for a number of rounds that depends

on the security parameter?
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