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Abstract

In the shuffle model of differential privacy, data-holding users send randomized messages to
a secure shuffler, the shuffler permutes the messages, and the resulting collection of messages
must be differentially private with regard to user data. In the pan-private model, an algorithm
processes a stream of data while maintaining an internal state that is differentially private with
regard to the stream data. We give evidence connecting these two apparently different models.

Our results focus on robustly shuffle private protocols, whose privacy guarantees are not
greatly affected by malicious users. First, we give robustly shuffle private protocols and upper
bounds for counting distinct elements and uniformity testing. Second, we use pan-private lower
bounds to prove robustly shuffle private lower bounds for both problems. Focusing on the de-
pendence on the domain size k, we find that robust approximate shuffle privacy and approximate
pan-privacy have additive error Θ(

√
k) for counting distinct elements. For uniformity testing,

we give a robust approximate shuffle private protocol with sample complexity Õ(k2/3) and show
that an Ω(k2/3) dependence is necessary for any robust pure shuffle private tester. Finally, we
show that this connection is useful in both directions: we give a pan-private adaptation of recent
work on shuffle private histograms and use it to recover further separations between pan-privacy
and interactive local privacy.

1 Introduction

Differential privacy [19] guarantees that an algorithm’s output is quantifiably insensitive to small
changes in its input. This insensitivity ensures that differentially private algorithms are not greatly
affected by any one data point, which in turn provides privacy for data contributors. The basic
differential privacy framework is the foundation for many models, including central [19], local [19,
11, 29], pan- [20], blended [6], and most recently shuffle [17] privacy.

This work focuses on pan-privacy and shuffle privacy. A pan-private algorithm receives a stream
of raw data and processes it one element at a time. After seeing each element, the algorithm updates
its internal state to incorporate information from the new element and then proceeds to the next
element in the stream. At the end of the stream, the algorithm processes its final internal state
to extract and output useful information. Privacy constrains the internal state and output to be
differentially private functions of the stream: changing one element of the stream must not greatly
affect the joint distribution of any one internal state and the final output.
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In shuffle privacy, there is no algorithm receiving a stream of data. Instead, the data is dis-
tributed, and each user holds a single data point. The users follow a prescribed protocol where
each employs a randomizer function to compute messages based on their data point and then sends
these messages to a secure shuffler1. The shuffler randomly permutes the messages and releases the
shuffled collection of messages publicly. Finally, an analyzer processes the public shuffler output
to extract useful information. Here, privacy constrains the shuffler’s output: changing one user’s
data point must not greatly affect the distribution for the messages released by the shuffler. Pri-
vacy is over the random coins of the users’ randomizers and the shuffler. Since the analyzer only
post-processes the shuffler’s output, its actions do not affect users’ privacy guarantees (see Fact 2.2
for details on post-processing).

One possible complication of the shuffle model is that, without further restrictions, the privacy
guarantees of shuffle private protocols are not necessarily robust to malicious users. For example, it
is possible for a shuffle private protocol to place all responsibility for “noisy messages” on a single
user. In that case, compromising that single user would destroy the privacy guarantee for all users
of the protocol. To avoid this weakness, we focus on protocols that satisfy robust shuffle privacy.
These protocols still guarantee privacy for honest users in the presence of (a limited number of)
malicious users.

1.1 Our Contributions

We give several results connecting robust shuffle privacy and pan-privacy. Details and comparisons
appear in Figure 1.

1. We construct a protocol for counting distinct elements that satisfies robust approximate shuffle
privacy and obtains additive error O(

√
k/ε) (Theorem 3.3). We then strengthen and adapt

a lower bound from pan-privacy to show that Ω(
√

k/ε) additive error is necessary for robust
approximate shuffle privacy when the number of users n ≥ k (Theorem 3.10). In contrast,
adding Lap(1/ε) noise to the true distinct count guarantees O(1/ε) error in the central model.

2. We construct a protocol for uniformity testing that satisfies robust approximate shuffle pri-
vacy2 with sample complexity dependence on k of Õ(k2/3) (Theorem 4.8). We again adapt a
lower bound from pan-privacy to show that any protocol satisfying robust pure shuffle privacy
requires Ω(k2/3) samples (Theorem 4.11). These two bounds are not directly comparable —
the lower bound requires conditions that the upper bound does not meet — but they offer
partial evidence for the general connection between the two models.

3. We show how to adapt recent work on shuffle private histograms [7] for pan-privacy (The-
orem 5.2). As a corollary, pan-privacy inherits the same separations from interactive local
privacy as the shuffle model for “support identification” problems.

1.2 Related Work

Dwork, Naor, Pitassi, Rothblum, and Yekhanin [20] introduced pan-privacy and, for a data domain
of size k, showed how to pan-privately count distinct elements to additive accuracy O(

√
k/ε).

Mir, Muthukrishnan, Nikolov, and Wright [30] constructed a low-memory analogue with the same

1 In practice, this may be a cryptographic protocol for multi-party shuffling rather than a trusted third-party
shuffler.

2An early version of this paper incorrectly claimed a tester that satisfies robust pure shuffle privacy.
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Privacy Type
Histograms α-Uniformity Testing Distinct Elements

(ℓ∞ error) (sample complexity) (additive error)

Central Θ
(
1
ε log

(
min

(
1
δ , k
)))

[14, 26, 12] Θ
(√

k
α2 +

√
k

α
√
ε
+ k1/3

α4/3ε2/3
+ 1

αε

)

[2] Θ
(
1
ε

)
[19] *

Pan O
(

1
ε2

log
(
1
δ

)) O
(

k2/3

α4/3ε2/3
+

√
k

α2 +
√
k

αε

)

[5] * O
(√

k
ε

)

[20] *

Ω
(

k2/3

α4/3ε2/3
+

√
k

α2 + 1
αε

)

[5] * Ω
(√

k√
ε

)

Robust Shuffle O
(

1
ε2 log

(
1
δ

))
[7]

O
([

k2/3

α4/3ε2/3
+

√
k

α2 +
√
k

αε

]√

log
(
k
δ

))

O
(√

k
ε

)

Ω
(

k2/3

α4/3ε2/3
+

√
k

α2 + 1
αε

)

* Ω
(√

k√
ε

)

Figure 1: Overview of our main results given a data domain of size k, ε = O(1) and δ < 1/n < ε.
All bounds hold with constant probability. Results marked by * hold when δ = 0. Uncited results
are new in this work.

accuracy guarantee and a matching (for n ≥ k) lower bound based on linear program decoding.
Both works employ user-level pan-privacy, where one user may contribute many elements to the
stream, and a neighboring stream may replace all of a user’s contributions. We instead imitate
Amin, Joseph, and Mao [5] and study record-level pan-privacy. Here, neighboring streams differ in
at most one stream element. For uniformity testing, Amin et al. [5] gave tight (in the domain size
k) Θ(k2/3) sample complexity bounds for pure pan-privacy. Acharya, Sun, and Zhang [2] showed
that Θ(

√
k) is the optimal dependence under approximate central privacy, and Θ(k) is optimal for

the strictly more private model of sequentially interactive local privacy [3, 5] (see Section 2 for a
definition of local privacy).

Building on the empirical work of Bittau, Erlingsson, Maniatis, Mironov, Raghunathan, Lie,
Rudominer, Kode, Tinnes, and Seefeld [13], Cheu, Smith, Ullman, Zeber, and Zhilyaev [17] and
Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta [22] independently and simul-
taneously introduced different formal definitions of shuffle privacy. Cheu et al. [17] defined a model
where a single noninteractive batch of messages is shuffled, while Erlingsson et al. [22] considered
shuffled users who may participate in an interactive protocol. We follow most of the shuffle privacy
literature and use the former variant. We also focus on the multi-message model where each user
may send multiple messages to the shuffler. For the problem of shuffle private bit summation, a
line of papers [17, 8, 10, 25] has obtained O(1/ε) accuracy tight with that of the central model.
For the problem of computing histograms, the best known shuffle private ℓ∞ guarantee differs by
a 1/ε factor from the centrally private guarantee [23, 7].

We briefly discuss past work touching on robust shuffle privacy. Cheu et al. [17] showed that any
single-message (ε, δ)-shuffle private protocol on n users also grants (ε+ln(n), δ)-local privacy. This
is a form of robustness, as it guarantees privacy even when all other users are malicious. However,
it only holds for single-message protocols, which are strictly weaker than multi-message protocols.
Along similar lines, Balcer and Cheu [7] showed that any single-message ε-shuffle private protocol
is also ε-locally private. Balle, Bell, Gascón and Nissim [10] discussed the effect of malicious users
on the accuracy guarantee of a shuffle protocol. In contrast, our notion of robust shuffle privacy
guarantees privacy even with (a controlled fraction of) malicious users in multi-message protocols.
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1.3 Organization

Basic definitions appear in the Preliminaries (Section 2). Further specific preliminaries appear in
their corresponding sections. We start with distinct elements (Section 3), then cover uniformity
testing (Section 4) and histograms (Section 5). We conclude with a brief discussion and some
further questions in Section 6.

2 Preliminaries

Throughout this work, we use [k] := {1, 2, . . . , k} and N := {1, 2, . . .}.

2.1 Differential Privacy

We define a dataset ~x ∈ X n to be an ordered tuple of n rows where each row is drawn from a
data universe X and corresponds to the data of one user. Two datasets ~x, ~x ′ ∈ X n are considered
neighbors (denoted as ~x ∼ ~x ′) if they differ in at most one row.

Definition 2.1 (Differential Privacy [19]). An algorithm M : X n → Z satisfies (ε, δ)-differential
privacy if, for every pair of neighboring datasets ~x and ~x ′ and every subset T ⊂ Z,

P
[
M(~x) ∈ T

]
≤ eε · P

[
M(~x ′) ∈ T

]
+ δ.

When δ > 0, we sayM satisfies approximate differential privacy. When δ = 0, we sayM satisfies
pure differential privacy and we omit the δ parameter.

Because this definition assumes that the algorithm M has “central” access to compute on
the entire raw dataset, we sometimes call this central differential privacy. Two common facts
about differentially privacy will be useful; proofs appear in Chapter 2 of the survey by Dwork and
Roth [21]. First, privacy is preserved under post-processing.

Fact 2.2. For (ε, δ)-differentially private algorithm A : X n → Z and arbitrary random function
f : Z → Z ′, f ◦ A is (ε, δ)-differentially private.

This means that any computation based solely on the output of a differentially private function
does not affect the privacy guarantee. Second, privacy composes neatly.

Fact 2.3. For (ε1, δ1)-differentially private A1 and (ε2, δ2)-differentially private A2, A3 defined by
A3(D) = (A1(D),A2(D)) is (ε1 + ε2, δ1 + δ2)-differentially private.

One useful centrally private algorithm is the binomial mechanism. We state the version given
by Ghazi, Golowich, Kumar, Pagh, and Velingker [23].

Lemma 2.4 (Binomial Mechanism [18, 23]). Let f : X n → Z be a 1-sensitive function, i.e. |f(~x)−
f(~x ′)| ≤ 1 for all neighboring datasets ~x, ~x ′ ∈ X n. Fix any ℓ ∈ N, p ∈ (0, 1), ε > 0, and δ ∈ (0, 1)
such that

ℓ ·min(p, 1− p) ≥ 10 ·
(
eε+1
eε−1

)2
· ln
(
2
δ

)
.

The algorithm that samples η ∼ Bin(ℓ, p) and outputs f(~x) + η is (ε, δ)-differentially private. The

error is O(1ε

√

log 1
δ ).
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2.2 Pan-privacy

Pan-privacy is defined for a different setting. Unlike centrally private algorithms, pan-private
algorithms are online: they receive raw data one element at a time in a stream. At each step in
the stream, the algorithm receives a data point, update its internal state based on this data point,
and then proceeds to the next element. The only way the algorithm “remembers” past elements
is through its internal state. As in the case of datasets, we say that two streams ~x and ~x ′ are
neighbors if they differ in at most one element. Pan-privacy requires the algorithm’s internal state
and output to be differentially private with regard to neighboring streams.

Definition 2.5 (Online Algorithm). An online algorithm Q is defined by an internal algorithm QI
and an output algorithm QO. Q processes a stream of elements through repeated application of
QI : X ×I → I, which (with randomness) maps a stream element and internal state to an internal
state. At the end of the stream, Q publishes a final output by executing QO on its final internal
state.

Definition 2.6 (Pan-privacy [20, 5]). Given an online algorithm Q, let QI(~x) denote its internal
state after processing stream ~x, and let ~x≤t be the first t elements of ~x. We say Q is (ε, δ)-pan-
private if, for every pair of neighboring streams ~x and ~x ′, every time t and every set of internal
state, output state pairs T ⊂ I ×O,

PQ
[(
QI(~x≤t),QO(QI(~x))

)
∈ T

]
≤ eε · PQ

[(
QI(~x

′
≤t),QO(QI(~x

′))
)
∈ T

]
+ δ. (1)

When δ = 0, we say Q is ε-pan-private.

Taken together, these requirements protect against an adversary that sees any one internal state
of Q as well as its final output3. By the output requirement, any pan-private algorithm also satisfies
central differential privacy. The key additional contribution of pan-privacy is the maintenance of the
differentially private internal state. This strengthens the central privacy guarantee by protecting
data contributors against future events. For example, a user may trust the current algorithm
operator but wish to protect themselves against the possibility that the operator will be acquired
or subpoenaed in the future. Under pan-privacy, post-processing (Fact 2.2) ensures that future
views of the pan-private algorithm’s state will be differentially private with respect to past data.

Our definition of pan-privacy is the specific variant given by Amin et al. [5]. This version
guarantees record-level (uncertainty about the presence of any single stream element) rather than
user-level (uncertainty about the presence of any one data universe element) privacy. We use this
variant because, like the shuffle model, we assume each data contributor has a single data point.

2.3 Shuffle Privacy

The shuffle model of differential privacy views the dataset as a distributed object where each of n
users holds a single row. Each user provides their data point as input to a randomizing function
and securely submits the resulting randomized outputs to a shuffler. The shuffler permutes the
users’ outputs and releases the shuffled messages. It is this collection of messages that needs to
satisfy differential privacy: altering one user’s data point must not greatly change the distribution
of the shuffled messages.

In this way, the shuffle model strengthens the privacy guarantee that users receive. Here, users
need only trust that (1) there is a secure way to shuffle the randomized messages4 and (2) sufficiently

3As shown by Amin et al. [5], the precise assumption of one internal state intrusion is necessary. Pan-privacy
against multiple internal state intrusions collapses to the much stronger notion of local privacy.

4A more detailed description of a shuffler and its implementation details appears in the work of Bittau et al. [13].
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many users follow the protocol. In contrast, central differential privacy requires users to trust a
third party algorithm operator to securely store and compute on the raw data.

Definition 2.7 (Shuffle Model [13, 17]). A protocol P in the shuffle model consists of three ran-
domized algorithms:

• A randomizer R : X → Y∗ mapping data to (possibly variable-length) vectors. The length
of the vector is the number of messages sent. If, on all inputs, the probability of sending a
single message is 1, then the protocol is said to be single-message. Otherwise, the protocol is
multi-message.

• A shuffler S : Y∗ → Y∗ that concatenates message vectors and then applies a uniformly
random permutation to the messages.

• An analyzer A : Y∗ → Z that computes on a permutation of messages.

As S is the same in every protocol, we identify each shuffle protocol by P = (R,A). We define its
execution on input ~x ∈ X n as

P(~x) := A(S(R(x1), . . . , R(xn))).

We assume that R and A have access to n and an arbitrary amount of public randomness.

With this setup, we use the following definition of shuffle differential privacy.

Definition 2.8 (Shuffle Differential Privacy [17]). A protocol P = (R,A) is (ε, δ)-shuffle differen-
tially private if, for all n ∈ N, the algorithm (S ◦Rn) := S(R(x1), . . . ,R(xn)) is (ε, δ)-differentially
private. The privacy guarantee is over the internal randomness of the users’ randomizers and not
the public randomness of the shuffle protocol.

For brevity, we typically call these protocols “shuffle private.” We now sketch an example of a
shuffle private protocol. Consider the setting where each user i’s data point is two bits (xi,1, xi,2) and
the goal is to sum both across users,

∑n
i=1 xi,1 and

∑n
i=1 xi,2. A simple randomizer independently

flips each bit with probability p and outputs the resulting two randomized bits. When there are n
users, the shuffler takes in 2n messages and outputs one of the (2n)! permutations of the messages
uniformly at random. The analyzer can then recover unbiased estimates by rescaling according
to the randomization probability p and the number of users n. Lemma 2.4 implies that setting
p ≈ log(1/δ)

ε2n
guarantees (ε, δ)-shuffle privacy, so the analyzer may recover estimates with error

≈
√

log(1/δ)

ε .
Note, however, that Definition 2.8 assumes all users follow the protocol. It does not account for

malicious users that aim to make the protocol less private. A simple attack is for such users to drop
out: for γ ≤ 1, let S ◦ Rγn denote the case where only γn out of n users execute R. Because the
behavior of the randomizer may depend on n, S ◦ Rn may satisfy a particular level of differential
privacy but S ◦ Rγn may not5. Ideally, the privacy guarantee should not suffer too much from a
small number of malicious users. This motivates a robust variant of shuffle privacy.

5Note that, with respect to differential privacy, dropping out is “the worst” malicious users can do. This is because
adding messages from malicious users to those from honest users is a post-processing of S ◦R

γn. If S ◦R
γn is already

differentially private for the outputs of the γn users alone, then differential privacy’s resilience to post-processing
(Fact 2.2) ensures that adding other messages does not affect this guarantee. Hence, it is without loss of generality
to focus on drop-out attacks.
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Definition 2.9 (Robust Shuffle Differential Privacy). Fix γ ∈ (0, 1]. A protocol P = (R,A) is
(ε, δ, γ)-robustly shuffle differentially private if, for all n ∈ N and γ′ ≥ γ, the algorithm S ◦ Rγ′n is
(ε, δ)-differentially private. In other words, P guarantees (ε, δ)-shuffle privacy whenever at least a
γ fraction of users follow the protocol.

As with generic shuffle differential privacy, we often shorthand this as “robust shuffle privacy.”
Note that we define robustness with regard to privacy rather than accuracy. A robustly shuffle
private protocol promises its users that their privacy will not suffer much from a limited fraction
of malicious users. It does not make any guarantees about the accuracy of the analysis. We state
our accuracy guarantees under the assumption that all users follow the protocol. In general, we
assume γ ∈ {1/n, 2/n, . . . , 1} to avoid ceilings and floors.

We emphasize that robust shuffle privacy is not implied by the generic shuffle privacy of Defi-
nition 2.8. This is easy to see if we relax the model to allow users to execute different randomizers.
In this case, all responsibility to add noise may rest on one user. For example, if each user has a
single-bit datum, all users can report their data without noise while one designated user reports
multiple randomized bits. If that designated user drops out then the remaining output clearly fails
to be differentially private. (In particular, an attacker who knows n − 1 of the users’ data learns
the nth user’s data as well.)

At the same time, many existing shuffle protocols are robustly shuffle private. This stems from a
common protocol structure: each user contributes some noisy messages (e.g. Bernoulli bits) so that
the union of n of these sets (e.g. a binomial distribution) suffices for a target level of differential
privacy. A fraction of malicious users worsens the privacy guarantee, but the effect is limited due
to the noise contributions of the remaining honest users. For an example of a formal argument, see
work by Ghazi, Pagh, and Velingker [24]. We also give robust shuffle private adaptations of past
work on histograms (Claim A.5).

3 Distinct Elements

We begin with the basic problem of counting distinct elements. Without loss of generality, define
the data universe to be X = [k]. For all ~x ∈ [k]n, let D(~x) denote the number of distinct elements
in ~x, i.e. D(~x) := |{j ∈ [k] | ∃i where xi = j}|.

Definition 3.1 (Distinct Elements Problem). An algorithmM solves the (α, β)-distinct elements
problem on input length n if for all ~x ∈ [k]n, PM [|M(~x)−D(~x)| ≤ α] ≥ 1− β.

3.1 Upper Bound for Robust Shuffle Privacy

The main idea of our protocol is to reduce the distinct elements problem to computing the OR

function: D(~x) =
∑k

i=1((x1 = i) ∨ . . . ∨ (xn = i)). If we can estimate each of these k OR functions
to relatively good accuracy, then we can appropriately de-bias their sum to estimate D(~x).

The main problem is now to compute OR under robust shuffle privacy. We start with a basic
(and suboptimal) centrally private solution to OR: output a sample from Ber(1/2) if OR(~x) = 1,
and output a sample from Ber(p = 1/2eε) otherwise. By concentration across the k instances of
OR, this protocol achieves accuracy roughly O(

√
k/ε).

The key property of the above solution is that we can simulate it in the shuffle model using a
technique from Balle et al. [9]. The first step is to equate a sample from Ber(p) with the sum (mod
2) of n samples from some other distribution Ber(p′); if every user reports messages drawn from
Ber(p′), the sum (mod 2) is exactly Ber(p). But if there is any user who reports Ber(1/2), the

7



sum is drawn from Ber(1/2). So we can exactly simulate the basic centrally private solution above
once we can implement modular arithmetic in the shuffle model. Ishai, Kushilevitz, Ostrovsky, and
Sahai [27] provide a solution using additive shares:

Theorem 3.2 ([27, 9]). There exists a shuffle protocol PMOD = (RMOD,AMOD) that receives input
~x ∈ {0, 1}n along with security parameter σ > 0 and outputs

∑n
i=1 xi mod 2 if all users are honest.

If only γn ≥ 2 users are honest, let ~h denote the vector of their values. Then ‖(S ◦Rγn
MOD

)(~h)− (S ◦
Rγn

MOD
)(~w)‖TV < 2−σ, where ~w := (

∑
hi mod 2, 0, . . . , 0). Each honest user sends O(σ + log n)

one-bit messages.

Our distinct elements protocol PDE = (RDE,ADE) will choose the security parameter σ and
invoke RMOD,AMOD as subroutines. The pseudocode appears in Algorithms 1 and 2.

Algorithm 1: Randomizer RDE

Input: user data x ∈ [k]; number of users n, privacy parameters ε > 0 and δ ∈ (0, 1)
Output: message vector ~y ∈ ([k]× {0, 1})∗

1 Initialize output messages ~y ← ∅
2 Set p′ ← 1−(1−e−ε)1/n

2

3 Set σ ← log
(
eε+1
δ

)

4 For domain element j ∈ [k]
5 If x = j :

6 Draw u(j) ∼ Ber(1/2)

7 Else

8 Draw u(j) ∼ Ber(p′)

9 Obtain messages ℓ ∈ {0, 1}m ←RMOD(u
(j))

10 For t ∈ [m]
11 Append (j, ℓt) to ~y

12 Return ~y

Algorithm 2: Analyzer ADE

Input: message vector ~y ∈ ([k]× {0, 1})∗; number of users n ∈ N,
privacy parameters ε > 0 and δ ∈ (0, 1)

Output: z ∈ R

1 Set σ ← log
(
eε+1
δ

)

2 For domain element j ∈ [k]

3 Initialize ~y(j) ← ∅
4 For (j, ℓt) ∈ ~y

5 Append ℓt to ~y(j)

6 Cj ← AMOD(~y
(j))

7 C ←∑k
j=1Cj

8 Return z ← 2Ceε−k
eε−1

Theorem 3.3. Given ε > 0, γ ∈ (0, 1], and β, δ ∈ (0, 1), the protocol PDE = (RDE,ADE)

8



I. is
(

2ε(γ), 4δγ , γ
)

-robustly shuffle private, where ε(γ) ≤ ε + ln
(
1
γ

)

and if ε ≤ ln(2), then

ε(γ) ≤ 2εγ

γ ;

II. solves the (α, β)-distinct elements problem for

α =
eε

eε − 1
·
√

2k ln(2/β) = O
(

max
(
1, 1ε
)
·
√

k log(1/β)
)

;

III. requires each user to communicate at most O
(

k log
(
n(eǫ+1)

δ

))

messages of length O(log(k)).

Proof. Privacy (I): We will show that (S ◦ Rγn
DE

) is differentially private. Consider neighboring
datasets ~x ∼ ~x ′ ∈ [k]γn where xi = a 6= b = x′i. The output distributions of RDE(a) and RDE(b)
differ only in the messages labeled by a and b, ~y(a) and ~y(b). It follows that to prove privacy we
need only analyze the distributions of ~y(a), ~y(b).

To do so, let ~u(a) = (u
(a)
1 , . . . , u

(a)
n ) be the binary vector where each u

(a)
i ∼ Ber(1/2) when

xi = a and u
(a)
i ∼ Ber(p′) otherwise, where we defined p′ = 1−(1−e−ε)1/n

2 in the pseudocode for

RDE. We define ~u(a) ′ similarly for ~x ′. It will suffice to prove that, for any T ⊆ {0, 1}∗,

P

[

(S ◦ Rγn
MOD

)(~u(a)) ∈ T
]

≤ eε(γ) · P
[

(S ◦ Rγn
MOD

)(~u(a) ′) ∈ T
]

+
2δ

γ

P

[

(S ◦ Rγn
MOD

)(~u(a) ′) ∈ T
]

≤ eε(γ) · P
[

(S ◦ Rγn
MOD

)(~u(a)) ∈ T
]

+
2δ

γ
.

This is because the inequalities above guarantee
(

ε(γ), 2δγ

)

-privacy for the view of ~y(a). Identical

arguments hold for ~u(b) and ~u(b) ′, so our privacy guarantee follows from composition.
These results rely on the following lemma.

Lemma 3.4 (Lemma 1.2 [9]). LetM,M′ be algorithms such that, for every ~u, ‖M(~u)−M′(~u)‖TV ≤
∆. If M is ε-differentially private then M′ is (ε, (eε + 1)∆)-differentially private.

Our protocol is built on top of the modular arithmetic protocol PMOD of Theorem 3.2, so
we immediately satisfy the distance condition. To be precise, define M(~u) to be the algorithm
that takes input ~y and outputs (S ◦ Rγn

MOD
)((
∑

ut mod 2, 0, . . . , 0)). We are guaranteed that (S ◦
Rγn

MOD
)(~u) is within total variation distance 2−σ ofM(~u).

Our new goal is to prove thatM is ε′-differentially private where

ε′ := ln

(
1

1− (1− e−ε)γ

)

.

Once we do so, we can use Lemma 3.4 to conclude that (S ◦Rγn
DE,∗) is (ε

′, δ′)-differentially private,

where δ′ := (eε
′
+ 1) · 2−σ = eε

′
+1

eε+1 · δ. Hence, we need to show that the following holds for both
z = 1 and z = 0:

e−ε′ ≤
P

[
∑

u
(a)
i mod 2 = z

]

P

[
∑

u
(a)
i

′ mod 2 = z
] ≤ eε

′

(2)

xi = a, so
∑γn

t=1 u
(a)
t mod 2 is distributed as Ber(1/2). If a ∈ ~x ′ then

∑γn
i=1 u

(a)
i

′ mod 2 is dis-

tributed as Ber(1/2) as well, so the ratio of probabilities is exactly 1. Otherwise,
∑γn

i=1 u
(a)
i

′ mod 2
is a sum of i.i.d. draws from Ber(p′). We argue that this is distributed as Ber(1/2eε

′
) for

ε′ = ln
(

1
1−(1−e−ε)γ

)

using the following lemma, proven in Appendix A.1:
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Lemma 3.5. Let n ∈ N, γ ∈ (0, 1], and p ∈ [0, 1/2]. Define p′ = 1−(1−2p)1/n

2 . Then given i.i.d.
X1, . . . ,Xγn ∼ Ber(p′), X =

∑γn
i=1Xi mod 2 is identically distributed with

Ber

(
1− (1− 2p)γ

2

)

.

Using Lemma 3.5 with our p′ gives p = 1
2eε , so

γn
∑

i=1

u
(a)
i

′ mod 2 = Ber

(
1− (1− e−ε)γ

2

)

= Ber

(
1

2eε′

)

and we return to Equation 2 to find
P[Ber( 1

2
)=1]

P

[

Ber

(

1
2eε′

)

=1
] = eε

′
and

P[Ber( 1

2
)=0]

P

[

Ber

(

1
2eε′

)

=0
] = 1

2−e−ε′
. Because

ε′ > 0, we have eε
′
+ e−ε′ > 2 and therefore 2− e−ε′ < eε

′
. Thus we have proven the inequality in

Equation 2.
All that is left is to prove ε′ ≤ ε(γ) and δ′ ≤ 2δ/γ. To bound ε′, we split into cases based on ε.
Case 1: ε > ln(2). Then, as defined in the theorem statement, ε(γ) = ε+ ln(1/γ). We use the

following variant of Bernoulli’s inequality: for x ≥ −1 and r ∈ [0, 1], (1+x)r ≤ 1+xr. Using r = γ
and x = −e−ε, we have (1− e−ε)γ ≤ 1− γe−ε and therefore

ε′ = ln

(
1

1− (1− e−ε)γ

)

≤ ln

(
1

1− (1− γe−ε)

)

= ε+ ln

(
1

γ

)

.

Case 2: ε ≤ ln(2), in which case we wish to show ε′ ≤ 2εγ

γ . The inequality 1 + x ≤ ex implies
the following:

ε′ = ln

(
1

1− (1− e−ε)γ

)

= ln

(
eεγ

eεγ − (eε − 1)γ

)

= ln

(

1 +
(eε − 1)γ

eεγ − (eε − 1)γ

)

≤ (eε − 1)γ

eεγ − (eε − 1)γ

Given that ε ≤ ln(2), we have eε − 1 ≤ eε

2 . In turn, (eε − 1)γ ≤ eεγ

2γ . Thus

(eε − 1)γ

eεγ − (eε − 1)γ
≤ (eε − 1)γ

eεγ − eεγ

2γ

=
2γ

2γ − 1
·
(
eε − 1

eε

)γ

≤ 2γ

2γ − 1
· εγ

because eε−1
eε = 1− e−ε ≤ ε. We use the following lemma, also proven in Appendix A.1:

Lemma 3.6. For γ ∈ (0, 1], 2γ

2γ−1 ≤ 2
γ .

Thus ε′ ≤ 2εγ

γ .

To bound δ′, we note that ε′ ≤ ε+ ln(1/γ) holds for all ε. We substitute into our definition of
δ′ to get

δ′ = δ · e
ε′ + 1

eε + 1
≤ δ ·

eε

γ + 1

eε + 1
≤ δ

γ

since γ ∈ (0, 1].

Accuracy (II): If all n users follow the protocol, then
∑n

i=1 u
(j)
i mod 2 is distributed asBer(1/2)

when there is some xi = j. Otherwise, Lemma 3.5 implies the distribution is Ber(1/2eε). Thus
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C =
∑k

j=1Cj has expectation E [C] = D(~x)
2 + k−D(~x)

2eε . In turn, the output of PDE has expectation

E

[
2Ceε−k
eε−1

]

= D(~x). A Hoeffding bound implies that

P

[

|PDE(~x)−D(~x)| > eε

eε − 1

√

2k ln
2

β

]

≤ β

where the probability is over users’ randomizers.
Communication (III): For each domain element, Theorem 3.2 ensures there are O(log(n) + σ)

messages, each of which is one labeled bit. Since each label is ∈ [k], each user sends O(k[log(n)+σ])
messages of length O(log(k)). Substituting in σ = log

(
eε+1
δ

)
yields the claim.

We focus on the setting where n ≥ k, as this is the setting for our lower bound in the next
section. For completeness, we also give an O(n2/3) guarantee for the small-n setting. At a high
level, this modified protocol simply hashes the initial domain [k] to a smaller domain of size O(n4/3)
and then runs the protocol given above for this new domain. Details appear in Appendix A.2.

3.2 Lower Bound for Robust Shuffle Privacy

We now show that this dependence on k is tight for the setting where n = Ω(k). To do so, we give
a way to transform a robustly shuffle private protocol into a pan-private one (Algorithm 3) and
then invoke a lower bound for pan-private distinct elements [30].

Our transformation is simple: the pan-private algorithm uses the shuffle protocol to maintain
a set of shuffle protocol messages as its internal state. More concretely, the pan-private algorithm
initializes its internal state using n/3 draws from the protocol randomizerR(1), processes the stream
~x by adding R(x1), . . . ,R(xn/3) to its collection of messages, adds another n/3 draws from R(1) to
its internal state after the stream, and finally applies the protocol analyzer A to this final internal
state to produce output. Pan-privacy follows from the original protocol’s robust shuffle privacy
combined with our incorporation of “dummy” messages into the state. By the original protocol’s
accuracy guarantee, these dummy messages – all generated from a single element– increase final
error by at most 1.

We remark that this construction assumes n is a multiple of 3, but this constraint can be removed
by using ⌈n/3⌉ and ⌊n/3⌋ where appropriate. We avoid this technicality for sake of clarity.

Algorithm 3: QP , an online algorithm for distinct elements

Input: Data stream ~x ∈ [k]n/3; a shuffle protocol P = (R,A) for distinct elements
Output: An integer in [k]

1 Let vector ~1← (1, . . . , 1) ∈ N
n/3

2 Initialize internal state I0 ← (S ◦ Rn/3)(~1)
3 For i ∈ [n/3]
4 Set Ii ← S(Ii−1,R(xi))
5 Set final state ~y ← S(In/3,Rn/3(~1))

6 Return A(~y)

Lemma 3.7. Suppose there exists a protocol P = (R,A) that is (ε, δ, 1/3)-robustly shuffle private
and solves the (α, β)-distinct elements problem on input length n. Then QP is an (ε, δ)-pan-private
algorithm that solves the (α+ 1, β)-distinct elements problem on input length n/3.
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Proof. Privacy: The main idea of the proof is that, by the robust shuffle privacy of P, the first

draw from (S ◦ Rn/3)(~1) ensures privacy of the internal state view, and the second draw ensures
privacy for the output view. For clarity, we write this out explicitly below.

By construction, messages added to the state are sampled independently of the current state.
Now, fix intrusion time t. Let I>t be the shuffled collection of messages generated after the intrusion
at time t. I.e. I>t ∼ S

(
R(xt+1), . . . ,R(xn/3),Rn/3(~1)

)
. Notice that

(It,QP(~x)) ∼
(
It, (A ◦ S)(It, I>t)

)
.

So (It,QP(~x)) is a post-processing of (It, I>t). Thus, to show QP is (ε, δ)-pan-private, it suffices to
show that the algorithm outputting (It, I>t) is (ε, δ)-differentially private.

Consider a neighboring data stream ~x ′. Define I ′t and I ′>t as the internal state at time t and
the shuffled collection of messages generated after time t for QP running with input ~x ′.

Let j be the index on which ~x and ~x ′ differ. If j > t, then It has the same distribution as
I ′t. Additionally, I>t is drawn from (S ◦R2n/3−t)(xt+1, . . . , xn, 1, . . . , 1) and I ′>t is drawn from (S ◦
R2n/3−t)(x′t+1, . . . , x

′
n, 1, . . . , 1). The inputs differ on one index and there are at least n/3 executions

of R. Therefore, I>t and I ′>t are (ε, δ)-indistinguishable, i.e. Pr[I>t ∈ T ] ≤ eε · Pr[I ′>t ∈ T ] + δ for
all T , which then implies the joint distributions (It, I>t) and (I ′t, I

′
>t) are (ε, δ)-indistinguishable.

A similar argument holds for the case when j ≤ t. Therefore, QP is (ε, δ)-pan-private.
Accuracy: Consider the vector ~w = (1, . . . , 1, x1, . . . , xn/3, 1, . . . , 1) ∈ [k]n. By the accuracy

guarantee of the original shuffle protocol P, we have P [|P(~w)−D(~w)| > α] < β. By the con-
struction of QP , QP (~x) is identically distributed to P(~w). Combining the triangle inequality and
|D(~x)−D(~w)| ≤ 1, we conclude QP solves the (α+ 1, β)-distinct elements problem .

We now recall the pan-private lower bound for distinct elements. Mir et al. [30] stated their
result for pure user-level pan-privacy. However, the same argument works for record-level privacy.
The proof also concludes by recovering, for ω(1) elements, whether or not those elements appeared
in the stream. This immediately yields the following approximate record-level result:

Lemma 3.8 (Implicit in Corollary 3 [30]). If (ε, δ)-pan-private Q solves the (α, β)-distinct elements
problem on input length n for α = o(

√
k), β < 0.1, and n ≥ k, then ε = ω(1) or δ = ω

(
1
n

)
.

In fact, we can strengthen Lemma 3.8 to incorporate ε. Throughout, we ignore ceilings and
floors for neatness.

Lemma 3.9. Let ε ≤ 1, δ = O
(
ε
n

)
, and β < 0.1. Suppose there exists (ε, δ)-pan-private Q

that solves the (α, β)-distinct elements problem on input length n ≥ k
ε for domain [k]. Then

α = Ω

(√
k
ε

)

.

Proof. We first show that Q yields a
(
1, δε
)
-pan-private Q′ that solves the (αε, β)-distinct elements

problem on input length n′ ≥ kε for domain [kε].
At a high level, Q′ transforms distinct elements on [kε] into distinct elements over a larger

domain [k] and uses Q. Concretely, Q′ initializes Q and then, for each received element j2 ∈ [kε],
creates 1

ε copies (j2, 1), . . . (j2, 1/ε) and passes them to Q. The cost is that, by composition across

the 1
ε copies passed to Q, each element from [kε] is now only guaranteed

(
1, δε
)
-pan-privacy in the

state maintained by Q. The stream passed to Q has length n′

ε ≥ k, so with probability at least
1 − β, Q outputs an α-accurate estimate of the number of distinct elements for a domain of size
[k]; by our transformation, Q′ can multiply this by ε to get an αε-accurate estimate of the number
of distinct elements in its stream from [kε].
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We now apply Lemma 3.8 to Q′. To check that the required conditions hold, δ = O
(
ε
n

)
implies

δ
ε = O

(
1
n

)
, the input length n′ ≥ kε, and β < 1/10. Thus αε = Ω(

√
kε), and we rearrange into

α = Ω

(√
k
ε

)

.

We now combine Lemma 3.7 and Lemma 3.9 to get the following robust shuffle private lower
bound.

Theorem 3.10. Let ε ≤ 1, δ = O
(
ε
n

)
, β < 0.1. If P is (ε, δ, 1/3)-robustly shuffle private and

solves the (α, β)-distinct elements problem on input length n ≥ 3k
ε , then α = Ω

(√
k
ε

)

.

In contrast, the trivial ε-centrally private solution of computing the number of distinct elements
and adding geometric noise is achieves error O(1/ε) for any ε and n.

4 Uniformity Testing

We now move to the second main problem of this paper, uniformity testing. A uniformity tester
uses i.i.d. sample access to an unknown distribution over a domain [k] to distinguish the cases where
the distribution is uniform or far from uniform.

Definition 4.1 (Uniformity Testing). An algorithm M solves α-uniformity testing with sample
complexity m when:

• If ~x ∼ Um, then P [M(~x) = “uniform”] ≥ 2/3, and

• If ~x ∼ Dm where ‖D−U‖TV > α, then P [M(~x) = “not uniform”] ≥ 2/3

where the probabilities are taken over the randomness ofM and ~x.

Note that achieving an overall 2/3 success probability is essentially equivalent to achieving
Ω(1) separation between the probabilities of outputting “uniform” given uniform and non-uniform
samples. This is because any such ∆ separation can be amplified using O

(
1
∆2

)
repetitions. For

this reason, we generally focus on achieving any such constant separation.
Our algorithms will also often rely on Poissonization and use not m samples but n ∼ Pois(m).

Doing so ensures that sampled counts of different elements are independent over the randomness
of drawing n, which will be useful in their analysis. Fortunately, Pois(m) concentrates around
m [16]. We can therefore guarantee O(m) samples at the cost of a constant decrease in success
probability. Because we generally focus on constant separations, we typically elide the distinction
between “sample complexity m” and “sample complexity distributed as Pois(m)”.

Throughout, in the shuffle model we assume that users receive i.i.d. samples from D, one sample
per user. In the pan-private model, we assume that the stream consists of i.i.d. samples from D.

4.1 Upper Bound for Robust Shuffle Privacy

In this section, we give a robustly shuffle private uniformity tester. At a high level, our protocol
imitates the pan-private uniformity tester of Amin et al. [5] (which itself imitates a centrally private
uniformity tester suggested by Cai et al. [15]). This tester maintains k sample counts, one for each
element, and compares a χ2-style statistic of the counts to a threshold to determine its decision.
To ensure privacy, the algorithm adds Laplace noise to each count before computing the statistic.
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Our protocol is similar, but the shuffle model introduces a complication: we cannot privately
count the frequency of a universe element, but instead rely on private communications from users.
More concretely, let cj(~x) denote the true count of j ∈ [k] in ~x. Users will (implicitly) exe-
cute a private binary sum protocol to count each j. The analyzer obtains a vector of estimates
(c̃1(~x), . . . , c̃k(~x)) and uses them to compute the test statistic used by Amin et al. [5] (Section
4.1.1). We then apply the binning trick from Amin et al. [5] – roughly, maintaining coarser counts
for random groups of elements rather than every element separately – to obtain our final uniformity
tester with sample complexity Õ(k2/3) (Section 4.1.2).

4.1.1 Preliminary Uniformity Tester

We give a preliminary robustly shuffle private uniformity tester PUT = (RUT,AUT) (Algorithms 4
and 5). This tester first compiles robust shuffle private estimates of the sample counts for each
element in [k]. It then uses these counts to compute a statistic Z ′ that is, roughly, large when the
underlying distribution is sufficiently non-uniform and small otherwise. The resulting uniformity
obtains sample complexity scaling with k3/4 ln1/2(k). In the next section, we use this initial tester
as a black box to obtain a tester that improves k3/4 to k2/3.

Algorithm 4: RUT, a randomizer for private uniformity testing

Input: User data point x ∈ [k]; parameters λ, n ∈ N

Output: A message vector ~y ∈ ([k]× {0, 1})∗
1 For j ∈ [k]
2 If x = j :

3 Set message ~y ← (j, 1)

4 Else

5 Set data point message ~y ← (j, 0)

6 Draw number of noisy messages sj ∼ Pois(λ/n)
7 For t ∈ [sj ]
8 bj,t ∼ Ber (1/2)
9 Append (j, bj,t) to ~y

10 Return ~y

Algorithm 5: AUT, an analyzer for private uniformity testing

Input: A message vector ~y ∈ ([k]× {0, 1})∗; parameters τ ∈ R, λ,m, n ∈ N, α ∈ (0, 1)
Output: A string in {“uniform”, “not uniform”}

1 For j ∈ [k]
2 Calculate noise scale ℓj ← −n+ |{yi | yi = (j, 0) or yi = (j, 1)}|
3 De-bias estimate of count of j as cj(~y)← −ℓj/2 + |{yi | yi = (j, 1)}|
4 Compute statistic Z ′ ← k

m

∑k
j=1(cj(~y)−m/k)2 − cj(~y)

5 Return “not uniform” if Z ′ > τ otherwise “uniform”

Theorem 4.2. Let γ ∈ (0, 1], ε > 0, and α, δ ∈ (0, 1). There exists parameters λ ∈ N and τ ∈ R

such that the protocol PUT = (RUT,AUT) is (2ε, 8δγ , γ)-robustly shuffle private. For ε = O(1) and
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δ = o(1), PUT solves α-uniformity testing with sample complexity

m = O

(

k3/4

αε
ln1/2

(
k

δ

)

+
k2/3

α4/3ε2/3
ln1/3

(
k

δ

)

+
k1/2

α2

)

.

Proof. Privacy: We shall prove that (S ◦ Rγn
UT

) is (2ε, 8δγ ) private. Let ~x ∼ ~x ′ be neighboring
datasets of size γn. Without loss of generality, suppose x1 = j 6= x′1 = j′. The distributions of the

messages containing j′′ 6= j, j′ are identical for ~x and ~x′, so it suffices to restrict our analysis to
messages containing either j or j′. To prove our guarantee, by composition it is enough to show that
the pool of messages containing j and the pool of messages containing j′ are each (ε, 4δγ )-shuffle
private.

We prove this claim for j; the j′ case is identical. Recall that both the binomial and Poisson
distribution are closed under summation:

r∑

i=1

Bin(ai, p) = Bin

(
r∑

i=1

ai, p

)

and
r∑

i=1

Pois(λi) = Pois

(
r∑

i=1

λi

)

.

Recall also that the count of noisy messages (j, 0), (j, 1) generated by any honest user is distributed
as Pois(λ/n). Thus the number of times (j, 1) occurs in (S ◦ Rγn)(~x) is distributed as

cj(~x) +

γn
∑

i=1

Bin

(

Pois

(
λ

n

)

, 1/2

)

= cj(~x) +Bin (Pois (γλ) , 1/2) .

Let λ = 40 ·
(
eε+1
eε−1

)2
ln
(
2k
δ

)
. We rely on the following concentration lemma:

Lemma 4.3 (Theorem 1 [16]). For X ∼ Pois(λ) and t > 0,

P [|X − λ| ≥ t] ≤ 2e
− t2

2(λ+t) .

Specifically, the lemma implies that P [Pois(γλ) < γλ/2] < 2 exp(−γλ/12). In our case, the
right-hand side is bounded by 2 exp(− ln(2/δ)γ ) < 2δγ . By Lemma 2.4, adding Bin(γλ/2, 1/2) =

Bin(20 ·
(
eε+1
eε−1

)2
ln(2kδ )

γ , 1/2) suffices for (ε, 2δγ )-differential privacy. After a union bound, we get

that the pool of messages containing j is (ε, 4δγ )-shuffle private.
Sample Complexity: Let Ej = cj(~y)− cj(~x). We rewrite Z ′ in terms of Ej:

Z ′ =
k

m

k∑

j=1

[(

cj(~y)−
m

k

)2
− cj(~y)

]

=
k

m

k∑

j=1

[(

cj(~x) + Ej −
m

k

)2
− (cj(~x) + Ej)

]

(By definition)

=
k

m

k∑

j=1

[(

cj(~x)−
m

k

)2
− cj(~x)

]

︸ ︷︷ ︸

Z

+
k

m

k∑

j=1

E2
j

︸ ︷︷ ︸

A

+
2k

m

k∑

j=1

Ej ·
(

cj(~x)−
m

k

)

︸ ︷︷ ︸

B

− k

m

k∑

j=1

Ej

︸ ︷︷ ︸

C

We will show that, when D = U, this sum is below threshold τ with probability ≥ 9/10. When
‖D−U‖TV > α, it is below τ with probability ≤ 29/50. We will prove this result using a series of
claims whose proofs we defer to the end.
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We start with results that hold regardless of the identity of D. Recall that the noise scale ℓj
computed in AUT is distributed as ℓj ∼ Pois(λ). Invoking Lemma 4.3 once more,

P [∃j ∈ [k] ℓj > 2λ] <
1

50
. (3)

Likewise, we obtain bounds on the moments of A, B, and C:

Claim 4.4.

E [A] =
k

4m

k∑

j=1

ℓj E [B] = 0, E [C] = 0 (4)

Var [A] ≤ k2

8m2

k∑

j=1

ℓ2j Var [C] =
k2

4m2

k∑

j=1

ℓj (5)

This is proven in Appendix A.3. We now split into cases based on D.
Case 1: D = U. We therefore want to upper bound Z ′, starting with bounds on the moments

of Z and B.

Claim 4.5. Sample n ∼ Pois(m) and ~x ∼ Un. In an execution of PUT
λ,α(~x),

E [Z] ≤ α2m

500
(6)

Var [Z] ≤ α4m2

500000
Var [B] =

k

m

k∑

j=1

ℓj (7)

This is also proven in Appendix A.3. To upper bound each of Z,A,B,C, we apply Chebyshev’s
inequality to inequalities (4) through (7). Then we apply (3) and a union bound to conclude that
the following holds except with probability ≤ 5/50 = 1/10:

Z ′ = Z +A+B − C

<
α2m

500
+

√

α4m2

500000
· 50

︸ ︷︷ ︸

Z

+
k

4m

k∑

j=1

ℓj +

√
√
√
√

k2

8m2

k∑

j=1

ℓ2j · 50
︸ ︷︷ ︸

A

+

√
√
√
√

k

m

k∑

j=1

ℓj · 50
︸ ︷︷ ︸

B

+

√
√
√
√

k2

4m2

k∑

j=1

ℓj · 50
︸ ︷︷ ︸

C

≤ 3α2m

250
+

k

4m

k∑

j=1

ℓj +
5k

2m

√
√
√
√

k∑

j=1

ℓ2j +

√
√
√
√

50k

m

k∑

j=1

ℓj +
5k√
2m

√
√
√
√

k∑

j=1

ℓj

≤ 3α2m

250
+

k2

2m
· λ+

5k3/2

m
· λ+

10k

m1/2
· λ1/2 +

5k3/2

m
λ1/2 (8)

We will set τ to the above quantity. Thus, given uniform samples, the protocol has probability at
least 9/10 of correctly answering “uniform.”

Case 2: ‖D−U‖TV > α. We use the analysis of Acharya et al. [1] to get

E [Z] ≥ α2m

5
(9)

Var [Z] ≤ E [Z]2

100
(10)
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This allows us to use Chebyshev’s inequality to obtain a lower bound on Z. Claim 4.4 allows us to
do the same for A and C. It remains to find a lower bound on B. Note that Ej is symmetrically
distributed with mean zero. We now invoke the following technical claim, proven in Appendix A.3:

Claim 4.6. Let E1, . . . , Ek be independent random variables where each Ej is symmetrically dis-

tributed over the integers with mean zero. For any d1, . . . , dk ∈ R, the random variable
∑k

j=1Ej ·dj
is symmetrically distributed with mean zero.

Hence, B is symmetric with mean 0 so that P [B ≥ 0] ≥ 1/2.
As stated before, we apply Chebyshev’s inequality to the pair (4), (5) and the pair (9), (10).

Then we use (3) and P [B ≥ 0] ≥ 1/2 to conclude that the following is true except with probability
≤ 1/2 + 4/50 = 29/50:

Z ′ > E [Z]−

√

E [Z]2

100
· 50 + k

4m

k∑

j=1

ℓj −

√
√
√
√

k2

8m2

k∑

j=1

ℓ2j · 50
︸ ︷︷ ︸

A

−

√
√
√
√

k2

4m2

k∑

j=1

ℓj · 50
︸ ︷︷ ︸

C

>
29α2m

100
+

k

4m

k∑

j=1

ℓj −
5k

2m

√
√
√
√

k∑

j=1

ℓ2j −
5k√
2m

√
√
√
√

k∑

j=1

ℓj (11)

≥ 29α2m

100
+

k2

2m
· λ− 5k3/2

m
· λ− 5k3/2

m
λ1/2 (12)

We will prove that (12) > (8). Since (8) = τ , this means the probability of erroneously reporting
“uniform” is at most 29/50.

(12)− (8)

=
29α2m

100
+

k2

2m
· λ− 5k3/2

m
· λ− 5k3/2

m
λ1/2

− 3α2m

250
− k2

2m
· λ− 5k3/2

m
· λ− 10k

m1/2
· λ1/2 − 5k3/2

m
λ1/2

=
278α2m

1000
− 10k3/2

m
· λ− 10k

m1/2
· λ1/2 − 10k3/2

m
λ1/2

For some constant h1, if m > h1

α · k3/4 · λ1/2 then 278α2m
2000 − 10k3/2

m · λ − 10k3/2

m λ1/2 > 0. For some

constant h2, if m > h2

α4/3 k
2/3λ1/3 then 278α2m

2000 − 10k
m1/2 · λ1/2 > 0. Adding these inequalities gives us

(12)− (8) > 0 which concludes the proof.

4.1.2 Final Uniformity Tester

We now use a technique from Acharya et al. [4] and Amin et al. [5] (itself a generalization of a
similar technique from Acharya et al. [3]) to reduce the sample complexity dependence on k from
k3/4 to k2/3. The idea is to reduce the size of the data universe [k] by grouping random elements
and then performing the test on the smaller universe [k̂]. The randomized grouping also reduces
testing distance — partitions may group together elements with non-uniform mass to produce a
group with near-uniform overall mass, thus hiding some of the original distance — but the reduction
in universe size outweighs this side effect.

We first introduce some notation. Given a partition G of [k] into G1, . . . , Gk̂ , let DG denote

the distribution over [k̂] such that the probability of sampling ĵ from DG is the probability that

j ∈ Gĵ for j ∼ D. Formally, P
[

DG = ĵ
]

=
∑

j∈Gĵ
P [D = j].
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Lemma 4.7 (Domain Compression [4, 5]). Let D be a distribution over [k] such that ‖D−U‖TV =
α. If G is a uniformly random of [k] into k̂ groups, then with probability ≥ 1/954 over G,

‖DG −U‖TV ≥ α ·
√

k̂

477
√
10k

.

Applying this trick to reduce [k] to [k̂] and then running our initial protocol PUT = (RUT,AUT)

on [k̂] with distance parameter α̂ = α

√
k̂

477
√
10k

gives our final uniformity tester. The given asymptotic

bound requires different values of k̂ depending on parameter settings; these appear in the proof.

Theorem 4.8. Let γ ∈ (0, 1], ε > 0, and α, δ ∈ (0, 1). There exists a protocol that is (2ε, 8δγ , γ)-
robustly shuffle private and, when ε = O(1) and δ = o(1), solves α-uniformity testing with sample
complexity

m = O

((

k2/3

α4/3ε2/3
+

k1/2

αε
+

k1/2

α2

)

· ln1/2
(
k

δ

))

.

Proof. The protocol assigns k̂ according to the following rule:

k̂ =







2 ifk
2/3ε4/3

α4/3 < 2

k ifk
2/3ε4/3

α4/3 > k
k2/3ε4/3

α4/3 otherwise

The users and analyzer determine the partition G using public randomness. Users execute RUT

as if the data were drawn from DG and the analyzer executes AUT. Privacy is immediate from
Theorem 4.2, so it remains to argue that the protocol is accurate for large enough m.

Sample Complexity: Recall that we set α̂ = α

√
k̂

477
√
10k

. We thus bound m using the sample

complexity guarantee of Theorem 4.2:

m = O

(

k̂3/4

α̂ε
ln1/2

(

k̂

δ

)

+
k̂2/3

α̂4/3ε2/3
ln1/3

(

k̂

δ

)

+
k̂1/2

α̂2

)

= O

((

k̂3/4

α̂ε
+

k̂2/3

α̂4/3ε2/3
+

k̂1/2

α̂2

)

· ln1/2
(
k

δ

))

(k̂ ≤ k)

= O















k1/2k̂1/4

αε
︸ ︷︷ ︸

T1

+
k2/3

α4/3ε2/3
︸ ︷︷ ︸

T2

+
k

α2k̂1/2
︸ ︷︷ ︸

T3








ln1/2
(
k

δ

)








(Value of α̂)

We split into cases based on k̂. They yield, respectively, the k1/2

αε , k1/2

α2 , and k2/3

α4/3ε2/3
terms for

O(T1 + T2 + T3).
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Case 1: k̂ = 2. Then k2/3ε4/3

α4/3 < 2, so k1/2 = O
(
α
ε

)
and k1/6 = O

(
α1/3

ε1/3

)

. Thus,

T1 + T2 + T3 = O

(

k1/2

αε
+

k1/2 · k1/6
α4/3ε2/3

+
k1/2k1/2

α2

)

= O

(

k1/2

αε
+

k1/2

αε
+

k1/2

αε

)

= O

(

k1/2

αε

)

.

Case 2: k̂ = k. This means k < k2/3ε4/3

α4/3 , so k3/4 < k1/2ε
α and k1/6 < ε2/3

α2/3 . Thus,

T1 + T2 + T3 = O

(

k3/4

αε
+

k2/3

α4/3ε2/3
+

k1/2

α2

)

= O

(

k1/2

α2
+

k2/3

α4/3ε2/3

)

= O

(

k1/2

α2
+

k1/2 · k1/6
α4/3ε2/3

)

= O

(

k1/2

α2

)

.

Case 3: k̂ = k2/3ε4/3

α4/3 . By substitution,

T1 + T2 + T3 = O

(

k1/2(k2/3ε4/3α−4/3)1/4

αε
+

k2/3

α4/3ε2/3
+

k

α2(k2/3ε4/3α−4/3)1/2

)

= O

(

k2/3

α4/3ε2/3

)

Correctness: We apply Theorem 4.2 (with a constant number of repetitions) to get

• If ~x ∼ Dn
G where DG = U, then P [PUT(~x) = “uniform”] ≥ 9539/9540, and

• If ~x ∼ Dn
G where ‖DG −U‖TV > α̂, then P [PUT(~x) = “not uniform”] ≥ 9539/9540

If D = U, then DG = U and so the probability of “uniform” is ≥ 9539/9540. If ‖D−U‖TV > α
then by Lemma 4.7, with probability ≥ 10/9540, ‖DG − U‖TV > α̂. By Theorem 4.2, with
probability ≥ 5/9540, the tester returns “non-uniform”. This constant separation gives the overall
testing guarantee.

4.2 Lower Bound for Robust Pure Shuffle Privacy

To obtain a lower bound for robust pure shuffle privacy, we first show how to transform a robustly
shuffle private uniformity tester into a pan-private uniformity tester. The main idea of this trans-
formation is the same as that for distinct elements. We initialize the pan-private algorithm’s state
using dummy data, handle new stream elements as shuffle protocol users contributing to a growing
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pool of (repeatedly) shuffled messages, and add more dummy data to the internal state at the end
of the stream. Here, the dummy data consists of samples from a uniform distribution. This has
the effect of diluting the true samples and worsens the testing accuracy, but to a controlled extent.
Pseudocode for this procedure appears in Algorithm 6.

Algorithm 6: QP , an (ε, δ)-pan-private tester built from a 1/3-robust (ε, δ)-shuffle private
tester

Input: Data stream ~x ∈ [k]n/3; shuffle-private uniformity tester P = (R,A)
Output: Decision in {“uniform”, “not uniform”}

1 Draw uniform samples ~xU ∼ Un/3

2 Initialize internal state I0 ← (S ◦ Rn/3)(~xU)
3 Draw n′ ∼ Bin(n, 2/9)
4 Set n′ ← min(n′, n/3)
5 For i ∈ [n/3]
6 If i ≤ n′ :
7 Set Ii ← S(Ii−1,R(xi))
8 Else

9 Set Ii ← S(Ii−1,R(U))

10 Draw (new) uniform samples ~xU ∼ Un/3

11 Set final state ~y ← S(In/3,Rn/3(~xU))

12 Return A(~y)

Lemma 4.9. Let P = (R,A) be an (ε, δ, 1/3)-robustly shuffle private α-uniformity tester with
sample complexity n. If n is larger than some absolute constant, then QP described in Algorithm 6
is an (ε, δ)-pan-private algorithm that solves 9α

2 uniformity testing with sample complexity n/3.

Proof. Privacy: The privacy argument is nearly identical to that used to prove Lemma 3.7. The
only difference is that the dummy data now consists of uniform samples. However, since this
dummy data is still independent of the true data, we can apply the same argument to translate
robust shuffle privacy into pan-privacy.

Accuracy: Assuming that P errs with probability at most 1/3, we will prove that the algorithm
QP errs with probability at most 1/3 on data drawn from U. Then we bound the error probability
by 1/2 when data is drawn from a distribution that is 9α

2 -far from U. This constant separation
implies a valid tester.

Let P(~x) denote the output distribution of the original shuffle private uniformity tester, and let
QP(~x) denote the output distribution for the pan-private uniformity tester given in Algorithm 6
on stream ~x. If ~x consists of uniform samples, then QP(U

n/3) = A((S ◦R)(Un)) = P(Un) and so

P~x,QP
[QP outputs “not uniform”] = P~x,P [P outputs “not uniform”] ≤ 1/3.

Having upper bounded the probability that QP errs on uniform samples, we now control the
probability that it errs on non-uniform samples. Suppose ~x consists of samples from D where
‖D−U‖TV > 9α

2 . Define the mixture distribution D2/9 := 2
9 ·D+ 7

9 ·U. Then ‖D2/9 −U‖TV > α

and so P

[

P(Dn
2/9) = “uniform”

]

≤ 1/3. We will now show that P(Dn
2/9) and QP(D

n/3) are

statistically close enough that QP has a bounded error probability on non-uniform samples as well.

20



In n samples from D2/9, the number of samples drawn from D is distributed as Bin(n, 2/9).

By a binomial Chernoff bound, for n >
√

ln(12), P [Bin(n, 2/9) > n/3] < 1
6 . Thus the probability

that n′ is not distributed as Bin(n, 2/9) is less than 1/6. In turn, the distance between

P(Dn
2/9) = A(S(

n terms
︷ ︸︸ ︷

R(D), . . . ,R(D)
︸ ︷︷ ︸

Bin(n,2/9) copies

,R(U), . . . ,R(U)))

and

QP (D
n/3) = A(S(

n terms
︷ ︸︸ ︷

R(D), . . . ,R(D)
︸ ︷︷ ︸

n′ copies

,R(U), . . . ,R(U)))

is less than 1/6 as well. Tracing back, we have shown that given samples from sufficiently non-
uniform D, P [QP outputs “uniform”] ≤ 1/3 + 1/6 = 1/2.

Next, we recall the pan-private lower bound for uniformity testing.

Lemma 4.10 (Theorem 3 from Amin et al. [5]). For ε = O(1) and α < 1/2, any ε-pan-private
α-uniformity tester has sample complexity

Ω

(

k2/3

α4/3ε2/3
+

√
k

α2
+

1

αε

)

.

Together, Lemmas 4.9 and 4.10 imply our lower bound for pure robustly shuffle private unifor-
mity testing.

Theorem 4.11. For ε = O(1) and α < 1/9, any (ε, 0, 1/3)-robustly shuffle private protocol α-
uniformity tester has sample complexity

Ω

(

k2/3

α4/3ε2/3
+

√
k

α2
+

1

αε

)

.

Note that the lower bound of Theorem 4.11 is not directly comparable to the upper bound
of Theorem 4.8, since the former only applies to robust pure shuffle privacy while the latter only
satisfies robust approximate shuffle privacy. This in turn is because a lower bound is only known
for pure pan-privacy. We note that Lemma 4.9 would also apply to an approximate pan-private
lower bound.

5 Pan-private Histograms

We now depart from our previous results by transforming a shuffle private protocol into a pan-
private algorithm. Specifically, Balcer and Cheu [7] gave a shuffle private protocol for estimating
histograms with error independent of the domain size. Their protocol relies on adding noise from a
binomial distribution for privacy; in Appendix A.4, we show that this strategy is also robust. We
then show that a pan-private analogue using binomial noise achieves the same error.

The main building block in our histogram algorithm is a counting algorithm QZSUM (Algorithm
7). To count a sum of bits, QZSUM adds binomial noise to its counter before beginning the stream,
updates the counter deterministically for each bit in the stream, adds more binomial noise at the
end of the stream, and releases the resulting noisy count. Because binomial noise is bounded, we
can always bound the final error.
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Algorithm 7: An online algorithm QZSUM for binary sums

Input: Data stream ~x ∈ {0, 1}n; parameter λ ∈ N

Output: z ∈ N

1 Draw I0 ∼ Bin(λ, 1/2)
2 For i ∈ [n]
3 Ii ← Ii−1 + xi

4 Draw η ∼ Bin(λ, 1/2)
5 Set c̃← In + η
6 Return c̃

Theorem 5.1. Given ε > 0, δ ∈ (0, 1), and λ ≥ 20 ·
(
eε+1
eε−1

)2
ln
(
2
δ

)
, QZSUM is (ε, δ)-pan-private

and computes binary sums with error ≤ 2λ = O
(

1
ε2 log

(
1
δ

))
.

Proof. Privacy: The basic idea of the proof is that, by Lemma 2.4, the first draw of binomial noise
ensures privacy the internal state view, and the second draw of binomial noise ensures privacy for
the output view. Substituting in Lemma 2.4, the privacy analysis is almost identical to that for
Lemma 3.7.

Accuracy: For any stream ~x, we have c̃ =
∑n

i=1 xi +Bin(2λ, 1/2), which has support ranging
from

∑n
i=1 xi to

∑n
i=1 xi + 2λ.

With QZSUM in hand, our histogram algorithm is simple: we run QZSUM on each value in the
data domain. Crucially, changing one stream element only changes the true value of at most two
bins in the histogram, so by composition the resulting algorithm’s privacy guarantee is within a
factor of two of QZSUM. Since each count is 2λ-accurate, we get the same ℓ∞ accuracy. This
improves over a naive solution that adds Laplace noise to each bin, which incurs a logarithmic
dependence on the domain size.

Theorem 5.2. Given ε > 0, δ ∈ (0, 1), and λ ≥ 20 ·
(
eε+1
eε−1

)2
ln
(
2
δ

)
, the histogram algorithm

described above is (2ε, 2δ)-pan-private and computes a histogram with ℓ∞ error at most 2λ =
O
(

1
ε2 log

(
1
δ

))
.

Pan-privacy thus inherits the same separations from (sequentially interactive) local privacy as
those outlined by Balcer and Cheu [7] for shuffle privacy. For example, using histogram gives
an (ε, δ)-pan-private solution to pointer-chasing on length-ℓ vectors using O

(
1
ε2 log

(
1
δ

))
samples.

Sequentially interactive (ε, δ)-local privacy, however, requires Ω(ℓ) samples [28].

6 Conclusion and Further Questions

Our results suggest a relationship between robust shuffle privacy and pan-privacy. In addition to
the straightforward problems of closing gaps in our upper and lower bounds, we conclude with more
general questions:

1. When can we convert robust shuffle private protocols to pan-private algorithms? Both of our
robust shuffle private lower bounds rely on this kind of conversion. In particularly, they use
the fact that the underlying problem is resilient to “fake” data. For example, in the course
of converting a robust shuffle private distinct elements protocol to a pan-private one, it was
important that adding many draws from R(1) — i.e., adding many copies of 1 to the data
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— only changed the true answer by at most 1. Similarly, when converting the robust shuffle
private uniformity tester to a pan-private one, adding fake uniform samples only diluted the
original testing distance, so the resulting pan-private tester was still useful. It is not clear
which problems do or do not have this property, or whether this property is necessary in
general.

2. When can we convert pan-private algorithms to robust shuffle private protocols? Our robust
shuffle private distinct elements counter is structurally similar to its pan-private counter-
part [20]: both essentially break distinct elements into a sum of noisy ORs and then de-bias
the result. The only difference is in the distributed noise generation of our shuffle protocol.
Similarly, our robust shuffle private uniformity tester differs from the pan-private version [5]
only in the kind of noise added. Is there a generic structural condition that allows for this
kind of transformation?

3. Can we separate robust shuffle privacy and pan-privacy? Proving that robust shuffle privacy
must obtain worse performance for some problem requires a lower bound that holds for robust
shuffle privacy but not pan-privacy. Unfortunately, almost all multi-message robust shuffle
privacy lower bounds are either (1) imported directly from central privacy or (2) imported
from pan-privacy. In either case, such lower bounds also apply to pan-privacy and thus do
not yield a separation. One exception is the summation lower bound of Ghazi et al. [25], but
it holds only if each user is limited to O(poly log(n)) communication. In the other direction,
the only pan-private lower bounds that do not also hold for central privacy are for distinct
elements and uniformity testing, but we have shown that they do not give a (polynomial in
domain size) separation here.
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A Appendix

A.1 Proofs for Robust Shuffle Private Distinct Elements Upper Bound

In Section 3.1, we used two auxiliary lemmas to argue that PDE is robustly private. Here, we give
their proofs.

Lemma A.1 (Restatement of Lemma 3.5). Let n ∈ N, γ ∈ (0, 1], and p ∈ [0, 1/2]. Define

p′ = 1−(1−2p)1/n

2 . Then given i.i.d. X1, . . . ,Xγn ∼ Ber(p′), X =
∑γn

i=1Xi mod 2 is identically
distributed with

Ber

(
1− (1− 2p)γ

2

)

.

Proof. For all i ∈ [γn], define Yi = 1− 2Xi ∈ {±1}, and define Y =
∏γn

i=1. Then

P [X = 1] = P [Y = −1] = 1− E [Y ]

2
.

Now, by independence, we rewrite

E [Y ] =

γn
∏

i=1

E [Yi] =

γn
∏

i=1

(1− 2E [Xi]) = (1− 2p′)γn

to get P [X = 1] = 1−(1−2p′)γn

2 . Plugging in the value p′ = 1−(1−2p)1/n

2 gives our result.

Lemma A.2 (Restatement of Lemma 3.6). For γ ∈ (0, 1], 2γ

2γ−1 ≤ 2
γ .

Proof. Since γ · 2γ

2γ−1 = 2 at γ = 1, it suffices to show that γ · 2γ

2γ−1 is nondecreasing on (0, 1]. Its
first derivative is

2γ(2γ − γ ln(2)− 1)

(2γ − 1)2

so it suffices to show that 2γ − γ ln(2) − 1 ≥ 0. Equality holds for γ = 0 and its first derivative is
(2γ − 1) ln(2) ≥ 0 for γ > 0. Thus 2γ − γ ln(2)− 1 ≥ 0 as desired.

A.2 The Distinct Elements Problem Over a Large Universe

When k ≥ n2, the distinct elements protocol PDE from Section 3.1 does not provide a meaningful
notion of accuracy. Using public randomness to select a hash function, we can obtain a protocol
for distinct elements with error O(n2/3) by having each user hash their input to a smaller domain
before running the distinct element protocol PDE. Note that hashing is strictly for utility and is
not used to add privacy.

First, we give a high probability bound on the error from estimating the number of distinct
elements by counting the number of distinct elements after hashing.

Lemma A.3. Let k, k′ ∈ N such that k ≥ k′. Let h be sampled uniformly from a 2-universal hash
family H mapping [k] to [k′]. Let S ⊆ [k] and S′ = {s′ ∈ [k′] | ∃s ∈ S s.t. h(s) = s′} ⊆ [k′]. Then
for all β ∈ (0, 1),

Ph

[

|S| − |S′| ≥ |S|
2

βk′

]

≤ β.
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Proof. Trivially, |S| ≥ |S′|. Let X = |{(s, s′) ∈ S2 | s < s′ and h(s) = h(s′)}|, i.e. the number of
collisions when hashing the set S. Notice that |S′| = |{s′ ∈ S | ∀(s ∈ S s.t. s < s′) h(s) 6= h(s′)}|.
This implies |S| − |S′| = |{s′ ∈ S | ∃s ∈ S s.t. s < s′ and h(s) = h(s′)}| ≤ X. Since h is
sampled uniformly from a 2-universal hash family, E[X] ≤ |S|2/k′. The result follows by Markov’s
inequality.

Corollary A.4. Let constant c ≥ 1. Let n, k ∈ N such that k ≥ ⌈cn4/3⌉. Let ε > 0 and δ ∈ (0, 1).
Let h be sampled uniformly from a 2-universal hash family H mapping [k] to [⌈cn4/3⌉]. Then the
protocol PHDE = (RDE ◦ h,ADE) for n users

I. is (2ε+ 2 ln(1/γ), 2δ/γ, γ)-robustly shuffle private;

II. solves the (α, β)-distinct elements problem for

α =
2n2/3

cβ
+

eε

eε − 1
·
√

2(n4/3 + 1) ln (4/β);

III. requires each user to communicate at most O(n4/3 log(n(eε+1)/δ)) messages of length O(log n).

Proof of Privacy (Part I). Fix h ∈ H. For ~x ∈ [k]n, let h(~x) = (h(x1), . . . , h(xn)). Let ~x, ~x ′ ∈ [k]n

be neighboring datasets. Then h(~x) and h(~x ′) are also neighboring datasets, and privacy follows
from Theorem 3.3 Part I.

Proof of Accuracy (Part II). By Lemma A.3 and Theorem 3.3 Part II,

P

[

∣
∣PHDE(~x)−D(~x)

∣
∣ ≥ 2n2/3

cβ
+

eε

eε − 1
·
√

2(n4/3 + 1) ln (4/β)

]

≤ P

[

∣
∣PDE(h(~x))−D(h(~x))

∣
∣+
∣
∣D(h(~x))−D(~x)

∣
∣ ≥ 2n2/3

cβ
+

eε

eε − 1
·
√

2(n4/3 + 1) ln (4/β)

]

≤ P

[
∣
∣PDE(h(~x))−D(h(~x))

∣
∣ ≥ eε

eε − 1
·
√

2(n4/3 + 1) ln (4/β)

]

+ P

[

∣
∣D(h(~x))−D(~x)

∣
∣ ≥ 2n2/3

cβ

]

≤ β.

A.3 Technical Claims for Unifomity Testing

Here, we provide proofs for the technical claims made in the proof of Theorem 4.2.

Proof of Claim 4.4. Recall that we defined Ej = cj(~y) − cj(~x). is drawn from Bin(ℓj , 1/2) − ℓj/2

whose first four moments are 0,
ℓj
4 , 0,

3ℓ2j
16 −

ℓj
8 . The expectation of A immediately follows from

linearity and the second moment of Ej :

E [A] =
k

m

k∑

j=1

E
[
E2

j

]
=

k

4m

k∑

j=1

ℓj
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The expectations of B,C are 0 due to E [Ej] = 0:

E [B] =
2k

m

k∑

j=1

E [Ej · (cj(~x)−m/k)]

=
2k

m

k∑

j=1

E [Ej ] · E [cj(~x)−m/k] (Independence)

= 0

E [C] =
k

m

k∑

j=1

E [Ej ] = 0

The variance calculations follow essentially the same recipe:

Var [A] =
k2

m2

k∑

j=1

Var
[
E2

j

]
(Independence)

=
k2

m2

k∑

j=1

(E
[
E4

j

]
− E

[
E2

j

]2
)

=
k2

m2

k∑

j=1

(
3ℓ2j
16
− ℓj

8
−

ℓ2j
16

) (4th & 2nd moments)

≤ k2

8m2

k∑

j=1

ℓ2j

Var [C] =
k2

m2

k∑

j=1

Var [Ej ] (Independence)

=
k2

4m2

k∑

j=1

ℓj

Proof of Claim 4.5. As observed in [5], the analysis by [1] implies that

E [Z] ≤ α2m

500

Var [Z] ≤ α4m2

500000
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Also, we have

Var [B] =
4k2

m2

k∑

j=1

Var [Ej · (cj(~x)−m/k)] (Independence)

=
4k2

m2

k∑

j=1

E
[
E2

j

]
· E
[
(cj(~x)−m/k)2

]
− E [Ej ]

2 · E [cj(~x)−m/k]2 (Independence)

=
k2

m2

k∑

j=1

ℓj · E
[
(cj(~x)−m/k)2

]
(13)

=
k2

m2

k∑

j=1

ℓj ·
m

k
(D = U)

=
k

m

k∑

j=1

ℓj

where (13) follows from the fact that Ej ∼ Bin(ℓj , 1/2).

Proof of Claim 4.6. By linearity of expectation, the mean is zero. Now we show that the variable
is symmetric. We first argue that each term is symmetric: for any v 6= 0,

P [Ej · dj = v] = P [Ej = v/dj ]

= P [Ej = −v/dj ]
= P [Ej · dj = −v]

It remains to argue the convolution of two symmetric distributions T,T′ is symmetric:

Pt∼T,t′∼T′

[
t+ t′ = v

]
=
∑

u∈Z
P [t = u] · P

[
t′ = v − u

]

=
∑

u∈Z
P [t = −u] · P

[
t′ = −(v − u)

]

= P
[
t+ t′ = −v

]

A.4 Robustness of Counting Protocol by Balcer & Cheu

In order to compute histograms with error O(log(1/δ)/ε2), Balcer and Cheu [7] presented a shuffle
private protocol Pzsum

ε,δ for binary sums. Here, we prove that their binary sum protocol is robust
shuffle private. As written, it only ensures privacy for ε ≤ 1, but this is a limitation that is lifted
by replacing instances of ε with

√
5 · (eε − 1)/(eε + 1).

Claim A.5. For any ε > 0, γ ∈ (01, ], and δ ∈ (0, 1) with n ≥ 20
(
eε+1
eε−1

)2
ln
(
2
δ

)
users, Pzsum

ε,δ is
(

ε, 2
(
δ
2

)γ
, γ
)

-robustly shuffle private.

Proof. In Pzsum
ε,δ , each user reports their true bit and a bit drawn from Ber(p) where

p = 1− 10

n
·
(
eε + 1

eε − 1

)2

· ln
(
2

δ

)

.
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For every γ′ ≥ γ such that γ′n ∈ Z, if only γ′n users run this protocol, then on input ~x, the
output of the shuffler is a post-processing of the central algorithm that samples η ∼ Bin(γ′n, p)

and outputs
(
∑γ′n

i=1 xi

)

+ η. It therefore suffices to prove a privacy guarantee for this quantity. We

remark that Lemma 2.4 is a special case of a more general lemma:

Lemma A.6 (Appendix C [23]). Let n, ℓ ∈ N, p ∈ (0, 1) and let f : X n → Z be a 1-sensitive
function, i.e. |f(~x) − f(~x ′)| ≤ 1 for all neighboring datasets ~x, ~x ′ ∈ X n. For any ε > 0 and
δ ∈ (0, 1], if

ℓ ·min(p, 1− p) ≥ 10

(
eε + 1

eε − 1

)2

ln

(
2

δ

)

,

then the algorithm that on input ~x samples η ∼ Bin(ℓ, p) and outputs f(~x)+η is (ε, δ)-differentially
private.

We apply this lemma after making the following observation:

γ′n ·min(p, 1− p) ≥ γ′ · 10 ·
(
eε + 1

eε − 1

)2

· ln
(
2

δ

)

≥ γ · 10 ·
(
eε + 1

eε − 1

)2

· ln
(
2

δ

)

= 10 ·
(
eε + 1

eε − 1

)2

· ln
(

2

2(δ/2)γ

)

.

Therefore, Pzsum
ε,δ is (ε, 2(δ/2)γ , γ)-robustly shuffle private.
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