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Abstract

We show a tight bound on the number of adaptively chosen statistical queries that a
computationally efficient algorithm can answer accurately given n samples from an un-
known distribution. A statistical query asks for the expectation of a predicate over the
underlying distribution, and an answer to a statistical query is accurate if it is “close” to
the correct expectation over the distribution. This question was recently considered by
Dwork et al. [DFH+14], who showed that Ω̃(n2) queries can be answer efficiently, and also
by Hardt and Ullman [HU14], who showed that answering Õ(n3) queries is computation-
ally hard. We close the gap between the two bounds by proving a new, nearly-optimal
hardness result. Specifically, we show that, under a standard hardness assumption, there
is no computationally efficient algorithm that given n samples from an unknown distribu-
tion can give valid answers toO(n2) adaptively chosen statistical queries. An implication of
our results is that computationally efficient algorithms for answering arbitrary, adaptively
chosen statistical queries may as well be differentially private. We obtain our results via an
optimal construction of a new combinatorial object that we call an interactive fingerprinting
code, which may be of independent interest.
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1 Introduction

Empirical research is commonly done by asking multiple “queries” (e.g., summary statistics,
hypothesis tests, or learning algorithms) on a finite sample drawn from some population.
“False discovery” occurs if the outcome of the queries on the sample does not reflect the popu-
lation. For example, if a certain irrelevant gene is believed to be predictive for cancer based on
the sample. For decades statisticians have been devising methods for preventing false discov-
ery, such as the “Bonferroni correction” [Bon36, Dun61] and the widely used and highly influ-
ential method of Benjamini and Hochberg [BH95] for controlling the “false discovery rate.”

Nevertheless, false discovery persists across all empirical sciences, and both popular and
scientific articles report on an increasing number of invalid research findings. Typically false
discovery is attributed to misuse of statistics. However, another possible explanation—recently
proposed by Dwork et al. [DFH+14] and Hardt and Ullman [HU14]—is that methods for pre-
venting false discovery do not address the fact that modern data analysis is inherently adap-
tive. The queries made, the experimental setup, and the selection and tuning of the algorithms
all depend on previous interactions with the data. [DFH+14] gave methods for preventing
false discovery in some cases, while [HU14] showed contrasting hardness results suggesting
that there may be an inherent computational barrier to preventing false discovery. In this
work we give a new, nearly optimal hardness result, showing that the algorithms of Dwork et
al. [DFH+14] are nearly optimal in the worst case.

These results are formalized in Kearns’ statistical-query (SQ) model [Kea93]. In the SQ
model, there is an algorithm called the oracle that gets access to n samples from an unknown
distribution D over some finite universe {0,1}d , where the parameter d is the dimensionality
of the distribution. The oracle must answer statistical queries about D. A statistical query q is
specified by a predicate p : X → {0,1} and the answer to a statistical query is q(D) = E

x∼D
[p(x)] .

The oracle’s answer a to a query q is accurate if |a − q(D)| ≤ α with high probability. Im-
portantly, the goal of the oracle is to provide answers that “generalize” to the underlying dis-
tribution rather than answers that are specific to the sample. The latter is easy to achieve by
outputting the empirical average of the query predicate on the sample.

The analyst makes a sequence of queries q1,q2, . . . , qk to the oracle, which responds with
answers a1, a2, . . . , ak . In the adaptive setting, the analyst receives each answer ai to qi before the
next query is asked, so qi+1 may depend on q1, a1,q2, a2, . . . , qi , ai . We say the oracle is accurate
given n samples for k adaptively chosen queries, if when given n samples from an arbitrary
distribution D, the oracle accurately responds to any adaptive analyst that makes at most k
queries. A computationally efficient oracle answers each query in time polynomial in n and d.1

When the queries q1,q2, . . . , qk are specified non adaptively (i.e. independent of a1, a2, . . . , ak),
then the empirical average of each query on the sample is accurate with high probability as
long as k ≤ 2o(n). However, this guarantee no longer holds in the interactive setting and a more
sophisticated oracle is required.

The results of Dwork et al. [DFH+14] gave a surprising way to construct an accurate oracle,
by showing that any oracle that satisfies differential privacy [DMNS06] and provides accurate
answers with respect to the sample, also provides accurate answers with respect to the under-
lying distribution. Using known constructions of differentially private algorithms, they obtain
a computationally efficient algorithm that is accurate for Ω̃(n2) queries, and a computationally
inefficient algorithm that is accurate for nearly 2n queries.

1We assume that the analyst asks queries that can be evaluated on the sample in polynomial time.
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It was already known that computationally efficient differentially private algorithms could
not answer more than Õ(n2) queries [Ull13], but differentially privacy may not be necessary at
all. Unfortunately, [HU14] showed that no computationally efficient algorithm could answer
too many more queries. Specifically, assuming the existence of one-way functions, there is no
computationally efficient oracle that answers more than Õ(n3) queries.

In this work we resolve this gap almost completely, and show that, assuming the existence
of one-way functions, there is no efficient oracle that answers O(n2) queries. Conceptually, our
result gives further evidence that there may be an inherent computational barrier to prevent-
ing false discovery in interactive data analysis. It also shows that when answering arbitrary
adaptively chosen statistical queries, one cannot do better than to use a differentially private
algorithm in the worst case. We believe it is an intriguing open question to see whether this
sort of equivalence holds in more restricted settings. Finally, as a consequence of our results,
we obtain a dichotomy for privacy preserving data analysis in the adaptive setting. There is
a computationally efficient differentially private algorithm that answers Ω̃(n2) arbitrary adap-
tive queries, but, assuming the existence of one-way functions, every computationally efficient
algorithm that answers O(n2) arbitrary adaptive queries is blatantly non private.

To prove our result, we modify the adversary used in [HU14]. First, we abstract the com-
binatorial properties required by their adversary into a new combinatorial object that we call
an interactive fingerprinting code. Then, we give a nearly optimal construction of interactive
fingerprinting codes, which is the main technical contribution of our work.

1.1 Discussion of Results

Our main result is the following nearly optimal hardness result for preventing false discovery
in interactive data analysis.

Theorem 1.1 (Informal). Assuming the existence of one-way functions, there is no computationally
efficient oracle that given n samples is accurate on O(n2) adaptively chosen queries.

As in [HU14], our hardness result applies whenever the dimensionality of the data grows
with the sample size faster than logarithmically so that 2d is no longer polynomial in n.2 This
requirement is rather mild, and is also necessary. If n� 2d then the empirical distribution of
the n samples will be close to the underlying distribution in statistical distance, so every statis-
tical query can be answered accurately given the sample. Thus, the dimensionality of the data
has a major effect on the hardness of the problem. [HU14] also showed that if the dimension-
ality is much larger than n, then we cannot even hope for a computationally unbounded oracle
that provides accuracy on adaptive queries. We obtain a nearly optimal version of that result.

Theorem 1.2 (Informal). There is no oracle (even a computationally unbounded one) that given n
samples in dimension d =O(n2) is accurate on O(n2) adaptively chosen queries.

This result should be contrasted with the aforementioned result of Dwork et al. [DFH+14]
showing that if d � n2 then there is an oracle that runs in time polynomial in n and 2d and
accurately answers nearly 2n adaptive queries.

2This is under the stronger, but still standard, assumption that exponentially hard one-way functions exist.
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1.1.1 Techniques

The structure of our proof is rather simple, and closely follows the framework in [HU14]. We
will design a challenge distribution D and a computationally efficient adaptive analyst A who
knows D. If any computationally efficient oracle O is given n samples S = {x1, . . . ,xn} drawn
from D, then our analyst A can use the answers of O to reconstruct the set S. Using this
information, the adversary can construct a query on which S is not representative of D.

Our adversary A and the distribution D, like that of [HU14], is built from a combinatorial
object with a computational “wrapper.” The computational wrapper is cryptographic queries
which “hide” information from the oracle O. The combinatorial object is what we call an inter-
active fingerprinting code, which we introduce.

Interactive fingerprinting codes (IFPCs) are an abstraction of the technique in [HU14]. They
generalize fingerprinting codes, which were introduced by Boneh and Shaw [BS98] for the prob-
lem of watermarking digital content. Our main contribution is to define and construct IFPCs.

An interactive fingerprinting code F is an efficient interactive algorithm that defeats any
adversary P (called the pirate) with high probability in the following game. The adversary P
picks S ⊂ [N ] unknown to F . The goal of F is to identify S by making ` interactive queries
to P . F specifies each query by a vector c ∈ {±1}N . In response, the adversary P must simply
output a ∈ {±1} such that a = ci for some i ∈ [N ]. However, the adversary is restricted to only
see ci for i ∈ S. At any time, F may accuse some i ∈ [N ]. If i ∈ S is accused, then i is removed
from S (i.e. S ← S\{i}), thereby further restricting P . If i < S is accused, then this is referred
to as a false accusation. To win, the interactive fingerprinting code F must identify all of S,
without making “too many” false accusations.

The difference between interactive and non interactive fingerprinting codes is that a non
interactive fingerprinting code must give all ` queries to P at once, but is (necessarily) only
required to identify one i ∈ S.

[HU14] implicitly construct an interactive fingerprinting code with ` = Õ(N3) by concate-
natingN independent copies of a non interactive fingerprinting code. We give a construction of
an interactive fingerprinting codes using the optimal O(N2) queries based on the construction
of non interactive fingerprinting codes by [Tar08].

Theorem 1.3 (Informal). For everyN , there exists an interactive fingerprinting code with ` =O(N2)
that, except with negligible probability, makes at most N/1000 false accusations.

This result suffices for our applications, but our construction is somewhat more general and
has several additional parameters, which we detail in Section 2.

1.2 Applications to Data Privacy

The adversary used to show hardness of preventing false discovery is effectively carrying out
a reconstruction attack against the database of samples. Roughly, if there is an adversary who
can reconstruct the set of samples S from the oracle’s answers, then the oracle is said to be
“blatantly non-private”—it reveals essentially all of the data it holds, and so cannot guarantee
any reasonable notion of privacy to the owners of the data. Since the seminal work of Dinur
and Nissim [DN03], such reconstruction attacks have been used to establish strong limitations
on the accuracy of privacy-preserving oracles.

Using interactive fingerprinting codes, combined with the framework of [HU14], we obtain
the following results. In both cases, [HU14] show similar results, in which our O(n2) bounds
are replaced with Õ(n3).
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Theorem 1.4 (Informal). Assuming the existence of one-way functions, every computationally
efficient oracle that, given n samples, is accurate on O(n2) adaptively chosen queries is blatantly
non private.

Theorem 1.4 should be compared with the result in [Ull13], which showed that any com-
putationally efficient oracle that, given n samples, is accurate for Õ(n2) non-adaptively chosen
queries cannot satisfy the strong guarantee of “differential privacy” [DN03, DMNS06]. Theo-
rem 1.4 shows that, in the adaptive setting, we can obtain a stronger privacy violation using
fewer queries than [Ull13].

Theorem 1.5 (Informal). Every (possibly computationally unbounded) oracle that, given n samples
in dimension d =O(n2), is accurate on O(n2) adaptively chosen queries is blatantly non private.

Theorem 1.5 should be compared with the result in [BUV14] that showed any (possibly
computationally unbounded) oracle that answers a fixed family of Õ(n2) simple queries in di-
mension d = Õ(n2) cannot satisfy differential privacy.

In contrast with Theorems 1.4 and 1.5, the well-known result of [DMNS06] shows that there
is an efficient differentially private algorithm that answers Ω̃(n2) adaptively chosen queries.
Our results show that, in the adaptive setting, there is a sharp threshold for the number of
queries where, below this threshold, the strong notation of differential privacy can be achieved
and, above this threshold, even minimal notions of privacy are unachievable.

1.3 Related Work

Our work and [HU14] build on techniques for attacking allegedly privacy preserving algo-
rithms. These works showed a surprising tension between methods for secure content-distribution
and privacy-preserving algorithms. This connection first appeared in the work of Dwork, Naor,
Reingold, Rothblum, and Vadhan [DNR+09], who showed that the existence of traitor-tracing
schemes [CFN94] implies hardness results for differential privacy. This connection was ex-
panded and strengthened in [Ull13], which introduced the use of fingerprinting codes in the
context of differential privacy, and used them to prove nearly optimal hardness results for
certain problems in differential privacy. Bun et al. [BUV14] showed that fingerprinting codes
can be used to prove nearly-optimal information-theoretic lower bounds for differential pri-
vacy, which established fingerprinting codes as the key information-theoretic object underlying
lower bounds in differential privacy.

Interactive fingerprinting codes are similar in spirit to the work of Fiat and Tassa [FT01]
on dynamic traitor-tracing. They too used the power of adaptivity to reconstruct the entire set
of samples, as opposed to only one sample. Technically their results are incomparable to ours,
and their techniques do not suffice in our setting. Specifically, they allowed codewords over a
large alphabet, c ∈ [N ]N , and achieve a length of Õ(N ). This large alphabet generalization is
fundamentally different, and does not lead to hardness results for answering adaptive queries.
This is inherent, since, by [DFH+14], there is no hardness result for answering Õ(N ) queries.3

The algorithms of Dwork et al. [DFH+14] rely on known differentially private mecha-
nisms for answering adaptive statistical queries. Recently, [Ull14] showed how to design dif-
ferentially private mechanisms for answering exponentially many adaptively chosen queries

3This problem is not merely an artifact of restricting the data to distributions over {±1}. Even if we were to con-
sider more general distributions over [N ], the methods of Fiat and Tassa [FT01] inherently do not suffice. Queries
over [N ] are equivalent to queries over {±1}logN , whereas the large alphabet is fundamental to the analysis in Fiat
and Tassa and cannot be straightforwardly replaced by the binary alphabet.
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from the richer class of convex empirical risk minimization queries. By the results of Dwork et
al. [DFH+14], this algorithm is also a (computationally inefficient) oracle that is accurate for
exponentially many adaptively chosen convex empirical risk minimization queries.

Organization In Section 2 we define and construct interactive fingerprinting codes, the main
new technical ingredient we use to establish our results. In Sections 3 and 4 we show how
interactive fingerprinting codes can be used to obtain hardness results for preventing false
discovery and blatant non privacy, respectively. The definition of interactive fingerprinting
codes is contained in Section 2.1 and is necessary for Sections 3 and 4, but the remainder of
Section 2 and Sections 3 and 4 can be read in either order.

2 Interactive Fingerprinting Codes

In order to motivate the definition of interactive fingerprinting codes, it will be helpful to
review the motivation for standard, non-interactive fingerprinting codes.

Fingerprinting codes were introduced by Boneh and Shaw [BS98] for the problem of wa-
termarking digital content (such as a movie or a piece of software). Consider a company that
distributes some content to N users. Some of the users may illegally distribute copies of the
content. To combat this, the company gives each user a unique version of the content by adding
distinctive “watermarks” to it. Thus, if the company finds an illegal copy, it can be traced back
to the user who originally purchased it. Unfortunately, users may be able to remove the wa-
termarks. In particular, a coalition of users may combine their copies in a way that mixes or
obfuscates the watermarks. A fingerprinting code ensures that, even if up to n users collude to
combine their codewords, an illegal copy can be still be traced to at least one of the users.

Formally, every user i ∈ [N ] is given a codeword (c1
i , c

2
i , . . . , c

`
i ) ∈ {±1}` by the fingerprinting

code, which represents the combination of watermarks in that user’s copy. A subset S ⊂ [N ]
of at most n users can arbitrarily combine their codewords to create a “pirate codeword” a =
(a1, a2, . . . , a`) ∈ {±1}`. The only constraint is so-called consistency—for every j ∈ [`], if, for every
colluding user i ∈ S, we have cji = b, then aj = b. That is to say, if each of the colluding users
receives the same watermark, then their combined codeword must also have that watermark.
Given a, the fingerprinting code must be able to trace at least one user i ∈ S. Tardos [Tar08]
constructed optimal fingerprinting codes with ` =O(n2 logN ).

A key drawback of fingerprinting codes is that we can only guarantee that a single user
i ∈ S is traced. This is inherent, as setting the pirate codeword a to be the codeword of a single
user prevents any other user from being identified. We will see that this can be circumvented
by moving to an interactive setting.

Suppose the company is instead distributing a stream of content (such as a TV series) to
N users—that is, the content is not distributed all at once and the illegal copies are obtained
whilst the content is being distributed (e.g. the episodes of the TV series appear on the internet
before the next episode is shown). Again, the content is watermarked so that each user receives
a unique stream and a subset S ⊂ [N ] of at most n users combine their streams and distribute an
illegal stream. The company obtains the illegal stream and uses this to trace the colluding users
S. As soon as the company can identify a colluding user i ∈ S, that user’s stream is terminated
(e.g. their subscription is cancelled). This process continues until every i ∈ S has been traced
and the distribution of illegal copies ceases.

5



Another twist on fingerprinting codes is robustness [BUV14]. Suppose that the consistency
constraint only holds for (1 − β)` choices of j ∈ [`]. That is to say, the colluding users can
somehow remove a β fraction of the watermarks. [BUV14] showed how to modify the Tardos
fingerprinting code to be robust to a small constant fraction of inconsistencies. In this work,
we show that robustness to any β < 1/2 fraction of inconsistencies can be achieved.

2.1 Definition and Existence

We are now ready to formally define interactive fingerprinting codes. To do so we make use of
the following game between an adversary P and the fingerprinting code F . Both P and F may
be stateful. For a given execution of F , we let C ∈ {±1}N×` be the matrix with columns c1, . . . , c`

P selects a subset of users S1 ⊆ [N ] of size at most n, unknown to F
For j = 1, . . . , `:
F outputs a column vector cj ∈ {±1}N

Let cj
Sj
∈ {±1}|Sj | be the restriction of cj to coordinates in Sj , which is given to P

P outputs aj , which is given to F
F accuses a (possibly empty) set of users I j ⊆ [N ]. Let Sj+1 = Sj \ I j .

Figure 1: IFPCN,n,`[P ,F ]

and let a ∈ {±1}` be the vector with entries a1, . . . , a`. We want to construct the fingerprinting
code so that, if a is consistent, then the tracer succeeds in recovering every user in S. For
convenience, we will define the notation θj to be the number of rounds 1, . . . , j in which aj is
not consistent with cj . Formally, for a given execution of F ,

θj =
∣∣∣∣{1 ≤ k ≤ j ∣∣∣ @ i ∈ [N ], ak = cki

}∣∣∣∣ .
Using this notation, a is β-consistent if θ` ≤ β`. We also define the notation ψj to be the number
of users in I1, . . . , I j who are falsely accused (i.e. not in the coalition S1). Formally,

ψj =

∣∣∣∣∣∣∣∣
 ⋃

1≤k≤j
Ik

 \ S1

∣∣∣∣∣∣∣∣ .
Using this notation, we require ψ` ≤ δN - that is, the tracing algorithm does not make too many
false accusations.

Definition 2.1 (Interactive Fingerprinting Codes). We say that an algorithm F is an n-collusion-
resilient interactive fingerprinting code of length ` for N users robust to a β fraction of errors with
failure probability ε and false accusation probability δ if for every adversary P , it holds that

P

IFPCN,n,`[P ,F ]

[(
θ` ≤ β`

)
∨

(
ψ` > δN

)]
≤ ε

The length ` may depend on N,n,β,ε,δ.
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The constraint ψ` ≤ δN is called soundness—the interactive fingerprinting code should not
make (many) false accusations. The constraint θ` > β` is called completeness—the interactive
fingerprinting code should force the adversary P to be inconsistent. Although it may seem
strange that we make no reference to recovering the coalition S1, notice that if Sj , ∅, then P
can easily be consistent. Therefore, if the pirate cannot be consistent, it must be the case that
Sj = ∅ for some j, meaning all of S1 has been accused.

In the remainder of this section, we give a construction of interactive fingerprinting codes,
and establish the following theorem.

Theorem 2.2 (Existence of Interactive Fingerprinting Codes). For every 1 ≤ n ≤ N , 0 ≤ β < 1/2,
and 0 < δ ≤ 1, there is a n-collusion-resilient interactive fingerprinting code of length ` for N users
robust to a β fraction of errors with failure probability ε ≤min{δN,2−Ω(δN )}+ δΩ(( 1

2−β)n) and false
accusation probability δ for

` =O

n2 log(1/δ)(
1
2 − β

)4

 .
The expression for the failure probability ε is a bit mysterious. To interpret it, we fix

β = 1/2 −Ω(1) and consider two parameter regimes: δN � 1 and δN � 1. In the traditional
parameter regime for fingerprinting codes δN = ε′ � 1, and so no users are falsely accused.
Then our fingerprinting code has length O(n2 log(N/ε′)) and a failure probability of ε′. How-
ever, if we are willing to tolerate falsely accusing a small constant fraction of users, then we
can set, for example, δN = .01N , and our fingerprinting code will have lengthO(n2) and failure
probability 2−Ω(n).

2.2 The Construction

Our construction and analysis is based on the optimal (non interactive) fingerprinting codes of
Tardos [Tar08], and the robust variant by Bun et al. [BUV14]. The code is essentially the same,
but columns are generated and shown to the adversary one at a time, and tracing is modified
to identify users interactively.

We begin with some definitions and notation. For 0 ≤ a < b ≤ 1, let Da,b be the distribu-
tion with support (a,b) and probability density function µ(p) = Ca,b/

√
p(1− p), where Ca,b is a

normalising constant.4 For α,ζ ∈ (0,1/2), let Dα,ζ be the distribution on [0,1] that returns a
sample from Dα,1−α with probability 1− 2ζ and 0 or 1 each with probability ζ.

For p ∈ [0,1], let c ∼ p denote that c ∈ {±1} is drawn from the distribution with P [c = 1] = p

and P [c = −1] = 1− p. Let c1···n ∼ p denote that c ∈ {±1}n is drawn from a product distribution

in which ci ∼ p independently for all i ∈ [n].
Define φp : {±1} →R by φ0(c) = φ1(c) = 0 and, for p ∈ (0,1), φp(1) =

√
(1− p)/p and φp(−1) =

−
√
p/(1− p). The function φp is chosen so that φp(c) has mean 0 and variance 1 when c ∼ p.
The fingerprinting code F is defined in Figure 2. In addition to the precise setting of pa-

rameters, we have given asymptotic bounds to help follow the analysis. We now analyze F
and establish Theorem 2.2. The proof of Theorem 2.2 is split into Theorems 2.7 and 2.17. For
convenience, define I =

⋃
j∈[`] I

j .

4To sample from Da,b, first sample ϕ ∈ (sin−1(
√
a),sin−1(

√
b)) uniformly, then output sin2(ϕ) as the sample.
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Given parameters 1 ≤ n ≤N and 0 < δ,β < 1/2
Set parameters:

α =

(
1
2 − β

)
4n

≥Ω


(

1
2 − β

)
n


ζ =

3
8

+
β

4
=

1
2
− 1

4

(1
2
− β

)
σ =64 ·


6πn(

1
2 − β

)2

 ·
⌈
loge

(32
δ

)⌉
≤O

 n(
1
2 − β

)2 log
(1
δ

)
` =


6πn(

1
2 − β

)2

 · σ ≤O

 n2(
1
2 − β

)4 log
(1
δ

)
Let s0i = 0 for every i ∈ [N ].
For j = 1, . . . , `:

Draw pj ∼Dα,ζ and cj1···N ∼ p
j .

Issue cj ∈ {±1}N as a challenge and receive aj ∈ {±1} as the response.
For i ∈ [N ], let sji = sj−1

i + aj ·φpj (cji ).

Accuse I j =
{
i ∈ [N ] | sji > σ

}
.

Figure 2: The interactive fingerprinting code F = Fn,N,δ,β

2.3 Analysis Overview

Intuitively, the quantity sji , which we call the score of user i, measures the “correlation” between

the answers (a1, · · · , aj ) of P and the i-th codeword (c1
i , · · · , c

j
i ), using a particular measure of

correlation that takes into account the choices p1, . . . ,pj . If sji ever exceeds the threshold σ ,
meaning that the answers are significantly correlated with the i-th codeword, then we accuse
user i. Thus, our goal is to show two things: Soundness, that the score of an innocent user
(i.e. i < S1) never exceeds the threshold, as the answers cannot be correlated with the unknown
i-th codeword. And completeness, that the score of every guilty user (i.e. i ∈ S1) will at some
point exceed the threshold, meaning that the answers must correlate with the i-th codeword
for every i ∈ S1.

2.3.1 Soundness

The proof of soundness closely mirrors Tardos’ analysis [Tar08] of the non-interactive case. If
i is innocent, then, since P doesn’t see the codeword (c1

i , · · · , c
j
i ) of the ith user, there cannot be

too much correlation. In this case, one can show that sji is the sum of j independent random
variables, each with mean 0 and variance 1, where we take the answers a1, . . . , aj as fixed and
the randomness is over the choice of the unknown codeword. By analogy to Gaussian random
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variables, one would expect that sji ≤ σ = Θ(
√
` log(1/δ)) with probability at least 1−δ. Formally,

the fact that the score in each round is not bounded prevents the use of a Chernoff bound. But
nonetheless, in Section 2.4, we prove soundness using a Chernoff-like tail bound for sji .

2.3.2 Completeness

To prove completeness, we must show that, for guilty users i ∈ S1, we have sji > σ for some
j ∈ [`] with high probability. In Sections 2.5.1 and 2.5.3, we prove that if P gives consistent
answers in a 1− β fraction of rounds, then the sum of the scores for each of the guilty users is
large. Specifically, in Theorem 2.15, we prove that with high probability∑

i∈S1

s`i ≥Θ (`) (1)

The constants hidden by the asymptotic notation are set to imply that, for at least one i ∈ S1,
the score s`i is above the threshold σ = Θ (`/n). This step is not too different from the analysis
of Tardos and Bun et al. [Tar08, BUV14] for the non-interactive case. To show that, for every
i ∈ S1, we will have sji > σ at some point, we must depart from the analysis of non-interactive

fingerprinting codes. If sji > σ , and user i is accused in round j, then the adversary will not see

the suffix of codeword (cj+1
i , · · · , c`i ). By the same argument that was used to prove soundness,

the answers will not be correlated with this suffix, so with high probability the score s`i does
not increase much beyond σ . Thus,∑

i∈S1

s`i ≤ n ·O(σ ) = Θ (`) . (2)

The hidden constants are set to ensure that Equation (2) conflicts with Equation (1). Thus,
we can conclude that P cannot give consistent answers for a 1 − β fraction of rounds. That is
to say, P is forced to be inconsistent because all of S1 is accused and eventually P sees none of
the codewords and is reduced to guessing an answer aj .

2.3.3 Establishing Correlation

Proving Equation (1) is key to the analysis. Our proof thereof combines and simplifies the
analyses of [Tar08] and [BUV14]. For this high level overview, we ignore the issue of robustness
and fix β = 0.

First we prove that the correlation bound holds in expectation and then we show that it
holds with high probability using an Azuma-like concentration bound. (Again, as the random
variables being summed are not bounded, we are forced to use a more tailored analysis to prove
concentration.) We show that it holds in expectation for each round. In Proposition 2.12, we
show that the concentration grows in expectation in each round. For every j ∈ [`],

E

∑
i∈S1

s
j
i − s

j−1
i

 = E

∑
i∈S1

aj ·φp
j
(cji )

 ≥Ω(1), (3)

where the expectations are taken over the randomness of pj , cj , and aj . Equation (3), combined
with a concentration result, implies Equation (1).
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The intuition behind Equation (3) and the choice of pj is as follows. Consistency guarantees
that, if cji = b for all i ∈ S1, then aj = b. This is a weak correlation guarantee, but it suffices to

ensure correlation between aj and
∑
i∈S1 c

j
i . The affine scaling φp

j
ensures that φp

j
(cji ) has mean

zero (i.e. is uncorrelated with a constant) and and unit variance (i.e. has unit correlation with
itself). The expectation of aj ·φpj (cji ) can be interpreted as the i-th first-order Fourier coefficient
of aj as a function of cj . To understand first-order Fourier coefficients, consider the “dictator”
function: Suppose aj = cji∗ for some i∗ ∈ S1 - that is, P always outputs the i∗-th bit. Then

E

aj ,cj ,pj

aj ∑
i∈S1

φp
j
(cji )

 = E

cj ,pj

[
c
j
i∗ ·φ

pj (cji∗)
]

= E

pj

[
2
√
pj(1− pj )

]
= Θ(1).

This example can be generalised to aj being an arbitrary function of cjS1 using Fourier analysis.
This calculation also indicates why we choose the probability density function of pj ∼ Dα,1−α
to be proportional to 1/

√
p(1− p).

To handle robustness (β > 0) we use the ideas of [BUV14]. With probability 2ζ each round is
a “special” constant round—i.e. cj = (1)N or cj = (−1)N . Otherwise it is a “normal” round where
cj is sampled as before. Intuitively, the adversary P cannot distinguish the special rounds
from the normal rounds in which c happens to be constant. If the adversary gives inconsistent
answers on normal rounds, then it must also give inconsistent answers on special rounds. Since
there are many more special rounds than normal rounds, this means that a small number of
inconsistencies in normal rounds implies a large number of inconsistencies on special rounds.
Conversely, inconsistencies are absorbed by the special rounds, so we can assume there are very
few inconsistencies in normal rounds. Thus P is forced to behave consistently on the normal
rounds and the analysis on these rounds proceeds as before.

2.4 Proof of Soundness

We first show that no user is falsely accused except with probability δ/2. This boils down
to proving a concentration bound. Then another concentration bound shows that with high
probability at most a δ fraction of users are falsely accused.

These concentrations bounds are essentially standard. However, we are showing concen-
tration of sums of variables of the form φp(c), which may be quite large if p ≈ 0 or p ≈ 1.
This technical problem prevents us from directly applying standard concentration bounds. In-
stead we open up the standard proofs and verify the desired concentration. We take the usual
approach of bounding the moment generating function and using that to give a tail bound.

Lemma 2.3. For p ∈ [α,1−α]∪ {0,1} and t ∈ [−
√
α/2,
√
α/2], we have

E
c∼p

[
etφ

p(c)
]
≤ et

2
.

Proof. If p ∈ {0,1}, φp = 0 and the result is trivial. We have E
c∼p

[φp(c)] = 0, E
c∼p

[
φp(c)2

]
= 1,

and, for c ∈ {±1}, |φp(c)| ≤ 1/
√
α. In particular, |φp(c) · t| ≤ 1/2. For u ∈ [−1/2,1/2], we have

eu ≤ 1 +u +u2. Thus

E
c∼p

[
etφ

p(c)
]
≤ 1 + t E

c∼p
[φp(c)] + t2 E

c∼p

[
φp(c)2

]
= 1 + t2 ≤ et

2
.
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Lemma 2.4. Let p1 · · ·pm ∈ [α,1 − α] ∪ {0,1} and c1 · · ·cm drawn independently with ci ∼ pi . Let
a1 · · ·am ∈ [−1,1] be fixed. For all λ ≥ 0, we have

P

∑
i∈[m]

aiφ
pi (ci) ≥ λ

 ≤ e−λ2/4m + e−
√
αλ/4.

Proof. By Lemma 2.3, for all t ∈ [−
√
α/2,
√
α/2],

E
c

[
et

∑
i∈[m] aiφ

pi (ci )
]
≤

∏
i∈[m]

E
ci

[
etaiφ

pi (ci )
]
≤ et

2m.

By Markov’s inequality,

P

∑
i∈[m]

aiφ
pi (ci) ≥ λ

 ≤ E

[
et

∑
i∈[m] aiφ

pi (ci )
]

etλ
≤ et

2m−tλ.

Set t = min{
√
α/2,λ/2m}. If λ ∈ [0,m

√
α], then

P

∑
i∈[m]

aiφ
pi (ci) ≥ λ

 ≤ e−λ2/4m.

On the other hand, if λ ≥m
√
α, then

P

∑
i∈[m]

aiφ
pi (ci) ≥ λ

 ≤ eαm/4−√αλ/2 ≤ e−√αλ/4.
The result is obtained by adding these expressions.

The following theorem shows how we can beat the union bound for tail bounds on partial
sums.

Theorem 2.5 (Etemadi’s Inequality [Ete85]). Let X1 · · ·Xn ∈ R be independent random variables.
For k ∈ [n], define Sk =

∑
i∈[k]Xi to be the kth partial sum. Then, for all λ > 0,

P

[
max
k∈[n]
|Sk | > 4λ

]
≤ 4 ·max

k∈[n]
P [|Sk | > λ] .

Proposition 2.6 (Individual Soundness). For all i ∈ [N ], we have

P

[
i ∈ I \ S1

]
≤ 8(e−σ

2/64` + e−σ
√
α/16) ≤ δ/2,

where the probability is taken over IFPCN,N,`[P ,FN,n,δ,β] for an arbitrary P .

Proof. Let i ∈ [N ] \ S1. Since the adversary does not see cji for any j ∈ [`], we may treat the

answers of the adversary as fixed and analyse sji as if cji was drawn after the actions of the
adversary are fixed. Thus, by Lemma 2.4, for every j ∈ [`],

P

[
s
j
i >

σ
4

]
= P

∑
k∈[j]

akφp
k
(cki ) >

σ
4

 ≤ e−σ2/64` + e−σ
√
α/16.
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Likewise P

[
s
j
i < −

σ
4

]
≤ e−σ2/64` + e−σ

√
α/16. Thus, by Theorem 2.5,

P [i ∈ I] ≤ P

[
max
j∈[`]
|sji | > σ

]
≤ 4max

j∈[`]
P

[
|sji | >

σ
4

]
≤ 8(e−σ

2/64` + e−σ
√
α/16) ≤ δ

2
.

Theorem 2.7 (Soundness). We have

P

[
|I \ S1| > δN

]
≤min

{
δN,e−δN/8

}
,

where the probability is taken over IFPCN,N,`[P ,FN,n,δ,β] for an arbiratry P .

Interestingly, this theorem does not require |S1| ≤ n – that is, it holds with respect to
IFPCN,N,`[P ,FN,n,δ,β], rather than IFPCN,n,`[P ,FN,n,δ,β]. It only requires that F does not see the
codewords of users not in S1.

Proof. Let Ei ∈ {0,1} be the indicator of the event i ∈ I\S1. The Eis for i ∈ [N ] are independent
(conditioned on the choice of S1 and pj for j ∈ [`]). Moreover, by Proposition 2.6, E [Ei] ≤ δ/2
for all i ∈ [N ]\S1. Thus, by a Chernoff bound,

P

[
|I\S1| > δN

]
= P

 ∑
i∈[N ]

Ei > δN

 ≤ e−δN/8.
If δ < 1/N , then this is a very poor bound. Instead we use the fact that the Eis are discrete

and Markov’s inequality, which amounts to a union bound. For δN < 1, we have

P

[
|I\S1| > δN

]
= P

[
|I\S1| ≥ 1

]
≤ E

 ∑
i∈[N ]

Ei

 ≤ δN2 ≤ δN.

The following lemma will be useful later.

Lemma 2.8. For i ∈ [N ], let ji ∈ [` + 1] be the first j such that i < Sj , where we define S`+1 = ∅. For
any S ⊂ [N ],

P

∑
i∈S

s`i − s
ji−1
i > λ

 ≤ e−λ2/4|S |` + e−
√
αλ/4,

where the probability is taken over IFPCN,N,`[P ,FN,n,δ,β] for an arbitrary P .

Proof. We have ∑
i∈S

s`i − s
ji−1
i =

∑
i∈S

∑
j∈[`]

I(j ≥ ji)ajφp
j
(cji ).

Again, since the adversary doesn’t see cji for j ≥ ji , the random variables I(j ≥ ji)aj and φp
j
(cji )

are independent, so we can view I(j ≥ ji)aj ∈ [−1,1] as fixed. Now the result follows from
Lemma 2.4.
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2.5 Proof of Completeness

To show that the fingerprinting code identifies guilty users we must lower bound the scores∑
i∈S1 s`i . First we bound their expectation and then their tails.

2.5.1 Biased Fourier Analysis

For this section, assume that the adversary P is always consistent - that is, we have no robust-
ness and β = 0. Robustness will be added in Section 2.5.2. Here we establish that the scores
have good expectation, namely

E

∑
i∈S1

s
j
i − s

j−1
i

 ≥Ω(1)

for all j ∈ [`]. The score s`i computes the ‘correlation’ between the bits given to user i and the
output of the adversary. We must show that that the adversary’s consistency constraint implies
that there exists some correlation on average.

In this section we deviate from the proof in [Tar08]. We use biased Fourier analysis to give
a more intuitive proof of the correlation bound.

We have the following lemma and proposition, which relate the correlation aj ·
∑
i∈S1φp

j
(cji )

to the properties of aj as a function of pj . To interpret these imagine that f represents the
adversary P with one round viewed in isolation – the fingerprinting code gives the adversary
cj and the adversary responds with f (cj

Sj
).

Firstly, the following lemma gives an interpretation of the correlation value for a fixed pj .

Lemma 2.9. Let f : {±1}n→R. Define g : [0,1]→R by g(p) = E
c1···n∼p

[f (c)]. For any p ∈ (0,1),

E
c1···n∼p

f (c) ·
∑
i∈[n]

φp(ci)

 = g ′(p)
√
p(1− p).

Proof. For p ∈ (0,1) and s ⊂ [n], define φps : {±1}n→ R by φps (c) =
∏
i∈sφ

p(ci). The functions φps
form an orthonormal basis with respect to the product distribution with bias p – that is,

∀s, t ⊂ [n] E
c1···n∼p

[
φ
p
s (c) ·φpt (c)

]
=

{
1 s = t
0 s , t

}
.

Thus, for any p ∈ (0,1), we can write f in terms of these basis functions:

∀c ∈ {±1}n f (c) =
∑
s⊂[n]

f̃ p(s)φps (c),

where
∀s ⊂ [n] f̃ p(s) = E

c1···n∼p

[
f (c)φps (c)

]
.

This decomposition is a generalisation of Fourier analysis to biased distributions [O’D14, §8.4].
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For p,q ∈ (0,1), the expansion of f gives the following expressions for g(q), g ′(q) and g ′(p).

g(q) = E
c1···n∼q

[f (c)]

=
∑
s⊂[n]

f̃ p(s) E
c1···n∼q

[
φ
p
s (c)

]
=

∑
s⊂[n]

f̃ p(s)
∏
i∈s

E
c∼q

[φp(c)]

=
∑
s⊂[n]

f̃ p(s)
(
q

√
1− p
p
− (1− q)

√
p

1− p

)|s|
.

g ′(q) =
∑

s⊂[n]:s,∅
f̃ p(s) · |s| ·

(
q

√
1− p
p
− (1− q)

√
p

1− p

)|s|−1

·
(√

1− p
p

+
√

p

1− p

)
.

g ′(p) =
∑

s⊂[n]:s,∅
f̃ p(s) · |s| · 0|s|−1 ·

(√
1− p
p

+
√

p

1− p

)

=
∑
i∈[n]

f̃ p({i}) ·
(√

1− p
p

+
√

p

1− p

)
.

Note that f̃ p({i}) = E
c1···n∼p

[f (c)φp(ci)] and, hence,

E
c1···n∼p

f (c) ·
∑
i∈[n]

φp(ci)

 =
∑
i∈[n]

f̃ p({i}) =
g ′(p)√

1−p
p +

√
p

1−p

= g ′(p)
√
p(1− p).

Now we can interpret the correlation for a random pj ∼Da,b.
Proposition 2.10. Let f : {±1}n→ R. Define g : [0,1]→ R by g(p) = E

c1···n∼p
[f (c)]. For any 0 ≤ a <

b ≤ 1,

E

p∼Da,b

 E
c1···n∼p

f (c) ·
∑
i∈[n]

φp(ci)


 =

g(b)− g(a)

2sin−1(
√
b)− 2sin−1(

√
a)
≥
g(b)− g(a)

π
.

This effectively follows by integrating Lemma 2.9.

Proof. Let µ(p) = Ca,b/
√
p(1− p) be the probability density function for the distribution Da,b on

the interval (a,b). By Lemma 2.9 and the fundamental theorem of calculus, we have

E

p∼Da,b

 E
c1···n∼p

f (c) ·
∑
i∈[n]

φp(ci)


 = E

p∼Da,b

[
g ′(p)

√
p(1− p)

]
=
∫ b

a
g ′(p)

√
p(1− p)µ(p)dp

=Ca,b

∫ b

a
g ′(p)dp

=Ca,b · (g(b)− g(a)).
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It remains to show that Ca,b =
(
2sin−1(

√
b)− 2sin−1(

√
a)
)−1
≥ 1/π. This follows from observing

that

C−1
a,b =

∫ b

a

1√
p(1− p)

dp =
∫ b

a

(
d

dp
2sin−1(

√
p)

)
dp = 2sin−1(

√
b)− 2sin−1(

√
a)

and
C−1
a,b ≤ C

−1
0,1 = 2sin−1(1)− 2sin−1(0) = π.

Now we have a lemma to bring consistency into the picture. If f is consistent, b ≈ 1, and
a ≈ 0, then

g(b)− g(a) ≈ g(1)− g(0) = f ((1)n)− f ((−1)n) = 1− (−1) = 2.

This gives a lower bound on the correlation for consistent f .

Lemma 2.11. Let f : {±1}n → {±1}. Define g : [0,1] → [−1,1] by g(p) = E
c1···n∼p

[f (c)]. Suppose

α ∈ [0,1]. Then |g(1−α)− g(1)| ≤ 2nα and |g(α)− g(0)| ≤ 2nα.

Proof. We have P

c1···n∼1−α
[X = (1)n] = (1−α)n and

g(1−α)− g(1) =f ((1)n) · P

c1···n∼1−α
[c = (1)n] + E

c1···n∼p
[f (c)|c , (1)n] · P

c1···n∼1−α
[c , (1)n]− g(1)

=g(1) · (1−α)n + E
c1···n∼p

[f (c)|c , (1)n] · (1− (1−α)n)− g(1)

=
(
g(1)− E

c1···n∼p
[f (c)|c , (1)n]

)
· ((1−α)n − 1) .

Now
∣∣∣∣∣g(1)− E

c1···n∼p
[f (c)|c , (1)n]

∣∣∣∣∣ ≤ 2 and |(1−α)n − 1| ≤ nα, whence |g(1−α)− g(1)| ≤ 2nα. The

other half of the lemma is symmetric.

2.5.2 Robustness

We require the fingerprinting code to be robust to inconsistent answers. We show that the
correlation is still good in the presence of inconsistencies.

For f : {±1}n→ {±1}, define a random variable ξα,ζ(f ) by

ξα,ζ(f ) = f (c) ·
∑
i∈[n]

φp(ci) +γI (p ∈ {0,1} ∧ f (c) , 2p − 1) , p ∼Dα,ζ , c1···n ∼ p,

where I is the indicator function and γ ∈ (0,1/2) satisfies ζγ/2 = (1− 2ζ)/π - that is,

γ :=
2
π

1− 2ζ
ζ

.

The first term f (c) ·
∑
i∈[n]φ

p(ci) measures the correlation as before. The second term
γI (p ∈ {0,1} ∧ f (c) , 2p − 1) measures inconsistencies. We will lower bound the expectation of
ξα,ζ(f ), which amounts to saying “either there is good correlation or there is an inconsistency
with good probability.” Thus either the fingerprinting code is able to accuse users or the adver-
sary is forced to be inconsistent.

The following bounds the expected increase in scores from one round of interaction.
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Proposition 2.12. Let f : {±1}n→ {±1} and α,ζ ∈ (0,1/2). Then

E

[
ξα,ζ(f )

]
≥ 2
π

(1− 2ζ)(1− 2nα).

Proof. Define g : [0,1]→ [−1,1] by g(p) = E
c1···n∼p

[f (c)]. Now

E

[
ξα,ζ(f )

]
= P

p∼Dα,ζ
[p = 0] ·γI(f ((−1)n) = 1) + P

p∼Dα,ζ
[p = 1] ·γI(f ((1)n) = −1)

+ P

p∼Dα,ζ
[p ∈ [α,1−α]] · E

p∼Dα,1−α

 E
c1···n∼p

f (c) ·
∑
i∈[n]

φp(ci)




=ζ ·γ (I(g(0) = 1) + I(g(1) = −1))

(by Proposition 2.10) + (1− 2ζ) ·
g(1−α)− g(α)

2sin−1(
√

1−α)− 2sin−1(
√
α)

≥ζ ·γ
(

1 + g(0)
2

+
1− g(1)

2

)
+ (1− 2ζ) ·

g(1−α)− g(α)
π

=
1− 2ζ
π

(1 + g(0) + 1− g(1) + g(1−α)− g(α))

≥1− 2ζ
π

(2− |g(α)− g(0)| − |g(1−α)− g(1)|)

(by Lemma 2.11) ≥1− 2ζ
π

(2− 4nα).

2.5.3 Concentration

So far we have shown that the fingerprinting code achieves good correlation or the adversary
is not consistent in expectation. However, we need this to hold with high probability. Thus we
now show that sums of ξα,ζ(f ) variables concentrate around their expectation.

Again, the proofs in this section are standard. However, the ξα,ζ(f ) variables can be quite
unwieldy and we are thus unable to apply standard results directly. So instead we must open
the proofs and verify that the concentration bounds hold. We proceed by bounding the moment
generating function of ξα,ζ(f ) and then proving an Azuma-like concentration inequality. These
calculations are not novel or insightful.

Proposition 2.13. Let f : {±1}n→ {±1}, α ∈ (0,1/2), ζ ∈ [1/4,1/2), and t ∈ [−
√
α/8,
√
α/8]. Then

E

[
e
t(ξα,ζ(f )−E[ξα,ζ(f )])

]
≤ eCt

2
,

where C = 64enα/4
α .

Proof. We have

ξα,ζ(f ) = f (c) ·
∑
i∈[n]

φp(ci) +γI (p ∈ {0,1} ∧ f (c) , 2p − 1) , p ∼Dα,ζ , c1···n ∼ p.
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Let Y =
∑
i∈[n]φ

p(ci). By Lemma 2.3 and independence,

E

[
etY

]
= E
c1···n∼p

[
et

∑
i∈[n]φ

p(ci )
]

=
(
E
c∼p

[
etφ

p(c)
])n
≤ et

2n

for t ∈ [−
√
α/2,
√
α/2]. Pick t ∈ {±

√
α/2} such that

∞∑
k=0

t2k+1

(2k + 1)!
E

[
Y 2k+1

]
≥ 0.

Then by dropping positive terms, for all j ≥ 1,

0 ≤ E

[
Y 2j

]
≤

(2j)!
t2j

∞∑
k=0

tk

k!
E

[
Y k

]
=

(2j)!
t2j

E

[
etY

]
≤

(2j)!
t2j

ent
2

=
4j(2j)!
αj

enα/4.

Thus we have bounded the even moments of Y . By Cauchy-Schwartz, for k = 2j + 1 ≥ 3,

E

[
|Y |k

]
≤

√
E

[
Y 2j

]
·E

[
Y 2j+2

]
≤

√
4j(2j)!
αj

enα/4 ·
4j+1(2j + 2)!

αj+1
enα/4 =

2kk!
αk/2

enα/4
√
k + 1
k

.

Since |f (c)| ≤ 1, we have E

[
|f (c) ·Y |k

]
≤ E

[
|Y |k

]
≤ 2k+1k!enα/4/αk/2 for all k ≥ 2. Since ζ ∈

[1/4,1/2), we have γ = (2/π)(1 − 2ζ)/ζ ∈ (0,1). Hence E

[
|γI (p ∈ {0,1} ∧ f (c) , 2p − 1) |k

]
≤ 1 for

all k. The map u 7→ |u|k is convex for all k ≥ 2, thus |(x + y)/2|k ≤ (|x|k + |y|k)/2 for all k ≥ 2 and
x,y ∈R. Combining these three facts, we have

E

[
|ξα,ζ(f )|k

]
≤ 2k−1

E

[
|f (c) ·Y |k + |γI(f (c) , f ∗(c))|k

]
≤ 22kk!enα/4

αk/2
+ 2k−1 ≤ 22k+1k!enα/4

αk/2
.

For t ∈ [−
√
α/8,
√
α/8], we have

E

[
etξα,ζ(f )

]
≤1 + tE

[
ξα,ζ(f )

]
+
∞∑
k=2

|t|k

k!
E

[
|ξα,ζ(f )|k

]
≤1 + tE

[
ξα,ζ(f )

]
+
∞∑
k=2

|t|k

k!
22k+1k!enα/4

αk/2

=1 + tE
[
ξα,ζ(f )

]
+ 2enα/4

∞∑
k=2

(
4|t|
√
α

)k
≤1 + tE

[
ξα,ζ(f )

]
+ 2enα/4

∞∑
k=2

(
4|t|
√
α

)2

2−(k−2)

=1 + tE
[
ξα,ζ(f )

]
+

64enα/4

α
t2

≤etE[ξα,ζ(f )]+Ct2
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Theorem 2.14 (Azuma-Doob Inequality). Let X1 · · ·Xm ∈ R, µ1 · · ·µmR and U0 · · ·Um ∈Ω be ran-
dom variables such that, for all i ∈ [m],

• Xi is determined by Ui ,

• µi is determined by Ui−1, and

• Ui−1 is determined by Ui .

Suppose that, for all i ∈ [m], u ∈Ω, and t ∈ [−c,c],

E

[
et(Xi−µi ) | Ui−1 = u

]
≤ eCt

2
.

If λ ∈ [0,2Cmc], then

P


∣∣∣∣∣∣∣∣
∑
i∈[m]

(Xi −µi)

∣∣∣∣∣∣∣∣ ≥ λ
 ≤ 2e−λ

2/4Cm.

If λ ≥ 2Cmc, then

P


∣∣∣∣∣∣∣∣
∑
i∈[m]

(Xi −µi)

∣∣∣∣∣∣∣∣ ≥ λ
 ≤ 2emCc

2−cλ ≤ 2e−cλ/2.

Proof. First we show by induction on k ∈ [m] that, for all u ∈Ω and t ∈ [−c,c],

E

[
et

∑m
i=m−k+1(Xi−µi ) | Um−k = u

]
≤ ek·Ct

2
.

This clearly holds for k = 1, as this is our supposition for i = m. Now suppose this holds for
some k ∈ [m− 1]. For u ∈Ω and t ∈ [−c,c], we have

E

[
et

∑m
i=m−k(Xi−µi ) | Um−(k+1) = u

]
=
∑
v∈Ω

P [Um−k = v | Um−k−1 = u]E
[
et

∑m
i=m−k(Xi−µi ) | Um−k = v

]
=
∑
v∈Ω

P [v | u]E
[
et(Xm−k−µm−k)et

∑m
i=m−k+1(Xi−µi ) | v

]
(using shorthand v ≡ Um−k = v and u ≡ Um−k−1 = u)

=
∑
v∈Ω

P [v | u]E
[
et(Xm−k−µm−k) | v

]
E

[
et

∑m
i=m−k+1(Xi−µi ) | v

]
(since Um−k = v determines Xm−k and µm−k)

≤
∑
v∈Ω

P [v | u]E
[
et(Xm−k−µm−k) | v

]
ek·Ct

2

(by the induction hypothesis)

=E
[
et(Xm−k−µm−k) | u

]
ek·Ct

2

≤eCt
2
ek·Ct

2

(by our supposition for i =m− k)

=e(k+1)·Ct2 .
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Thus, for all t ∈ [−c,c], we have
E

[
et

∑m
i=1(Xi−µi )

]
≤ em·Ct

2
.

By Markov’s inequality we have

P

∑
i∈[m]

(Xi −µi) ≥ λ

 ≤ E

[
et

∑
i∈[m](Xi−µi )

]
etλ

≤ emCt
2−tλ

and

P

∑
i∈[m]

(Xi −µi) ≤ −λ

 ≤ E

[
e−t

∑
i∈[m](Xi−µi )

]
e(−t)(−λ)

≤ emCt
2−tλ

for all t ∈ [0, c] and λ > 0. Set t = min{c,λ/2mC} to obtain the result.

2.5.4 Bounding the Score

Now we can finally show that the scores are large with high probability.

Theorem 2.15 (Correlation Lower Bound). At the end of IFPCN,n,`[P ,FN,n,δ,β] for arbitrary P , we
have, for any λ ∈ [0,17.5`/

√
α],

γθ` +
∑
i∈S1

s`i ≥
2
π

(1− 2ζ)(1− 2nα)` −λ

with probability at least 1− 2e−
λ2α
280` .

Proof. Since the adversary P is computationally unbounded and arbitrary, we may assume it
is deterministic. We may also assume n = |S1| and that the adversary is able to see cjS1 at each
round. (This only gives the adversary more power.)

This means that for each j ∈ [`] we can define a function f j : {±1}n→ {±1} that only depends
on the interaction up to round j − 1 (i.e. is a function of the state of P before it receives cj ) and
satisfies f j(cj

Sj
) = aj . For j ∈ [`], define

Xj := γ · I
(
pj ∈ {0,1} ∧ f j(cjS1) , 2pj − 1

)
+ f j(cjS1) ·

∑
i∈S1

φp
j
(cji ) ∼ ξα,ζ(f j ),

where ∼ denotes having the same distribution. We have

γ · (θj −θj−1) +
∑
i∈S1

(sji − s
j−1
i ) ≤ Xj

and
γθ` +

∑
i∈S1

s`i ≤
∑
j∈[`]

Xj ∼
∑
j∈[`]

ξα,ζ(f j ).

Now we can apply the above lemmas to bound the expectation and tail of this random variable.
Firstly, Proposition 2.12 shows that

µj := E

[
Xj

]
= E

[
ξα,ζ(f j )

]
≥ 2
π

(1− 2ζ)(1− 2nα)
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for all f j . Moreover, by Proposition 2.13,

E

[
et(X

j−µj )
]

= E

[
e
t(ξα,ζ(f j )−E[ξα,ζ(f j )])

]
≤ eCt

2

for all t ∈ [−
√
α/8,
√
α/8], where C = 70/α ≥ 64enα/4/α, as α ≤ 1/4n.

Define Uj = (f 1,p1, c1, · · · , f j ,pj , cj , f j+1) for j ∈ [`]∪{0}. Now X1 · · ·X`, µ1 · · ·µ`, and U0, · · · ,U`
satisfy the hypotheses of Theorem 2.14 with C = 70/α, c =

√
α/8, and m = `.

For λ ∈ [0,2Cmc] = [0,17.5`/
√
α], we have

P

∑
j∈[`]

Xj ≤
2
π

(1− 2ζ)(1− 2nα)` −λ

 ≤ P


∣∣∣∣∣∣∣∣
∑
i∈[m]

(Xi −µi)

∣∣∣∣∣∣∣∣ ≥ λ
 ≤ 2e−λ

2/4Cm ≤ 2e−
λ2α
280` ,

as required.

However, we can also prove that the scores are small with high probability. This follows
from the fact that users with large scores are accused and therefore no user’s score can be too
large:

Lemma 2.16. For all λ > 0,

P

∑
i∈S1

s`i > λ+nσ +
n
√
α

 ≤ e−λ2/4n` + e−
√
αλ/4,

where the probability is taken over IFPCN,n,`[P ,FN,n,δ,β] for an arbitrary P .

We will set λ = σ and, since 1/
√
α ≤ σ , we get that

∑
i∈S1 s`i ≤ 3σn with high probability.

Proof. Let ji ∈ [`+ 1] be as in Lemma 2.8 – that is, i < Sji and i ∈ Sji−1, where we define S`+1 = ∅
and S0 = [N ]. By the definition of ji , sj , and Sj , we have sji−2

i ≤ σ for all i ∈ S1, as otherwise

i ∈ I ji−2 and therefore i < Sji−1 = Sji−2\I ji−2. If i ∈ S1, then ji = 1 and sji−1
i = 0. Thus∑

i∈S1

s
ji−1
i =

∑
i∈S1

s
ji−2
i + aji−1φp

ji−1
(cji−1
i ) ≤

∑
i∈S1

σ +
1
√
α
≤ nσ +

n
√
α
.

By Lemma 2.8,

P

∑
i∈S1

s`i − s
ji−1
i > λ

 ≤ e−λ2/4n` + e−
√
αλ/4.

The lemma follows.

Now we show that the conflicting bounds of Theorem 2.15 and Lemma 2.16 imply com-
pleteness - that is, the adversary P cannot be consistent.

Theorem 2.17 (Completeness). At the end of IFPCN,n,`[P ,FN,n,δ,β] for an arbitrary P , we have

θ` > β` with probability at least 1− δ
1
2 ( 1

2−β)n, assuming
(

1
2 − β

)
n ≥ 1.
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Proof. Suppose for the sake of contradiction that θ` ≤ β`. By Lemma 2.16,
∑
i∈S1 s`i ≤ λ+nσ+ n√

α

with probability at least 1− e−λ2/4n` − e−
√
αλ/4. Set λ = nσ ≥ n√

α
. Now we assume∑

i∈S1

s`i ≤ 3nσ,

which holds with probability at least 1− e−nσ2/4` − e−
√
αnσ/4. Then

γθ` +
∑
i∈S1

s`i ≤ γβ` + 3nσ. (4)

By Theorem 2.15, with probabilty at least 1− 2e−
λ2α
280` ,

γθ` +
∑
i∈S1

s`i ≥
2
π

(1− 2ζ)(1− 2nα)` −λ (5)

for all λ ∈ [0,17.5`/
√
α]. Set λ =

(
1
2 − β

)2
`/2π and assme Equation (5) also holds.

Combining Equations (4) and (5) gives

2
π

(1− 2ζ)(1− 2nα)` −

(
1
2 − β

)2

2π
` ≤ γβ` + 3nσ. (6)

We claim this is a contradiction, which then holds with high probability, thus proving the
theorem.

Rearranging Equation (6) gives

2
π

(1− 2ζ)(1− 2nα) ≤

(
1
2 − β

)2

2π
+γβ +

3nσ
`
. (7)

Our setting of parameters gives

2nα ≤

(
1
2 − β

)
2

and
3nσ
`
≤

(
1
2 − β

)2

2π
.

Substituting these into Equation (7) gives

2
π

(1− 2ζ)
(
1− 1

2

(1
2
− β

))
≤

(
1
2 − β

)2

π
+γβ. (8)

Now we use 1 − 2ζ = 1
2

(
1
2 − β

)
and γ = 2

π
1−2ζ
ζ = ( 1

2−β)
πζ to derive a contradiction from Equation

(8): (
1
2 − β

)
π

(
1− 1

2

(1
2
− β

))
≤

(
1
2 − β

)2

π
+

(
1
2 − β

)
πζ

β,

1− 1
2

(1
2
− β

)
≤
(1

2
− β

)
+
β

ζ
,

ζ
(
1− 3

2

(1
2
− β

))
≤β.
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Since ζ = 1
2 −

1
4

(
1
2 − β

)
, we have

ζ
(
1− 3

2

(1
2
− β

))
=

1
2

(
1− 1

2

(1
2
− β

))(
1− 3

2

(1
2
− β

))
>

1
2

(
1− 2

(1
2
− β

))
.

And
β =

1
2

(
1− 2

(1
2
− β

))
.

This gives a contradiction. The total failure probability is bounded by

e−nσ
2/4` + e−

√
αnσ/4 + 2e−λ

2α/280` ≤
( δ

32

)16n
+
( δ

32

)4n
+ 2

( δ
32

) 1
2 ( 1

2−β)n
≤ δ

1
2 ( 1

2−β)n,

assuming
(

1
2 − β

)
n ≥ 1.

3 Hardness of False Discovery

3.1 The Statistical Query Model

Given a distribution D over {0,1}d , we would like to answer statistical queries about D. A sta-
tistical query on {0,1}d is specified by a function q : {0,1}d → [−1,1] and (abusing notation) is
defined to be

q(D) = E

x←RD
[q(x)] .

Our goal is to design an oracle O that answers statistical queries onD using only iid samples
x1, . . . ,xn←R D. Our focus is the case where the queries are chosen adaptively and adversarially.

Specifically, O is a stateful algorithm that holds a collection of samples x1, . . . ,xn ∈ {0,1}d ,
takes a statistical query q as input, and returns a real-valued answer a ∈ [−1,1]. We require
that when x1, . . . ,xn are iid samples from D, the answer a is close to q(D), and moreover that
this condition holds for every query in an adaptively chosen sequence q1, . . . , q`. Formally, we
define the following game between an O and a stateful adversary A.

A chooses a distribution D over {0,1}d .
Sample x1, . . . ,xn←R D, let x = (x1, . . . ,xn).
For j = 1, . . . , `
A outputs a query qj .
O(x,qj ) outputs aj .
(As A and O are stateful, qj and aj may depend on the history q1, a1, . . . , qj−1, aj−1.)

Figure 3: Accn,d,`[O,A]

Definition 3.1 (Accuracy). An oracle O is (α,β,γ)-accurate for ` adaptively chosen queries given
n samples in {0,1}d if for every adversary A,

P

Accn,d,`[O,A]

[
For (1− β)` choices of j,

∣∣∣O(x,qj )− qj(D)
∣∣∣ ≤ α] ≥ 1−γ .

As a shorthand, we will say that O is (α,β)-accurate for ` queries if for every n,d ∈ N, O is
(α,β,on(1))-accurate for ` queries given n samples in {0,1}d . Here, ` may depend on n and d
and on(1) is a function of n that tends to 0.
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We are interested in oracles that are both accurate and computationally efficient. We say
that an oracle O is computationally efficient if when given samples x1, . . . ,xn ∈ {0,1}d and a query
q : {0,1}d → [−1,1] it runs in time poly(n,d, |q|). Here q will be represented as a circuit that
evaluates q(x) and |q| denotes the size of this circuit.

3.2 Encryption Schemes

Our attack relies on the existence of a semantically secure private-key encryption scheme. An
encryption scheme is a triple of efficient algorithms (Gen,Enc,Dec) with the following syntax:

• Gen is a randomized algorithm that takes as input a security parameter λ and outputs a
λ-bit secret key. Formally, sk←R Gen(1λ).

• Enc is a randomized algorithm that takes as input a secret key and a messagem ∈ {−1,0,1}
and outputs a ciphertext ct. Formally, ct←R Enc(sk,m).

• Dec is a deterministic algorithm that takes as input a secret key and a ciphertext ct and
outputs a decrypted message m′. If the ciphertext ct was an encryption of m under the
key sk, then m′ =m. Formally, if ct←R Enc(sk,m), then Dec(sk,ct) =m with probability 1.

Roughly, security of the encryption scheme asserts that no polynomial time adversary who
does not know the secret key can distinguish encryptions of m = 0 from encryptions of m =
1, even if the adversary has access to an oracle that returns the encryption of an arbitrary
message under the unknown key. For convenience, we will require that this security property
holds simultaneously for an arbitrary polynomial number of secret keys. The existence of
an encryption scheme with this property follows immediately from the existence an ordinary
semantically secure encryption scheme. We start with the stronger definition only to simplify
our proofs. A secure encryption scheme exists under the minimal cryptographic assumption
that one-way functions exist. The formal definition of security is not needed until Section A.

3.3 Description of the Attack

The adversary is specified in Figure 4. In Figure 4, (Gen,Enc,Dec) is an encryption scheme
and F is an n-collusion resilient interactive fingerprinting code for N users of length ` = `(N )
robust to a β fraction of errors with false accusation probability δ = 1/8. Observe that Attackn,d
is only well defined for pairs n,d ∈ N for which 1 + dlog2(2000n)e ≤ d, so that there exists a
suitable choice of λ ∈ N. Through this section we will assume that n = n(d) is a polynomial
in d and that d is a sufficiently large unspecified constant, which ensures that Attackn,d is well
defined.

3.4 Analysis of the Attack

We will start by establishing that the number of falsely accused users is small. That is, letting
ψ` denote the number of users in T ` who are not in the set S, we have ψ` ≤ N/8 with high
probability. This condition will follow from the security of the interactive fingerprinting code
F . However, security alone is not enough to guarantee that the number of falsely accused
users is small, because security of F applies to adversaries that only have access to cji for users

i ∈ S \ T j , whereas the queries to the oracle depend on cji for users i < S \ T j . To remedy this
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The distribution D:
Given parameters d,n, let N = 2000n, let λ = d − dlog2(2000n)e.
For i ∈ [N ], let ski ←R Gen(1λ) and let yi = (i, ski) ∈ {0,1}d .
Let D be the uniform distribution over {y1, . . . , yN } ⊆ {0,1}d .

Choose samples x1, . . . ,xn←R D, let x = (x1, . . . ,xn).
Let S ⊆ [N ] be the set of unique indices i such that (i, ski) appears in x.

Attack:
Let T 1 = ∅.
For j = 1, . . . , ` = `(N ):

Let cj ∈ {±1}N be the column given by F .
For i = 1, . . . ,N , let ctji = Enc(ski , c

j
i ).

Define the query qj(i′ , sk′) to be Dec(sk′ , ctji′ ) if i′ < T j and 0 otherwise.
Let aj = O(x;qj ) and round aj to {±1} to obtain aj .
Give aj to F and let I j ⊆ [N ] be the set of accused users and T j = T j−1 ∪ I j .

Figure 4: Attackn,d[O]

problem we rely on the fact entries cji for i outside of S \ T j are encrypted under keys ski that
are not known to the oracle. Thus, a computationally efficient oracle “does not know” those
rows. We can formalize this argument by comparing Attack to an IdealAttack (Figure 5) where
these entries are replaced with zeros, and argue that the adversary cannot distinguish between
these two attacks without breaking the security of the encryption scheme.

Claim 3.2. For every oracle O, every polynomial n = n(d), and every sufficiently large d ∈N,

P

IdealAttackn,d [O]

[
ψ` > N/8

]
≤ negl(n)

Proof. This follow straightforwardly from a reduction to the security of the fingerprinting code.
Notice that since the query qj does not depend on any entry c

j
i for i < S \ T j−1. Thus, an

adversary for the fingerprinting code who has access to cj
S\T j−1 can simulate the view of the

oracle. Since we have for any adversary P

P

IFPCN,n,`[P ,F ]

[
ψ` > N/8

]
≤ negl(n),

we also have
P

IdealAttackn,d [O]

[
ψ` > N/8

]
≤ negl(n),

as desired.

Now we can argue that an efficient oracle cannot distinguish between the real attack and
the ideal attack. Thus the conclusion that ψ` ≤N/8 with high probability must also hold in the
real game.
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The distribution D:
Given parameters d,n, let N = 2000n, and λ = d − dlog2(2000n)e.
For i ∈ [N ], let ski ←R Gen(1λ) and let yi = (i, ski) ∈ {0,1}d .
Let D be the uniform distribution over {y1, . . . , yN } ⊆ {0,1}d .

Choose samples x1, . . . ,xn←R D, let x = (x1, . . . ,xn).
Let S ⊆ [N ] be the set of unique indices i such that (i, ski) appears in x.

Recovery phase:
Let T 1 = ∅.
For j = 1, . . . , ` = `(N ):

Let cj ∈ {±1}N be the column given by F .
For i ∈ S, let ctji = Enc(ski , c

j
i ), for i ∈ [N ] \ S, let ctji = Enc(ski ,0).

Define the query qj(i′ , sk′) to be Dec(sk′ , ctji′ ) if i′ < T j and 0 otherwise.
Let aj = O(x;qj ) and round aj to {±1} to obtain aj .
Give aj to F and let I j ⊆ [N ] be the set of accused users and T j = T j−1 ∪ I j .

Figure 5: IdealAttackn,d[O]

Claim 3.3. Let Z1 be the event
{
ψ` > N/8

}
. Assume (Gen,Enc,Dec) is a computationally secure

encryption scheme and let n = n(d) be any polynomial. Then if O is computationally efficient, for
every d ∈N ∣∣∣∣∣∣ P

IdealAttackn,d [O]
[Z1]− P

Attackn,d [O]
[Z1]

∣∣∣∣∣∣ ≤ negl(n)

The proof is straightforward from the definition of security, and is deferred to Section A.
Combining Claims 3.2 and 3.3 we easily obtain the following.

Claim 3.4. For every computionally efficient oracle O, every polynomial n = n(d), and every suffi-
ciently large d ∈N,

P

Attackn,d [O]

[
ψ` > N/8

]
≤ negl(n)

Claim 3.4 will be useful because it will allow us to establish that an accurate oracle must
give answers that are consistent with the fingerprinting code. That is, using θ` to denote the
number of inconsistent answers a1, . . . , a`, we will have θ` � `/2 with high probability.

Claim 3.5. If O is (1/3,β)-accurate for ` = `(2000n) adaptively chosen queries then for every poly-
nomial n = n(d) and every sufficiently large d ∈N,

P

Attackn,d [O]

[
θ` ≤ β`

]
≥ 1− on(1)

Proof. In the attack, the oracle’s input consists of n samples from D, and the total number of
queries issued is `. Therefore, by the assumption that O is (1/3,β)-accurate for ` queries, we
have

P


For (1− β)` choices of j ∈ [`],∣∣∣∣∣∣O(x,qj )− E

(i,ski )←RD

[
qj(i, ski)

]∣∣∣∣∣∣ ≤ 1/3

 ≥ 1− on(1). (9)
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Observe that, by construction, for every j ∈ [`],∣∣∣∣∣∣ E

(i,ski )←RD

[
qj(i, ski)

]
− E

i∈[N ]

[
c
j
i

]∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
 1
N

∑
i∈[N ]\T j−1

Dec(ski , ct
j
i ) +

1
N

∑
i∈T j−1

0

− E

i∈[n]

[
c
j
i

]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
 1
N

∑
i∈[N ]\T j−1

c
j
i

− E

i∈[n]

[
c
j
i

]∣∣∣∣∣∣∣∣
≤

2
∣∣∣T j−1

∣∣∣
N

≤
2(ψj−1 +n)

N
(10)

where the second equality is because by construction ctji ←R Enc(ski , c
j
i ) and the inequality is

because we have cji ∈ {±1}.
By Claim 3.4, and the fact that ψj−1 ≤ ψ`, we have

P

[
ψj−1 > N/8 +n

]
≤ P

[
ψ` > N/8 +n

]
≤ negl(n).

Noting that N/8 +n ≤N/6 and combining with (10), we have

P

[
∀ j ∈ [`],

∣∣∣∣∣∣ E

(i,ski )←RD

[
qj(i, ski)

]
− E

i∈[n]

[
c
j
i

]∣∣∣∣∣∣ ≤ 1/3
]
≥ 1−negl(n)

Applying the triangle inequality to (9) and (10), we obtain

P


For (1− β)` choices of j ∈ [`],∣∣∣∣∣∣O(x,qj )− E

i∈[N ]

[
c
j
i

]∣∣∣∣∣∣ ≤ 2/3

 ≥ 1− on(1). (11)

Fix a j ∈ [`] such that aj is accurate for query qj . If cji = 1 for every i ∈ S \T j−1, then by (10),

aj = O(x,qj ) ≥ 1/3, so the rounded answer aj = 1. Similarly if cji = −1 for every i ∈ S \ T j−1,

aj = −1. Therefore there must exist i ∈ S \T j−1 so that aj = cji . Thus there are (1−β)` choices of
j ∈ [`] for which this condition holds, so the number of errors θ` is at most β`. This completes
the proof of the claim.

As before, we can argue that the real attack and the ideal attack are computationally indis-
tinguishable, and thus the oracle must also give consistent answers in the ideal attack.

Claim 3.6. Let Z2 be the event
{
θ` ≤ β`

}
. Assume (Gen,Enc,Dec) is a computationally secure en-

cryption scheme and let n = n(d) be any polynomial. Then if O is computationally efficient, for every
d ∈N ∣∣∣∣∣∣ P

IdealAttackn,d [O]
[Z2]− P

Attackn,d [O]
[Z2]

∣∣∣∣∣∣ ≤ negl(n)
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The proof is straightforward from the definition of security, and is deferred to Section A.
Combining Claims 3.5 and 3.6 we easily obtain the following.

Claim 3.7. If O computationally efficient and (1/3,β)-accurate for ` = `(2000n) adaptively chosen
queries then for every polynomial n = n(d) and every sufficiently large d ∈N,

P

IdealAttackn,d [O]

[
θ` ≤ β`

]
≥ 1− on(1)

However, the conclusion of 3.7 can easily be seen to lead to a contradiction, because the
security of the fingerprinting code assures that no attacker who only has access to cj

S\T j−1 in

each round j = 1, . . . , ` can give answers that are consistent for (1− β)` of the columns cj . Thus,
we have

Claim 3.8. For every oracle O, every polynomial n = n(d), and every sufficiently large d ∈N,

P

IdealAttackn,d [O]

[
θ` ≤ β`

]
≤ negl(n)

Putting it together, we obtain the following theorem.

Theorem 3.9. There is a function `(2000n,β) = O(n2/
(

1
2 − β

)4
) such that there is no computa-

tionally efficient oracle O that is (1/3,β)-accurate for `(2000n,β) adaptively chosen queries given n
samples in {0,1}d .

Proof. Assume for the sake of contradiction that there were such an oracle. Then by Claim 3.7
we would have

P

IdealAttackn,d [O]

[
θ` ≤ β`

]
≥ 1− on(1).

But, by Claim 3.8 we have
P

IdealAttackn,d [O]

[
θ` ≤ β`

]
≤ negl(n),

which is a contradiction.

3.5 An Information-Theoretic Lower Bound

As in [HU14], we observe that the techniques underlying our computational hardness result
can also be used to prove an information-theoretic lower bound when the dimension of the
data is large. At a high level, the argument uses the fact that the encryption scheme we rely on
only needs to satisfy relatively weak security properties, specifically security for at most O(n2)
messages. This security property can actually be achieved against computationally unbounded
adversaries provided that the length of the secret keys is O(n2). As a result, our lower bound
can be made to hold against computationally unbounded oracles, but since the secret keys
have length O(n2), we will require d =O(n2). We refer the reader to [HU14] for a slightly more
detailed discussion, and simply state the following result.

Theorem 3.10. There is a function `(2000n,β) =O(n2/
(

1
2 − β

)4
) such that there is no oracleO (even

one that is computationally unbounded) that is (1/3,β)-accurate for `(2000n,β) adaptively chosen
queries given n samples in {0,1}d when d ≥ `(2000n,β).
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4 Hardness of Avoiding Blatant Non Privacy

In this section we show how our arguments also imply that computationally efficient oracles
that guarantee accuracy for adaptively chosen statistical queries must be blatantly non-private.

4.1 Blatant Non Privacy and Sample Accuracy

Before we can define blatant non-privacy, we need to define a notion of accuracy that is more
appropriate for the application to privacy. In contrast to Definition 3.1 where accuracy is de-
fined with respect to the distribution, here we define accurate with respect to the sample itself.
With this change in mind, we model blatant non-privacy via the following game.

Apriv chooses a set y = {y1, . . . , y2n} ⊆ {0,1}d
Sample a random subsample x ⊆R y of size n
For j = 1, . . . , `
Apriv outputs a query qj

O(x,qj ) outputs aj

(As Apriv and O are stateful, qj and aj may depend on q1, a1, . . . , qj−1, aj−1.)
Apriv outputs a set x′ ⊆ y

Figure 6: NonPrivacyn,d[O,Apriv]

Definition 4.1. An oracle O is (α,β,γ)-sample-accurate for ` adaptively chosen queries given n
samples in {0,1}d if for every adversary Apriv,

P

NonPrivacyn,d,`[O,Apriv]

[
For (1− β)` choices of j ∈ [`],

∣∣∣O(x,qj )− qj(x)
∣∣∣ ≤ α] ≥ 1−γ

where q(x) = 1
n

∑
i∈[n] q(xi) is the average over the sample.

As a shorthand, we will say that O is (α,β)-sample-accurate for ` queries if for every n,d ∈N,
O is (α,β,on(1))-accurate for ` queries given n samples in {0,1}d . Here, ` may depend on n and
d and on(1) is a function of n that tends to 0.

Definition 4.2. Giving (α,β)-accurate answers to ` adaptively chosen queries is blatantly non-
private for efficient oracles if there exists an adversary Apriv such that for every oracle O that
is computationally efficient and (α,β)-sample-accurate for ` adaptively chosen queries,

P

NonPrivacyn,d,`[O,Apriv]

[
|x4x′ | > n/100

]
≤ on(1)

If the conclusion holds even for computationally inefficient oracles then we replace “for
efficient oracles” with “for unbounded oracles” in the definition.

4.2 Lower Bounds

In this section we show the following theorem

Theorem 4.3. Giving accurate answers to O(n2) adaptively chosen queries is blatantly non-private
for computationally efficient oracles.
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The attack is defined in Figure 7. Therein F is a n-collusion-resilient interactive finger-
printing code of length ` for N = 2n users robust to a β fraction of errors with false accusation
probability δ = 1/2000.

The set y:
Given parameters d,n, let λ = d − dlog2(2n)e.
For i ∈ [2n], let ski ←R Gen(1λ) and let yi = (i, ski).

Attack:
Let T 1 = ∅.
For j = 1, . . . , ` = `(2n):

Let cj ∈ {±1}2n be the column given by F .
For i = 1, . . . ,2n, let ctji = Enc(ski , c

j
i ).

Define the query qj(i′ , sk′) to be Dec(sk′ , ctji′ ) if i′ < T j and 0 otherwise.
Let aj = O(x;qj ) and round (n/(n− |T j−1|))aj to {±1} to obtain aj .
Give aj to F and let I j ⊆ [N ] be the set of accused users and T j = T j−1 ∪ I j .
If |T j | > 499n/500, let L = j, halt, and output x′ = {yi : i ∈ T L}.

Let L = `, and output x′ = {yi : i ∈ T L}.

Figure 7: PrivacyAttackn,d[O]

We will start by establishing that the number of falsely accused users is small. That is,
letting ψj denote the number of users in T j who are not in the set x, we have ψL ≤ n/1000
with high probability. As in Section 3, this condition will follow from the security of the in-
teractive fingerprinting code F combined with the security of the encryption scheme, via the
introduction of an “ideal attack” (Figure 8).

The set y:
Given parameters d,n, let λ = d − dlog2(2n)e.
For i ∈ [2n], let ski ←R Gen(1λ) and let yi = (i, ski).

Attack:
Let T 1 = ∅.
For j = 1, . . . , ` = `(2n):

Let cj ∈ {±1}2n be the column given by F .
For i = 1, . . . ,2n, let ctji = Enc(ski , c

j
i ).

For i ∈ S, let ctji = Enc(ski , c
j
i ), for i ∈ [N ] \ x, let ctji = Enc(ski ,0).

Let aj = O(x;qj ) and round (n/(n− |T j−1|))aj to {±1} to obtain aj .
Give aj to F and let I j ⊆ [N ] be the set of accused users and T j = T j−1 ∪ I j .
If |T j | > 499n/500, let L = j, halt, and output x′ = {yi : i ∈ T L}.

Let L = `, and output x′ = {yi : i ∈ T L}.

Figure 8: IdealPrivacyAttackn,d[O]
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Claim 4.4. For every oracle O, every polynomial n = n(d), and every sufficiently large d ∈N,

P

IdealAttackn,d [O]

[
ψL > n/1000

]
≤ negl(n)

Proof. This follow straightforwardly from a reduction to the security of the fingerprinting code.
Notice that since the query qj does not depend on any entry cji for i < x\T j−1. Thus, an adversary

for the fingerprinting code who has access to cj
x\T j−1 can simulate the view of the oracle. Since

we have for any adversary P

P

IFPCN,n,`[P ,F ]

[
ψ` > N/2000

]
≤ negl(n),

we also have
P

IdealPrivacyAttackn,d [O]

[
ψL > n/1000

]
≤ negl(n),

where we have used the fact that for every j ′ ≤ j, ψj ′ ≤ ψj . This completes the proof.

Now we can argue that an efficient oracle cannot distinguish between the real attack and
the ideal attack. Thus the conclusion that ψL ≤ n/1000 with high probability must also hold in
the real game.

Claim 4.5. Let Z1 be the event
{
ψL > n/1000

}
Assume (Gen,Enc,Dec) is a computationally secure

encryption scheme and let n = n(d) be any polynomial. Then if O is computationally efficient, for
every d ∈N ∣∣∣∣∣∣ P

IdealPrivacyAttackn,d [O]
[Z1]− P

PrivacyAttackn,d [O]
[Z1]

∣∣∣∣∣∣ ≤ negl(n)

The proof is straightforward from the definition of security, and is deferred to Section A.
Combining Claims 4.4 and 4.5 we easily obtain the following.

Claim 4.6. For every computionally efficient oracle O, every polynomial n = n(d), and every suffi-
ciently large d ∈N,

P

PrivacyAttackn,d [O]

[
ψL > n/1000

]
≤ negl(n)

By Claim 4.6 we have |x′ \ x| ≤ n/1000. Now, in order to show |x′4x| ≤ n/100, it suffices to
show that |x\x′ | ≤ n/200. In order to do so we begin with the following claim, which establishes
that if the oracle O is sufficiently accurate, and |x \ T j−1| ≤ n/200, then the oracle returns a
consistent answer to the query qj . Recalling that we use θj to denote the number of rounded
answers ak for 1 ≤ k ≤ j that are inconsistent with cj , we can state the following claim.

Claim 4.7. If O is (1/1000,0)-sample-accurate for ` = `(2n) adaptively chosen queries then for every
polynomial n = n(d), every sufficiently large d ∈N, and every j ∈ [L],

P

PrivacyAttackn,d [O]

[
θL = 0

]
≥ 1− on(1)
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Proof. Observe that, by construction, for every j ∈ [`],

E

i∈x

[
qj(xi)

]
=

1
n

 ∑
i∈(x\T j−1)

c
j
i +

∑
i∈(x∩T j−1)

0


= E

i∈(x\T j−1)

[
c
j
i

]
·
(
|x \ T j−1|

n

)
After renormalizing by (n/n− |T j−1|) we have(

n

n− |T j−1|

)
· E
i∈x

[
qj(xi)

]
= E

i∈(x\T j−1)

[
c
j
i

]
·
(

n

n− |T j−1|

)
·
(
|x \ T j−1|

n

)
= E

i∈(x\T j−1)

[
c
j
i

]
·
(
n− T j−1 +ψj−1

n− |T j−1|

)
= E

i∈(x\T j−1)

[
c
j
i

]
·
(
1 +

ψj−1

n− |T j−1|

)
Since 0 ≤ ψj−1 ≤ n/10000 (by Claim 4.6), and since the algorithm terminates unless |T j−1| ≤
499n/500, we obtain

E

i∈(x\T j−1)

[
c
j
i

]
≤

(
n

n− |T j−1|

)
· E
i∈x

[
qj(xi)

]
≤ 11

10
· E

i∈(x\T j−1)

[
c
j
i

]
=⇒

∣∣∣∣∣∣
(

n

n− |T j−1|

)
· E
i∈x

[
qj(xi)

]
− E

i∈(x\T j−1)

[
c
j
i

]∣∣∣∣∣∣ ≤ 1
10

(12)

By the assumption that O is (1/1000,0)-sample-accurate, we have that, with probability 1 −
on(1), for every j ∈ [L], ∣∣∣∣∣aj − E

i∈x

[
qj(xi)

]∣∣∣∣∣ ≤ 1/1000. (13)

Now, combining (12) and (13), we have∣∣∣∣∣∣
(

n

n− |T j−1|

)
· aj − E

i∈(x\T j−1)

[
c
j
i

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣
((

n

n− |T j−1|

)
· E
i∈x

[
qj(xi)

]
− E

i∈(x\T j−1)

[
c
j
i

])
+
(

n

n− |T j−1|

)
· 1

1000

∣∣∣∣∣∣ ≤ 1
2

+
1

10
≤ 2

3
(14)

Finally, observe that if cji = 1 for every i ∈ [2n], then we have

E

i∈(x\T j−1)

[
c
j
i

]
= 1,

and by (14) we have (n/(n− |T j |))aj ≥ 1− 2/3 = 1/3. Thus, the rounded answer aj = 1. Similarly,
if cji = −1 for every i ∈ [2n], then we have aj = −1. This completes the proof of the claim.
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As before, we can argue that the real attack and the ideal attack are computationally indis-
tinguishable, and thus the oracle must also give consistent answers in the ideal attack.

Claim 4.8. Let Z2 be the event
{
θL = 0

}
Assume (Gen,Enc,Dec) is a computationally secure encryp-

tion scheme and let n = n(d) be any polynomial. Then if O is computationally efficient, for every
d ∈N ∣∣∣∣∣∣ P

IdealPrivacyAttackn,d [O]
[Z2]− P

PrivacyAttackn,d [O]
[Z2]

∣∣∣∣∣∣ ≤ negl(n)

The proof is straightforward from the definition of security, and is deferred to Section A.
Combining Claims 4.7 and 4.8 we easily obtain the following.

Claim 4.9. If O computationally efficient and (1/1000,0)-accurate for ` = `(2n) adaptively chosen
queries then for every polynomial n = n(d) and every sufficiently large d ∈N,

P

IdealPrivacyAttackn,d [O]

[
θL = 0

]
≥ 1− on(1)

We can use Claim 4.9 to derive a contradiction. To do so we use the fact that the security
of the fingerprinting code assures that no attacker who only has access to cj

x\T j−1 in each round

j = 1, . . . , ` can give answers that are consistent for all ` of the columns cj . Thus, we have

Claim 4.10. For every oracle O, every polynomial n = n(d), and every sufficiently large d ∈ N, if
L = `

P

IdealPrivacyAttackn,d [O]

[
θ` = 0

]
≤ negl(n)

Putting it together, we obtain the following theorem.

Theorem 4.11. There is a function `(2n) = O(n2) such that there is no computationally efficient
oracle O that is (1/1000,0)-accurate for `(2n) adaptively chosen queries given n samples in {0,1}d .

Proof. Assume for the sake of contradiction that there were such an oracle. Now consider two
cases. First consider the case that L < `, which means the algorithm has terminated early due
to the condition |T L| ≥ 499n/500 being reached. In this case we have |x′ | = |T L| ≥ 499n/500.
However, by Claim 4.4, we have that |x′ \ x| ≤ n/10000. Therefore we have |x4x′ | ≤ (499/500−
1/5000)n ≤ n/100, as desired.

Now consider the case where L = `, meaning the algorithm does not terminate early. In this
case, by Claim 4.9 we have

P

IdealPrivacyAttackn,d [O]

[
θ` = 0

]
≥ 1− on(1)

but by Claim 4.10 we have

P

IdealPrivacyAttackn,d [O]

[
θ` = 0

]
≤ negl(n),

which is a contradiction. This completes the proof of the theorem.
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4.3 An Information-Theoretic Lower Bound

As we did in Section 3.5, we can prove an information-theoretic analogue of our hardness result
for avoiding blatant non-privacy.

Theorem 4.12. There is a function `(2n) = O(n2) such that there is no oracle O (even a compu-
tationally unbounded one) that is (1/1000,0)-accurate for `(2n) adaptively chosen queries given n
samples in {0,1}d where d ≥ `(2n).

The proof is essentially identical to what is sketched in Section 3.5.
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A Security Reductions from Sections 3 and 4

In Section 3 we made several claims comparing the probability of events in Attack to the prob-
ability of events in IdealAttack. Each of these claims follow from the assumed security of the
encryption scheme. In this section we restate and prove these claims. Since the claims are
all of a similar nature, the proof will be somewhat modular. The claims in Section 4 relating
PrivacyAttack to IdealPrivacyAttack can be proven in an essentially identical fashion, and we
omit these proofs for brevity.

Before we begin recall the formal definition of security of an encryption scheme. Security
is defined via a pair of oracles E0 and E1. E1(sk1, . . . , skN , ·) takes as input the index of a key
i ∈ [N ] and a message m and returns Enc(ski ,m), whereas E0(sk1, . . . , skN , ·) takes the same input
but returns Enc(ski ,0). The security of the encryption scheme asserts that for randomly chosen
secret keys, no computationally efficient adversary can tell whether or not it is interacting with
E0 or E1.

Definition A.1. An encryption scheme (Gen,Enc,Dec) is secure if for every polynomial N =
N (λ), and every poly(λ)-time adversary B, if sk1, . . . , skN ←R Gen(1λ)∣∣∣∣P [

BE0(sk1,...,skN ,·) = 1
]
−P

[
BE1(sk1,...,skN ,·) = 1

]∣∣∣∣ = negl(λ)

We now restate the relevant claims from Section 3.

Claim A.2 (Claim 3.3 Restated). Let Z1 be the event
{
ψ` > N/8

}
. Assume (Gen,Enc,Dec) is a com-

putationally secure encryption scheme and let n = n(d) be any polynomial. Then if O is computa-
tionally efficient, for every d ∈N∣∣∣∣∣∣ P

IdealAttackn,d [O]
[Z1]− P

Attackn,d [O]
[Z1]

∣∣∣∣∣∣ ≤ negl(n)
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Claim A.3 (Claim 3.6 Restated). Let Z2 be the event
{
θ` ≤ β`

}
. Assume (Gen,Enc,Dec) is a compu-

tationally secure encryption scheme and let n = n(d) be any polynomial. Then ifO is computationally
efficient, for every d ∈N ∣∣∣∣∣∣ P

IdealAttackn,d [O]
[Z2]− P

Attackn,d [O]
[Z2]

∣∣∣∣∣∣ ≤ negl(n)

To prove both of these claims, for c ∈ {1,2} we construct an adversary Bc that will attempt
to use O to break the security of the encryption. We construct Bc in such a way that its advan-
tage in breaking the security of encryption is precisely the difference in the probability of the
event Zc between Attack and IdealAttack, which implies that the difference in probabilities is
negligible. The simulator is given in Figure 9

Simulate constructing and sampling from D:
Given parameters d,n, let N = 2000n, let λ = d − dlog2(2000n)e.
Sample users u1, . . . ,un←R [N ], let S be the set of distinct users in the sample.
Choose new keys ski ←R Gen(1λ) for i ∈ S.
For i ∈ S, let xi = (ui , skui ), let x = (x1, . . . ,xn).

Simulate the attack:
Let T 1 = ∅.
For j = 1, . . . , ` = `(N ):

Let cj be the column given by F .
For i = 1, . . . ,N :

If i ∈ S, let ctji = Enc(ski , c
j
i ), otherwise as E for an encryption of cji under

key ski , that is ctji = Eb(sk1, . . . , skN , i, c
j
i ).

Define the query qj(i′ , sk′) to be Dec(sk′ , ctji′ ) if i′ < T j and 0 otherwise.
Let aj = O(x;qj ) and round aj to {±1} to obtain aj .
Give aj to F and let I j ⊆ [N ] be the set of accused users and T j = T j−1 ∪ I j .

Output 1 if and only if the event Zc occurs

Figure 9: BEb(sk1,...,skN ,·)
c,n,d

Proof of Claims A.2, A.3. First, observe that for c ∈ {1,2}, Bc is computationally efficient as long
as F and O are both computationally efficient. It is not hard to see that our construction F is
efficient and efficiency ofO is an assumption of the claim. Also notice B can determine whether
Zc has occurred efficiently.

Now we observe that when the oracle is E1 (the oracle that takes as input i andm and returns
Enc(ski ,m)), and sk1, . . . , skN are chosen randomly from Gen(1λ), then the view of the oracle is
identical to Attackn,d[O]. Specifically, the oracle holds a random sample of pairs (i, ski) and
is shown queries that are encryptions either under keys it knows or random unknown keys.
Moreover, the messages being encrypted are chosen from the same distribution. On the other
hand, when the oracle is E0 (the oracle that takes as input i and ct and returns Enc(ski ,0)), then
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the view of the oracle is identical to Attackn,d[O]. Thus we have that for c ∈ {1,2},∣∣∣∣∣∣ P

IdealAttackn,d [O]
[Zc]− P

Attackn,d [O]
[Zc]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ P

sk1,...,skN←RGen(1λ)

[
BE0(sk1,...,skN ,·)
c,n,d = 1

]
− P

sk1,...,skN←RGen(1λ)

[
BE1(sk1,...,skN ,·)
c,n,d = 1

]∣∣∣∣∣∣ = negl(λ) = negl(d)

The last equality holds because we have chosen N = 2000n(d) = poly(d), and therefore we have
λ = d − dlogN e = d −O(logd). This completes the proof of both claims.
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