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ABSTRACT

We study infinitely repeated games in settings of imperfect monitoring. We first prove a

family of theorems that show that when the signals observed by the players satisfy a condition

known as(ǫ, γ)-differential privacy, that the folk theorem has little bite: for values ofǫ and

γ sufficiently small, for a fixed discount factor, any equilibrium of the repeated game involve

players playing approximate equilibria of the stage game inevery period. Next, we argue

that in large games (n player games in which unilateral deviations by single players have

only a small impact on the utility of other players), many monitoring settings naturally lead

to signals that satisfy(ǫ, γ)-differential privacy, forǫ andγ tending to zero as the number of

playersn grows large. We conclude that in such settings, the set of equilibria of the repeated

game collapse to the set of equilibria of the stage game.

1 INTRODUCTION

In a repeated game, agents interact with one another repeatedly, and can base their actions on

their memory of past interactions. One of the most robust features of models of infinitely repeated

games is the multiplicity of equilibria. Repeatedly playing Nash equilibria of the underlying stage

game is preserved as an equilibrium of the repeated game, buta much larger set is introduced as

well. The so called “folk theorems” state, informally, thatany individually rational payoffs for
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each player (i.e. payoffs that are above their minmax value in the game) can be achieved as

an equilibrium of the repeated game (if players are patient enough). The folk theorems can be

interpreted as either positive or negative statements. From the perspective of an optimist (or

a mechanism designer), they mean that high social-welfare behaviors (like cooperation in the

Prisoner’s Dilemma) can be supported as equilibria in repeated games, even though they cannot

be supported as equilibria of the stage game. From the perspective of a pessimist (or a computer

scientist), they mean that the social welfare of theworstequilibrium can get worse (i.e. the price

of anarchy increases). Regardless of the stance one takes, because of the severe multiplicity

problem, Nash equilibria of repeated games lose much of their predictive power.

The simplest model of repeated games are repeated games withperfect monitoring. In these

games, after each period, each agent observes the exact action played by each of his opponents. In

several settings of interest, this assumption is unrealistic. A more natural model is repeated games

with imperfect monitoring, in which agents receive some kind of noisy signal about the play at the

last period. This signal could be an estimate of the payoff ofeach of a player’s actions, a noisy

histogram of how many players played each action, or information that is encoded as a set of

prices. The game could be one ofprivate monitoring, in which each player receives his own signal

privately, orpublic monitoring, in which every player observes the same signal. Folk theorems

are known to hold in almost all models of repeated games, eventhose with imperfect public or

private monitoring. SeeFudenberg, Levine, and Maskin(1994) for a classic reference in the case

of public monitoring,Sugaya(2011) for a recent result in the case of private monitoring, and

Mailath and Samuelson(2006) for a textbook treatment.

In this paper, we show that these theorems will often lack bite in “large” games of imperfect

monitoring. Particularly, we consider games where the observed signals satisfy the notion of “dif-

ferential privacy” (Dwork, McSherry, Nissim, and Smith, 2006), which we show arises naturally

in many games of imperfect monitoring with a large number of players. We show that in games

with differentially private signals, the set of equilibriaof the repeated games must involve play

of approximate equilibria of the stage game in every period—approximate Nash equilibrium in

the case of public monitoring and approximate correlated equilibrium in the case of private mon-

itoring. Our results therefore suggests that in games with alarge number of players, we should

not expect to see “folk theorem equilibria.” This also adds to a long standing question in the

literature on repeated games—for a given fixedδ what payoffs can be achieved by equilibria of

the repeated game?1 We implicitly provide an upper bound on this set—it is the setof payoffs

that can be achieved by the play of approximate stage game equilibria in every period, with the

1See e.g.Mailath, Obara, and Sekiguchi(2002) for a characterization in the case of the Prisoner’s Dilemma with
perfect monitoring.
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degree of approximation being bounded by our theorems.

A different way to view our results arises from a seeming discontinuity between dynamic

models with a continuum of players and those with a large but finite number of players.2 In

a dynamic model, incentives are generated by agents punishing or rewarding others for past

play. When only aggregate play is observed, then the play of one single agent does not affect

the observed outcome in the continuum case, and hence individual deviations cannot be detected.

With a finite number of players, a deviation may be small, but it is perfectly observable. Therefore

deviations can be punished or rewarded. A small literature attempts to bridge this discontinuity

by postulating a model of noisy observation. Our paper can bethought of as a “quantitative”

version of their limit results for repeated games. In particular, the noisiness of our signals are

parametrized by two numbers,ǫ andγ. We show that asǫ + γ vanishes, we approximate the

unobservability of the continuum setting, while the perfect observability setting corresponds to

ǫ+ γ large.

1.1 RELATED WORK

It has long been understood (hence the term “folk theorem”) that the intertemporal incentives

generated by repeated interaction can support more outcomes than just the equilibria of the

one-off interaction. The literature is too large to survey here, we refer the interested reader to

the textbook byMailath and Samuelson(2006) for a comprehensive and up-to-date treatment.

We review concepts that are standard in the literature as needed in Section2. Repeated games

have also been studied in the computer science literature. An older literature studies repeated

games when agents have limited computational resources—see e.g. Megiddo and Wigderson

(1986), Papadimitriou and Yannakakis(1994) or Abreu and Rubinstein(1988). There has also

been some recent interest in repeated games in the computer science community. These con-

sider games of perfect monitoring, and study the complexityof computing an equilibrium of the

repeated game—see e.g.Borgs, Chayes, Immorlica, Kalai, Mirrokni, and Papadimitriou (2010)

andHalpern, Pass, and Seeman(2013).

The idea that noisy observation may limit the equilibria in repeated games has some

precedent in the literature—notably the papers ofGreen (1980), Sabourian(1990) and

Al-Najjar and Smorodinsky(2001).3 In relation to our setting, note that the first paper restricts

attention to trigger strategies, the first two papers assumethe stage game is anonymous, and all

three consider public equilibria in a public monitoring setting. By contrast our results apply to

2We thank Nabil Al-Najjar and Preston McAfee for pointing outthis connection to us.
3Levine and Pesendorfer(1995) study similar questions in dynamic games.
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general games that satisfy the differential privacy condition, and apply also to private monitor-

ing settings. The results in those papers are limit theorems, while we prove quantitative bounds

on the relationship between the “amount” of noise and the degree of deviation from stage-Nash

equilibria that can be supported. Finally, while their conditions on the monitoring structure may

be hard to verify, we are able we use techniques from the literature on differential privacy (see

below) to give examples of “natural” settings satisfying our conditions.

“Differential Privacy” is a condition that a family of probability distributions (which are

parameterized byn agent “reports”) may satisfy, which provides a multiplicative bound on

the influence that any single report can have on the resultingdistribution. It was first defined

by Dwork, McSherry, Nissim, and Smith(2006) in the computer science literature, and has be-

come a standard “privacy” solution concept. We do not use thecondition here to deal with

privacy concerns, but instead just as a useful Lipschitz condition that is commonly satisfied

by many noisy families of signal distributions. The connection between differential privacy

and game theory was first noted byMcSherry and Talwar(2007) who observed that when this

condition is applied to an auction mechanism, it can be used to argue approximate truthful-

ness. They use it to derive prior-free near revenue-optimalmechanisms for digital goods auc-

tions. Since then, differential privacy has been used as a tool in a number of game theoretic

settings, including mechanism design without money (Nissim, Smorodinsky, and Tennenholtz,

2012) and mechanism design in prior-free settings of incompleteinformation with mecha-

nisms that have extremely weak powers of enforcement (Kearns, Pai, Roth, and Ullman, 2014;

Rogers and Roth, 2013). A related line of work seeks to use traditional tools in mechanism

design in settings in which agents have preferences for “privacy”, which are quantified by mea-

sures related to differential privacy (Ghosh and Roth, 2013; Nissim, Orlandi, and Smorodinsky,

2012; Xiao, 2013; Chen, Chong, Kash, Moran, and Vadhan, 2013; Ghosh and Ligett, 2013;

Nissim, Vadhan, and Xiao, 2014). SeePai and Roth(2013) for a survey of this area and its con-

nections to mechanism design and game theory.

2 PRELIMINARIES

We consider infinitely repeated games that are played over a series of periods. Time is discrete

and is indexed byt = 0, 1, 2, . . ..

STAGE GAME There aren players who repeatedly play a stage gameG. Each playeri has a

finite set of actionsAi, and gets payoffui :
∏n

j=1Aj → [0, 1]. We will denote an action profile

(i.e. a vector of actions, one for each player) bya ∈ ∏n

j=1Aj . Mixed strategies are probability
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distributions over pure strategies, which we write as∆Ai for playeri. We writeαi ∈ ∆Ai to

denote a mixed strategy for playeri, andα to denote a vector of mixed strategies. Payoffs for

mixed strategies are, as usual, the expected payoff when theprofile of actions is drawn according

to the distribution specified by the mixed strategies.

All players discount the future at a rateδ ∈ [0, 1). Therefore an annuity that pays1 in every

period, forever, has a present discounted value of1
1−δ

. As is standard in the literature on repeated

games, we normalize all payoffs by(1 − δ)—the value of the annuity of1 forever is therefore

normalized to1, while e.g. a payoff of1 today and nothing thereafter is normalized to(1 − δ)

(because the agent would be indifferent between receiving1 this period and nothing thereafter

and an annuity of(1− δ)).

Before we describe repeated games, we begin by reviewing twoapproximate equilibrium

concepts for the stage game.

DEFINITION 1. An η-approximate Nash equilibrium of the stage gameG is a vectorα ∈
∏n

j=1∆Ai of mixed strategies, such that for alli and allai ∈ Ai:

ui(α) ≥ ui(ai, α−i)− η

DEFINITION 2. Anη-approximate correlated equilibrium of the stage gameG is defined by a set

of signalsS, a distributionD ∈ ∆Sn overn-tuples of signals, and a functionσi : S → ∆Ai

mapping signals to mixed strategies for each playeri. (D, σ) is an η-approximate correlated

equilibrium if for every signals ∈ S and every actionai ∈ Ai:

Es∼D[ui(σi(s), σ−i(s−i))|si = s] ≥ Es∼D[ui(ai, σ−i(s−i))|si = s]− η

MONITORING We consider models of both public and private monitoring. Ina game ofpublic

monitoring, at the end of every period, after players have played their actions for that period, they

receive feedback about the actions taken by others via apublic signal. Formally, at the end of the

period, when the profile of actions taken isa, all players commonly learn a signals ∈ S, where

s is drawn independently by a distributionPa ∈ ∆S.4

In a game ofprivatemonitoring, at the end of every period, after players have played their

actions for that period, each playeri receives a private signalsi ∈ S. Playeri does not see the

signalssj for j 6= i. Formally, at the end of a period in which the profile of actions taken isa,

a vector of signalss ∈ Sn is drawn from a distributionPa ∈ ∆Sn, and each playeri observes

componentsi of s. Note that the signals that different players receive can becorrelated. Further,

4Note that this model subsumes the standard perfect monitoring model—ifS ≡∏Ai andPa(s) = 1 iff s = a.
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note that this generalizes the public monitoring setting—public monitoring is simply the case

where every player’s signal is identical.

The ex-post payoff of each playeri is given by a functionUi : Ai × S → R so that the signal

a player receives is a sufficient statistic for the payoff he receives. We assume that

ui(ai, a−i) =
∑

s∈S
Ui(ai, s)Pa(s), (1)

so that the noisy payoff does not affect the incentive structure of the game.

We consider a commonly satisfied condition on the distribution of signals that players

observe—informally, that they arenoisyin a way that does not reveal “much” about the action of

any single player.

DEFINITION 3. A public monitoring signal structure is said to satisfy(ǫ, γ)-differential privacy

for someǫ, γ > 0 if for every playeri and for everya = (a1, a2, . . . , an), a′ = (a′i, a−i), and any

eventE ⊆ S,

exp(−ǫ)Pa
′(E)− γ ≤ Pa(E) ≤ exp(ǫ)Pa

′(E) + γ.

A private monitoring signal structure satisfies(ǫ, γ)-differential privacy if for every playeri and

for everya = (a1, a2, . . . , an), a′ = (a′i, a−i), and for every eventE ⊆ Sn,

exp(−ǫ)Pa
′(E)− γ ≤ Pa(E) ≤ exp(ǫ)Pa

′(E) + γ.

REMARK 1. Differential privacy is a condition applied to study the privacy of random-

ized algorithms on a “database”(i.e. not generally appliedto the signal structure of

a repeated games), and was first defined by Dwork, McSherry, Nissim, and Smith

(Dwork, McSherry, Nissim, and Smith, 2006).

REMARK 2. Due to (1), the assumption that a signalling structure satisfies(ǫ, γ)-differential

privacy is nontrivial. Fixing values ofǫ, γ, there exist stage games for which no such(ǫ, γ)-

differentially private signal structure can satisfy (1)). That said, several stage games of interest

can be paired with differentially private signal structures. Broadly, this includes anylargegame,

i.e. one in which any player, by unilaterally changing the action he plays, has a small impact on

the stage-game utility of any other player. We present several examples in Section4.

For technical reasons, the following definition is often assumed (see e.g.

Mailath and Samuelson(2006)). We say the that the monitoring structure is one ofno ob-
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servable deviations, i.e. that the marginal distribution of private signals have full support

regardless of the action profile played. Formally:

DEFINITION 4. A repeated game of public monitoring is said to haveno observable deviationsif

∀ a ∈
∏

Ai, s ∈ S : Pa(s) > 0.

A repeated game of private monitoring is said to have no observable deviations if

∀ a ∈
∏

Ai, si ∈ S : Pa(si) > 0.

Intuitively, in the repeated game agents will be trying to infer what other players played from

this signal—this assumption ensures that Bayesian updating is well defined after any observed

signal.

HISTORIES ANDSTRATEGIES In the public monitoring setting the public information in period

t is the history of public signals,ht = (s1, s2, . . . , st−1). The set of public histories is

H ≡ ∪∞
t=2S

t−1.

A history for a player includes both the public history and the history of actions he has taken,ht
i =

(s1, a1i , s
2, a2i , . . . s

t−1, at−1
i ). Given a a private historyht

i = (s1, a1i , s
2, a2i , . . . s

t−1, at−1
i ), one can

define the public historyht = (s1, s2, . . . st−1) as just the vector of public signals observed. The

set of private histories for playeri is

Hi ≡ ∪∞
t=2(Ai × S)t−1.

We refer to the vector of private histories (one for each player), at periodt by h
t ≡

(ht
1, h

t
2, . . . , h

t
n). In the private monitoring setting, the history for a playeri is the his-

tory of the actions he has taken, together with his sequence of private signals: ht
i =

(s1i , a
1
i , s

2
i , a

2
i , . . . s

t−1
i , at−1

i ).

A pure strategy for playeri is a mapping from the set of histories of playeri to the set of

actions of playeri:

σi : Hi → Ai,

and a mixed strategy is a mapping from histories to distributions over actions.
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Strategies in a repeated game can in general depend on a player’s entire history, but in a game

of public monitoring, we can also considerpublic strategies which depend only on the public

signals observed so far (and not on the unobserved actions played by the player).

DEFINITION 5. A strategyσi is public if it only depends on the public historyH , i.e. for any

periodt and two private historiesht
i, h

t′

i with the same public historyht,

σi(h
t
i) = σi(h

t′

i ).

SOLUTION CONCEPTS Equilibria are defined with respect to the cumulative discounted payoff

that players obtain when the play according to a profile of strategiesσ. Formally, recursively

define the expected payoff of strategy profileσ to playeri after historyht as:

Vi,σ(h
t) = (1− δ)ui(σ(h

t)) + δ
∑

s∈S
Vi,σ((h

t, s))Pσ(ht)(s).

DEFINITION 6 (Nash Equilibrium).A set of strategiesσ = (σ1, . . . , σn) is a Nash equilibrium of

a repeated game if for every playeri and every strategyσ′
i:

Vi,σ(∅) ≥ Vi,(σ−i,σ
′
i
)(∅)

A subgame perfect Nash equilibrium requires that from any history, the continuation play

forms a Nash equilibrium.

DEFINITION 7 (Subgame perfect Nash equilibrium).In a game of perfect monitoring, a set of

strategiesσ = (σ1, . . . , σn) is a subgame-perfect Nash equilibrium of a repeated game if for

every playeri, every finite historyht and every strategyσ′
i:

Vi,σ(h
t) ≥ Vi,(σ−i,σ

′
i
)(h

t)

In the case of imperfect monitoring, histories are not common knowledge (agents privately

observe the actions they take), there is no well-defined “subgame.” There is, however, one in the

case where all players use public strategies. Formally, in games of public monitoring, we can de-

fine a “perfect public equilibrium.” This is a particularly structurally simple equilibrium concept

in repeated games, but one in which a folk theorem is known to hold. Although our results hold

more generally, we will first prove our “anti-folk-theorem”for perfect public equilibrium.
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DEFINITION 8. A perfect public equilibrium(PPE) is a profile of public strategies for each player

(Definition5) such that the continuation play from every public history constitutes a Nash Equi-

librium.

Fudenberg, Levine, and Maskin(1994) show that as long as the signalling structure is rich

enough (satisfying a full rank condition), a Folk theorem holds in perfect public equilibria.

Finally, to consider general (not necessarily public) strategies in games of public monitoring,

and games of private monitoring, there are no counterparts to subgame perfect/ perfect public

equilibria. Consequently, the refinement that is normally considered is that of sequential equilib-

rium, which requires that for any playeri and any private historyht
i, the continuation play is a

best reply to the play of others given the agent’s beliefs about the private histories they observe.

Formally:

DEFINITION 9. Suppose game is one of no observable deviations (Definition4). A strategy profile

σ is asequential equilibriumif for all private historiesht
i, σi(h

t
i) is a best reply toE[σ−i(h

t
−i)|ht

i].

As we alluded to earlier, the assumption of no observable deviations is made to ensure that

the conditional expectationE[σ−i(h
t
−i)|ht

i] is well defined at every private history.

3 SIGNAL PRIVACY Y IELDS ANTI-FOLK THEOREMS

3.1 PUBLIC MONITORING

3.1.1 PERFECT PUBLIC EQUILIBRIA

As we said earlier, the main ideas in our construction are easiest to explain for the case of public

perfect equilibria (Definition8). The intuition is essentially encapsulated as follows: ingeneral,

the only thing that prevents an agent at some staget from deviating from his equilibrium strategy,

and playing a (stage-game) best response to the distribution over his opponent’s actions is fear

of punishment: if his opponents can detect this deviation, then they can change their behavior

to lower his expectedfuture payoff. Differential privacy provides us a simple, worst-case way

of quantifying the decrease in expected future payoff that can result from a single player’s one-

stage unilateral deviation. If this decrease can be made small enough, then it cannot serve as an

incentive to prevent any player from playing anything otherthan an (approximate) stage-game

best response to his opponents. Thus, every day, all playersmust be playing an approximate

equilibrium of the stage game. We formalize this intuition in the next theorem:

9



THEOREM 1. Fix any repeated game with discount factorδ, with public signals that satisfy(ǫ, γ)-

signal privacy. Letσ = (σ1, . . . , σn) be a perfect public equilibrium (Definition8). Then

for every historyht, the distribution on actions that result,(σ1(h
t), . . . , σn(h

t)), forms anη-

approximate Nash equilibrium of the stage game, for

η =
δ

1− δ
(ǫ+ γ).

PROOF. Sinceσ forms a perfect public equilibrium of the repeated game, forevery public history

ht we have:

Vi,σ(h
t) ≥ Vi,(σ−i,σ

′
i
)(h

t)

Expanding this definition, and noting that in particular single stage deviations cannot be prof-

itable, we know for every single-stage deviationa′i:

(1− δ)ui(σ(h
t)) + δ

∑

s∈S
Vi,σ((h

t, s))Pσ(ht)(s)

≥(1− δ)ui(a
′
i, σ−i(h

t)) + δ
∑

s∈S
Vi,σ((h

t, s))P(a′
i
,σ−i(ht))(s).

By the definition of(ǫ, γ)-signal privacy, we also know that for alls,

Pσ(ht)(s) ≥ exp(−ǫ)P(a′
i
,σ−i(ht))(s)− γ

SinceVi,· is the normalized infinite discounted sum of numbers between0 and1, Vi,·(·) ∈ [0, 1].

We can therefore derive:

(1− δ)ui(σ(h
t))

≥(1− δ)ui(a
′
i, σ−i(h

t)) + δ
∑

s∈S
Vi,σ((h

t, s))
(

P(a′
i
,σ−i(ht))(s)− Pσ(ht)(s)

)

≥(1− δ)ui(a
′
i, σ−i(h

t)) + δ
∑

s∈S
Vi,σ((h

t, s))
(

exp(−ǫ)P(a′
i
,σ−i(ht))(s)−∆s − Pσ(ht)(s)

)

where∆s is the smallest non-negative value that satisfies the inequality

Pσ(ht)(s) ≥ exp(−ǫ)P(a′
i
,σ−i(ht))(s)−∆s.

Note that for signalss such thatPσ(ht)(s) ≤ exp(−ǫ)P(a′
i
,σ−i(ht))(s), ∆s = 0. LetS+ = {s ∈ S :

10



∆s > 0}. We continue, noting thatexp(−ǫ) > 1− ǫ for ǫ < 1:

(1− δ)ui(σ(h
t))

≥(1− δ)ui(a
′
i, σ−i(h

t)) + δ
∑

s∈S
Vi,σ((h

t, s))
(

−ǫ · Pσ(ht)(s)−∆s

)

≥(1− δ)ui(a
′
i, σ−i(h

t))− δ



ǫ+
∑

s∈S+

Vi,σ((h
t, s))∆s





≥(1− δ)ui(a
′
i, σ−i(h

t))− δ(ǫ+ γ).

The last inequality follows because
∑

s∈S+
∆s is the smallest value∆ that satisfies the inequality

Pσi(ht)(S+) ≥ exp(−ǫ)P(a′
i
,σ−i(ht))(S+) − ∆, but by our guarantee of(ǫ, γ) signal privacy, we

know that we must have∆ ≤ γ, and so
∑

s∈S+
∆s ≤ γ. Dividing both sides by1− δ we get:

ui(σ(h
t)) ≥ ui(a

′
i, σ−i(h

t))− δ

1− δ
(ǫ+ γ)

In other words, at any historyht, the prescribed strategy profileσ(ht) must form a δ
1−δ

(ǫ+γ)-

approximate Nash equilibrium of the stage game.

With a bit more care, we can prove a related theorem that extends to the case of non-public

strategies. The proof is similar, but with two caveats:

First, we must now consider a deviation of playeri, σ′
i that not only makes a single stage

game deviation toa′i at some dayt, but then continues to play using an artificial history that for

every dayt′ > t, records that on dayt, playeri played an action drawn fromσi(h
t
i) instead of

having playeda′i.

Second, the strategies that form the stage-game equilibrium are not exactlyσi(h
t
i), for with

these strategies, each player might be best-responding notto the strategies of his opponent, but

to theexpectedstrategies of his opponents (defined by their unknown historiesht
j , which take

into account not just the publicly observed signals, but also the privately known action history),

conditioned on the public part of the history.

Instead, the strategies that form the stage-game equilibrium are the randomized strategies

σi(h
t
i|s), where the randomness is taken over the realization of the players (privately known)

action history, conditioned on the (publicly observed) signal history. We begin with some nota-

tion: Given a set oft − 1 public signalsst = (s1, . . . , st−1) and a vector of actions for player

i, at
i = (a1i , . . . , a

t−1
i ), write ht

i(s
t, at

i) = (a1i , s1, . . . , a
t−1
i , st−1) to denote the history that com-

bines them. Given a strategyσi for playeri mapping histories to actions, together with a vector

11



of public signalsst write: σ̂i|st to denote the probability distribution that plays each actionai with

probability equal to:

Pr[ai ∼ σ̂i|st ] =
∑

a
t
i
∈At−1

i

Pr[at
i|st] · σi(h

t
i(s

t, at
i))

In other words,̂σi|st represents the distribution defined over actions played by player i, σi(h
t
i)

when all that is known is the public history, and the randomness is both over the choice of actions

a
t
i that defineht

i, as well as the randomness in the mixed strategiesσi(h
t
i).

We can now state our theorem:

THEOREM 2. Fix any repeated game with discount factorδ, with public signals that satisfy(ǫ, γ)-

signal privacy and no observable deviation (Definition4). Let σ = (σ1, . . . , σn) denote be a

sequential equilibrium of the repeated game (Definition9). Then for every public history of

signalsst, the distribution on actions played on dayt, (σ̂1|st , . . . , σ̂n|st), forms anη-approximate

Nash equilibrium of the stage game, for

η =
δ

1− δ
(ǫ+ γ).

The proof is deferred to the appendix.

3.1.2 NON-SUBGAME PERFECT EQUILIBRIA

We can prove a similar theorem even for non-subgame perfect equilibrium – except that now our

claim only applies to histories that occur with nonzero probability when players play according

to the specified equilibrium.

THEOREM 3. Fix any repeated game with discount factorδ, with public signals that satisfy(ǫ, γ)-

differential privacy. Letσ = (σ1, . . . , σn) denote a public equilibrium (not necessarily subgame

perfect). Then for every historyht that occurs with positive probability when players play ac-

cording toσ, the distribution on actions at staget (σ1(h
t), . . . , σn(h

t)) forms anη-approximate

Nash equilibrium of the stage game, for

η =
δ

1− δ
(ǫ+ γ)

PROOF. We will writePrσ[h
t] to denote the probability that a given public historyht arises when

players use strategiesσ. For eachj ≤ t, write ht,≤j to denote the sub-history ofht consisting of

12



the firstj periods, andht,j to be thej th period history. Then:

Pr
σ
[ht] =

t
∏

j=1

Pσ(ht,≤j)(h
t,j)

Now fix anyT. We can write:

Vi,σ(∅) = (1− δ)

(

∑

hT∈ST

Pr
σ
[hT ]

((

T
∑

t=0

δtui(σ(h
T,≤t)) +

δT+1

1− δ

∑

s∈S
Vi,σ(h

T , s)Pσ(ht)(s)

)))

Consider any historyhT such thatPrσ[hT ] > 0, and consider the deviation of playeri, σ′
i

that is identical toσi, except that on historyhT playeri plays a stage-game best response to his

opponents.σ′
i(h

T ) = argmaxa∈Ai
ui(a, σ−i(h

T )) ≡ a∗i . Sinceσ is a Nash equilibrium of the

repeated game, we know thatVi,σ(∅)− Vi,(σ′
i
,σ−i)(∅) ≥ 0. SincePrσ[hT ] > 0, we can divide and

write this difference as:

0 ≤ 1

(1− δ) Prσ[hT ]

(

Vi,σ(∅)− Vi,(σ′
i
,σ−i)(∅)

)

=

(

δT
(

ui(σ(h
T ))− ui(a

∗
i , σ−i(h

T ))
)

+
δT+1

1− δ

∑

s∈S
Vi,σ(h

T , s)
(

Pσ(ht)(s)− P(a∗
i
,σ(hT ))(s)

)

)

≤
(

δT
(

ui(σ(h
T ))− ui(a

∗
i , σ−i(h

T ))
)

+
δT+1

1− δ

∑

s∈S

(

Pσ(ht)(s)− P(a∗
i
,σ(hT ))(s))

)

)

≤
(

δT
(

ui(σ(h
T ))− ui(a

∗
i , σ−i(h

T ))
)

+
δT+1

1− δ
(ǫ+ γ)

)

where the last inequality follows from(ǫ, γ)-differential privacy, and the fact thatexp(−ǫ) ≥
1− ǫ. Dividing through byδT and rearranging, we find:

(

ui(a
∗
i , σ−i(h

T ))− ui(σ(h
T ))
)

≤ δ

1− δ
(ǫ+ γ)

which completes the proof.

3.2 PRIVATE MONITORING

Next, we consider the case of private monitoring. Our theorem here is slightly weaker: that when

playing a game with differentially private signals, every equilibrium of the repeated game must at

each stage play an approximatecorrelatedequilibrium of the stage game. The reason is natural:

13



agents are no longer aware of the history that their opponents are viewing, and so can no longer

consider deviations that are best responses to the distributions being played on that day by their

opponents. However, they may at any stage consider deviations that base their action on the past

private signals that they observe, which gives a posterior distribution on the signals that their

opponents observe. Since the distribution on signals that players receive can be correlated; the

appropriate stage game solution concept is correlated equilibrium.

THEOREM 4. Fix any repeated game with discount factorδ and private signals that satisfy(ǫ, γ)-

differential privacy and no observable deviations (Definition 4). Letσ = (σ1, . . . , σn) denote a

sequential equilibrium of the repeated game (Definition9). Then for every historyht, the distri-

bution on actions at stage(σ1(h
t
1), . . . , σn(h

t
i)) forms anη-approximate correlated equilibrium

for

η =
δ

1− δ
(ǫ+ γ).

PROOF. Fix a sequential equilibriumσ. Then, for every playeri and every historyht
i, we

can define a posterior distributionD(i, ht
i, σ−i) on historiesht

−i observed by the other play-

ers. Fix any historyht = (ht
1, . . . , h

t
n) for the n players. For some playeri, definea∗ ∈

argmaxai∈Ai
Eht

−i
∼D(i,ht

i
,σ−i)[ui(ai, σ−i(h

t
−i))]. Defineσ′

i to be the strategy that is identical to

σi, except on historyht
i, it playsσ′

i(h
t
i) = a∗i , and then play in future periods is as if an action

drawn fromσi(h
t
i) was played in periodt.

Formally, for any periodτ > t, with realized historyhτ
i , the deviation involves playing

σi(h
τ ′

i ), wherehτ ′

i is the same ashτ
i except in the component corresponding to the action played

at timet; i.e. at
′

i ∼ σi(h
i
t) whereasati = a∗ by definition. Given the equilibrium strategiesσ, we

can write:

Vi,σ(h
t
i) =(1− δ)Eht

−i
∼D(i,ht

i
,σ−i)[ui(σi(h

t
i), σ−i(h

t
−i))]

+ δ
∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s, ai|ht

i]

Now considerσ′
i to be the deviation we described above. Note that by playingσ′

i from historyht
i

onwards, playeri’s expected discounted payoff can be written as:

Vi,(σ−i,σ
′
i
)(h

t) =(1− δ)Eht
−i

∼D(i,ht
i
,σ−i)[ui(a

∗, σ−i(h
t
−i))]

+ δ
∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s|ht

i, a
∗]P [ai|σ(ht

i)]

14



Sinceσ forms a sequential equilibrium of the repeated game for every historyht
i we have:

Vi,σ(h
t
i) ≥ Vi,(σ−i,σ

′
i
)(h

t
i)

Substituting the definitions ofVi,σ(h
t
i) andVi,(σ−i,σ

′
i
)(h

t
i) into this inequality, we have:

(

Eht
−i

∼D(i,ht
i
,σ−i)[ui(a

∗, σ−i(h
t
−i))]− Eht

−i
∼D(i,ht

i
,σ−i)[ui(σi(h

t
i), σ−i(h

t
−i))]

)

≤ δ

1− δ

(

∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s, ai|ht

i]−
∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s|ht

i, a
∗]P [ai|σ(ht

i)]

)

By (ǫ, γ)-differential privacy of the private signal, and the fact that exp(−ǫ) ≥ 1 − ǫ, therefore,

we have

≤ δ

1− δ
(ǫ+ γ).

By Definition 2, therefore, the strategiesσi involve the play of δ
1−δ

(ǫ + γ)-approximate cor-

related equilibrium in every period: the analogue of the private signal observed by players in

that definition is the private historyht
i, which are correlated via the strategiesσi and monitoring

structure.

4 EXAMPLES OF GAMES WITH SIGNAL PRIVACY

The rest of this paper will be devoted to showing by example that such differentially private signal

structures may naturally arise in large games. In particular, we will show that if the number of

playersn is large,ǫ andγ may naturally be small. This suggests that in large societies, inter-

temporal transfers may not support “much more” than repeated play of the static equilibria of the

stage game.

Gaussian (i.e. normally distributed) mean-zero noise is a natural form of perturbation that

arises in many settings of impartial information (it is the limiting distribution of many indepen-

dent random processes). It also happens to be a noise distribution that guarantees differential pri-

vacy. Formally, a theorem fromDwork, Kenthapadi, McSherry, Mironov, and Naor(2006) will

be useful.5 First we define the (L2) sensitivity of a function.

DEFINITION 10.A functionf : T n → R
d hasL2 sensitivitys if for any t ∈ T n, i ≤ n and

5A proof of this theorem in the form stated here can be found in Appendix A ofHardt and Roth(2012).
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t′ ∈ T , we have that

‖f(t)− f(t′, t−i)‖2 ≤ s,

where‖·‖2 is the standard Euclidean norm inRd.

THEOREM 5 (Dwork, Kenthapadi, McSherry, Mironov, and Naor(2006)). Suppose a functionf :

T n → R
d hasL2 sensitivitys. Then the algorithm that computesf(t) + Z is (ǫ, γ)-differentially

private, whereZ ∈ R
d is a random vector where each coordinate is drawn i.i.d. fromthe normal

distributionN(0, σ2) for

σ =
s

ǫ

√

log

(

1.25

γ

)

.

The following corollary will be useful in our analysis.

COROLLARY 1. Suppose a functionf : T n → R
d hasL2 sensitivitys(n) (here we assume the

sensitivity is a function ofn, which should be thought of as diminishing inn). Then for any

constantσ, the algorithm that computesf(t) + Z whereZ ∈ R
d is a random vector where each

is drawn i.i.d. from the normal distributionN(0, σ2) is (ǫ, γ)-differentially private for

ǫ+ γ ∈ O
(

s(n)
√

log 1
s(n)

)

In particular if the sensitivitys(n) ∈ O( 1
n
), we haveǫ+ γ ∈ O(

√
logn
n

)

4.1 LARGE ANONYMOUS GAMES

A class of games that has received much attention in the literature is the class of Large Anony-

mous games. In these games, all players have the same set of available actions and each player’s

payoff depends only on the action he takes and the histogram of actions taken by others (and not

on the identity of the players).6

Consider a repeated game that has such a large anonymous gameas a stage game. A player’s

payoff from playing actiona ∈ A, when the population distribution of plays by others isα ∈ ∆A

is ui(a, α) ∈ [0, 1]. Suppose further that in every period, a noisy histogram of the actions taken

by all agents is announced, i.e. when the realized distribution of plays isα ∈ ∆A, the announced

distribution isα+ Z for Z ∈ R
|A|, with each component ofZ ∼ N(0, σ2). Then, fixing players’

6Papers in this literature often refer to such games simply asLarge games.
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discount factorδ, by Corollary1 and Theorem1 that any perfect public equilibrium of the re-

peated game must involve each player playing anη−approximate Nash equilibrium of the stage

game for

η ∈ O

(

δ

1− δ

√
log n

n

)

.

Note that asn tends large,η → 0.

Note that a similar noise distribution results ifα ∈ ∆A is computed bysubsamplingplayer

actions. It can similarly be shown that the distribution that results from subsampling (sufficiently

to get a constant error rate in the action histogram) resultsin an (ǫ, γ) differential privacy guar-

antee with(ǫ+ γ) tending to0 asn grows large.

4.2 NOISY COURNOT GAMES

One of the classic empirical applications of repeated gamesis to study the possibility of collusion

in repeated oligopolistic competition—seeGreen and Porter(1984) for a classic reference. We

demonstrate via their model that in a large oligopoly, collusion may be impossible.

The stage game isn-firm Cournot competition. Each firmi simultaneously chooses quantity

qi ∈ [0, 1] to produce, at a cost ofc(qi). For simplicity in calculations, takec(qi) = qi. After all

firms have selected quantities, a price is determined from the (realized, stochastic) demand as

p = θP

(

1

n

n
∑

i=1

qi

)

,

whereP (·) is a continuously differentiable decreasing demand function andθ is the realized

demand shock. We assume thatθ is distributed log-normally withE[θ] = 1. Each firmi then

realizes a profit of its revenue less cost, i.e.,pqi − c(qi). Further, only this pricep is observed

publicly by all the firms—firms do not directly observe the quantities produced by other firms.

Taking logarithms, we have that

log p = log θ + logP

(

1

n

n
∑

i=1

qi

)

.

Forn large, by a Taylor series expansion, we have that the sensitivity of logP (·) is

1

n
sup

x∈[0,1]

P ′(x)

P (x)
.
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Note that fixing a functionP , this quantity is diminishing at a rate ofO(1/n). Note also that since

θ is log-normally distributed,log θ is normally distributed. Therefore by Corollary1and Theorem

1, any Perfect Public equilibrium of the stage game must involve the play of approximate Nash

Equilibrium of the stage game in every period forη ∈ O

(

δ
1−δ

√

logn
n

)

.

4.3 NOISY COUNTERFACTUAL PAYOFFS

Now let us consider an example of an imperfect private monitoring setting. Fix an player game,

and assume that the game isµ–sensitive, i.e. for every playeri and every playerj 6= i, j changing

the action he plays can affect playeri’s payoff by at mostµ regardlessof what everyone else is

playing:

∀i 6= j, ai, aj , a
′
j, a−ij : |ui(ai, aj , a−ij)− ui(ai, a

′
j, a−ij)| ≤ µ.

After each period, each player receives a private signal of a(noisy) estimate of the payoff

she would have received in the past period for each of the actions she could have taken,

i.e. Si = R
|Ai|, and when other players playa−i, player i receives a signal where the

component corresponding to actiona is ui(a, a−i) + N(0, σ2). Such a signal structure has

been widely studied in both the game theory and machine learning literatures. In the game

theory literature,Hart and Mas-Colell(2000) and Foster and Vohra(1997) show that sim-

ple heuristic strategies (minimizing regret) played in this setting will result in the empiri-

cal distribution of play converging to the set of correlatedequilibria, see e.g. Chapter4 of

Nisan, Roughgarden, Tardos, and Vazirani(2007) for a survey and the connections to machine

learning.

We note that in ak-action game, the resulting signal distribution is over a vector of length

k · n (reporting the payoff to each of then players for each of theirk actions). Since each

action is individuallyµ sensitive, theℓ2 sensitivity of the entire vector of payoffs isO(
√
nkµ).

Fixing players’ discount factorδ, by Corollary1 and Theorem1 it follows that any perfect public

equilibrium of the repeated game must involve each player playing anη−approximate Correlated

equilibrium of the stage game for

η ∈ O

(

δ

1− δ
µ

√

n · k log 1

µ

)

.

Note that asn tends large, ifµ ≪ 1√
n
, η → 0.
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4.4 OTHER SETTINGS WITH PRIVATE SIGNALING

Finally, we remark that the three settings we have noted in which the signals are naturally differ-

entially private (noisy anonymous games, noisy Cournot games, and noisy counterfactual pay-

offs) are not isolated examples. Differential privacy is a powerful measure of “influence” in part

because it enjoys a strong “composition” property. A sequence of(ǫ, γ)-differentially private dis-

trubutions (even chosen adaptively, as a function of the realized values of previous distributions)

remain(ǫ′, γ′)-differentially private, for values ofǫ′ andγ′ depending on the number of composi-

tions and the parametersǫ andγ. Informally, theγ’s “add up” linearly, whereas theǫ parameters

increase only with the square root of the number of such compositions.7 Formally, we have the

following theorem due toDwork, Rothblum, and Vadhan(2010):

THEOREM 6 (Composition for differential privacy,Dwork, Rothblum, and Vadhan(2010)). Let

M1(D), . . . ,Mk(D) be families of distributions such that eachMi is (ǫi, γi)-differentially private

with ǫi ≤ ǫ′. Then for anyγ ∈ [0, 1]: M(D) = (M1(D), . . . ,Mk(D)) is (ǫ, γ +
∑k

i=1 γi)-private

for

ǫ =
√

2 log(1/γ)kǫ′ + kǫ′(eǫ
′ − 1)

M(D) also satisfies(ǫ, γ) differential privacy forǫ =
∑k

i=1 ǫi and γ =
∑k

i=1 γi.
8 Moreover,

these compositional properties hold even if each distribution Mi is chosen adaptively, i.e. only

after observing the realized values of distributionsM1(D), . . . ,Mi−1(D).

Most immediately, this means that our results hold for any combination of the signalling

schemes discussed so far: for example, agents could observeboth a noisy price,and a noisy

histogram of actions that were played, and the resulting composite signal would remain differen-

tially private. More generally, a large number of simple noisy “primitives” guarantee differential

privacy: we have already seen that the natural operation of adding Gaussian noise to a low sen-

sitivity vector is differentially private. However, many other distributions guarantee differential

privacy as well, including the “Laplace” distribution (which is a symmetric exponential distri-

bution, and gives an even stronger guarantee of(ǫ, 0)-differential privacy compared to Gaussian

noise) (Dwork, McSherry, Nissim, and Smith, 2006). Other simple operations such as subsam-

pling k out ofn player actions guarantee(0, k/n)-differential privacy.

7It is this property that makes differential privacy a more appealing notion of influence than mere statistical
distance (which corresponds to(0, γ)-differential privacy). If we were to talk only about statistical distance, then the
degradation of the statistical distance parameter would always be linear in the number of compositions, whereas the
degradation in theǫ parameter in differential privacy can be much slower.

8For large values ofk, this simpler statement is substantially weaker than the more sophisticated composition
statement. However, it can be stronger for small values ofk.
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Moreover, differential privacy does not degrade with post-processing. The following fact is a

simple consequence of the definition:

THEOREM 7 (Post-processing).Let M(D) be an(ǫ, γ)-differentially private family of distribu-

tions over some rangeO, and letf : O → O′ be any randomized mapping. Thenf(M(D)) is

an (ǫ, γ)-differentially private family of distributions overO′.

What this means is that any signal distribution that can be described as a differentially private

distribution (resulting, from e.g. the composition theorem above), followed by post-processing

(for example, we could have a noisy estimate of the fraction of players playing each action,

truncated and renormalizedto form a distribution) remains differentially private.

As a result of the composition theorem and the post-processing theorem, differentially private

signaling distributions are not difficult to come by in natural settings. Most noisy settings can be

seen to satisfy(ǫ, γ)-privacy for some finite values ofǫ andγ. Our theorems apply when these

parametersǫ andγ tend to zero asn grows large – and as we have seen, this is generally the case

when the noise rate is fixed (independent ofn), and the game is large.

5 CONCLUSIONS ANDOPEN QUESTIONS

We have shown that in large games with (public or private) imperfect monitoring, it can naturally

arise that the signaling structure satisfies the constraintof “differential privacy”, in which the

privacy parametersǫ andγ tend to 0 as the sizen of the game grows large. Moreover, we have

shown that whenever this is the case the equilibria of the repeated game collapse to the set of

equilibria of the stage game in large populations. This conclusion holds for a broad class of

equilibria of the repeated game, that e.g. need not necessarily even be subgame perfect. With

public monitoring, the equilibrium set collapses to the setof Nashequilibria of the stage game,

and with private monitoring, the equilibrium set collapsesto the set ofcorrelatedequilibria of

the stage game.

This “anti-folk-theorem” for large, noisy repeated games has several interpretations. On the

one hand, it means that cooperative, high welfare folk-theorem equilibria which cannot be sup-

ported as equilibria of the stage game are also impossible tosupport in repeated games from this

natural class. On the other hand, it also eliminates low-welfare equilibria of the repeated game

that are not supported in the stage game, and so in general,improvestheprice of anarchywhen

computed over the set of Nash equilibria of the repeated game. Our theorem can also be seen as

an argument that equilibria of the repeated game can be more predictive in large noisy games,

than in general repeated games. By removing the bite of the folk theorem, the multiplicity of
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possible equilibria of the repeated game can be greatly reduced, in many cases to a single (or

small number of) Nash equilibria of the stage game.

There remain many interesting questions along this line of inquiry. For example, is there an

even more general condition than differential privacy thatcan yield the same results? One natural

candidate isjoint differential privacy, introduced byKearns, Pai, Roth, and Ullman(2014), which

informally would state that in a game of private monitoring,a unilateral change in action by a

single player will not substantially affect the distribution over signals observed byotherplayers

(but in violation of the standard differential privacy constraint, can arbitrarily affect that player’s

own signal distribution).

Similarly, there is the question of whether our theorems arequalitatively tight. Certainly they

are in public monitoring settings – it is always possible to support a sequence of stage game Nash

equilibria as an equilibrium of the repeated game, and we have shown that this is essentially

the only class of equilibria that can be supported in the games that westudy. However, in the

private monitoring setting, we have shown only that equilibria of the repeated game must consist

of a series of (approximate) correlated equilibria of the stage game. But is it the case that for

every stage game and every sequence of correlated equilibria of that stage game, there exists a

private signaling structure that does indeed support the sequence of correlated equilibria as an

equilibrium of the repeated game?
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APPENDIX

of Theorem2. Fix a sequential equilibriumσ = (σ1, . . . , σn). For every playeri and every

historyht
i = ht

i(a
t
i, s

t), we can define a posterior distributionD(i, ht
i, σ−i) on historiesht

−i ob-

served by the other players. We note several things: first, since the public signalsst are fixed,

D(i, ht
i, σ−i) defines a distribution only over the actionsatj played by each of the other players

j 6= i. Second, since the actionsatj played by the other players are a function only of their

own past actions and the public signalsst, they are conditionally independent of actionsati fixing

the public historyst. Hence, we can writeD(i, ht
i, σ−i) ≡ D(i, st, σ−i). Finally, equivalently

note that the distribution over actionsatj , a
t
k of any pair of playersj 6= k 6= i are conditionally

independent fixing the public signalsst, and so we can decomposeD(i, st, σ−i) as a product

distribution:

D(i, st, σ−i) =
∏

j 6=i

Dj(i, s
t, σ−i)

whereDj(i, s
t, σ−i) represents the marginal distribution on historiesht

j of playerj fixing st.

Fix any set of public signalsst, and private histories(ht
1, . . . , h

t
n) for then players consistent

with st. For any playeri, define

a∗ = arg max
ai∈Ai

Eht
−i

∼
∏

j 6=i Dj(i,st,σ−i)[ui(ai, σ−i(h
t
−i))]

= arg max
ai∈Ai

Ea−i∼(σ̂
1|st ,...,σ̂n|st )

[ui(ai, a−i)]

Defineσ′
i to be the strategy that is identical toσi, except on historyht

i, it playsσ′
i(h

t
i) = a∗i , and

then play in future periods is as if an action drawn fromσi(h
t
i) was played in periodt.

Formally, for any periodτ > t, with realized historyhτ
i , the deviation involves playing

σi(h
τ ′

i ), wherehτ ′

i is the same ashτ
i except in the component corresponding to the action played

at timet; i.e. at
′

i ∼ σi(h
i
t) whereasati = a∗ by definition. Given the equilibrium strategiesσ, we
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can write:

Vi,σ(h
t
i) =(1− δ)Ea−i∼(σ̂

1|st ,...,σ̂n|st )
[ui(σi(h

t
i), a−i)]

+ δ
∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s, ai|ht

i]

Now considerσ′
i to be the deviation we described above. Note that by playingσ′

i from historyht
i

onwards, playeri’s expected discounted payoff can be written as:

Vi,(σ−i,σ
′
i
)(h

t
i) =(1− δ)Ea−i∼(σ̂

1|st ,...,σ̂n|st )
[ui(a

∗, a−i)]

+ δ
∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s|ht

i, a
∗]P [ai|σ(ht

i)]

Sinceσ forms a sequential equilibrium of the repeated game, for every historyht
i we have:

Vi,σ(h
t
i) ≥ Vi,(σ−i,σ

′
i
)(h

t
i)

Substituting the definitions ofVi,σ(h
t
i) andVi,(σ−i,σ

′
i
)(h

t
i) into this inequality, we have:

(

Ea−i∼(σ̂
1|st ,...,σ̂n|st )

[ui(a
∗, a−i)]− Ea−i∼(σ̂

1|st ,...,σ̂n|st )
[ui(σi(h

t
i), a−i)]

)

≤ δ

1− δ

(

∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s, ai|ht

i]−
∑

s∈S,ai∈Ai

Vi,σ((h
t
i, s, ai))P [s|ht

i, a
∗]P [ai|σ(ht

i)]

)

By (ǫ, γ)-differential privacy of the private signal, and the fact thatexp(−ǫ) ≥ 1−ǫ, we therefore

have that this is at most

≤ δ

1− δ
(ǫ+ γ).

which completes the proof.
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