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Between Pure and Approximate Differential
Privacy

Thomas Steinke∗ and Jonathan Ullman†

We show a new lower bound on the sample complexity of (ε, δ)-differentially private
algorithms that accurately answer statistical queries on high-dimensional databases. The
novelty of our bound is that it depends optimally on the parameter δ, which loosely
corresponds to the probability that the algorithm fails to be private, and is the first
to smoothly interpolate between approximate differential privacy (δ > 0) and pure
differential privacy (δ = 0).

Specifically, we consider a database D ∈ {±1}n×d and its one-way marginals, which
are the d queries of the form “What fraction of individual records have the i-th bit
set to +1?” We show that in order to answer all of these queries to within error ±α
(on average) while satisfying (ε, δ)-differential privacy for some function δ such that
δ ≥ 2−o(n) and δ ≤ 1/n1+Ω(1), it is necessary that

n ≥ Ω

(√
d log(1/δ)

αε

)
.

This bound is optimal up to constant factors. This lower bound implies similar new
bounds for problems like private empirical risk minimization and private PCA. To prove
our lower bound, we build on the connection between fingerprinting codes and lower
bounds in differential privacy (Bun, Ullman, and Vadhan, STOC’14).

In addition to our lower bound, we give new purely and approximately differentially
private algorithms for answering arbitrary statistical queries that improve on the sample
complexity of the standard Laplace and Gaussian mechanisms for achieving worst-case
accuracy guarantees by a logarithmic factor.

1 Introduction

The goal of privacy-preserving data analysis is to enable rich statistical analysis of a
database while protecting the privacy of individuals whose data is in the database. A
formal privacy guarantee is given by (ε, δ)-differential privacy (Dwork et al., 2006b;a),
which ensures that no individual’s data has a significant influence on the information
released about the database. The two parameters ε and δ control the level of privacy.
Very roughly, ε is an upper bound on the amount of influence an individual’s record has
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on the information released and δ is the probability that this bound fails to hold1, so
the definition becomes more stringent as ε, δ → 0.

A natural way to measure the tradeoff between privacy and utility is sample com-
plexity—the minimum number of records n that is sufficient in order to publicly release
a given set of statistics about the database, while achieving both differential privacy and
statistical accuracy. Intuitively, it’s easier to achieve these two goals when n is large,
as each individual’s data will have only a small influence on the aggregate statistics of
interest. Conversely, the sample complexity n should increase as ε and δ decrease (which
strengthens the privacy guarantee).

The strongest version of differential privacy, in which δ = 0, is known as pure
differential privacy. The sample complexity of achieving pure differential privacy is well
known for many settings (e.g. Hardt and Talwar (2010)). The more general case where
δ > 0 is known as approximate differential privacy, and is less well understood. Recently,
Bun, Ullman, and Vadhan (Bun et al., 2014) showed how to prove strong lower bounds
for approximate differential privacy that are essentially optimal for δ ≈ 1/n, which is
essentially the weakest privacy guarantee that is still meaningful.2

Since δ bounds the probability of a complete privacy breach, we would like δ to be
very small. Thus we would like to quantify the cost (in terms of sample complexity)
as δ → 0. In this work we give lower bounds for approximately differentially private
algorithms that are nearly optimal for every choice of δ, and smoothly interpolate
between pure and approximate differential privacy.

Specifically, we consider algorithms that compute the one-way marginals of the
database—an extremely simple and fundamental family of queries. For a database
D ∈ {±1}n×d, the d one-way marginals are simply the mean of the bits in each of the d
columns. Formally, we define

D :=
1

n

n∑
i=1

Di ∈ [±1]d

where Di ∈ {±1}d is the i-th row of D. A mechanism M is said to be accurate if, on
input D, its output is “close to” D. Accuracy may be measured in a worst-case sense—i.e.∣∣∣∣M(D)−D

∣∣∣∣
∞ ≤ α, meaning every one-way marginal is answered with accuracy α—or

in an average-case sense—i.e.
∣∣∣∣M(D)−D

∣∣∣∣
1
≤ αd, meaning the marginals are answered

with average accuracy α.

Some of the earliest results in differential privacy (Dinur and Nissim, 2003; Dwork
and Nissim, 2004; Blum et al., 2005; Dwork et al., 2006b) give a simple (ε, δ)-differentially
private algorithm—the Laplace mechanism—that computes the one-way marginals of

1This intuition is actually imprecise, but it is suitable for this informal discussion. See Ka-
siviswanathan and Smith (Kasiviswanathan and Smith, 2008) for a formal justification of this interpre-
tation of (ε, δ)-differential privacy.

2When δ ≥ 1/n there are algorithms that are intuitively not private, yet satisfy (0, δ)-differential
privacy.
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D ∈ {±1}n×d with average error α as long as

n ≥ O

(
min

{√
d log(1/δ)

εα
,
d

εα

})
. (1)

The previous best lower bounds are n ≥ Ω(d/εα) (Hardt and Talwar, 2010) for pure
differential privacy and n ≥ Ω̃(

√
d/εα) for approximate differential privacy with δ =

o(1/n) (Bun et al., 2014). Our main result is an optimal lower bound that combines the
previous lower bounds.

Theorem 1.1 (Main Theorem). For every ε ∈ (0, 1), every function δ = δ(n) with
δ ≥ 2−o(n) and δ ≤ 1/n1+Ω(1), and every α ≤ 1/10, if M : {±1}n×d → [±1]d is
(ε, δ)-differentially private and E

M

[
‖M(D)−D‖1

]
≤ αd for all D ∈ {±1}n×d, then

n ≥ Ω

(√
d log(1/δ)

εα

)
.

Although there has been a long line of work developing methods to prove lower
bounds in differential privacy (see Dinur and Nissim (2003); Dwork et al. (2007); Dwork
and Yekhanin (2008); Kasiviswanathan et al. (2010); Hardt and Talwar (2010); Nikolov
et al. (2013); Bun et al. (2014) for a representative, but not exhaustive, sample), our
result is the first to show that the sample complexity must grow by a multiplicative factor
of
√

log(1/δ) for answering any family of queries, as opposed to an additive dependence
on δ. We also remark that the assumption on the range of δ is necessary: The Laplace
mechanism gives accuracy α and satisfies (ε, 0)-differential privacy when n ≥ O(d/εα).
On the other hand, randomly sampling O(1/α2) rows from the database and outputting
the average of those rows gives accuracy α and satisfies (0, δ)-differential privacy when
n ≥ O(1/α2δ).

Lower bounds for answering one-way marginals have been shown to imply lower
bounds for fundamental problems such as private convex empirical risk minimiza-
tion (Bassily et al., 2014) and private principle component analysis (Dwork et al.,
2014). Our new lower bound for one-way marginals thus implies similar new lower
bounds for these problems. We describe these lower bounds in Section 5.

Finally, our techniques yield a simple alternative proof that n ≥ Ω(d/εα) is necessary
to achieve pure differential privacy while satisfying the accuracy condition in Theorem 1.1.
We present this proof in Appendix 5.2.

1.1 New Algorithms for Maximum Error

Our lower bound holds for mechanisms that bound the average error over the queries
(we denote this as L1 error). Thus, it also holds for algorithms that bound the maximum
error over the queries (we denote this as L∞ error). The Laplace mechanism gives
a matching upper bound for average error. In many cases bounds on the maximum
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error are preferable. For maximum error, the sample complexity of the best previous
mechanisms degrades by an additional polylog(d) factor compared to (1).

Surprisingly, this degradation is not necessary. We present algorithms that answer
every one-way marginal with α accuracy and improve on the sample complexity of the
Laplace mechanism by roughly a log d factor. These algorithms demonstrate that the
widely used technique of adding independent noise to each query is suboptimal when
the goal is to achieve worst-case error guarantees.

Our algorithm for pure differential privacy satisfies the following.

Theorem 1.2. For every ε, α > 0, d ≥ 1, and n ≥ 4d/εα, there exists an efficient
mechanism M : {±1}n×d → [±1]d that is (ε, 0)-differentially private and

∀D ∈ {±1}n×d P
M

[∣∣∣∣M(D)−D
∣∣∣∣
∞ ≥ α

]
≤ (2e)−d.

In fact, the algorithm promised by Theorem 1.2 is oblivious, perturbing the answers
with noise from a fixed distribution3 and only depends on the dimension d and the scale
εn. In particular, the mechanism does not depend on α.

And our algorithm for approximate differential privacy is as follows.

Theorem 1.3. For every ε, δ, α > 0, d ≥ 1, and

n ≥ O

(√
d · log(1/δ) · log log d

εα

)
,

there exists an efficient mechanism M : {±1}n×d → [±1]d that is (ε, δ)-differentially
private and

∀D ∈ {±1}n×d P
M

[∣∣∣∣M(D)−D
∣∣∣∣
∞ ≥ α

]
≤ 1

dω(1)
.

The algorithm stipulated by Theorem 1.3 is also oblivious, although in this case the
distribution depends on α in addition to d and εn.

These algorithms improve over the sample complexity of the best known mechanisms
for each privacy and accuracy guarantee by a factor of (log d)Ω(1). Namely, the Laplace
mechanism requires n ≥ O(d · log d/εα) samples for pure differential privacy and the
Gaussian mechanism requires n ≥ O(

√
d · log(1/δ) · log d/εα) samples for approximate

differential privacy.

We remark that the algorithms in Theorems 1.2 and 1.3 are not specific to one-way
marginals. They can be use to answer any set of d sensitivity-2/n queries. We also
conjecture that the Algorithm in Theorem 1.3 can be improved to match our lower
bound — that is, we believe that the

√
log log d factor is unnecessary.

3That is, M(D) is simply D+ Y (truncated to [±1]d), where Y is a single distribution and does not
depend on D.
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Privacy Accuracy Type Previous bound This work

(ε, δ) L1 or L∞ Lower n = Ω̃
(√

d
αε

)
Bun et al. (2014) n = Ω

(√
d log(1/δ)

αε

)

(ε, δ) L1 Upper n = O

(√
d·log(1/δ)
αε

)
Gaussian

(ε, δ) L∞ Upper n = O

(√
d·log(1/δ)·log d

αε

)
Gaussian n = O

(√
d·log(1/δ)·log log d

εα

)

(ε, 0) L1 or L∞ Lower n = Ω
(
d
αε

)
Hardt and Talwar (2010)

(ε, 0) L1 Upper n = O
(
d
αε

)
Laplace

(ε, 0) L∞ Upper n = O
(
d·log d
αε

)
Laplace n = O

(
d
αε

)
Figure 1: Summary of sample complexity upper and lower bounds for privately answering
d one-way marginals with L1 error αd or L∞ error α.

1.2 Techniques

Lower Bounds: Our lower bound relies on a combinatorial objected called a fingerprinting
code (Boneh and Shaw, 1998). Fingerprinting codes were originally used in cryptography
for watermarking digital content, but several recent works have shown they are intimately
connected to lower bounds for differential privacy and related learning problems (Ullman,
2013; Bun et al., 2014; Hardt and Ullman, 2014; Steinke and Ullman, 2014). In particular,
Bun et al. (Bun et al., 2014) showed that fingerprinting codes can be used to construct
an attack demonstrating that any mechanism that accurately answers one-way marginals
is not differentially private.

A fingerprinting code gives a distribution on individuals’ data and a corresponding
tracing algorithm. The tracing algorithm guarantees that if the database is constructed
from some subset of the individuals, and the tracing algorithm is given approximate
answers to the one-way marginals of the database, then the tracing algorithm will identify
one of the n individuals, and with overwhelming probability this individual will be in
the subset that was used to form the database. This tracing property is guaranteed as
long as the dimension of the database d is sufficiently large relative to n. Such a tracing
algorithm rules out differential privacy because there must be at least one individual in
the database that is output by the tracer with significant probability, but if we were to
remove that individual’s data from the database, then that individual cannot be output
by the tracer except with tiny probability, violating the differential privacy constraints.

To obtain the strongest lower bound for differential privacy, we want to have finger-
printing codes where d can be as small as possible relative to n. Tardos (Tardos, 2008)
gave a beautiful construction of fingerprinting codes with d = Õ(n2). Bun, Ullman, and
Vadhan (Bun et al., 2014) used Tardos’ construction to show that any mechanism that
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satisfies (1, o(1/n))-differential privacy requires n ≥ Ω̃(
√
d) samples to compute one-way

marginals with constant accuracy.

Our proof uses a new, more general reduction from breaking fingerprinting codes
to differentially private data release. Specifically, our reduction uses group differential
privacy. This property states that if an algorithm is (ε, δ)-differentially private with
respect to the change of one individual’s data, then for any k, it is roughly (kε, ekεδ)-
differentially private with respect to the change of k individuals’ data. Thus an (ε, δ)-
differentially private algorithm provides a meaningful privacy guarantee for groups of
size k ≈ log(1/δ)/ε.

To use this in our reduction, we start with a mechanism M that takes a database
of n rows and is (ε, δ)-differentially private. We design a mechanism Mk that takes a
database of n/k rows, copies each of its rows k times, and uses the result as input to M .
Using the property of group differential privacy above, the resulting mechanism Mk is
roughly (kε, ekεδ)-differentially private. For our choice of k, these parameters will be
small enough to apply the attack of Bun et al. (2014) to obtain a lower bound on the
number of samples used by Mk, which is n/k. Thus, for larger values of k (equivalently,
smaller values of δ), we obtain a stronger lower bound. The remainder of the proof is to
quantify the parameters precisely.

Upper Bounds: Our algorithm for pure differential privacy and worst-case error is an
instantiation of the exponential mechanism (McSherry and Talwar, 2007) using the
L∞ norm. That is, the mechanism samples y ∈ Rd with probability proportional to
exp(−η ||y||∞) and outputs M(D) = D + y. In contrast, adding independent Laplace
noise corresponds to using the exponential mechanism with the L1 norm and adding
independent Gaussian noise corresponds to using the exponential mechanism with the L2

norm squared. Using this distribution turns out to give better tail bounds than adding
independent noise.

For approximate differential privacy, we use a completely different algorithm. We
start by adding independent Gaussian noise to each marginal. However, rather than
using a union bound to show that each Gaussian error is small with high probability,
we argue that “most” errors are small. Namely, with the sample complexity that we
allow M , we can ensure that all but a 1/polylog(d) fraction of the errors are small with
high probability. Now we “fix” the d/polylog(d) marginals that are bad. We repeatedly
use the exponential mechanism (McSherry and Talwar, 2007) to find one bad error and
the correct it by sampling fresh Gaussian noise. The key is that we only need to run
this procedure d/polylog(d) times, which means we can afford the necessary sample
complexity.

2 Preliminaries

We define a database D ∈ {±1}n×d to be a matrix of n rows, where each row corresponds
to an individual, and each row has dimension d (consists of d binary attributes). We
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say that two databases D,D′ ∈ {±1}n×d are adjacent if they differ only by a single row,
and we denote this by D ∼ D′. In particular, we can replace the ith row of a database
D with some fixed element of {±1}d to obtain another database D−i ∼ D.

Definition 2.1 (Differential Privacy (Dwork et al., 2006b)). Let M : {±1}n×d → R be
a randomized mechanism. We say that M is (ε, δ)-differentially private if for every two
adjacent databases D ∼ D′ and every subset S ⊆ R,

P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S] + δ.

A well known fact about differential privacy is that it generalizes smoothly to
databases that differ on more than a single row. We say that two databases D,D′ ∈
{±1}n×d are k-adjacent if they differ by at most k rows, and we denote this by D ∼k D′.
The following statement is essentially folklore, and we refer the reader to Dwork and
Roth (2014) for a textbook proof.

Fact 2.2 (Group Differential Privacy). For every k ≥ 1, if M : {±1}n×d → R is
(ε, δ)-differentially private, then for every two k-adjacent databases D ∼k D′, and every
subset S ⊆ R,

P [M(D) ∈ S] ≤ ekε · P [M(D′) ∈ S] +
ekε − 1

eε − 1
· δ.

All of the upper and lower bounds for one-way marginals have a multiplicative 1/αε
dependence on the accuracy α and the privacy loss ε. This is no coincidence, and follows
from the following general statement, which is folklore.

Fact 2.3 (Dependence on α and ε). Let α, δ ∈ [0, 1/10], and ε ∈ (0, 1/10]. Fix some
norm ||·||.

Suppose there exists a (ε, δ)-differentially private mechanism M : {±1}n×d → [±1]d

such that for every database D ∈ {±1}n×d,

E
M

[
‖M(D)−D‖

]
≤ α

∣∣∣∣∣∣~1∣∣∣∣∣∣ .
Then there exists a (1, δ/ε)-differentially private mechanism M ′ : {±1}n′×d → [±1]d

for n′ = Θ(αεn) such that for every database D′ ∈ {±1}n′×d,

E
M ′

[
‖M ′(D′)−D′‖

]
≤ 1

10

∣∣∣∣∣∣~1∣∣∣∣∣∣ .
This fact allows us to suppress the accuracy parameter α and the privacy loss ε when

proving our lower bounds. Namely, if we prove a lower bound of n′ ≥ n∗ for all (1, δ)-
differentially private mechanisms M ′ : {±1}n′×d → [±1]d with E

M ′

[
‖M ′(D′)−D′‖p

]
≤

d1/p/10, then we obtain a lower bound of n ≥ Ω(n∗/αε) for all (ε, εδ)-differentially
private mechanisms M : {±1}n×d → [±1]d with E

M

[
‖M(D)−D‖p

]
≤ αd1/p. So we will

simply fix the parameters α = 1/10 and ε = 1 in our lower bounds.



10

Proof. Let k = blog(2)/εc. Given D′ ∈ {±1}n′×d, define D ∈ {±1}n×d to be k copies of
D′ followed by n− kn′ rows of all 1 entries. Then

nD = n′D′ · k + (n− kn′)~1 and D′ =
n

kn′
D − n− kn′

kn′
~1.

Define M ′ by

M ′(D′) =
n

kn′
M(D)− n− kn′

kn′
~1.

Then
E
M ′

[∣∣∣∣M ′(D′)−D′∣∣∣∣] =
n

kn′
E
M

[∣∣∣∣M(D)−D
∣∣∣∣] ≤ αn

kn′

∣∣∣∣∣∣~1∣∣∣∣∣∣ .
Thus, if n′ ≥ 20αεn ≥ 10αn/k, we have E

M ′

[∣∣∣∣M ′(D′)−D′∣∣∣∣] ≤ 1
10

∣∣∣∣∣∣~1∣∣∣∣∣∣, as required.

By Fact 2.2, M ′ is
(
kε, e

kε−1
eε−1 · δ

)
-differentially private. By our choice of k, we have

kε ≤ log 2 ≤ 1 and ekε−1
eε−1 δ ≤

elog 2−1
ε δ, as required.

3 Lower Bounds for Approximate Differential Privacy

Our main theorem can be stated as follows.

Theorem 3.1 (Main Theorem). Let M : {±1}n×d → [±1]d be a (1, δ)-differentially
private mechanism that answers one-way marginals such that

∀D ∈ {±1}n×d E
M

[∣∣∣∣M(D)−D
∣∣∣∣

1

]
≤ d

10
,

where D is the true answer vector. If δ ≥ e−n/200 and δ ≤ 1/n1+γ for some γ ∈ (0, 1),
and n is sufficiently large, then

d ≤ O
(

n2

γ2 log(1/δ)

)
.

Theorem 1.1 in the introduction follows by rearranging terms, and applying Fact 2.3.

First we must introduce fingerprinting codes. The following definition is tailored to
the application to privacy. Fingerprinting codes were originally defined by Boneh and
Shaw (Boneh and Shaw, 1998) with a worst-case accuracy guarantee. Subsequent works
(Bun et al., 2014; Steinke and Ullman, 2014) have altered the accuracy guarantee to an
average-case one, which we use here.

Definition 3.2 (L1 Fingerprinting Code). A ε-complete δ-sound α-robust L1 finger-
printing code for n users with length d is a pair of random variables D ∈ {±1}n×d and
Trace : [±1]d → 2[n] such that the following hold.

Completeness: For any fixed M : {±1}n×d → [±1]d,

P
[(∣∣∣∣M(D)−D

∣∣∣∣
1
≤ αd

)
∧ (Trace(M(D)) = ∅)

]
≤ ε.
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Soundness: For any i ∈ [n] and fixed M : {±1}n×d → [±1]d,

P [i ∈ Trace(M(D−i))] ≤ δ,

where D−i denotes D with the ith row replaced by some fixed element of {±1}d.

We remark that δ in the above definition is not the same quantity as δ in the definition
of (ε, δ)-differential privacy. However, we chose to reuse the notation, since in our proof,
we will apply both definitions with the same choice of δ.

Fingerprinting codes with optimal length were first constructed by Tardos (Tardos,
2008) (for worst-case error) and subsequent works (Bun et al., 2014; Steinke and Ullman,
2014) have adapted Tardos’ construction to work for average-case error guarantees, which
yields the following theorem.

Theorem 3.3 ((Steinke and Ullman, 2014, Theorem 2.21)). For every n ≥ 1, δ > 0,
and d ≥ dn,δ = O(n2 log(1/δ)), there exists a 1/100-complete δ-sound 1/8-robust L1

fingerprinting code for n users with length d.

We now show how the existence of fingerprinting codes implies our lower bound.

Proof of Theorem 3.1 from Theorem 3.3. LetM : {±1}n×d → [±1]d be a (1, δ)-differentially
private mechanism such that

∀D ∈ {±1}n×d E
M

[∣∣∣∣M(D)−D
∣∣∣∣

1

]
≤ d

10
.

Then, by Markov’s inequality,

∀D ∈ {±1}n×d P
M

[∣∣∣∣M(D)−D
∣∣∣∣

1
>
d

9

]
≤ 9

10
. (2)

Let k be an integer parameter to be chosen later. Let nk = bn/kc. Let Mk :
{±1}nk×d → [±1]d be the following mechanism. On input D∗ ∈ {±1}nk×d, Mk creates
D ∈ {±1}n×d by taking k copies of D∗ and filling the remaining entries with 1s. Then
Mk runs M on D and outputs M(D).

By group privacy (Fact 2.2), Mk is a
(
εk = k, δk = ek−1

e−1 δ
)

-differentially private

mechanism. By the triangle inequality,∣∣∣∣Mk(D∗)−D∗
∣∣∣∣

1
≤
∣∣∣∣M(D)−D

∣∣∣∣
1

+
∣∣∣∣D −D∗∣∣∣∣

1
. (3)

Now

Dj =
k · nk
n

D∗j +
n− k · nk

n
1.

Thus∣∣Dj −D∗j
∣∣ =

∣∣∣∣(k · nkn
− 1

)
D∗j +

n− k · nk
n

∣∣∣∣ =
n− k · nk

n

∣∣1−D∗j ∣∣ ≤ 2
n− k · nk

n
.
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We have
n− k · nk

n
=
n− kbn/kc

n
≤ n− k(n/k − 1)

n
=
k

n
.

Thus
∣∣∣∣D −D∗∣∣∣∣

1
≤ 2dk/n. Assume k ≤ n/200. Thus

∣∣∣∣D −D∗∣∣∣∣
1
≤ d/100 and, by (2)

and (3),

P
Mk

[∣∣∣∣Mk(D∗)−D∗
∣∣∣∣

1
>
d

8

]
≤ P
M

[∣∣∣∣M(D)−D
∣∣∣∣

1
>
d

9

]
≤ 9

10
. (4)

Assume d ≥ dnk,δ, where dnk,δ = O(n2
k log(1/δ)) is as in Theorem 3.3. We will show

by contradiction that this cannot be – that is d ≤ O(n2
k log(1/δ)). Let D∗ ∈ {±1}nk×d

and Trace : [±1]d → 2[nk] be a 1/100-complete δ-sound 1/8-robust L1 fingerprinting
code for nk users of length d.

By the completeness of the fingerprinting code,

P
[∣∣∣∣Mk(D∗)−D∗

∣∣∣∣
1
≤ d

8
∧ Trace(M(D)) = ∅

]
≤ 1

100
. (5)

Combinging (4) and (5), gives

P [Trace(Mk(D∗)) 6= ∅] ≥ 9

100
>

1

12
.

In particular, there exists i∗ ∈ [nk] such that

P [i∗ ∈ Trace(Mk(D∗))] >
1

12nk
. (6)

We have that Trace(Mk(D∗)) is a (εk, δk)-differentially private function of D∗, as it
is only postprocessing Mk(D∗). Thus

P [i∗ ∈ Trace(Mk(D∗))] ≤ eεkP
[
i∗ ∈ Trace(Mk(D∗−i∗))

]
+ δk ≤ eεkδ + δk, (7)

where the second inequality follows from the soundness of the fingerprinting code.

Combining (6) and (7) gives

1

12nk
≤ eεkδ + δk = ekδ +

ek − 1

e− 1
δ =

ek+1 − 1

e− 1
δ < ek+1δ. (8)

If k ≤ log(1/12nkδ)− 1, then (8) gives a contradiction. Let k = blog(1/12nδ)− 1c, since
larger values of k give stronger lower bounds. Assuming δ ≥ e−n/200 ensures k ≤ n/200,
as required. Assuming δ ≤ 1/n1+γ implies k ≥ log(1/δ)/(1 + 1/γ)− 5 ≥ Ω(γ log(1/δ)).
This setting of k gives a contradiction, which implies that

d < dnk,δ = O(n2
k log(1/δ)) = O

(
n2

k2
log(1/δ)

)
= O

(
n2

γ2 log(1/δ)

)
,

as required.
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4 New Mechanisms for L∞ Error

Adding independent noise seems very natural for one-way marginals, but it is suboptimal
if one is interested in worst-case (i.e. L∞) error bounds, rather than average-case (i.e.
L1) error bounds.

4.1 Pure Differential Privacy

Theorem 1.2 follows from Theorem 4.1. In particular, the mechanism M : {±1}n×d →
[±1]d in Theorem 1.2 is given by M(D) = D+Y , where Y ∼ D and D is the distribution
from Theorem 4.1 with ∆ = 2/n.4

Theorem 4.1. For all ε > 0, d ≥ 1, and ∆ > 0, there exists a continuous distribution
D on Rd with the following properties.

• Privacy: If x, x′ ∈ Rd with ||x− x′||∞ ≤ ∆, then

P
Y∼D

[x+ Y ∈ S] ≤ eε P
Y∼D

[x′ + Y ∈ S]

for all measurable S ⊆ Rd.

• Accuracy: For all α > 0,

P
Y∼D

[||Y ||∞ ≥ α] ≤
(

∆d

εα

)d
ed−αε/∆.

In particular, if d ≤ εα/2∆, then P
Y∼D

[||Y ||∞ ≥ α] ≤ (2e)−d.

• Efficiency: D can be efficiently sampled.

Proof. The distribution D is simply an instantiation of the exponential mechanism
(McSherry and Talwar, 2007). In particular, the probability density function is given by

pdfD(y) ∝ exp
(
− ε

∆
||y||∞

)
.

Formally, for every measurable S ⊆ Rd,

P
Y∼D

[Y ∈ S] =

∫
S

exp
(
− ε

∆ ||y||∞
)

dy∫
Rd exp

(
− ε

∆ ||y||∞
)

dy
.

Firstly, this is clearly a well-defined distribution as long as ε/∆ > 0.

Privacy is easy to verify: It suffices to bound the ratio of the probability densities for
the shifted distributions. For x, x′ ∈ Rd with ||x′ − x||∞ ≤ ∆, by the triangle inequality,

pdfD(x+ y)

pdfD(x′ + y)
=

exp
(
− ε

∆ ||x+ y||∞
)

exp
(
− ε

∆ ||x′ + y||∞
) = exp

( ε
∆

(||x′ + y||∞ − ||x+ y||∞)
)
≤ exp

( ε
∆
||x′ − x||∞

)
≤ eε.

4Note that we must truncate the output of M to ensure that M(D) is always in [±1]d.
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Define a distribution D∗ on [0,∞) to by Z ∼ D∗ meaning Z = ||Y ||∞ for Y ∼ D. To
prove accuracy, we must give a tail bound on D∗. The probability density function of
D∗ is given by

pdfD∗(z) ∝ zd−1 · exp
(
− ε

∆
z
)
,

which is obtained by integrating the probability density function of D over the infinity-
ball of radius z, which has surface area d2dzd−1 ∝ zd−1. Thus D∗ is precisely the gamma
distribution with shape d and mean d∆/ε. The moment generating function is therefore

E
Z∼D∗

[
etZ
]

=

(
1− ∆

ε
t

)−d
for all t < ε/∆. By Markov’s inequality

P
Z∼D∗

[Z ≥ α] ≤
E

Z∼D∗

[
etZ
]

etα
=

(
1− ∆

ε
t

)−d
e−tα.

Setting t = ε/∆− d/α gives the required bound.

It is easy to verify that Y ∼ D can be sampled by first sampling a radius R from a
gamma distribution with shape d+1 and mean (d+1)∆/ε and then sampling Y ∈ [±R]d

uniformly at random. To sample R we can set R = ∆
ε

∑d
i=0 logUi, where each Ui ∈ (0, 1]

is uniform and independent. This gives an algorithm (in the form of an explicit circuit)
to sample D that uses only O(d) real arithmetic operations, d+ 1 logarithms, and 2d+ 1
independent uniform samples from [0, 1].

We remark that the noise distribution in Theorem 4.1 is better than the Laplace
mechanism even for L1 error by a constant factor. In particular, the expected L1 norm
of the noise distribution in Theorem 4.1 is smaller than that of the Laplace mechanism
with the same privacy level by a factor of (2−od(1)). Moreover, the L1 noise of the noise
distribution in Theorem 4.1 stochastically dominates that of the Laplace mechanism:

Remark 4.2. Fix ε > 0, d ≥ 1, and ∆ > 0. Let D be the distribution on Rd from
Theorem 4.1. Let D′ be the distribution on Rd consisting of d independent samples
from the Laplace distribution with scale 2d/εn. Both distributions provide ε-differential
privacy when used to answer d one-way marginals. However

E
Y∼D

[||Y ||1] =
2

1 + 1/d
· E
Y ′∼D′

[||Y ′||1]

and

P
Y∼D

[||Y ||1 > αd] ≤ P
Y ′∼D′

[||Y ′||1 > αd]

for all α.
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Parameters: α ∈ (0, 1).
Input: D ∈ {±1}n×d.
Let

T =

⌈
2d

log4 d

⌉
, σ2

0 =
α2

32 log log d
, σ2

1 =
α2

8 log2 d
, η =

2

α
log2 d.

For j ∈ [d], sample a0
j from N (Dj , σ

2
0).

For t ∈ [T ] do:
Sample kt ∈ [d] with

P [kt = k] =
exp(η|at−1

k −Dk|)∑
j∈[d] exp(η|at−1

j −Dj |)
.

Sample atkt from N (Dj , σ
2
1).

For j ∈ [d] \ {kt}, atj = at−1
j .

Output aT1 , · · · , aTd .

Figure 2: Approximately DP Mechanism M : {±1}n×d → [±1]d

4.2 Approximate Differential Privacy

We now describe our approximately differentially private mechanism in Figure 2.

Proof of Theorem 1.3. Firstly, we consider the privacy of M : The data is used in
d applications of the Gaussian mechanism with variance σ2

0 and sensitivity 2/n, T
applications of the Gaussian mechanism with variance σ2

1 , and T applications of the
exponential mechanism. By the composition and postprocessing properties of differential
privacy (Dwork et al., 2010; Dwork and Roth, 2014), this implies that M satisfies
(4τ +

√
4τ log(1/δ), δ)-differential privacy for all δ > 0, where

τ =
2d

σ2
0n

2
+

2T

σ2
1n

2
+

8η2T

n2

=
64d

α2n2
log log d+

T

α2n2

(
16 log2 d+ 128 log4 d

)
≤ 64d

α2n2
log log d+

1

α2n2

(
2d

log4 d
+ 1

)(
16 log2 d+ 128 log4 d

)
≤ d

α2n2

(
64 log log d+ 288 +

144 log4 d

d

)
≤ d

α2n2
(64 log log d+O(1)) .
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In particular, if ε ≤ 1 and δ ≤ e−8, it is sufficient that τ ≤ ε2/5 log(1/δ). Thus M is
(ε, δ)-differentially private if

n ≥

√
5d log(1/δ)

α2ε2

(
64 log log d+ 288 +

144 log4 d

d

)
≤

(18 + o(1))
√
d · log log d · log(1/δ)

αε
.

Now we turn our attention to the accuracy of M : For j ∈ [d], t ∈ {0, 1, · · · , T},
and α̂ > 0, let Xt

j(α̂) ∈ {0, 1} be indicator of the event that |aTj − Dj | > α̂ and let

Xt(α̂) =
∑
j∈[d]X

t
j(α̂). The final answers are α-accurate if and only if XT (α) = 0. Thus

we must show that P
[
XT (α) > 0

]
≤ β, where

β = e−2d/ log8 d +
d(d+ 1)

dlog d
=

1

dω(1)
.

This follows from the following three claims:

(i) All but T of the initial answers are α
2 -accurate. i.e. P

[
X0(α/2) > T

]
≤ e−2d/ log8 d.

(ii) In each of the T “fixing rounds,” the exponential mechanism finds a bad answer.
i.e. P

[
Xt−1
kt

(α/2) = 0 | Xt−1(α) > 0
]
≤ 1

dlog d−1 .

(iii) Each of the T resampled answers is accurate. i.e. P
[
Xt
kt

(α/2) = 1
]
≤ 1

dlog d
.

Claim (i) says that, with high probability, X0(α/2) ≤ T . Claims (ii) and (iii) imply that,
with high probability, Xt(α/2) strictly decreases in each round, as long as Xt(α) > 0.
Thus either Xt(α) = 0 for some t ∈ [T ] or XT (α/2) = 0. Claim (iii) implies that
if Xt(α/2) = 0 at some point, then it remains 0 for the rest of the execution and
Xt(α/2) = 0 with high probability. So, as long as all the good events in claims (i-iii)
happen, the final answers are α-accurate. A union bound shows that this happens with
probability 1− β.

(i) Firstly, the random variables X0
1 (α/2), X0

2 (α/2), · · · , X0
d(α/2) are independent.

For each j ∈ [d],

E
[
X0
j (α/2)

]
= P
G∼N (0,σ2

0)
[|G| > α/2] ≤ e−α

2/8σ2
0 ≤ 1

log4 d
.

Thus E
[
X0(α/2)

]
≤ d/ log4 d. By Hoeffding’s inequality,

P
[
X0(α/2) > E [X0(α/2)] + λ

]
≤ e−2λ2/d

for all λ > 0. Setting λ = d/ log4 d verifies the first claim.

(ii) Now we must verify that, in each round, the exponential mechanism finds a bad
query with high probability. We have

P
[
Xt−1
kt

(α/2) = 0
]

=

∑
k∈[d] exp(η|at−1

k −Dk|) · I(|at−1
k −Dk| ≤ α/2)∑

j∈[d] exp(η|at−1
j −Dj |)

≤ exp(ηα/2) · d
exp(ηα) ·Xt−1(α)

≤ d1−log d,



17

assuming Xt−1(α) > 0.

(iii) Finally, we have

P
[
Xt
kt(α/2) = 1

]
= P
G∼N (0,σ2

1)
[|G| > α/2] ≤ e−α

2/8σ2
1 ≤ d− log d.

5 Applications of our Lower Bound

5.1 Private Empirical Risk Minimization

In the most well studied variant of the private empirical risk minimization problem,
we are given a dataset D = (x1, . . . , xn) ∈ Xn where X is a some finite data universe,
and each element of the data universe is associated with a 1-Lipschitz convex risk
function (also known as a loss or penalty function) `x : Bd2 → R. Here, Bd2 is the set{
θ ∈ Rd | ‖θ‖2 = 1

}
of d-dimensional unit-vectors.5

The goal is to find the empirical risk minimizer

θ∗ = arg min
θ∈Bd2

1

n

n∑
i=1

`xi(θ).

Since the empirical risk minimizer θ∗ may reveal sensitive information about the dataset
D, when adding differential privacy as a constraint, we will settle for an α-approximate
empirical risk minimizer θ̂ such that

1

n

n∑
i=1

`xi(θ̂) ≤
1

n

n∑
i=1

`xi(θ
∗) + α.

Using the lower bounds for one-way marginals in Bun et al. (Bun et al., 2014), Bassily
et al. (Bassily et al., 2014) showed that in order to find an α-approximate empirical
risk minimizer for a d-dimensional empirical risk minimization problem while satisfying
(ε, o(1/n))-differential privacy, it is necessary that n ≥ Ω̃(

√
d/εα). Further, they showed

that n ≥ Ω̃(
√
d/ε
√
α) samples are necessary even when the risk functions are 1-strongly

convex.6 Using our improved lower bounds for one-way marginals, we can prove a more
precise lower bound for both of these cases. As in Bassily et al., our lower bound applies
for a very simple instance of convex empirical risk minimization.

5The assumptions that `x is 1-Lipschitz and that ‖θ‖2 = 1 should be viewed as normalizations, and
many other normalizations for the problem are possible and have been studied.

6A differentiable function f : Rd → R is 1-strongly convex if for every x, x′ ∈ Rd,

f(x′) ≥ f(x) +∇f(x)>(x′ − x) + 1
2
‖x′ − x‖22.
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Theorem 5.1 (Lower Bound for Private Convex ERM). For every ε ∈ (0, 1), every
function δ = δ(n) with δ ≥ 2−o(n) and δ ≤ 1/n1+Ω(1) and every α ≤ 1/10, if M :
(Bd2 )n → Bd2 is (ε, δ)-differentially private and when given (x1, · · · , xn) ∈ (Bd2 )n as input,

outputs an α-approximate empirical risk minimizer θ̂ ∈ Bd2 satisfying

E
θ̂=M(x1,··· ,xn)

[
1

n

n∑
i=1

〈θ̂, xi〉

]
≤ min
θ∈Bd2

1

n

n∑
i=1

〈θ, xi〉+ α, (9)

then

n ≥ Ω

(√
d log(1/δ)

εα

)
.

The proof is effectively identical to Bassily et al. (2014, Theorem 5.3), but using
Theorem 1.1 in place of the results of Bun et al. (Bun et al., 2014).7

We also can show a similar bound for a strongly convex empirical risk minimization
problem:

Theorem 5.2 (Lower Bound for Private Strongly Convex ERM). For every ε ∈ (0, 1),
every function δ = δ(n) with δ ≥ 2−o(n) and δ ≤ 1/n1+Ω(1) and every α ≤ 1/10, if
M : (Bd2 )n → Bd2 is (ε, δ)-differentially private and when given (x1, · · · , xn) ∈ (Bd2 )n as

input, outputs an α-approximate empirical risk minimizer θ̂ satisfying

E
θ̂=M(x1,··· ,xn)

[
1

n

n∑
i=1

‖θ̂ − xi‖22

]
≤ min
θ∈Bd2

1

n

n∑
i=1

‖θ − xi‖22 + α, (10)

then

n ≥ Ω

(√
d log(1/δ)

ε
√
α

)
.

Observe that for every x ∈ Bd2 , the loss function `x(θ) = ‖θ−x‖22 is 1-strongly convex
and Lipschitz, so the problem described in Theorem 5.2 is in fact a valid instance of the
empirical risk minimization problem described above.

Proof. Observe that

θ∗ =
1

n

n∑
i=1

xi = arg min
θ∈Bd2

1

n

n∑
i=1

‖θ − xi‖22.

7Although Bassily et al. (2014, Theorem 5.3) is not explictly stated as such, it is effectively a
reduction from answering 1-way marginals with low L1 error to solving the instance of empirical risk
minimization described in our Theorem 5.1. Thus, we can immediately apply our new lower bounds for
answer 1-way marginals to prove Theorem 5.1.
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Moreover

1

n

n∑
i=1

‖θ̂ − xi‖22 =
1

n

n∑
i=1

‖θ̂ − θ∗‖22 + ‖θ∗ − xi‖22 + 2〈θ̂ − θ∗, θ∗ − xi〉

=‖θ̂ − θ∗‖22 +
1

n

n∑
i=1

‖θ∗ − xi‖22 + 2〈θ̂ − θ∗, 1

n

n∑
i=1

θ∗ − xi〉

=‖θ̂ − θ∗‖22 + min
θ∈Bd2

1

n

n∑
i=1

‖θ − xi‖22.

By (10), this implies Ê
θ

[
‖θ̂ − θ∗‖22

]
≤ α. Cauchy-Schwartz and Jensen’s inequalities then

give

Ê
θ

[
‖θ̂ − θ∗‖1

]
≤ Ê

θ

[√
d‖θ̂ − θ∗‖2

]
≤
√
αd. (11)

Now we can reduce to one-way marginals. Define M ′ : {±1}n×d → [±1]d as follows.

On input D ∈ {±1}n×d, let xi = Di/
√
d ∈ Bd2 , compute θ̂ = M(x1, · · · , xn) and return

θ̂ ·
√
d truncated to [±1]d. By (11), E

[
‖M ′(D)−D‖1

]
≤
√
αd. The result now follows

from applying Theorem 1.1 to M ′.

5.2 Private PCA

Suppose our sensitive dataset is an n × d matrix where each row has norm at most
1. That is, D ∈ (Bd2)n. We would like to find the eigenvector corresponding to the
largest eigenvalue of D, namely v∗ = arg maxv:‖v‖2=1 ‖Dv‖22. Since this vector may reveal
sensitive information about D, we will settle for an α-approximate eigenvector, which is
a unit vector v̂ such that ‖Dv̂‖22 ≥ ‖Dv∗‖22 − αn.

Using the lower bounds for one-way marginals in Bun et al. (Bun et al., 2014), Dwork
et al. (Dwork et al., 2014) showed that in order to find an α-approximate eigenvector for
D while satisfying (1, o(1/n))-differential privacy, it is necessary that n ≥ Ω̃(

√
d/εα).

Using our improved lower bounds for one-way marginals, we can prove a more precise
bound.

Theorem 5.3. For every ε ∈ (0, 1), every function δ = δ(n) with δ ≥ 2−o(n) and
δ ≤ 1/n1+Ω(1) and every α ≤ 1/10, if M : (Bd2)n → Bd2 is (ε, δ)-differentially private
and when given D ∈ (Bd2 )n as input, outputs an α-approximate eigenvector of D, then

n ≥ Ω

(√
d log(1/δ)

εα

)
.
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A Alternative Lower Bound for Pure Differential Privacy

It is known (Hardt and Talwar, 2010) that any ε-differentially private mechanism that
answers d one-way marginals requires n ≥ Ω(d/ε) samples. Our techniques yield an
alternative simple proof of this fact.

Theorem A-1. Let M : {±1}n×d → [±1]d be a ε-differentially private mechanism.
Suppose

∀D ∈ {±1}n×d E
M

[∣∣∣∣M(D)−D
∣∣∣∣

1

]
≤ 0.9d

Then n ≥ Ω(d/ε).

The proof uses a special case of Hoeffding’s Inequality:

Lemma A-2 (Hoeffding’s Inequality). Let X ∈ {±1}n be uniformly random and a ∈ Rn
fixed. Then

P
X

[〈a,X〉 > λ ||a||2] ≤ e−λ
2/2

for all λ ≥ 0.
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Proof of Theorem A-1. Let x, x′ ∈ {±1}d be independent and uniform. Let D ∈
{±1}n×d be n copies of x and, likewise, let D′ ∈ {±1}n×d be n copies of x′. Let
Z = 〈M(D), x〉 and Z ′ = 〈M(D′), x〉.

Now we give conflicting tail bounds for Z and Z ′, which we can relate by privacy.

By our hypothesis and Markov’s inequality,

P [Z ≤ d/20] =P [〈M(D), x〉 ≤ 0.05d]

=P
[
〈D,x〉 − 〈D −M(D), x〉 ≤ 0.05d

]
=P
[
〈D −M(D), x〉 ≥ 0.95d

]
≤P
[∣∣∣∣D −M(D)

∣∣∣∣
1
≥ 0.95d

]
≤
E
[∣∣∣∣D −M(D)

∣∣∣∣
1

]
0.95d

≤ 0.9

0.95
< 0.95.

Since M(D′) is independent from x, we have

∀λ ≥ 0 P
[
Z ′ > λ

√
d
]
≤ P [〈M(D′), x〉 > λ ||M(D′)||2] ≤ e−λ

2/2,

by Lemma A-2. In particular, setting λ =
√
d/20 gives P [Z ′ > d/20] ≤ e−d/800.

Now D and D′ are databases that differ in at most n rows, so privacy implies that

P [M(D) ∈ S] ≤ enεP [M(D′) ∈ S]

for all S. Thus

1

20
< P

[
Z >

d

20

]
= P [M(D) ∈ Sx] ≤ enεP [M(D′) ∈ Sx] = enεP

[
Z ′ >

d

20

]
≤ enεe−d/800,

where

Sx =

{
y ∈ [±1]d : 〈y, x〉 > d

20

}
.

Rearranging 1/20 < enεe−d/800, gives

n >
d

800ε
− log(20)

ε
,

as required.
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