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Abstract

Hypothesis testing plays a central role in statistical inference, and is used in many set-

tings where privacy concerns are paramount. This work answers a basic question about

privately testing simple hypotheses: given two distributions P and Q, and a privacy level

ε, how many i.i.d. samples are needed to distinguish P from Q subject to ε-differential pri-

vacy, and what sort of tests have optimal sample complexity? Specifically, we characterize

this sample complexity up to constant factors in terms of the structure of P and Q and the

privacy level ε, and show that this sample complexity is achieved by a certain randomized

and clamped variant of the log-likelihood ratio test. Our result is an analogue of the clas-

sical Neyman–Pearson lemma in the setting of private hypothesis testing. We also give an

application of our result to private change-point detection. Our characterization applies

more generally to hypothesis tests satisfying essentially any notion of algorithmic stability,

which is known to imply strong generalization bounds in adaptive data analysis, and thus

our results have applications even when privacy is not a primary concern.
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1 Introduction

Hypothesis testing plays a central role in statistical inference, analogous to that of decision

or promise problems in computability and complexity theory. A hypothesis testing problem is

specified by two disjoint sets of probability distributions over the same set, called hypotheses,

H0 andH1. An algorithm T for this problem, called a hypothesis test, is given a sample x from an

unknown distribution P , with the requirement that T (x) should, with high probability, output

“0” if P ∈ H0, and “1” if P ∈ H1. There is no requirement for distributions outside of H0 ∪H1.

In computer science, such problems sometimes go by the name distribution property testing.

Hypothesis testing problems are important in their own right, as they formalize yes-or-

no questions about an underlying population based on a randomly drawn sample, such as

whether education strongly influences life expectancy, or whether a particular medical treat-

ment is effective. Successful hypothesis tests with high degrees of confidence remain the gold

standard for publication in top journals in the physical and social sciences. Hypothesis testing

problems are also important in the theory of statistics and machine learning, as many lower

bounds for estimation and optimization problems are obtained by reducing from hypothesis

testing.

This paper aims to understand the structure and sample complexity of optimal hypothesis

tests subject to strong privacy guarantees. Large collections of personal information are now

ubiquitous, but their use for effective scientific discovery remains limited by concerns about

privacy. In addition to the well-understood settings of data collected during scientific studies,

such as clinical experiments and surveys, many other data sources where privacy concerns

are paramount are now being tapped for socially beneficial analysis, such as Social Science

One [Soc18], which aims to allow access to data collected by Facebook and similar companies.

We study algorithms that satisfy differential privacy (DP) [DMNS06], a restriction on the al-

gorithm that ensures meaningful privacy guarantees against an adversary with arbitrary side

information [KS08]. Differential privacy has come to be the de facto standard for the analy-

sis of private data, used as a measure of privacy for data analysis systems at Google [EPK14],

Apple [Dif17], and the U.S. Census Bureau [DLS+17]. Differential privacy and related distri-

butional notions of algorithmic stability can be crucial for statistical validity even when confi-

dentiality is not a direct concern, as they provide generalization guarantees in an adaptive

setting [DFH+15b].

Consider an algorithm that takes a set of data points from a set X—where each point be-

longs to some individual—and produces some public output. We say the algorithm is dif-

ferentially private if no single data point can significantly impact the distribution on outputs.

Formally, we say two data sets x,x′ ∈ X n of the same size are neighbors if they differ in at most

one entry.

Definition 1.1 ([DMNS06]). A randomized algorithm T taking inputs in X ∗ and returning ran-

dom outputs in a space with event set S is ε-differentially private if for all n ≥ 1, for all neighbor-

ing data sets x,x′ ∈ X n, and for all events S ∈ S ,

P [T (x) ∈ S] ≤ eεP
[

T (x′) ∈ S] .

For the special case of tests returning output in {0,1}, the output distribution is characterized
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by the probability of returning “1”. Letting g(x) =P [T (x) = 1], we can equivalently require that

max

(

g(x)

g(x′)
,
1− g(x)
1− g(x′)

)

≤ eε .

For algorithms with binary outputs, this definition is essentially equivalent to all other com-

monly studied notions of privacy and distributional algorithmic stability (see “Connections to

Algorithmic Stability”, below).

Contribution: The Sample Complexity of Private Tests for Simple Hypotheses. We focus on

the setting of i.i.d. data and singleton hypothesesH0,H1, which are called simple hypotheses. The

algorithm is given a sample of n points x1, . . . ,xn drawn i.i.d. from one of two distributions, P or

Q, and attempts to determine which one generated the input. That is,H0 = {Pn} andH1 = {Qn}.
We investigate the following question.

Given two distributions P and Q and a privacy parameter ε > 0, what is the minimum

number of samples (denoted SC
P,Q
ε ) needed for an ε-differentially private test to reliably

distinguish P from Q, and what are optimal private tests?

These questions are well understood in the classical, nonprivate setting. The number of sam-

ples needed to distinguish P from Q is Θ(1/H2(P,Q)), where H2 denotes the squared Hellinger

distance (3).1 Furthermore, by the Neyman–Pearson lemma, the exactly optimal test consists

of computing the likelihood ratio Pn(x)/Qn(x) and comparing it to some threshold.

We give analogous results in the private setting. First, we give a closed-form expression that

characterizes the sample complexity up to universal multiplicative constants, and highlights

the range of ε in which private tests use a similar amount of data to the best nonprivate ones.

We also give a specific, simple test that achieves that sample complexity. Roughly, the test

makes a noisy decision based on a “clamped” log likelihood ratio in which the influence of

each data point is limited. The sample complexity has the form Θ(1/adv1), where adv1 is the

advantage of the test over random guessing on a sample of size n = 1. The optimal test and its

sample complexity are described in Theorem 1.2.

Our result provides the first instance-specific characterization of a statistical problem’s com-

plexity for differentially private algorithms. Understanding the private sample complexity of

statistical problems is delicate. We know there are regimes where statistical problems can be

solved privately “for free” asymptotically (e.g. [DMNS06, CMS11, Smi11, KV18]) and others

where there is a significant cost, even for relaxed definitions of privacy (e.g. [BUV14, DSS+15]),

and we remain far from a general characterization of the statistical cost of privacy. Duchi, Jor-

dan, and Wainwright [DJW13] give a characterization for the special case of simple tests by

local differentially private algorithms, a more restricted setting where samples are randomized

individually, and the test makes a decision based on these randomized samples. Our charac-

terization in the general case is more involved, as it exhibits several distinct regimes for the

parameter ε.

1This statement is folklore, but see, e.g., [BY02] for the lower bound, [Can17] or Corollary 2.2 for the upper

bound.
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Our analysis relies on a number of tools of independent interest: a characterization of pri-

vate hypothesis testing in terms of couplings between distributions onX n, and a novel interpre-

tation of Hellinger distance as the advantage over random guessing of a specific, randomized

likelihood ratio test.

The Importance of Simple Hypotheses. Many of the hypotheses that arise in application are

not simple, but are so-called composite hypotheses. For example, deciding if two features are

independent or far from it involves sets H0 and H1 each containing many distributions. Yet

many of those tests can be reduced to simple ones. For example, deciding if the mean of a

Gaussian is less than 0 or greater than 1 can be reduced to testing if the mean is either 0 or

1. Furthermore, simple tests arise in lower bounds for estimation—the well-known character-

ization of parametric estimation in terms of Fisher information is obtained by showing that

the Fisher information measures variability in the Hellinger distance and then employing the

Hellinger-based characterization of nonprivate simple tests (e.g. [Bor99, Chap. II.31.2, p.180]).

Our characterization of private testing implies similar lower bounds for estimation (along

the lines of lower bounds of Duchi and Ruan [DR18] in the local model of differential privacy).

Connection to Algorithmic Stability. For hypothesis tests with constant error probabilities,

sample complexity bounds for differential privacy are equivalent, up to constant factors, to

sample complexity bounds for other notions of distributional algorithmic stability, such as

(ε,δ)-DP [DKM+06], concentrated DP [DR16, BS16], KL- and TV-stability [WLF16, BNS+16]

(see [ASZ18, Lemma 5]). (Briefly: if we ensure that Pr(T (x) = 1) ∈ [0.01,0.99] for all x, then

an additive change of ε corresponds to an multiplicative change of 1 ±O(ε), and vice-versa.)

Consequently, our results imply optimal tests for use in conjunction with stability-based gener-

alization bounds for adaptive data analysis, which has generated significant interest in recent

years [DFH+15b, DFH+15a, DFH+15c, RZ16, BNS+16, RRST16, XR17, FS17, FS18].

1.1 Hypothesis Testing

To put our result in context, we review classical results about non-private hypothesis testing.

Let P and Q be two probability distributions over an arbitrary domain X . A hypothesis test

K : X ∗→ {“P”,“Q”} is an algorithm that takes a set of samples x ∈ X ∗ and attempts to determine

if it was drawn from P or Q. Define the advantage of a test K given n samples as

advn(K) = P
x∼Pn

[K(x) = “P”]− P
x∼Qn

[K(x) = “P”]. (1)

We say that K distinguishes P from Q with sample complexity SC
P,Q(K) if for every n ≥ SC

P,Q(K),

advn(K) ≥ 2/3. We say SC
P,Q = minK SC

P,Q(K) is the sample complexity of distinguishing P from

Q.

Most hypothesis tests are based on some real-valued test statistic S : X ∗→ R where

KS (x) =










“P” if S(X) ≥ κ

“Q” otherwise

for some threshold κ. We will sometimes abuse notation and use the test statistic S and the

implied hypothesis test KS interchangeably.
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The classical Neyman–Pearson Lemma says that the exact optimal test2 for distinguishing

P,Q is the log-likelihood ratio test given by the test statistic

LLR(x1, . . . ,xn) =
n∑

i=1

log
P(xi )

Q(xi )
. (2)

Another classical result says that the optimal sample complexity is characterized by the squared

Hellinger distance between P,Q, which is defined as

H2(P,Q) =
1

2

∫

X

(√

P(x)−
√

Q(x)
)2

dx. (3)

Specifically, SCP,Q = SC
P,Q(LLR) = Θ(1/H2(P,Q)). Note that the same metric provides upper

and lower bounds on the sample complexity.

1.2 Our Results

Our main result is an approximate characterization of the sample complexity of ε-differentially

private tests for distinguishing P and Q. Analogous to the non-private case, we will write

SC
P,Q
ε =minε-DP K SC

P,Q(K) to denote the sample complexity of ε-differentially privately (ε-DP) dis-

tinguishing P from Q, and we characterize this quantity up to constant factors in terms of the

structure of P,Q and the privacy parameter ε. Specifically, we show that a privatized clamped log-

likelihood ratio test is optimal up to constant factors. This privatization may be achieved through

either the Laplace or Exponential mechanism, and we will prove optimality of both methods.

For parameters b ≥ a, we define the clamped log-likelihood ratio statistic,

cLLRa,b(x) =
∑

i

[

log
P(xi)

Q(xi )

]b

a

,

where [·]ba denotes the projection onto the interval [a,b] (that is, [z]ba =max(a,min(z,b))).

Define the soft clamped log-likelihood test:

scLLRa,b(x) =










P with probability ∝ exp(12 cLLRa,b(x))

Q with probability ∝ 1

The test scLLR is an instance of the exponential mechanism [MT07], and thus scLLRa,b satisfies

ε-differential privacy for ε = b−a
2 .

Similarly, define the noisy clamped log-likelihood ratio test:

ncLLRa,b(X) =









P if cLLRa,b(x) + Lap
(

1
ε(b−a)

)

> 0

Q otherwise

2More precisely, given any test K , there is a setting of the threshold κ for the log-likelihood ratio test that weakly

dominates K , meaning that Px∼Q[LLR(x) = P] ≤ Px∼Q[K(x) = P] and Px∼P [LLR(x) =Q] ≤ Px∼P [K(x) =Q] (keeping

the true positive rates Px∼P [K(x) = P], Px∼Q[K(x) = Q] fixed). One may need to randomize the decision when

S(X) = κ to achieve some tradeoffs between false negative and positive rates.
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The testncLLR is an instance of postprocessing the Laplace mechanism [DMNS06], and satisfies

ε-differential privacy.

Our main result is that, for every P,Q, and every ε, the tests scLLR−ε′ ,ε and ncLLR−ε′ ,ε
are optimal up to constant factors, for some appropriate 0 ≤ ε′ ≤ ε. To state the result more

precisely, we introduce some additional notation. First define

τ = τ(P,Q) ,max

{∫

X
max{P(x)− eεQ(x),0}dx,

∫

X
max{Q(x)− eεP(x),0}dx

}

, (4)

and assume without loss of generality that τ =
∫

X max{P(x)−eεQ(x),0}dx, which we assume for

the remainder of this work.3 Next, let 0 ≤ ε′ ≤ ε be the largest value such that

∫

X
max{P(x)− eεQ(x),0}dx =

∫

X
max{Q(x)− eε′P(x),0}dx = τ,

whose existence is guaranteed by a continuity argument (a formal argument is given in Ap-

pendix B). We give an illustration of the definition of τ and ε′ in Figure 1. Finally, define

P̃ =min{eεQ,P} and Q̃ =min{eε′P,Q} and normalize by (1− τ) to obtain distributions

P ′ = P̃/(1− τ) and Q′ = Q̃/(1− τ). (5)

The distributions P ′ ,Q′ are such that

−ε′ ≤ log
P ′(x)
Q′(x)

≤ ε ,

and

P = (1− τ)P ′ + τP ′′ and Q = (1− τ)Q′ + τQ′′ ,

where P ′′ and Q′′ are distributions with disjoint support. The quantity τ is the smallest possible

number for which such a representation is possible. With these definitions in hand, we can now

state our main result.

Theorem 1.2. For every pair of distributions P,Q, and every ε > 0, the optimal sample complexity

for ε-differentially private tests is achieved by either the soft or noisy clamped log-likelihood test, and

satisfies

SC
P,Q
ε =Θ(SCP,Q(ncLLR−ε′ ,ε)) =Θ(SCP,Q(scLLR−ε′ ,ε))

=Θ

(

1

ετ(P,Q) + (1− τ)H2(P ′ ,Q′)

)

=Θ

(

1

adv1(scLLR−ε′ ,ε)

)

.

When ε ≥ maxx |logP(x)/Q(x)|, Theorem 1.2 reduces to SC
P,Q
ε = Θ

(
1

H2(P,Q)

)

, which is the

sample complexity for distinguishing between P and Q in the non-private setting. This implies

3For α ≥ 0, the quantity Dα (P‖Q) =
∫

max(P(x)−αQ(x),0)dx is an f -divergence and has appeared in the literature

before under the names α-divergence, hockey-stick divergence, or elementary divergence [LCV15, BBG18] (for α = 1, one

obtains the usual total variation distance). Thus, τ is the maximum of the divergences Deε (P‖Q) and Deε (Q‖P ). It

can also be described as the smallest value δ such that P and Q are (ε,δ)-indistinguishable [DR14].
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that we get privacy for free asymptotically in this parameter regime. We will focus on proving

the first equality in this paper, the second is proved in Appendix E.

Comparison to Known Bounds. For ε < 1, the bounds

1

H2(P,Q)
≤ SC

P,Q
ε ≤O

(

1

εH2(P,Q)

)

follow directly from the non-private sample complexity. Namely, the lower bound is the non-

private sample complexity and the upper bound is obtain by applying the sample-and-aggregate

technique [NRS07] to the optimal non-private test. They can be recovered from Theorem 1.2 by

noting that

εH2(P,Q) =
ε

2
‖
√
P −

√

Q‖22 =O








ε
∥
∥
∥
∥

√
P −

√

P̃
∥
∥
∥
∥

2

2
+ ε

∥
∥
∥
∥
∥

√

P̃ −
√

Q̃

∥
∥
∥
∥
∥

2

2
+ ε

∥
∥
∥
∥
∥

√

Q̃ −
√

Q

∥
∥
∥
∥
∥

2

2









=O(ετ + ε(1− τ)H2(P ′ ,Q′) + ετ)

=O(ετ + (1− τ)H2(P ′ ,Q′))

and

ετ + (1− τ)H2(P ′ ,Q′) = ε ·
∫

S
|P(x)− eεQ(x)|dx + ‖

√

P̃ −
√

Q̃‖22

≤ ε ·
∫

S
|P(x)−Q(x)|dx + ‖

√
P −

√

Q‖22

≤ ε · 1+ eε/2

eε/2 − 1
·
∫

S
(
√

P(x)−
√

Q(x))2 dx +H2(P,Q)

=O(H2(P,Q)),

where S = { x : P(x)− eεQ(x) > 0 }.

1.2.1 Application: Private Change-Point Detection

As an application of our result, we obtain optimal private algorithms for change-point detec-

tion. Given distributions P and Q, an algorithm solving offline change-point detection for P and Q

takes a stream x = (x1,x2, . . . ,xn) ∈ X n with the guarantee that the there is an index k∗ such that

first k∗ elements are sampled i.i.d. from P and the latter elements are sampled i.i.d. from Q, and

attempts to output k̂ ≈ k∗. We can also consider an online variant where elements xi arrive one

at a time.

Change-point detection has a long history in statistics and information theory (e.g. [She31,

Pag54, Pag55, Shi63, Lor71, Pol85, Mou86, Pol87, Lai95, Kul01, Mei06, VB14]). Cummings et

al. [CKM+18] recently gave the first private algorithms for change-point detection. Their al-

gorithms are based on a private version of the log-likelihood ratio, and in cases where the

log-likelihood ratio is not strictly bounded, they relax to a weaker distributional variant of

differential privacy. Using Theorem 1.2, we can achieve the standard worst-case notion of dif-

ferential privacy, and to achieve optimal error bounds for every P,Q.

6



0 1
0

0.5

1

1.5

2

x

P(x)
eεP(x)
Q(x)
eεQ(x)

Figure 1: An illustration of the definition of τ, for ε = 0.2 and for two densities P,Q over

X = [0,1]. The blue shaded area represents
∫

max{P(x)−eεQ(x),0}dx, while the red corresponds

to
∫

max{Q(x)−eεP(x),0}dx. The larger of these two is τ(P,Q). If the blue area is larger than the

red area, the definition of ε′ corresponds to lowering the dotted blue curve until the two are

the same size.

Theorem 1.3 (Informal). For every pair of distributions P and Q, and every ε > 0, there is an ε-

differentially private algorithm that solves offline change-point detection for P and Q such that, with

probability at least 9/10, |k̂ − k∗| =O(SC
P,Q
ε ).

The expected error in this result is optimal up to constant factors for every pair P,Q, as one

can easily show that the error must be at least Ω(SC
P,Q
ε ). Theorem 1.3 can be extended to give

an arbitrarily small probability β of failure, and can be extended to the online change-point de-

tection problem, although with more complex accuracy guarantees. Our algorithm introduces

a general reduction from private change-point detection for families of distributions H0 and

H1 to private hypothesis testing for the same family, which we believe to be of independent

interest.

1.3 Techniques

First Attempts. A folklore result based on the sample-and-aggregate paradigm [NRS07] shows

that for every P,Q and every ε > 0, SC
P,Q
ε = O(1εSC

P,Q), meaning privacy comes at a cost of at

most O(1ε ).
4 However, there are many examples where SC

P,Q
ε = O(SCP,Q) even when ε = o(1),

and understanding this phenomenon is crucial.

A few illustrative pairs of distributions P,Q will serve to demonstrate the difficulties that

go into formulating and proving Theorem 1.2. First, consider the domain X = {0,1} of size

4See, e.g., [CDK17] for a proof.
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two (i.e. Bernoulli distributions). To distinguish P = Ber(1+α2 ) from Q = Ber(1−α2 ), the optimal

non-private test statistic is S(x) =
∑

i xi , which requires Θ( 1
α2 ) =Θ( 1

H2(P,Q)
) samples.

To make the test differentially private, one can use a soft version of the test that outputs

“P” with probability proportional to exp(ε
∑

i xi) and “Q” with probability proportional to

exp(ε
∑

i 1 − xi ). This private test has sample complexity Θ( 1
α2 +

1
αε ), which is optimal. In con-

trast, if P = Ber(0) and Q = Ber(α), then the non-private sample complexity becomes Θ( 1α ), and

the optimal private sample complexity becomes Θ( 1
αε ). In general, for X = {0,1}, one can show

that

SC
P,Q
ε =Θ

(

1

H2(P,Q)
+

1

εTV(P,Q)

)

. (6)

The sample complexity of testing Bernoulli distributions (6) already demonstrates an impor-

tant phenomenon in private hypothesis testing—for many distributions P,Q, there is a “phase

transition” where the sample complexity takes one form when ε is sufficiently large and an-

other when ε is sufficiently small, and often the sample complexity in the “large ε regime” is

equal to the non-private complexity up to lower order terms. A key challenge in obtaining The-

orem 1.2 is to understand these transitions, and to understand the sample complexity in each

regime.

Since each of the terms in (6) is a straightforward lower bound on the sample complexity

of private testing, one might conjecture that (6) holds for every pair of distributions. However,

our next illustrative example shows that this conjecture is false even for the domain X = {0,1,2}.
Consider the distributions given by the densities

P = (0,0.5,0.5) and Q = (2α3/2,0.5+α −α3/2,0.5−α −α3/2) .

For these distributions, the log-likelihood ratio statistic is roughly equivalent to the statistic

that counts the number of occurrences of “0,” S{0}(x) =
∑

i 1{xi = 0}, and has sample complexity

Θ( 1
α3/2 ). For this pair of distributions, the optimal private test depends on the relationship

between α and ε. One such test is to simply use the soft version of S{0}, and the other is to

use the soft version of the test S{0,1} =
∑

i 1{xi ∈ {0,1}} that counts occurrences of the first two

elements. One can prove that the better of these two tests is optimal up to constant factors,

giving

SC
P,Q
ε =Θ

(

min
{

1

α3/2ε
,
1

α2
+

1

αε

})

.

For these distributions, (6) reduces to Θ( 1
α3/2 +

1
αε ), so these distributions show that the optimal

sample complexity can be much larger than (6). Moreover, these distributions exhibit that the

optimal sample complexity can vary with ε in complex ways, making several transitions and

never matching the non-private complexity unless α or ε is constant.

Key Ingredients. The second example above demonstrates that the optimal test itself can vary

with ε in an intricate fashion, which makes it difficult to construct a single test for which we can

prove matching upper and lower bounds on the sample complexity. The use of the clamped

log-likelihood test arose out of an attempt to find a single test that is optimal for the second

pair of distributions P and Q, and relies on a few crucial technical ingredients.
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First, our upper bound on sample complexity relies on a key observation that the Hellinger

distance between two distributions is exactly the advantage, adv1, of a soft log-likelihood ra-

tio test sLLR on a sample of size 1. The sLLR test is a randomized test that outputs P with

probability proportional to
√

Pn(x)/Qn(x) = eLLR(x)/2, where LLR(x) =
∑

i log
P(xi )
Q(xi )

, and Q with

probability proportional to 1. This characterization of H2(P,Q) as the advantage of the sLLR

tester may be of independent interest.

This observation is crucial for our work, because it implies that sLLR is ε-DP if supx∈X

∣
∣
∣
∣log

P(x)
Q(x)

∣
∣
∣
∣ ≤

ε. That is, in the case that supx∈X

∣
∣
∣
∣log

P(x)
Q(x)

∣
∣
∣
∣ ≤ ε, we get ε-DP for free (since Hellinger distance,

and thus sLLR, characterizes the optimal asymptotic sample complexity). Thus, we use the

clamped log-likelihood ratio test, which forces the log-likelihood ratio to be bounded. Our

lower bound in a sense shows that any loss of power in the test due to clamping is necessary for

differentially private tests.

The lower bound proof proceeds by finding a coupling ρ of Pn and Qn with low expected

Hamming distance E(X,Y )∼ρ[dH(X,Y )], which in turn implies that the sample complexity is

large (see e.g. [ASZ18]). The coupling we use essentially splits the support of P and Q into

two subsets, those elements with log
P(x)
Q(x)
≥ ε and the remaining elements. To construct the cou-

pling, given a sample X ∼ Pn, the high-ratio elements for which log
P(x)
Q(x)
≥ ε are resampled with

probability related to the ratio. The contribution of this step to the Hamming distance gives

us the ετ part of the lower bound. The data set consisting of the m ≤ n elements that have not

yet been resampled is then coupled using the total variation distance coupling between Pm and

Qm. Therefore, with probability 1 − TV(Pm,Qm) this part of the data set remains unchanged.

This part of the coupling results in the H2(P ′ ,Q′) part of the lower bound.

The proof of the upper bound also splits into two parts, roughly corresponding to the same

aspects of the distributions P and Q as above. That is, we view our tester as either counting

the number of high-ratio elements or computing the log-likelihood ratio on low-ratio elements.

A useful observation is that this duality between the upper and lower bounds is inevitable. In

Section 3, we characterize the advantage of the optimal tester in terms of Wasserstein distance

between P and Q with metric min{εdH (X,Y ),1}. That is, the advantage of the optimal tester

must be matched by some coupling of Pn and Qn.

1.4 Related Work

Early work on differentially private hypothesis testing began in the Statistics community

with [VS09, USF13]. More recently, there has been a significant number of works on differen-

tially private hypothesis testing. One line of work [WLK15, GLRV16, KR17, KSF17, CBRG18,

SGHG+19, CKS+19] designs differentially private versions of popular test statistics for testing

goodness-of-fit, closeness, and independence, as well as private ANOVA, focusing on the per-

formance at small sample sizes. Work by Wang et al. [WKLK18] focuses on generating statis-

tical approximating distributions for differentially private statistics, which they apply to hy-

pothesis testing problems. A recent work by Awan and Slavkovic [AS18] gives a universally

optimal test when the domain size is two, however Brenner and Nissim [BN14] shows that

such universally optimal tests cannot exist when the domain has more than two elements. A
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complementary research direction, initiated by Cai et al. [CDK17], studies the minimax sample

complexity of private hypothesis testing. [ASZ18] and [ADR18] have given worst-case nearly

optimal algorithms for goodness-of-fit and closeness testing of arbitrary discrete distributions.

That is, there exists some worst-case distribution P such that their algorithm has optimal sam-

ple complexity for testing goodness-of-fit to P . Recently, [AKSZ18] designed nearly optimal

algorithms for estimating properties like support size and entropy.

Another related area [GR18, She18, ACFT19] studies hypothesis testing in the local model of

differential privacy. In particular, Duchi, Jordan, and Wainwright [DJW13] proved an analogue

of our result for the restricted case of locally differentially private algorithms. Their characteri-

zation shows that, the optimal sample complexity for ε-DP local algorithms is Θ(1/(ε2TV(P,Q)2)).

This characterization does not exhibit the same phenomena that we demonstrate in the central

model—privacy never comes “for free” if ε = o(1), and the sample complexity does not exhibit

different regimes depending on ε. More generally, local-model tests are considerably simpler,

and simpler to reason about, than central-model tests.

There are also several rich lines of work attempting to give tight instance-specific char-

acterizations of the sample complexities of various differentially private computations, most

notably linear query release [HT10, BDKT12, NTZ16, Nik15, KN16] and PAC and agnostic learn-

ing [KLN+08, BNS13, FX14]. The problems considered in these works are arguably more com-

plex than the hypothesis testing problems we consider here, the characterizations are consider-

ably looser, and are only optimal up to polynomial factors.

There has been a recent line of work [DFH+15b, DFH+15a, DFH+15c, RZ16, CLN+16, BNS+16,

RRST16, FS17, XR17, FS18] on adaptive data analysis, in which the same dataset is used repeat-

edly across multiple statistics analyses, the choice of each analysis depends on the outcomes of

previous analyses. The key theme in these works is to show that various strong notions of al-

gorithmic stability, including differential privacy imply generalization bounds in the adaptive

setting. Our characterization applies to all notions of stability considered in these works.

As an application of our private hypothesis testing results, we provide algorithms for pri-

vate change-point detection. As discussed in Section 1.2.1, change-point detection has enjoyed

a significant amount of study in information theory and statistics. Our results are in the private

minimax setting, as recently introduced by Cummings et al. [CKM+18]. We improve on their

results by improving the detection accuracy and providing strong privacy guarantees for all

pairs of hypotheses.

2 Upper Bound on Sample Complexity of Private Testing

In this section, we establish the upper bound part of Theorem 1.2, establishing that the soft

clamped log-likelihood ratio test scLLR and the noisy clamped log-likelihood ratio test ncLLR

achieve the stated sample complexity. In more detail, we begin in Section 2.1 by character-

izing the Hellinger distance between two distributions as the advantage, adv1, of a specific

randomized test, sLLR. Besides being of independent interest, this reformulation also yields

some insight on its privatized variant, scLLR. In Section 2.2, we introduce the noisy clamped

log-likelihood ratio test (ncLLR), and show that its sample complexity is at least that of scLLR.

We then proceed in Section 2.3 to upper-bound the sample complexity of ncLLR, which also
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implies that same bound on that of scLLR.

Due to the number of named tests in this paper, the reader may find it useful to refer to

Appendix A, where we enumerate all the tests that we mention.

2.1 Hellinger Distance Characterizes the Soft Log-Likelihood Test

Recall that the advantage of a test, advn, was defined in Equation (1) and the squared

Hellinger distance, H2(P,Q), between two distributions P and Q is defined as

H2(P,Q) =
1

2

∫

X
(
√

P(x)−
√

Q(x))2dx,

It has long been known that the Hellinger distance characterizes the asymptotic sample

complexity of non-private testing (see, e.g., [Bor99]). In this section we show that the Hellinger

distance exactly characterizes the advantage of the following randomized test given a single

data point:

sLLR(x) =









P with probability g(x)

Q with probability 1− g(x)

where

g(x) =
exp

(
1
2 log

P(x)
Q(x)

)

1+ exp
(
1
2 log

P(x)
Q(x)

) ∈ [0,1].

Considering the advantage of sLLR might seem puzzling at first glance, since the classic

likelihood ratio testLLR enjoys a better advantage. More specifically, the value of adv1 for these

two tests is H2(P,Q) (Theorem 2.1) and TV (P,Q) (by the definition of total variation distance),

respectively, and H2(P,Q) ≤ TV (P,Q) (see, e.g., [GS02]), so it would appear that LLR is the

better test. There are two relevant features of sLLR which will be useful. First, as mentioned

before, sLLR is naturally private if the likelihood ratio is bounded. Second, a tensorization

property of Hellinger distance allows us to easily relate the advantage of the n-sample test to

the advantage of the 1-sample test.

Theorem 2.1. For any two distributions P,Q, the advantage, adv1, of sLLR is H2(P,Q).

Proof. Note that we can rewrite

H2(P,Q) =
1

2

∫

X
(
√

P(x)−
√

Q(x))2 dx

=
1

2

∫

X
(P(x)−Q(x))

√

P(x)−
√

Q(x)
√

P(x) +
√

Q(x)

=
1

2

∫

X
(P(x)−Q(x))

√

P(x)
Q(x)
− 1

√

P(x)
Q(x)

+1
dx.
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Now, g(x) =

√

P(x)
Q(x)

√

P(x)
Q(x)+1

= 1
2










√

P(x)
Q(x)−1

√

P(x)
Q(x)+1

+1









, and therefore

H2(P,Q) =

∫

X
(P(x)−Q(x))g(x)dx

= E
x∼P

[g(x)]− E
x∼Q

[g(x)]

= P
x∼P

[sLLR(x) = P]− P
x∼Q

[sLLR(x) = P].

Thus, the advantage of sLLR is H2(P,Q), as claimed.

This tells us the advantage of the test which takes only one sample. As a corollary, we can

derive the sample complexity of distinguishing P and Q using sLLR.

Corollary 2.2. SCP,Q(sLLR) =O
(

1
H2(P,Q)

)

.

Proof. Our analysis is similar to that of [Can17]. Observe that the test sLLR which gets n sam-

ples from either P or Q is equivalent to the test sLLR which gets 1 sample from either Pn or Qn.

By Theorem 2.1, we have that the advantage of either (equivalent) test is adv =H2(Pn,Qn). We

will require the following tensorization property of the squared Hellinger distance:

H2(P1 × · · · ×Pn,Q1 × · · · ×Qn) = 1−
n∏

i=1

(1−H2(Pi ,Qi )).

With this in hand,

adv =H2(Pn,Qn) = 1− (1−H2(P,Q))n = 1− exp
(

n log(1−H2(P,Q))
)

≥ 1− exp(−nH2(P,Q)).

Setting n =Ω(1/H2(P,Q)), we get adv ≥ 2/3, as desired.

2.2 The Noisy Log-Likelihood Ratio Test

We now consider the noisy log-likelihood ratio test, which, similar to scLLR−ε′ ,ε, is also

ε-differentially private.

ncLLR−ε′ ,ε(X) =
∑

i

[

log
P(xi)

Q(xi)

]ε

−ε′
+Lap(2)

Here Lap(2) denotes a Laplace random variable, which has density proportional to exp(−|z|/2).
Readers familiar with differential privacy will note that scLLR corresponds to the exponential

mechanism, while ncLLR responds to the report noisy max mechanism [DR14], and thus the two

should behave quite similarly. In particular, we have the following lemma.

Lemma 2.3. For any P and Q:

1. SCP,Q(ncLLR−ε′ ,ε) =Ω(SCP,Q(scLLR−ε′ ,ε)).

2. Furthermore, if −ε′ ≤ log P
Q ≤ ε then SCP,Q(ncLLR−ε′ ,ε) =Θ(SCP,Q(scLLR−ε′ ,ε)).
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Proof. Recall that

scLLR−ε′ ,ε(X) =










P with probability gε(X)

Q with probability 1− gε(X)

where gε(X) = e
1
2 cLLR−ε′ ,ε (X)

1+e
1
2 cLLR−ε′ ,ε (X)

. If we let the threshold κ = 0 then the test based on the test statistic

ncLLR−ε′ ,ε is

ncLLR−ε′ ,ε(X) =










P with probability hε(X)

Q with probability 1− hε(X)

where

hε(X) =











1− 1
2e
− cLLR−ε′ ,ε (X)

2 if cLLR−ε′ ,ε(X) > 0

1
2e

cLLR−ε′ ,ε (X)

2 if cLLR−ε′ ,ε(X) < 0
.

Now, we will use the following two inequalities:

1

2
e

x
2 ≤ e

1
2x

1+ e
1
2x
≤ 2

1

2
e

x
2 if x < 0 and

8

9
(1− 1

2
e−

x
2 ) ≤ e

1
2x

1+ e
1
2x
≤ 1− 1

2
e−

x
2 if x > 0.

Therefore, noting that

P
X∼Pn

[

scLLR−ε′ ,ε(X) = P
]

= EPn [gε(X)] and P
X∼Pn

[

ncLLR−ε′ ,ε(X) = P
]

= EPn [hε(X)]

are the probabilities of success, we have

8

9
EPn [hε(X)] ≤ EPn [gε(X)] ≤ 2EPn [hε(X)] and

8

9
EQn [hε(X)] ≤ EQn [gε(X)] ≤ 2EQn[hε(X)].

Therefore, if ncLLR has a probability of success of 5/6 then scLLR has a probability of success

of 2/3. This implies that SCP,Q(ncLLR) ≥ SCP,Q(scLLR).

If log P
Q ∈ [−ε′, ε] then cLLR−ε′ ,ε(X) = LLR(X) so we have Pn(X) > Qn(X) iff LLR(X) > 0 iff

gε(X) ≤ hε(X) and therefore

EPn [gε]−EQn[gε] =

∫

(Pn(X)−Qn(X))gε(X)dX

≤
∫

(Pn(X)−Qn(X))hε(X)dX

= EPn [hε]−EQn [hε],

which completes the proof.

Corollary 2.4. If ncLLR has asymptotically optimal sample complexity then scLLR has asymptotically

optimal sample complexity.
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2.3 The Sample Complexity of ncLLR

In this section we prove the upper bound in Theorem 1.2 for the case where TV(P,Q) < 1

(i.e., the supports of P and Q have non-empty intersection). This assumption ensures that

P̃, Q̃ , 0, so that P ′ ,Q′ are well defined. A proof of the case where TV(P,Q) = 1 is contained in

Appendix C. In order to prove the upper bound in Theorem 1.2, we restate it as follows.

Theorem 2.5. The ncLLR−ε′ ,ε test is ε-DP and

SCP,Q(ncLLR−ε′ ,ε) ≤O

(

1

ετ + (1− τ)H2(P ′ ,Q′)

)

=O

(

min

{

1

ετ
,

1

(1− τ)H2(P ′ ,Q′)

})

.

Theorem 2.5 combined with a matching lower bound (given later in Theorem 3.5) imply

that ncLLRε
−ε′ has asymptotically optimal sample complexity. Thus, by Corollary 2.4, scLLRε

−ε′
has asymptotically optimal sample complexity.

Before proving the bound, we pause to provide some intuition for its form. As discussed in

the introduction, we can write P and Q as mixtures P = (1− τ)P ′ + τP ′′ and Q = (1− τ)Q′ + τQ′′

where P ′′ ,Q′′ have disjoint support. Now consider a thought experiment, in which the test that

must distinguish P from Q using a sample of size n is given, along with the sample x, a list

of binary labels b1,b2, ...,bn that indicate for each record whether it was sampled from the first

component of the mixture (either P ′ or Q′), or the second component (either P ′′ or Q′′). Of

course this can only be a though experiment—these labels are not available to a real test.

Because the mixture weights are the same for both P and Q, the number of labels of each

type would be distributed the same under P and under Q, and so the tester would be faced

with two independent testing problems: distinguishing P ′′ from Q′′ using a sample of size

about τn, and distinguishing P ′ from Q′ using a sample of size about (1− τ)n. It would suffice

for the tester to solve either of these problems.

Theorem 2.5 shows that the real tests (scLLR and ncLLR) do as well as the hypothetical

tester that has access to the labels. The two arguments to the minimum in the theorem state-

ment correspond directly to the ε-DP sample complexity of distinguishing P ′′ from Q” (which

requires nτ ≥ 1/ε) or distinguishing P ′ from Q′ (which requires n(1 − τ) ≥ 1/H2(P ′ ,Q′)). The

proof proceeds by breaking the clamped log-likelihood ratio into two pieces, each correspond-

ing to one of the two mixture components (again, this decomposition is not known to the al-

gorithm). These two pieces correspond to the test statistics of the optimal testers for the two

separate sub-problems in the thought experiment. We show that the test does well at distin-

guishing P from Q as long as either of these pieces is sufficiently informative.

On a more mechanical level, our proof of Theorem 2.5 bounds the expectation and standard

deviation of the two pieces of the test statistic. We use the following simple lemma, which states

that a test statistic S performs well if the distribution of the test statistic on P and Q, S(P) and

S(Q), must not overlap too much. The proof is a simple application of Chebyshev’s inequality.

Lemma 2.6 (Sufficient Conditions for Noisy Test Statistics). Given a function f : X →R, constant

c > 0 and n > 0, if the test statistic S(X) =
∑

i f (xi ) satisfies

max











√

Var
Pn

[S(X)],
√

Var
Qn

[S(X)]










≤ c|E

Pn
[S(X)]− E

Qn
[S(X)]|
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then S can be used to distinguish between P and Q with probability of success 2/3 and sample complexity

at most n′ = 12c2n.

This result follows by Chebyshev’s inequality. For completeness, it is proved in Appendix D.

The definitions of P̃ and Q̃ lend naturally to consider a partition of the space X , depend-

ing on which quantities achieve the minimum in min(eεQ,P) and min(eε
′
P,Q). This partition

will itself play a crucial role in both the proof of the theorem, and later in our lower bound:

accordingly, define

S = { x : P(x)− eεQ(x) > 0 } and T =
{

x : Q(x)− eε′P(x) > 0
}

(7)

and setA = X \ (S ∪T ).

Proof of Theorem 2.5. Observe that for all x ∈ A, P̃(x) = P(x) and Q̃(x) =Q(x) (so that P ′(x)/Q′(x) =
P(x)/Q(x)), that for all x ∈ S , log(P ′(x)/Q′(x)) = ε and that for all x ∈ T , log(P ′(x)/Q′(x)) = −ε′.
To show that the test works, we first show that the clamped log likelihood ratio (without noise)

is a useful test statistic. In order to apply Lemma 2.6, we first calculate the difference ∆gap in

the expectations of cLLR−ε′ ,ε under P and Q. For the remainder of the proof, we omit the −ε′ , ε
subscript (since clamping always occurs to the same interval).

∆gap = E
Pn
[cLLR(X)]− E

Qn
[cLLR(X)]

= n

∫

X
(P(x)−Q(x)) log

P ′(x)
Q′(x)

dx

= n(P(S )−Q(S ))ε+n

∫

A
(P̃(x)− Q̃(x)) log

P ′(x)
Q′(x)

dx +n(Q(T )−P(T ))ε′

= n(P̃(S )− Q̃(S ) + τ)ε +n

∫

A
(P̃(x)− Q̃(x)) log

P ′(x)
Q′(x)

dx +n(Q̃(T )− P̃(T ) + τ)ε′

where the last equality follows by the definition of τ. Moreover,

nKL(P ′ ‖Q′) +nKL(Q′ ‖ P ′)

= n

∫

X
(P ′(x)−Q′(x)) log P ′(x)

Q′(x)
dx

= n(P ′(S )−Q′(S ))ε +n

∫

A
(P ′(x)−Q′(x)) log P ′(x)

Q′(x)
dx +n(Q′(T )−P ′(T ))ε′

=
n

1− τ

(

(P̃(S )− Q̃(S ))ε+
∫

A
(P̃(x)− Q̃(x)) log

P ′(x)
Q′(x)

+ (Q̃(T )− P̃(T ))ε′
)

.

Therefore

∆gap = (1− τ)n(KL(P ′ ‖Q′) +KL(Q′ ‖ P ′)) +nτε +nτε′ ≥ 2n
(

(1− τ)H2(P ′ ,Q′) + τε
)

where the last inequality follows since H2(P,Q) ≤ KL(P ‖Q) for any distributions P and Q.

We now turn to bounding the variance of the noisy clamped LLR under P and Q. Noting

that Var
Pn

[ncLLR] = Var
Pn

[cLLR] + 8, by Lemma 2.6 it suffices to show that

max{Var
Qn

[cLLR] + 8,Var
Pn

[cLLR] + 8} ≤O(∆2
gap),
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or equivalently,

∆gap =Ω(1) and max{Var
Qn

[cLLR],Var
Pn

[cLLR]} ≤O(∆2
gap).

Recall that P ′′ is a distribution such that P = τP ′′ + (1− τ)P ′ and the support of P ′′ is contained

in S . Thus,

Var
Pn

[cLLR] ≤ n

∫

X
P(x)

(

log
P ′(x)
Q′(x)

)2

dx

= n

∫

X
(τP ′′(x) + (1− τ)P ′(x))

(

log
P ′(x)
Q′(x)

)2

dx

= n








τP ′′(S )ε2 + (1− τ)

∫

X
P ′(x)

(

log
P ′(x)
Q′(x)

)2

dx









Since log
P ′(x)
Q′(x) ≤ ε ≤ 1, |log P ′(x)

Q′(x) | ≤ 3 · |1−
√

Q′(x)
P ′(x) |. Therefore,

∫

X
P ′(x) log2

P ′(x)
Q′(x)

dx ≤ 9

∫

X
P ′(x)










1−

√

Q′(x)
P ′(x)











2

dx = 18 ·H2(P ′ ,Q′) .

Also, P ′′(S ) = 1 and thus,

Var
Pn

[cLLR] =O(nτε2 + (1− τ)nH2(P ′ ,Q′)) =O(nτε + (1− τ)nH2(P ′ ,Q′)

Similarly,

Var
Qn

[cLLR] ≤O(nτε′2 + (1− τ)H2(P ′ ,Q′)) ≤O(nτε + (1− τ)nH2(P ′ ,Q′))

Finally,

max{Var
Qn

[cLLR],Var
Pn

[cLLR]} =O

(

(nτε +n(1− τ)H2(P ′ ,Q′))2

nτε +n(1− τ)H2(P ′ ,Q′)

)

=O









∆
2
gap

n(τε + (1− τ)H2(P ′ ,Q′))









Therefore, if n ≥ C
τε+(1−τ)H2(P ′ ,Q′)) for some suitably large constant C > 0, the above implies that

max{Var
Qn

[cLLR],Var
Pn

[cLLR]} ≤O(∆2
gap) and ∆gap =Ω(1), which concludes our proof.

3 Lower Bound on the Sample Complexity of Private Testing

We now prove the lower bound in Theorem 1.2. We do so by constructing an appropriate

coupling between the distributions Pn and Qn, which implies lower bounds for privately dis-

tinguishing Pn from Qn. This style of analysis was introduced in [ASZ18], though we require

a strengthening of their statement. Specifically, the lower bound of Acharya et al. involves

d ′ε(X,Y ) = εdH (X,Y ), whereas we have dε(X,Y ) = min(εdH (X,Y ),1).
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For X,Y ∈ X n, let dH (X,Y ) be the Hamming distance between X,Y (i.e. | { i : xi , yi } |).
Given a metric d : X n × X n → R≥0 we define the Wasserstein distance Wd(P,Q) by

Wd(P,Q) = inf
ρ

E
(X,Y )∼ρ

[d(X,Y )]

where the inf is over all couplings ρ of Pn and Qn. Let dε(X,Y ) = min{εdH (X,Y ),1}.

Lemma 3.1. For every ε-DP algorithm M : X n→ {0,1}, if X and Y are neighboring datasets then

E[M(X)] ≤ eεE[M(Y )],

where the expectations are over the randomness of the algorithm M .

Lemma 3.2. For every ε-DP algorithm M : X n→ {P,Q} the advantage satisfies

∣
∣
∣
∣
∣
P

X∼P
[M(X) = P]− P

X∼Q
[M(X) = P]

∣
∣
∣
∣
∣
≤O(Wdε (P,Q))

Proof. Let ρ : X n×X n→R≥0 be a coupling of Pn and Qn and M be an ε-DP algorithm. We have

P
X∼P

[M(X) = P]− P
X∼Q

[M(X) = P] =

∫

X n

∫

X n

(

ρ(X,Y )P
M
[M(X) = P]− ρ(X,Y )P

M
[M(Y ) = P]

)

dX dY

≤
∫

X n

∫

X n

ρ(X,Y )min{1, (eεdH (X,Y ) − 1)P
M
[M(Y ) = P]}dX dY

≤ 2

∫

X n

∫

X n

ρ(X,Y )min{1, εdH(X,Y )}dX dY

=O( E
(X,Y )∼ρ

[dε(X,Y )]),

where P
M
[·] denotes that the probability is over the randomness of the algorithm M , and the

first inequality follows from Lemma 3.1.

The upper bound in Lemma 3.2 is in fact tight. We state the converse below for complete-

ness, although we will not use it in this work. The proof of Lemma 3.3 is contained in Ap-

pendix F.

Lemma 3.3. There is a ε-DP algorithm M : X n→ {P,Q} such that

∣
∣
∣
∣
∣
P

X∼P
[M(X) = P]− P

X∼Q
[M(X) = P]

∣
∣
∣
∣
∣
≥Ω(Wdε (P,Q)).

We will also rely on the following standard fact characterizing total variation distance in

terms of couplings:

Fact 3.4. Given P and Q, there exists a coupling ρ of P and Q such that P
ρ
[X , Y ] = TV(P,Q). We

will refer to this coupling as the total variation coupling of P and Q.

We can now prove the lower bound component of Theorem 1.2. Recall that P ′ and Q′ were

defined in Equation (5).
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Theorem 3.5. Given P and Q, every ε-DP test K that distinguishes P and Q has the property that

SCP,Q(K) =Ω

(

1

ετ +H2(P ′ ,Q′)

)

.

Proof. Consider the following coupling of Pn and Qn: Given a sample X ∼ Pn, independently

for all xi ∈ S5 label the point 1 with probability
eεQ(xi )
P(xi )

, otherwise label it 2. Label all the points

in A∪ T as 1. (In particular, this implies that each xi is labeled 1 with probability 1 − τ, and

2 with probability τ.) Each point labeled 2 is then independently re-sampled from T with

probability distribution Q−eε′P
τ 1T . Let Λ ⊆ [n] be the set of points labeled 1, and n′ be its size;

and note that this set is distributed according to (P ′)n
′
. We transform this set to a set distributed

by (Q′)n
′

using the TV-coupling of (P ′)n
′

and (Q′)n
′
. The result is a sample from Qn.

Now, we can rewrite

dH (X,Y ) =
∑

i<Λ

1{Xi=Yi } +
∑

i∈Λ
1{Xi=Yi } = dH (XΛ̄ ,YΛ̄) +1{XΛ=YΛ} ·

∑

i∈Λ
1{Xi=Yi }

and therefore

E [min{εdH (X,Y ),1}] = E

[

min{εdH(X,Y ),1}1{XΛ=YΛ}
]

+E

[

min{εdH (X,Y ),1}1{XΛ,YΛ}
]

≤ εE
[

dH (X,Y )1{XΛ=YΛ}
]

+E

[

1{XΛ,YΛ}
]

= εE [dH (XΛ̄ ,YΛ̄)] +P [XΛ , YΛ] .

Recalling now that the distribution of (XΛ ,YΛ) is that of the TV-coupling of (P ′)n
′

and (Q′)n
′
,

and that |Λ̄| = n− n′, we get

E [min{εdH (X,Y ),1}] ≤ E

[

ε(n− n′) +TV((P ′)n
′
, (Q′)n

′
)
]

≤ ετn+E

[√
n′

]

H(P ′ ,Q′)

≤ ετn+
√

(1− τ)n ·H(P ′ ,Q′)

Therefore, by Lemma 3.2, we have that for every ε-DP test M ,
∣
∣
∣
∣
∣
P

X∼P
[M(X) = P]− P

X∼Q
[M(X) = P]

∣
∣
∣
∣
∣
≤ ετn+

√

(1− τ)n ·H(P ′ ,Q′).

Thus, in order for the probability of success to be Ω(1), we need either ετn or
√

(1− τ)nH(P ′ ,Q′)
to be Ω(1). That is, n ≥Ω

(

min
{
1
ετ ,

1
(1−τ)H2(P ′ ,Q′)

})

.

4 Application: Differentially Private Change-Point Detection

In this section, we give an application of our method to differentially private change-point

detection. In the change-point detection problem, we are given a time-series of data. Initially,

it comes from a known distribution P, and at some unknown time step, it begins to come from

another known distribution Q. The goal is to approximate when this change occurs. More

formally, we have the following definition.

5Recall the definitions of S ,T and A from Section 2.3 (Equation (7)).
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Definition 4.1. In the offline change-point detection problem, we are given distributions P,Q and

a data set X = {x1, . . . ,xn}. We are guaranteed that there exists k∗ ∈ [n] such that x1, . . . ,xk∗−1 ∼ P

and xk∗ , . . . ,xn ∼Q. The goal is to output k̂ such that |k̂ − k∗| is small.

In the online change-point detection problem, we are given distributions P,Q, a stream of data

points X = {x1, . . . }. We are guaranteed that there exists k∗ such that x1, . . . ,xk∗−1 ∼ P and xk∗ , · · · ∼
Q. The goal is to output k̂ such that |k̂ − k∗| is small.

We study the parameterization of the private change-point detection problem recently in-

troduced by Cummings et al. [CKM+18].

Definition 4.2 (Change-Point Detection). An algorithm for a (online) change-point detection

problem is (α,β)-accurate if for any input dataset (data stream), with probability at least 1− β
outputs a k̂ such that |k̂ −k∗| ≤ α, where the probability is with respect to the randomness in the

sampling of the data set and the random choices made by the algorithm.

Our main result is the following:

Theorem 4.3. There exists an efficient ε-differentially private and (α,β)-accurate algorithm for offline

change-point detection from distribution P to Q with

α =Θ

(

1

ετ(P,Q) +H2(P ′ ,Q′)
· log(1/β)

)

.

Furthermore, there exists an efficient ε-differentially private and (α,β)-accurate algorithm for online

change-point detection from distribution P to Q with the same value of α. This latter algorithm also

requires as input a value n such that n = Ω

(

SC
P,Q
ε · log

(
k∗
nβ

))

. If the algorithm is accurate, it will

observe at most k∗ +2n data points, and with high probability observe k∗ +O(n logn) data points.

For constant β, the accuracy of our offline algorithm is optimal up to constant factors, since

one can easily show that the best accuracy achievable is Ω(SC
P,Q
ε ). A similar statement holds

for our online algorithm when the algorithm is given an estimate n of k∗ such that n = poly(k∗).
As one might guess, this problem is intimately related to the hypothesis testing question

studied in the rest of this paper. Indeed, our change-point detection algorithm will use the

hypothesis testing algorithm of Theorem 1.2 as a black box, in order to reduce to a simpler

Bernoulli change-point detection problem (see Lemma 4.4 in Section 4.1). We then give an

algorithm to solve this simpler problem (Lemma 4.5 in Section 4.2), completing the proof of

Theorem 4.3. In Section 4.3, we show that our reduction is applicable more generally, as we

describe an algorithm change-point detection in a goodness-of-fit setting.

4.1 A Reduction to Bernoulli Change-Point Detection

In this section, we provide a reduction from private change-point detection with arbitrary

distributions to non-private change-point detection with Bernoulli distributions.

Lemma 4.4. Suppose there exists an (α,β)-accurate algorithm which can solve the following restricted

change-point detection problem: we are guaranteed that there exists k̃∗ such that z1, . . . , zk̃∗−1 ∼ 2Ber(τ0)−
1 for some τ0 > 2/3, zk̃∗+1, · · · ∼ 2Ber(τ1)− 1 for some τ1 < 1/3, and zk̃∗ ∈ {±1} is arbitrary.

Then there exists an ε-differentially private and ((α +1) ·SCP,Q
ε ,β)-accurate algorithm which solves

the change-point detection problem, where SC
P,Q
ε is as defined in Theorem 1.2.
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Proof. We describe the reduction for the offline version of the problem, the reduction in the

online setting is identical. The reduction is easy to describe. We partition the sample indices

into intervals of length SC
P,Q
ε . More precisely, let Yj = {x

(i−1)SCP,Q
ε +1

, . . . ,x
iSC

P,Q
ε
}, for j = 1 to

⌊n/SCP,Q
ε ⌋, and disregard the remaining “tail” of xi ’s. We run the algorithm of Theorem 1.2 on

each Yj , and produce a bit zj = 1 if the algorithm outputs that the distribution is P , and a zj = −1
otherwise.

We show that this forms a valid instance of the change-point detection problem in the

lemma statement. Let k∗ be the change-point in the original problem, and suppose it belongs to

Yk̃∗ . For every j < k̃∗, all the samples are from P , and by Theorem 1.2, each zj will independently

be 1 with probability τ0 ≥ 2/3. Similarly for every j > k̃∗, all the samples are from Q, and each

zj will independently be −1 with probability at least 1− τ1 ≥ 2/3.

Finally, we show that the existence of an (α,β)-accurate algorithm that solves this problem

also solves the original problem. Suppose that the output of the algorithm on the restricted

change-point detection problem is j. To map this to an answer to the original problem, we let

k̂ = (j − 1)SCP,Q
ε .

First, note that k̂ will be ε-differentially private. We claim that the sequence of zj ’s is ε-

differentially private. This is because the algorithm of Theorem 1.2 is ε-differentially private,

we apply the algorithm independently to each component of the partition, and each data point

can only affect one component (since they are disjoint). Privacy of k̂ follows since privacy is

closed under post-processing.

Finally, we show the accuracy guarantee. In the restricted change-point detection problem,

with probability at least 1−β, the output j will be such that |j− k̃∗| ≤ α. In the original problem’s

domain, this corresponds to a k̂ such that |k̂ − k∗| ≤ (α +1)SC
P,Q
ε , as desired.

4.2 Solving Bernoulli Change-Point Detection

In this section, we show that there is a (Θ(log(1/β)) + 1,β)-accurate algorithm for the re-

stricted change-point detection problem. Combined with Lemma 4.4, this implies Theorem 4.3.

Lemma 4.5. There exists an efficient (O(log(1/β),β)-accurate algorithm for the offline restricted change-

point detection problem (as defined in Lemma 4.4).

Similarly, there exists an efficient (O(log(1/β),β)-accurate algorithm for the online restricted change-

point detection problem. This algorithm requires as input a value n such that n = Ω

(

log
(
k∗
nβ

))

. If the

algorithm is accurate, it will observe at most k∗ + 2n data points, and with high probability observe

k∗ +O(n logn) data points.

Proof. We start by describing the algorithm for the offline version of the problem. We then

discuss how to reduce from the online problem to the offline problem.

Offline Change-Point Detection. We define the function

ℓ(t) =
n∑

j=t

zj .

The algorithm’s output will be k̂ = argmin1≤t≤n ℓ(t).

20



Let k∗ be the true change-point index. To prove correctness of this algorithm, we show

that ℓ(k∗ + 1) − ℓ(t) < 0 for all t ≥ k∗ + 1 +Θ(log(1/β)), and that ℓ(k∗ − 1) − ℓ(t) < 0 for all t ≤
k∗ − 1−Θ(log(1/β)). Together, these will show that argmin1≤t≤n ℓ(t) ∈ [k∗ − 1 −Θ(log(1/β)), k∗ +
1 +Θ(log(1/β))], proving the result. For the remainder of this proof, we focus on the former

case, the latter will follow symmetrically. Specifically, we will show that ℓ(k∗ + 1)− ℓ(t) < 0 for

all t ≥ k∗ +1+ c log(1/β), where c > 0 is some large absolute constant.

Observe that for t ≥ k∗ +1,

ℓ(k∗ +1)− ℓ(t) =
t−1∑

j=k∗+1

zj

forms a biased random walk which takes a +1-step with probability τ1 ≤ 1/3 and a −1-step with

probability 1− τ1 ≥ 2/3. Define Mi = ℓ(k∗ +1)− ℓ(k∗ +1+ i) + i(1− 2τ1) for i = 0 to n− k∗ − 1, and

note that this forms a martingale sequence. We will use Theorem 4 of [Bal15], which provides

a finite-time law of the iterated logarithm result. Specialized to our setting, we obtain the

following maximal inequality, bounding how far this martingale deviates away from 0.

Theorem 4.6 (Follows from Theorem 4 of [Bal15]). Let c > 0 be some absolute constant. With

probability at least 1− β, for all i ≥ c log(1/β) simultaneously,

|Mi | ≤O
(√

i (loglog(i) + log(1/β))
)

.

This implies that, with probability at least 1− β, we have that for all i ≥ c log(1/β)

ℓ(k∗ +1)− ℓ(k∗ +1+ i) =Mi − i(1− 2τ1) ≤O
(√

i (loglog(i) + log(1/β))
)

− i

3
.

Note that the right-hand side is non-increasing in i, so it is maximized at i = c log(1/β), and

thus

ℓ(k∗ +1)− ℓ(k∗ +1+ i) ≤O
(√

log(1/β) (logloglog(1/β) + log(1/β))
)

− c log(1/β)

3
< 0,

where the last inequality follows for a sufficiently large choice of c.

Online Change-Point Detection. The algorithm will be as follows. Partition the stream into

consecutive intervals of length n, which we will draw in batches. If an interval has more −1’s

than +1’s, then call the offline change-point detection algorithm on the final 2n data points with

failure probability parameter set to β/4, and output whatever it says.

Let k∗ be the true change-point index. First, we show that with probability ≥ 1 − β/4, the

algorithm will not see more −1’s than +1’s in any interval before the one containing k∗. The

number of +1’s in this interval will be distributed as Binomial(n,τ0) for τ0 > 2/3. By a Chernoff

bound, the probability that we have > n/2 −1’s is at most exp(−Θ(n)). Taking a union bound

over all O
(
k∗
n

)

intervals before the change point gives a failure probability of k∗
n exp(−Θ(n)) ≤

β/4, where the last inequality follows by our condition on n.

Next, note that the interval following the one containing k∗ will have a number of +1’s

which is distributed as Binomial(n,τ1) for τ1 < 1/3. By a similar Chernoff bound as before, the
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probability that we have > n/2 +1’s is at most exp(−Θ(n)) ≪ β/4. Therefore, with probabil-

ity 1 − β/2, the algorithm will call the offline change-point detection algorithm on an interval

containing the true change point k∗.
We conclude by the correctness guarantees of the offline change-point detection algorithm.

Note that we chose the failure probablity parameter to be β/4, as the offline algorithm may

either be called at the interval containing k∗, or the following one, and we take a union bound

over both of them.

4.3 Private Goodness-of-Fit Change-Point Detection

Our reduction as given above is rather general: and it can apply to more general change-

point detection settings than those described above. For instance, the above discussion assumes

we know both the initial and final distributions P and Q. Instead, one could imagine a setting

where one knows the initial distribution P but not the final distribution Q, which we term

goodness-of-fit change-point detection.

Definition 4.7. In the offline γ -goodness-of-fit change-point detection problem, we are given a dis-

tribution P over domain X and a data set X = {x1, . . . ,xn}. We are guaranteed that there exists

k∗ ∈ [n] such that x1, . . . ,xk∗−1 ∼ P , and xk∗ , . . . ,xn ∼Q, for some fixed (but unknown) distribution

Q over domain X , such that TV(P,Q) ≥ γ . The goal is to output k̂ such that |k̂ − k∗| is small.

We note that analogous definitions and results hold for the online version of this problem,

as in the previous sections.

We omit the full details of the proof, but it proceeds by a very similar argument to that in

Sections 4.1 and 4.2. In particular, it is possible to prove an analogue of Lemma 4.4, at which

point we can apply Lemma 4.5. The only difference is that we need an algorithm for private

goodness-of-fit testing, rather than Theorem 1.2 for hypothesis testing. We use the following

result from [ASZ18].

Theorem 4.8 (Theorem 13 of [ASZ18]). Let P be a known distribution over X , and let Q be the set

of all distributions Q over X such that TV(P,Q) ≥ γ . Given n samples from an unknown distribu-

tion which is either P , or some Q ∈ Q, there exists an efficient ε-differentially private algorithm which

distinguishes between the two cases with probability ≥ 2/3 when

n =Θ

(

|X |1/2
γ2

+
|X |1/2
γε1/2

+
|X |1/3

γ4/3ε2/3
+

1

γε

)

.

With this in hand, we have the following result for goodness-of-fit changepoint detection.

Theorem 4.9. There exists an efficient ε-differentially private and (α,β)-accurate algorithm for offline

γ -goodness-of-fit change-point detection with

α =Θ

((

|X |1/2
γ2

+
|X |1/2
γε1/2

+
|X |1/3

γ4/3ε2/3
+

1

γε

)

· log(1/β)
)

.
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[LCV15] Jingbo Liu, Paul W. Cuff, and Sergio Verdú. Eγ -resolvability. CoRR, abs/1511.07829, 2015.

[Lor71] Gary Lorden. Procedures for reacting to a change in distribution. The Annals of Mathematical

Statistics, 42(6):1897–1908, 1971.

[Mei06] Yajun Mei. Sequential change-point detection when unknown parameters are present in

the pre-change distribution. The Annals of Statistics, 34(1):92–122, 2006.

[Mou86] George V. Moustakides. Optimal stopping times for detecting changes in distributions. The

Annals of Statistics, 14(4):1379–1387, 1986.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th

Annual IEEE Symposium on Foundations of Computer Science, FOCS ’07, pages 94–103, 2007.

[Nik15] Aleksandar Nikolov. An improved private mechanism for small databases. In Automata,

Languages, and Programming - 42nd International Colloquium, ICALP, pages 1010–1021, 2015.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling

in private data analysis. In Proceedings of the 30th annual ACM Symposium on Theory of Com-

puting, STOC, pages 75–84, 2007.

[NTZ16] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:

The small database and approximate cases. SIAM J. Comput., 45(2):575–616, 2016.

[Pag54] Ewan S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[Pag55] Ewan S. Page. A test for a change in a parameter occurring at an unknown point. Biometrika,

42(3/4):523–527, 1955.

[Pol85] Moshe Pollak. Optimal detection of a change in distribution. The Annals of Statistics,

13(1):206–227, 1985.

26



[Pol87] Moshe Pollak. Average run lengths of an optimal method of detecting a change in distribu-

tion. The Annals of Statistics, 15(2):749–779, 1987.

[RRST16] Ryan Rogers, Aaron Roth, Adam Smith, and Om Thakkar. Max-information, differential

privacy, and post-selection hypothesis testing. In IEEE 57th Annual Symposium on Founda-

tions of Computer Science, FOCS, pages 487–494, 2016.

[RZ16] Daniel Russo and James Zou. Controlling bias in adaptive data analysis using information

theory. In Artificial Intelligence and Statistics, AISTATS, pages 1232–1240, 2016.

[SGHG+19] Marika Swanberg, Ira Globus-Harris, Iris Griffith, Anna Ritz, Adam Groce, and Andrew

Bray. Improved differentially private analysis of variance. Proceedings on Privacy Enhancing

Technologies, 2019(3), 2019.

[She31] Walter Andrew Shewhart. Economic Control of Quality of Manufactured Product. ASQ Quality

Press, 1931.

[She18] Or Sheffet. Locally private hypothesis testing. In Proceedings of the 35th International Confer-

ence on Machine Learning, ICML ’18, pages 4605–4614. JMLR, Inc., 2018.

[Shi63] Albert N. Shiryaev. On optimum methods in quickest detection problems. Theory of Proba-

bility & Its Applications, 8(1):22–46, 1963.

[Smi11] Adam Smith. Privacy-preserving statistical estimation with optimal convergence rates. In

Proceedings of the 43rd Annual ACM Symposium on the Theory of Computing, STOC ’11, pages

813–822, New York, NY, USA, 2011. ACM.

[Soc18] Social Science One. Socialscienceone. https://socialscience.one/, 2018.
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A Glossary of Tests

In this section, we list all the tests mentioned in this paper. As some mnemonics, the prefix “s”

indicates that a test is “soft,” meaning that the test’s output is distributed as Bernoulli random

variable with parameter proportional to some test statistic. The prefix “n” means that a statistic

is “noisy,” which we enforce by adding Laplace noise. The prefix “c” means that a statistic is

“clamped”: to limit the sensitivity of the statistic, we clamp the value of each summand to a

fixed range, so that terms can not be unboundedly large.

The LLR is the log-likelihood ratio statistic:

LLR(x1, . . . ,xn) =
n∑

i=1

log
P(xi )

Q(xi )
.

The sLLR is the soft log-likelihood ratio test:

sLLR(x1, · · · ,xn) =








P with probability g(x)

Q with probability 1− g(x)

where

g(x) =
exp(12 log

P(x)
Q(x)

)

1 + exp(12 log
P(x)
Q(x)

)
∈ [0,1].

The cLLR is the clamped log-likelihood ratio statistic:

cLLRa,b(x1, · · · ,xn) =
∑

i

[

log
P(xi )

Q(xi)

]b

a

.

The scLLR is the soft clamped log-likelihood ratio test:

scLLRa,b(x1, · · · ,xn) =









P with probability ∝ exp(12 cLLRa,b(x))

Q with probability ∝ 1

The ncLLR is the noisy log-likelihood ratio test, which is also ε-differentially private:

ncLLR−ε′ ,ε(x1, · · · ,xn) =
∑

i

[

log
P(xi )

Q(xi)

]ε

−ε′
+Lap(2).

B Proof of existence of ε′

Lemma B.1. Let P and Q be two arbitrary distributions and let τ be as defined in (4). Assume without

loss of generality that τ =
∫

X max{P(x) − eεQ(x),0}dx. Then there exists ε′ ∈ [0, ε] such that τ =
∫

X max{Q(x)− eε′P(x),0}dx.
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Proof. First, we claim that the function φ : [0,∞)→R defined by φ(y) =
∫

X max{Q(x)−eyP(x),0}dx
is continuous. Indeed, define, for y ≥ 0, the function φy(x) = max{Q(x)− eyP(x),0} (on X ). For

any fixed y0 ≥ 0, we have (i) pointwise convergence of φy to φy0 ; (ii) (Lebesgue) integrability of

φy on X ; and (iii) for all y ≥ 0 and x ∈ X , |φy(x)| ≤ Q(x) with
∫

X Q(x)dx <∞. By the dominated

convergence theorem, we get that limy→y0 φ(y) = φ(y0).

Now, by assumption, φ(ε) =
∫

X max{Q(x)−eεP(x),0}dx ≤ τ and φ(0) =
∫

X max{Q(x)−e0P(x),0}dx =

TV(P,Q) ≥ τ. Thus, by the intermediate value theorem, there exists ε′ ∈ [0, ε] such that φ(ε′) =
τ.

C Proof of Theorem 1.2 when P and Q have disjoint support.

Suppose that P and Q have disjoint support so P̃ = Q̃ = 0. Then Theorem 1.2 reduces to:

Theorem C.1. If P and Q have disjoint support then scLLR−ε′ ,ε and ncLLR−ε′ ,ε are asymptotically

optimal among all ε-DP tests and have sample complexity SCP,Q(scLLR−ε′ ,ε) = SCP,Q(ncLLR−ε′ ,ε) =
Θ

(
1
ε

)

.

Proof. First consider cLLR−ε′ ,ε, and note that the disjoint supports imply that τ = 1 and ε′ = ε.

Under the distribution P , cLLR−ε,ε will (deterministically) be nε. Indeed, the test ncLLR−ε,ε will

be distributed as nε+Lap(2), and for this to be greater than 0 (and thus correct) with probability

≥ 2/3, it is necessary and sufficient that n = Ω(1/ε). Similarly, scLLR−ε,ε is correct with proba-

bility
exp( 12nε)

1+exp( 12nε)
≥ 2/3 as long as n = Ω(1/ε). A symmetric argument shows correctness under

the distribution Q.

For the lower bound, consider the coupling of Pn and Qn that takes a sample X ∼ Pn and

simply resamples it from Qn. Since Pn and Qn have disjoint support, dε(X,Y ) = min{εn,1}.
Thus, by Lemma 3.2, we have that n ≥Ω(1/ε) is a necessary condition.

D Proof of Lemma 2.6

Proof. Suppose, without loss of generality, that EX∼Pn′ [S(X)] > EX∼Qn′ [S(X)], let n′ = 12c2n and

let t be equal to 1
2

(

EX∼Pn′ [S(X)] +EX∼Qn′ [S(X)]
)

. Note also that since S(X) =
∑n

i=1 f (xi), we

have that |EX∼Pn′ [S(X)] −EX∼Qn′ [S(X)]| = 12c2|EX∼Pn[S(X)] −EX∼Qn [S(X)]| and Var
X∼Pn′

[S(X)] =

12c2 Var
X∼Pn

[S(X)]. Then

P
X∼Pn′

[S(X) < t] ≤ P
X∼Pn′

[

|S(X)−EX∼Pn′ [S(X)]| >
|EX∼Pn′ [S(X)]−EX∼Qn′ [S(X)]|

2

]

≤ 4

Var
X∼Pn′

[S(X)]

|EX∼Pn′ [S(X)]−EX∼Qn′ [S(X)]|2

≤ 4
12c2c2

144c4
=
1

3
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The second inequality uses Chebyshev’s inequality, and the third uses the assumptions of the

lemma statement. The proof that P
Qn′

[S(X) > t] ≤ 1
3 proceeds similarly.

E The Advantage of scLLR

In this section, we show that the Soft Clamped Log-Likelihood Ratio test (scLLR) achieves

advantage related to the quantities τ and transformed distributions P ′ ,Q′ introduced earlier.

Recall the definition

scLLR−ε′ ,ε(x) =









P with probability ∝ exp(12 cLLR−ε′ ,ε(x))

Q with probability ∝ 1

Also recall the definitions of P̃, Q̃,P ′ ,Q′ , ε′ from Section 1.2. We now have the following lemma.

Lemma E.1. For any P and Q, adv
P,Q
1 (scLLR−ε′ ,ε) =Θ

(

ετ +H2(P ′ ,Q′)
)

To ease the notation, for the remainder of this section we will simply write scLLR = scLLR−ε′ ,ε
and adv(scLLR) = adv

P,Q
1 (scLLR).

Proof. Firstly, by definition we have

adv(scLLR) =
1

2

∫

(P(x)−Q(x))
ecLLR(x)/2 − 1
ecLLR(x)/2 +1

dx,

where cLLR(x) = cLLR−ε′ ,ε =
[

log
P(x)
Q(x)

]ε

−ε′
= log

P̃(x)

Q̃(x)
. The latter equality holds by construction of

P̃, Q̃. Now we can break up the integrand (P(x)−Q(x)) e
cLLR(x)/2−1
ecLLR(x)/2+1

as

(P(x)− P̃(x)) e
cLLR(x)/2 − 1
ecLLR(x)/2 +1

︸                           ︷︷                           ︸

term 1

+(Q̃(x)−Q(x))
ecLLR(x)/2 − 1
ecLLR(x)/2 +1

︸                            ︷︷                            ︸

term 2

+(P̃(x)− Q̃(x))
ecLLR(x)/2 − 1
ecLLR(x)/2 +1

︸                           ︷︷                           ︸

term 3

.

Now, P and P̃ only differ on the set

S = { x : P(x)− eεQ(x) > 0 }

so the term 1 is only non-zero if x ∈ S , where it takes the value

(P(x)− P̃(x)) e
ε/2 − 1
eε/2 +1

.

Similarly, Q and Q̃ only differ on the set

T =
{

x : Q(x)− eε′P(x) > 0
}

so term 2 is only non-zero if x ∈ T , where it takes the value

(Q̃(x)−Q(x))
e−ε

′/2 − 1
e−ε′/2 +1

= (Q(x)− Q̃(x))
eε
′/2 − 1

eε
′/2 +1

.
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Overall, we get the following equality:

(P(x)−Q(x))
ecLLR(x)/2 − 1
ecLLR(x)/2 +1

= (P(x)− P̃(x)) e
ε/2 − 1
eε/2 +1

+ (Q(x)− Q̃(x))
eε
′/2 − 1

eε
′/2 +1

+ (P̃(x)− Q̃(x))
ecLLR(x)/2 − 1
ecLLR(x)/2 +1

.

Integrating over x, we get that 2 · adv(scLLR) is equal to

eε/2 − 1
eε/2 +1

∫

(P(x)− P̃(x))dx
︸                ︷︷                ︸

τ

+
eε
′/2 − 1

eε
′/2 +1

∫

(Q(x)− Q̃(x))dx

︸                 ︷︷                 ︸

τ

+

∫

(P̃(x)− Q̃(x))
e
log

P̃(x)

Q̃(x)
/2 − 1

e
log

P̃(x)

Q̃(x)
/2
+1

dx (8)

Now, since P ′ ,Q′ are simply renormalizations of P̃ , Q̃ by the same factor 1− τ,

e
1
2 log

P̃(x)

Q̃(x) − 1

e
1
2 log

P̃(x)

Q̃(x) +1

=
e

1
2 log

P′ (x)
Q′ (x) − 1

e
1
2 log

P′ (x)
Q′(x) +1

=

√

P ′(x)
Q′ (x) − 1

√

P ′(x)
Q′(x) +1

=

√

P ′(x)−
√

Q′(x)
√

P ′(x) +
√

Q′(x)
=

(√

P ′(x)−
√

Q′(x)
)2

P ′(x)−Q′(x) .

We can therefore simplify the expression in (8) to obtain:

2 · adv(scLLR) =
(

eε/2 − 1
eε/2 +1

+
eε
′/2 − 1

eε
′/2 +1

)

· τ +H2(P ′ ,Q′) =Θ(ετ) +H2(P ′ ,Q′),

as desired.

F Proof of Lemma 3.3

The proof of Lemma 3.3 relies on the following dual formulation of Wasserstein distance:

Lemma F.1. For any metric d : X × X → R≥0, Wd(P,Q) ≥ α if and only if there exists a function

f : X → R≥0 such that

1. f is 1-Lipschitz with respect to d, and

2. E [f (P)]−E [f (Q)] ≥ α, and

3. maxX∈X f (X) ≤ 2 ·maxX,Y∈X d(X,Y ).

Using Lemma F.1, there exists a 1-Lipschitz function f : X → [0,2] such that E [f (P)]−E [f (Q)] ≥
Wdε (P,Q). If we define the algorithm

M(X) =









P with probability
1+f (X)

4

Q with probability
3−f (X)

4

then

1. M satisfies ε-DP, and

2.

∣
∣
∣
∣
∣
P

X∼P
[M(X) = P]− P

X∼Q
[M(X) = P]

∣
∣
∣
∣
∣
= 1

4Wdε (P,Q).
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The second claim is immediate from the definition of M . To see that M is ε-DP, note that any

function that is 1-Lipschitz with respect to dε is ε-Lipschitz with respect to dH . For any pair of

neighbours X and Y , we have

P
M
[M(X) = P]

P
M
[M(Y ) = P]

≤
1
4 +

1
4 f (X)

1
4 +

1
4 f (Y )

≤
1
4 +

ε
4

1
4

= 1+ ε ≤ eε

and the same holds for P
M
[M(X) =Q].
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