Private Learning and Sanitization: Pure
vs. Approximate Differential Privacy*

Amos Beimel!, Kobbi Nissim?, and Uri Stemmer!
! Dept. of Computer Science Ben-Gurion University
2 Dept. of Computer Science Ben-Gurion University & Harvard University
{beimel, kobbi, stemmer}@cs.bgu.ac.il

Abstract. We compare the sample complexity of private learning and
sanitization tasks under pure e-differential privacy [Dwork, McSherry,
Nissim, and Smith TCC 2006] and approzimate (e,d)-differential pri-
vacy [Dwork, Kenthapadi, McSherry, Mironov, and Naor EUROCRYPT
2006]. We show that the sample complexity of these tasks under approx-
imate differential privacy can be significantly lower than that under pure
differential privacy.

Keywords: Differential Privacy, Private Learning, Sanitization.

1 Introduction

Learning and sanitization are often applied to collections of sensitive data of
individuals and it is important to protect the privacy of these individuals. We
examine the sample complexity of these tasks while preserving differential pri-
vacy [9]. Our main focus is on private learning [14] and sanitization [4] and we
show starking differences between the required sample complexity for these tasks
under e-differential privacy [9] (also called pure differential privacy) and its vari-
ant (e, 0)-differential privacy [7] (also called approzimate differential privacy).
An algorithm A satisfies the requirement of Pure Differential Privacy if for
every two databases that differ on exactly one entry, and for every event defined
over the output of the algorithm, the probability of this event is close up to a
multiplicative factor of ~ 1 + ¢ whether A is applied on one database or on the
other. Informally, to satisfy the requirement of Approximate Differential Privacy
the above guarantees needs to be satisfied only for events whose probability is
at least &~ J. We show that even negligible § > 0 can have a significant effect on
sample complexity of two fundamental tasks: private learning and sanitization.

* Research supported by the Israel Science Foundation (grants No. 938/09 and
2761/12) and by the Frankel Center for Computer Science at Ben-Gurion University.
Work done while the second author was a Visiting Scholar at the Harvard Center
for Research on Computation and Society (CRCS). Work partially done when the
third author was visiting Harvard University supported in part by NSF grant CNS-
1237235 and a gift from Google, Inc.

P. Raghavendra et al. (Eds.): APPROX/RANDOM 2013, LNCS 8096, pp. 363-B78] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

364 A. Beimel, K. Nissim, and U. Stemmer

Private Learning. Private learning was introduced in [14] as a combination of
Valiant’s PAC learning model [21I] and differential privacy (applied to the ex-
amples used by the learner). The work on private learning has since mainly
focused on pure privacy. On the one hand, this work showed, via generic con-
structions [314], that every finite concept C class can be learned privately, using
sample complexity proportional to poly(log|C|) (often efficiently). On the other
hand, a significant difference was shown between the sample complexity of tra-
ditional (non-private) learners (crystallized in terms of VC(C) and smaller than
log|C| in many interesting cases) and private learners, when the latter are re-
quired to be proper (i.e., output a hypothesis in C).

As an example, let POINT; be the class of point functions over the domain
{0,1}% (these are the functions that evaluate to one on exactly one point of
the domain). Consider the task of properly learning POINT; where, after con-
sulting its sample, the learner outputs a hypothesis that is by itself in POINT,.
Non-privately, learning POINT,; requires merely a constant number of examples
(as VC(POINT,) = 1). Privately, £2(d) examples are required [1]. Curiously, the
picture changes when the private learner is allowed to output a hypothesis not
in POINTy (such learners are called improper), as the sample complexity can
be reduced to O(1) [I]. This, however, comes with a price, as it was shown [I]
that such learners must return hypotheses that evaluate to one on exponentially
many points in {0,1}¢ and, hence, are very far from all functions in POINT,. A
similar lower bound of {2(d) samples is known also for properly and privately
leaning the class INTERVAL, of threshold functions over the interval [0,2¢ — 1]
(no corresponding sample-efficient improper private learner is known, that is,
the best previously known private learning algorithm (proper or improper) for
INTERVAL; has sample complexity O(d)). A complete characterization for the
sample complexity of pure private learners was recently given in [2], in terms of
a new dimension — the Representation Dimension, that is, given a class C the
number of samples needed and sufficient for privately learning C' is RepDim(C).

We show that the sample complexity of proper private learning with ap-
proximate differential privacy can be significantly lower than that with pure
differential privacy. Our starting point for this work is an observation that with
approzimate (e,6>0)-differential privacy, sample complexity of O(log(1/¢)) suf-
fices for learning points properly. This gives a separation between pure and ap-
proximate proper private learning for § = 27°(4). Anecdotally, combining this
with a result from [I] gives a learning task that is not computationally feasible
under pure differential privacy and polynomial time computable under approxi-
mate differential privacy.

Sanitization. The notion of differentially private sanitization was introduced in
the seminal work of Blum et al. [4]. A sanitizer for a class of predicates C is a
differentially private mechanism translating an input database S to an output
database S s.t. S,g agree (approximately) on the fraction of the entries in S
satisfying ¢ for all ¢ € C. Blum et al. gave a generic construction of pure differ-
entially private sanitizers exhibiting sample complexity O(VC(C)log |X|), and
lower bounds partially supporting this sample complexity were given by [T7/113]

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 365

(the construction is not generally feasible [I0J20/19]). As with private learning,
we show significant differences between the sample complexity required for san-
itization of simple predicate classes under pure and approximate differential
privacy.

1.1 Owur Contributions

To simplify the exposition, we omit in this section dependency on all variables
except for the complexity variable d corresponding, e.g., to domain size and
(logarithm of) concept class size.

Tools. A recent instantiation of the Propose-Test-Release framework [§] by Smith
and Thakurta [I8] results, almost immediately, with a proper learner for points,
exhibiting O(1) sample complexity while preserving approximate differential pri-
vacy. This simple technique does not suffice for our other constructions of learners
and sanitizers, and we, hence, introduce new tools for coping with proper pri-
vate learning of intervals, sanitization for point functions, and sanitization for
intervals:

— Choosing mechanism: Given a low-sensitivity quality function, one can
use the exponential mechanism [16] to choose an approximate solution. This
method requires, in general, a database of size logarithmic in the number of
possible solutions. We identify a sub family of low-sensitivity functions, called
bounded-growth functions, for which it is possible to significantly reduce the
necessary database size when using the exponential mechanism.

— Recursive algorithm for concave promise problems: We define a fam-
ily of optimization problems, which we call Concave Promise Problems. The
possible solutions are ordered, and concavity means that if two solutions
f < h have quality > X', then any solution f < g < h also has quality
> X. The optimization goal is, when there exists a solution with a promised
quality > r, to find a solution with quality ~ r. We observe that a concave
promise problem can be privately approximated using a solution to a smaller
instance of a concave promise problem. This allows us to construct an ef-
ficient recursive algorithm solving such problems privately. We show that
the task of learning INTERVAL, is, in fact, a concave promise problem, and
can be privately solved using our algorithm with sample size roughly 2'°8" 4,
Sanitization for INTERVAL,; does not exactly fit the model of concave promise
problems but can still be solved by iteratively defining and solving a small
number of concave promise problems.

Implications for Private Learning and Sanitization. We give new proper private
learning algorithms for the classes POINT; and INTERVAL,. Both algorithms ex-
hibit sample complexity that is significantly lower than bounds given in prior
work, separating pure and approximate proper private learning. Similarly, we
construct sanitizers for these two classes, again with sample complexity that is
significantly lower than bounds given in prior work, separating sanitization in
the pure and approximate privacy cases.

366 A. Beimel, K. Nissim, and U. Stemmer

Santization vs. Private Learning. In [I1], a reduction is given in both directions
between agnostic learning of a concept class C, and the sanitization task for the
same class C'. They consider learners and sanitizers with limited access to the
data, using statistical queries [I5] (a non-private SQ learner could be transformed
into a private learner, as was shown in [14]). In Section [we show a different (and
natural) reduction from the task of privately learning a concept class C to the
sanitization task of a slightly different concept class C’, where the sanitizer’s ac-
cess to the database is unrestricted. We then exploit lower bounds on the sample
complexity of private learners and show a class of predicates C over a domain X
for which every private sanitizer requires databases of size 2(VC(C)log|X]). A
similar lower bound was already shown by Hardt and Rothblum [I3], achieving
better results in terms of the approximation parameter. Their work ensures the
existence of such a concept class, but does not give an explicit one.

Label Privacy. In Section [fl we examine private learning under a relaxation of
differential privacy called label privacy (see [B] and references therein) where
the learner is required to only protect the privacy of the labels in the sample.
Chaudhuri et al. [5] gave lower bounds for label-private learners in terms of the
doubling dimension of the target concept class. We show that the VC dimension
completely characterizes the sample complexity of such learners.

1.2 Related Work

Mostly related to our work is the work on private learning and its sample com-
plexity [T4J3ITJ5] and the early work on sanitization [4] mentioned above. An-
other related work is the work of De [6] who proved a separation between pure
e-differential privacy and approzimate (e, §>0)-differential privacy. Specifically,
he demonstrated that there exists a query where it is sufficient to add noise
O(+y/nlog(1/5)) when & > 0 and £2(n) noise is required when § = 0. Earlier
work by Hardt and Talwar separated pure from approximate differential privacy
for § = n=9M) [12).

2 Preliminaries

Notation. We use O,(g(d)) as a shorthand for O(h(y) - g(d)) for some non-
negative function h. We use X to denote an arbitrary domain, and X, for the
domain {0, 1}¢. Databases S; € X™ and S € X™ over a domain X are called
neighboring if they differ in exactly one entry.

2.1 Differential Privacy

Definition 1 ([9J7]). A randomized algorithm A is (¢, d)-differentially private
if for all neighboring databases Sy, Sa, and for all sets F of outputs, Pra[A(S1) €
F] < exp(e)-Pra[A(S2) € F|+6. When § = 0 we omit it and say that A preserves
e-differential privacy.

We use the term pure differential privacy when § = 0 and the term approzimate
differential privacy when § > 0.

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 367

2.2 PAC Learning and Private PAC Learning

A concept ¢ : X — {0,1} is a predicate that labels examples taken from the
domain X by either 0 or 1. A concept class C over X is a set of concepts map-
ping X to {0,1}. A learning algorithm is given examples sampled according to
an unknown probability distribution D over X, and labeled according to an un-
known target concept ¢ € C. The goal of the learning algorithm is to output a
hypothesis h that approximates ¢ well over samples from D.

Definition 2. The generalization error of a hypothesis h : X — {0,1} is defined
as errorp(c,h) = Pryplh(x) # c(x)]. If errorp(e, h) < a we say that h is a-
good for ¢ and D.

Definition 3 (PAC Learning [21]). Algorithm A is an («, 8, m)-PAC learner
for a concept class C over X wusing hypothesis class H if for all concepts c € C,
all distributions D on X, given an input of m samples S = (z1,...,2m), where
z; = (zi, c(x;)) and z; are drawn i.i.d. from D, algorithm A outputs a hypothesis
h € H satisfying Prlerrorp(c, h) <] > 1 — . The probability is taken over the
random choice of the examples in S according to D and the coin tosses of the
learner A. If H C C then A is called a proper PAC learner; otherwise, it is called
an improper PAC learner.

Definition 4. For a labeled sample S = (x;,y;)"™,, the empirical error of h
w.r.t. S is errorg(h) = ! |{i : h(x:) # i}l

In private learning, we would like to accomplish the same goal as in non-private
learning, while protecting the privacy of the input database.

Definition 5 (Private PAC Learning [14]). Let A be an algorithm that gets
an input S = {z1,...,zm}. Algorithm A is an (o, B,€,d, m)-PPAC learner for
a concept class C over X wusing hypothesis class H if (i) Algorithm A is (e, 9)-
differentially private; and (i) Algorithm A is an («, 5, m)-PAC learner for C
using H. When § =0 (pure privacy) we omit it from the list of parameters.

2.3 Private Data Release

Given a concept ¢ : X — {0,1}, the counting query Q. : X* — [0, 1] is defined
as Q.(5) = Iél -{z; € S : e(x;) = 1}|. That is, Q.(S) is the fraction of entries
in S that satisfy the concept c¢. Given a database S, a sanitizer for a concept
class C' is required to approximate @Q.(S) for every ¢ € C.

Definition 6 (Sanitization [4]). Let C be a class of concepts mapping X to
{0,1}. Let A be an algorithm that on an input database S € X* outputs a de-
seription of a function est : C — [0, 1]. Algorithm A is an («, B, €, 6, m)-improper-
sanitizer for predicates in the class C, if (i) A is (e, §)-differentially private; and,
(ii) For every input S € X™, Pry [Ve € C |Qc(S) —est(c)] <a] 21— 5.

368 A. Beimel, K. Nissim, and U. Stemmer

If on an input database S algorithm A outputs another database Se X*, and
est(:) is defined as est(c) = Qc(S), then algorithm A is called a proper-sanitizer
(or simply a sanitizer). As before, when 6 = 0 (pure privacy) we omit it from
the set of parameters. A database S and a function est (or two databases S, 5‘)
are called a-close if |Q.(S) — est(c)| < a for every c € C.

Ignoring computational complexity, an (a, 5, €, §, m)-improper-sanitizer can al-
ways be transformed into a (2a, 3, €, §, m)-sanitizer, by finding a database S of
m entries that is a-close to the returned estimation est (such a database exists,
ie., S itself).

2.4 Basic Differentially Private Mechanisms

The Laplace Mechanism. The most basic construction of differentially pri-
vate algorithm is via the Laplace mechanism as follows.

Definition 7 (The Laplace Distribution). A random variable has probability
distribution Lap(b) if its probability density function is f(x) = ,, exp(— ‘f‘).

Definition 8 (Sensitivity). A function f : X™ — R has sensitivity & if for
every neighboring D, D" € X™ it holds that |f(D) — f(D")| < k.

Theorem 1 (The Laplacian Mechanism [9]). Let f : X™ — R be a sensi-
tiity k function. The mechanism A which on input D € X™ outputs A(D) =
f(D) + Lap(*) preserves e-differential privacy. Moreover, Pr[|A(D) — f(D)| >

Al = exp (fEkA).

The Exponential Mechanism. Let X be a domain and H a set of solutions.
Given a quality function ¢ : X* x H — N, and a database S € X*, the goal is
to chooses a solution h € H approximately maximizing ¢(S, h). The exponen-
tial mechanism, by McSherry and Talwar [I6], chooses a solution h € H with
probability proportional to exp(e - ¢(S, h)/2).

Proposition 1 (Properties of the Exponential Mechanism). (i) The ex-
ponential mechanism is e-differentially private. (ii) Let é £ maxsen{q(S, f)}.
The exponential mechanism outputs a solution h such that q(S,h) < (é — Am)
with probability at most |H| - exp(—eAm/2).

Stability and Privacy. We restate a simplified variant of algorithm Ag;s; by
Smith and Thakurta [I8], which is an instantiation of the PTR framework [§].
Let ¢ : X* x F — N be a sensitivity-1 quality function over a domain X and a
set of solutions F'. Given a database S € X*, the goal is to chooses a solution
f € F maximizing ¢(S, f), under the assumption that the optimal solution f
scores much better than any other solution in F.

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 369

Algorithm Ay
Input: parameters ¢, §, database S € X*, sensitivity-1 quality function q.
1. Let f1 # f2 be two highest score solutions in F', where ¢(f1,S5) >
Q(fQ’ S)
2. Let gap = q(f1,5) — q(f2, S) and gap* = gap + Lap(}).
If gap* < ?1In(}) + 2 then output Ly and halt.
4. If gap = 0 then output L, otherwise output f.

@

Proposition 2 (Properties of Ag;s; [18]). (i) Algorithm Agist is (€,0)- differ-
entially private. (ii) When given an input database S for which gap > ? 111(625),
algorithm Agist outputs f1 mazimizing q(f,S) with probability at least (1 — 3).

3 Learning with Approximate Privacy

We present proper (e, d)-private learners for two simple concept classes, POINT,
and INTERVAL,, demonstrating separations between pure and approximate pri-
vate proper learning.

3.1 (€,0)-PPAC Learner for POINT4

For j € X4 let ¢; : Xq — {0,1} be defined as ¢;(z) = 1 if z = j and
¢j(xz) = 0 otherwise. Define the concept class POINT; = {¢;}jex,. Note that
the VC dimension of POINT; is 1, and, therefore, there exists a proper non-
private learner for POINT; with sample complexity O, g(1). Beimel at el. [I]
proved that every proper e-private learner for POINT; must have sample com-
plexity £2(d) = £2(log | POINTg|). They also showed that there exists an improper
e-private learner for this class, with sample complexity Oq g.(1).

As we will now see, algorithm Ag;s; (defined in Section [Z4]) can be used as a
proper (e, §)-private learner for POINT4 with sample complexity Oq g.¢,5(1). This
is our first (and simplest) example separating the sample complexity of pure and
approximate private learners. Consider the following algorithm.

Input: parameters o, 3, ¢, 0, and a database S € X[;.

1. For every x, define ¢(S, z) as the number of appearances of (z,1) in S.
2. Execute Agist on S with the quality function g and parameters ¢, g L€, 0.
3. If the output was j then return c;.

4. Else, if the output was 11 or L5 then return a random ¢; € POINTy.

Lemma 1. Let «,B,¢,d be s.t. ozlﬁ < 2%, The above algorithm is an efficient
(a, B, €,0)-PPAC proper learner for POINTy using a sample of m = O < g ln(ﬁl5))

labeled examples.

The proof is omitted from this extended abstract. For intuition, consider a tar-
get concept ¢; and an underling distribution D. Whenever D(j) is noticeable, a

370 A. Beimel, K. Nissim, and U. Stemmer

typical sample .S contains many copies of the point j labeled as 1. As every other
point ¢ # j will be labeled as 0, we expect ¢(S, j) to be significantly higher than
any other ¢(S,), and we can use algorithm Ag;s: to identify j.

3.2 Towards a Proper (€,d)-PPAC Learner for INTERVAL,4

For 0 < j < 2% let ¢; : Xq4 — {0,1} be defined as ¢j(z) = 1if x < j and
cj(x) = 0 otherwise. Define the concept class INTERVAL; = {c; }o<j<2a. Note that
VC(INTERVAL;) = 1, and, therefore, there exists a proper non-private learner for
INTERVAL, with sample complexity O, (1). As | INTERVAL, | = 2¢ + 1, one can
use the generic construction of Kasiviswanathan et al. [14] and get a proper
e-private learner for this class with sample complexity O(d). Beimel et al. [I]
showed that this is in fact optimal, and every proper e-private learner for this
class must have sample complexity §2(d). It is unknown whether there exists an
improper e-private learner for INTERVAL, with sample complexity o(d).

Our learner for POINTy relied on a strong “stability” property of the prob-
lem: Given a labeled sample, either a random concept is (w.h.p.) a good output,
or, there is exactly one consistent concept in the class, and every other con-
cept has large empirical error. This, however, is not the case when dealing with
INTERVAL,. In particular, many hypotheses can have low empirical error, and
changing a single entry of a sample S can significantly affect the set of hypothe-
ses consistent with it.

In Section[B:3] we present a proper (¢, d)-private learner for INTERVAL, exhibit-
ing sample complexity éa, ,37675(161°g*(d)). We use this section for motivating the
construction. We start with two simplifying assumptions. First, when given a la-
beled sample S, we aim at choosing a hypothesis h € INTERVAL; approximately
minimizing the empirical error (rather than the generalization error). Second,
we assume that we are given a “diverse” sample S that contains many points
labeled as 1 and many points labeled as 0. Those two assumptions (and any
other informalities made hereafter) will be removed in Section

Assume we are given as input a sample S = (x;,y;)"; labeled by some un-
known ¢y € INTERVAL;. We would now like to choose a hypothesis h € INTERVAL,
with small empirical error on S, and we would like to do so while accessing the
sample S only through differentially private tools.

We will refer to points labeled as 1 in S as ones, and to points labeled as
0 as zeros. Imagine for a moment that we already have a differentially private
algorithm that given S outputs an interval G C X, with the following two
properties:

1. The interval G contains “a lot” of ones, and “a lot” of zeros in S.
2. Every interval I C X, of length < ‘g‘ does not contain, simultaneously, “too
many” ones and “too many” zeros in S, where k is some constant.

Such an interval will be referred to as a k-good interval. The figure below illus-
trates such an interval G, where the dotted line represents the (unknown) target
concept, and the bold dots correspond to sample points.

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 371

[]
¢
[]
[]

Given such a 4-good interval G, we can (without using the sample S) define a
set H of five hypotheses, s.t. at least one of them has small empirical error. To
see this, consider the figure below, where G is divided into four equal intervals
g1, 92,93, g4, and 5 hypotheses hq, ..., hs are defined s.t. the points where they
switch from one to zero are uniformly spread inside G. Now, as the interval G
contains both ones and zeros, it must be that the target concept ¢, switches
from 1 to 0 inside G. Assume without loss of generality that this switch occurs
inside go. Note that go is of length ‘f‘ and, therefore, either does not contain
too many ones, and ho is “close” to the target concept, or does not contain too
many zeros, and hz is “close” to the target concept.

After defining such a set H, we could use the exponential mechanism to choose
a hypothesis h € H with small empirical error on S. As the size of H is constant,
this requires only a constant number of samples. To conclude, finding a k-good
interval G (while preserving privacy) is sufficient for choosing a good hypothesis.
We next explain how to find such an interval.

Assume, for now, that we have a differentially private algorithm that given a
sample S, returns an interval length J s.t. there exists a 2-good interval G C Xy
of length |G| = J. This length J could be used to find an explicit 4-good interval
as follows. Divide X into intervals {4;} of length 2J, and into intervals {B;}
of length 2J right shifted by J as in the figure below.

As the promised 2-good interval G is of length J, at least one of the above
intervals contains G. If, e.g., G C A, then As contains both a lot of zeros and
a lot of ones. The target concept must switch inside As, and, therefore, every

372 A. Beimel, K. Nissim, and U. Stemmer

other A; # As cannot contain both zeros and ones. For every interval A;, define
its quality ¢(4;) to be the minimum between the number of zeros in A; and the
number of ones in A;. We have, therefore, that ¢(A4z) is big, while g(A4;) = 0
for every A; # As. That is, A scores much better than any other A; under
this quality function ¢g. The sensitivity of ¢() is one and we can use algorithm
Agist to privately identify As. Recall that G C A, is a 2-good interval, and that
|A2| = 2|G|. The identified Az is, therefore, a 4-good interval.

To conclude, if we could indeed find (while preserving privacy) a length J s.t.
there exists a k-good interval G of that length — our task would be completed.

Computing the Interval Length J. At first attempt, one might consider
preforming a binary search for such a length 0 < J < 2¢, in which every com-
parison will be made using the Laplace mechanism. This will indeed preserve
privacy. However, as there are d noisy comparisons, this solution will require a
sample of size d?(Y) in order to achieve reasonable utility guarantees.

As a second attempt, one might consider preforming a binary search, not
on 0 < J < 2% but rather on the power j of an interval of length 27. That is,
preforming a search for a power 0 < j < d for which there exists a 2-good interval
of length 27. Here there are only log(d) noisy comparisons, and the sample size
will be reduced to logml) (d). More specifically, for every power 0 < j < d, define

Q) = max {min{ number of number of } }

[a,b]C X4 zeros in [a,b] ’ ones in [a,]
b—a=27

If, e.g., we have that Q(j) = 100 for some j, then there exists an interval [a, b] C
X4 of length 27 that contains at least 100 ones and at least 100 zeros. Moreover,
every interval of length < 27 either contains at most 100 ones, or, contains at
most 100 zeros.

A binary search on 0 < j < d can (privately) yield an appropriate length
J =27 st. Q(j) is “big enough” (and so, there exists an interval of length 27
containing lots of ones and lots of zeros), while Q(j — 1) is “small enough” (and
so, every interval of length éQj can not contain too many ones and too many
zeros simultaneously).

Remark 1. A binary search as above would have to operate on noisy values of
Q(-) (as otherwise differential privacy cannot be obtained). For this reason we
set the bounds for “big enough” and “small enough” to overlap. Namely, we
search for a value j such that Q(j) > (1—2*)m and Q(j —1) < (1— §)m, where
« is our approximation parameter, and m is the sample size.

We will apply recursion to reduce the costs of computing J = 27 to 20Uos™(d))
The tool performing the recursion would be formalized and analyzed in the next
section. This tool will later be used in our construction of a proper (e, §)-private
learner for INTERVAL,.

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 373

3.3 Privately Approximating Concave Promise Problems

Definition 9. A function Q(-) is concave if Q(i),Q(j) > x implies Q(£) > x
for every i < £ < 3.

Definition 10 (Concave Promise Problem). A Concave Promise Problem
consists of an interval of possible solutions [0,T] = {0,1,...,T}, a database
S e X™, a sensitwity-1 quality function Q : X* x [0,T] — R, an approzimation
parameter o, and another parameter r (called a quality promise).

If Q(S,-) is concave and if there exists an solution p € [0,T] for which
Q(S,p) > r then a good output for the problem is a solution k € [0,T] satis-
fying Q(S, k) > (1 — a)r. The outcome is not restricted otherwise.

We are interested in solving concave promise problems while preserving differ-
ential privacy (privacy must be preserved even when Q(S,-) is not concave or
Q(S,p) < r for all p € [0,7]). Our algorithm Rec is presented in Fig. [l (see
inline comments for some of the underlying intuition).

Lemma 2. When ezecuted on a range [0,T), a sensitivity-1 quality function Q,
and parameters €, 0, algorithm Rec preserves (€', 41log"(T)9)-differential privacy,

where ¢ = \/6 log™(T") In(1og*1(T)6) e+ 6log"(T) - €2.

Lemma 3. Let Q : X* x [0,T] — R be a sensitivity-1 quality function, and
let S € X* be a database s.t. Q(S,-) is concave. Let a < ; and let B,¢€,0,r

be s.t. L(S,0) £ max;{Q(S,i)} >r > (2)log ™ 15n (B5) When executed on

S,10,T),r,a€,6, algorithm Rec fails to outputs an mdea:j s.t. Q(S,5) > (1—a)r
with probability at most 28log™ (T').

Remark 2. The computational efficiency of algorithm Rec depends on the quality
function Q(-,-). Note, however, that it suffices to efficiently implement the top
level call (i.e., without the recursion). This is because an iteration of algorithm
Rec, operating on a range [0, T, can easily be implemented in time poly(T), and
the range given as input to recursive calls is logarithmic in the size of the initial
range.

Algorithm Rec can be used as a proper («a, 3, €, 6, m)-private learner for INTERVAL,.
The details of this straight forward application are omitted from this extended
abstract.

Theorem 2. There exists an efficient proper (a, B,¢,6,m)-PPAC learner for
INTERVAL,, where m = Oq g, (168" (d \/log log) log (35 log* (d)))
4 Sanitization with Approximate Privacy

Beimel et al. [I] showed that every pure e-private sanitizer for POINT,, must op-
erate on databases of £2(d) elements. In this section we state the existence of an

374 A. Beimel, K. Nissim, and U. Stemmer

Algorithm Rec
Inputs: range [0,7], quality function @, quality promise r, parameters «,¢€,d, and a
sample S.

1. If T < 32, then use the exponential mechanism with the quality function @ and
the parameter € to choose and return an index j € [0,...,T].

2. Let T' be the smallest power of 2 s.t. 77 > T, and define Q(S,i) = 0 for
T<i<T.

3. For 0 < j < log(T") let L(S,j) = max (min (Q(S,i))>. For j =
[a,b]C[0,T]

i€la,b]
b—a+1=27
log(T") + 1 let L(S,7) = min{0, L(S, log(T")}.

% If L(S,j) = z then in every interval I C [0,7"] of length 27 there exists a
point i € I s.t. Q(S,4) < z. Moreover, there exists an interval I C [0,7"] of
length 27 s.t. Q(S,7) > «x for all ¢ € I. Note that, as L(S, j + 1) maximizes
the minimum over intervals bigger than I, it must be bounded by x.

4. Define the function ¢(S,j) = min (L(S,j) - 1—-a)r,r—L(S,j + 1)) where
0 <j <log(T"). ,
% 1If q(S, 7) is high for some j, then there exists an interval I = [a,a + 27 — 1]
s.t. every ¢ € I has a quality Q(S,i) >> (1 — a)r, and for every interval
I' =[a',a’ + 27" — 1] there exists i’ € I’ with quality Q(S,7) << 7.

5. Let R= 5.
% R is the promise parameter for the recursive call. Note that for the maximal
J with L(S,j) > (1 — §)r we get ¢(S,j) > §r = R.

6. Execute Rec recursively on the range {0, .. .,log(7")}, the quality function q(-, -),
the promise R, and «, €, §. Denote the returned value by k, and let K = 2F.

% Assuming the recursive call was successful, k is s.t. ¢(S,k) > (1 —a)R =

(1—a)2r. That is, L(S,k) > (1— 2 — 22)r and L(S,k+1) < (1— & + %)r.

7. Divide [0,7"] into the following intervals of length 8K (the last ones might be
trimmed):
Ay =[0,8K — 1], Ay = [8K, 16K — 1], As = [16K,24K — 1], ...
By = [AK,12K — 1], By = [12K,20K — 1], Bs = [20K, 28K —1],...
% We show that in at least one of those two partitions (say the {A;}’s), there
exists a “good” interval A, s.t. Q(S,i) = r for some i € Ay, and Q(S5,1) <
(1—2+ %) forallie{0,...,T}\ A,

8. For every such interval I € {A;} U{B;} let u(S,I) = max (Q(S’, 7,))

9. Use algorithm Ag;s; with parameters €,0 and the quality function u(-,-), once
to choose an interval A € {A;}, and once more to choose an interval B € {B;}.
% By the properties of Agist, w.h.p. at least one of the returned A and B is
“good”.
10. Denote A = [a,b] and B = [¢, d], and define H = {a—o—i% :0<1 < 15}U{b+i§ :
0<i<15}.
% We show that H contains an index with high quality.

11. Use the exponential mechanism with the quality function Q(-,-) and parameter
€ to choose and return an index j € H.

Fig. 1. Algorithm Rec

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 375

(e, 6)-private sanitizer for POINT; with sample complexity Oq,g.c,5(1). This sep-
arates the database size necessary for (¢, 0)-private sanitizers from the database
size sufficient for (e, d)-private sanitizers.

Recall that in our private PAC learner for POINTy, given a typical labeled
sample, there exists a unique concept in the class that stands out (we used
algorithm Ay, to identify it). This is not the case in the context of sanitization,
as a given database S may have many «-close sanitized databases S. We will
overcome this issue using the following private tool for approximating a restricted
class of choosing problems.

4.1 The Choosing Mechanism

A function ¢ : X* x F — N defines an optimization problem over the domain
X and solution set F: Given a dataset S over domain X choose f € F which
(approximately) maximizes ¢(S, f). We are interested in a subset of these op-
timization problems, which we call bounded-growth choice problems. For this
section we think of a database S C X* as a multiset.

Definition 11. Given q and S define opt,(S) = maxse7{q(S, f)}. A solution
[€ F is called a-good for a database S if q(S, f) > opt,(S) — alS].

Definition 12. A scoring function q : X* x F — N is k-bounded-growth if:

1. q¢(0,f)=0 forall f € F.

2. If So = S1 U {a}, then (i) q(Sa, f) > q(S1,f) > q(Sao, f) — 1 for all f € F;
and (ii) there are at most k solutions f € F s.t. q(S1, f) < q(Sa, f).

In words, the second requirement means that (i) Adding an element to the
database could either have no effect on the score of a solution f, or can in-
crease the score by exactly 1; and (ii) There could be at most k solutions
whose scores are increased (by 1). Note that a k-bounded-growth scoring func-
tion is, in particular, a sensitivity-1 function as two neighboring S7, So must be
of the form D U {z;} and D U {z2} respectively. Hence, q(S1, f) — q(S2, f) <
q(D, f)+1—q(D, f) =1 for every solution f.

The choosing mechanism below is a private algorithm for approximately solv-
ing bounded-growth choice problems. Step 1 of the algorithm checks whether a
good solutions exist, as otherwise any solution is approximately optimal (and
the mechanism returns). Step 2 invokes the exponential mechanism, but with
the small set G(S) instead of F. We get the following lemma.

Choosing Mechanism

Input: a database S of m > ii - max ((fL + ln(}s)),ln(é%’z)> elements, and
parameters «, 3, €, 9.
1. Set best(S) = maxser {q(S, f)} + Lap(?). If best(S) < 7" then halt
and return L.
2. Let G(S) ={f € F: q(S, f) > 1}. Choose and return f € G(S) using

the exponential mechanism with parameter 5.

376 A. Beimel, K. Nissim, and U. Stemmer

Lemma 4. When q is a k-bounded-growth quality function, the choosing mech-
anism is (€, 0)-differentially private. Moreover, given a database S the choosing
mechanism outputs an a-good solution for S with probability at least 1 — 3.

4.2 (€,9)-Private Sanitiazers

Using the above choosing mechanism, we construct a private sanitizer for POINT,.
We also construct a recursive sanitizer for INTERVAL4, using both algorithm Rec
and the choosing mechanism. Here we only state the results.

Theorem 3. Fix «, 3,¢€,0. There exists an efficient (o, B, €, §, m)-improper- san-

itizer for POINTq, where m = O (a11-5e \/ln((ls) ln(aéﬂ;)).

Theorem 4. Fiz «,,¢,8. There exists an efficient («, 8, €,0, m)-proper- sani-

tizer for INTERVALy, where m = O (a21,5681°g*(d) \/log*(d) log(al&) log (lcfﬁ*e(;i)))'

5 Sanitization and Proper Private PAC

Similar techniques are used for both data sanitization and private learning, sug-
gesting relationships between the two. We now explore one such relationship in
proving a lower bound on the sample complexity needed for sanitization (under
pure differential privacy). In particular, we show a reduction from the task of
private learning to the task of data sanitization, and then use a lower bound on
private learners to derive a lower bound on data sanitization.

Notation. We will refer an element of X441 as xoy, where x € X4, and y € {0, 1}.

5.1 Sanitization Implies Proper PPAC

For a given predicate ¢ over X4, we define the predicate c'@b¢!

Aabel (g o) — L, c(z) #y.
(@ey) {0, co(x) =y.

over X441 as

Note that cl®¢(z o o) = o @ ¢(x) for o € {0,1}. For a given class of predicates
C over X, we define Clabel = {clabel . ¢ ¢ C}.

The next theorem states that for every concept class C, a sanitizer for C'eb¢!
implies a private learner for C.
Theorem 5. Let a,e < ;, and let C be a class of predicates. If there exists an
(o, B, €, m)-sanitizer A for C'2%l then there exists a proper ((3a+283),283,¢,t)-
PPAC learner for C, where t = Oy g(m).

Remark 3. Given an efficient proper-sanitizer for a class C, and assuming the
existence of an efficient non-private learner for C, this reduction results in an
efficient private learner for the class C'.

Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 377

Using the above reduction together with known lower bounds on the sample
complexity of private learners, we get:

Theorem 6. There exists an explicit concept class C over Xy such that every
(a, B, €,m)-sanitizer for C requires databases of size

1
m={ (VC(C) - log |Xd) .
ae

6 Generic Label-Private Learner

The model of label privacy was defined as a relaxation of private learning, where
privacy must only be preserved for the labels of the elements in the database,
and not necessarily for the elements themselves. This is a reasonable privacy
requirement when the elements are public and only their labels are private.

Consider a database S = (z;,y;)"; containing labeled points from some do-
main X. We denote S, = (z;)™, € X™, and S, = (y;)7, € {0,1}™.

Definition 13 (Label-Private Learner [5]). Let A be an algorithm that gets
as input a database Sy € X™ and its labeling S, € {0,1}™. Algorithm A is an
(a, B, €, m)-Label Private PAC Learner for a concept class C over X if

PRIVACY. VS, € X™, algorithm A(Sg,-) = As, (+) is e-differentially private (as
in Definition [1);
UTiLiTy. Algorithm A is an («, 8, m)-PAC learner for C (as in Definition[3).

Chaudhuri et al. [5] show lower bounds on the sample complexity of label-private
learners for a class C' in terms of its doubling dimension. As the next theorem
states, the correct measure for characterizing the sample complexity of such
learners is the VC dimension, and the sample complexity of label-private learners
is actually of the same order as that of non-private learners (assuming «, 5 and
€ are constants).

Theorem 7. Let C be a concept class over a domain X . For every a, 3, €, there
exists an (o, B, €, m)-Label Private PAC learner for C, where m = Oq,5.(VC(C)).
The learner might not be efficient.

Acknowledgments. We thank Salil Vadhan and Jon Ullman for helpful dis-
cussions of ideas in this work.

References

1. Beimel, A., Kasiviswanathan, S.P., Nissim, K.: Bounds on the sample complexity
for private learning and private data release. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 437-454. Springer, Heidelberg (2010)

2. Beimel, A.; Nissim, K., Stemmer, U.: Characterizing the sample complexity of
private learners. In: ITCS, pp. 97-110 (2013)

378

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Beimel, K. Nissim, and U. Stemmer

Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: The SuLQ frame-
work. In: PODS, pp. 128-138. ACM (2005)

Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive
database privacy. J. ACM 60(2), 12:1-12:25 (2013)

Chaudhuri, K., Hsu, D.: Sample complexity bounds for differentially private learn-
ing. In: COLT, vol. 19, pp. 155-186 (2011)

De, A.: Lower bounds in differential privacy. In: Cramer, R. (ed.) TCC 2012. LNCS,
vol. 7194, pp. 321-338. Springer, Heidelberg (2012)

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves:
Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 486-503. Springer, Heidelberg (2006)

Dwork, C., Lei, J.: Differential privacy and robust statistics. In: STOC 2009,
pp. 371-380. ACM, New York (2009)

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006)

Dwork, C., Naor, M., Reingold, O., Rothblum, G., Vadhan, S.: On the complexity
of differentially private data release. In: STOC, pp. 381-390. ACM (2009)

Gupta, A., Hardt, M., Roth, A., Ullman, J.: Privately releasing conjunctions and
the statistical query barrier. In: STOC, pp. 803-812. ACM, New York (2011)
Hardt, M., Talwar, K.: On the geometry of differential privacy. In: STOC,7
pp. 705-714 (2010)

Hardt, M.A.W.: A Study of Privacy and Fairness in Sensitive Data Analysis. PhD
thesis, Princeton University (2011)

Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? In: FOCS, pp. 531-540. IEEE Computer Society (2008)
Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. Journal of
the ACM 45(6), 983-1006 (1998); Preliminary version in Proceedings of STOC
1993

McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS,
pp. 94-103. IEEE (2007)

Roth, A.: Differential privacy and the fat-shattering dimension of linear queries.
In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM
2010. LNCS, vol. 6302, pp. 683-695. Springer, Heidelberg (2010)

Smith, A., Thakurta, A.: Differentially private feature selection via stability argu-
ments, and the robustness of the lasso. Manuscript (2012)

Ullman, J.: Answering n®t°® counting queries with differential privacy is hard.
CoRR, abs/1207.6945 (2012)

Ullman, J., Vadhan, S.: PCPs and the hardness of generating private synthetic data.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 400-416. Springer, Heidelberg
(2011)

Valiant, L.G.: A theory of the learnable. Communications of the ACM 27, 1134-1142
(1984)

	Private Learning and Sanitization: Purevs. Approximate Differential Privacy
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Differential Privacy
	2.2 PAC Learning and Private PAC Learning
	2.3 Private Data Release
	2.4 Basic Differentially Private Mechanisms

	3 Learning with Approximate Privacy
	3.1 (\eps, δ)-PPAC Learner for POINTd

	3.2 Towards a Proper (\eps
, δ)-PPAC Learner for INTERVALd
	3.3 Privately Approximating Concave Promise Problems

	4 Sanitization with Approximate Privacy
	4.1 The Choosing Mechanism
	4.2 (\eps, δ)-Private Sanitiazers

	5 Sanitization and Proper Private PAC
	5.1 Sanitization Implies Proper PPAC

	6 Generic Label-Private Learner
	References

