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ABSTRACT

We study infinitely repeated games in settings of imperfemitoring. We first prove a
family of theorems that show that when the signals obserydldoplayers satisfy a condition
known as(e, v)-differential privacy, that the folk theorem has little ditfor values of and
~ sufficiently small, for a fixed discount factor, any equilibm of the repeated game involve
players playing approximate equilibria of the stage gameviery period. Next, we argue
that in large gamesn(player games in which unilateral deviations by single playeave
only a small impact on the utility of other players), many ritoring settings naturally lead
to signals that satisfye, )-differential privacy, fore and~ tending to zero as the number of
playersn grows large. We conclude that in such settings, the set dfiledg of the repeated
game collapse to the set of equilibria of the stage game.
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1 INTRODUCTION

In a repeated game, agents interact with one another relbgadaad can base their actions on
their memory of past interactions. One of the most robustifea of models of infinitely repeated
games is the multiplicity of equilibria. Repeatedly playiNash equilibria of the underlying stage
game is preserved as an equilibrium of the repeated gama,rhuth larger set is introduced as
well. The so called “folk theorems” state, informally, treaty individually rational payoffs for
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each player (i.e. payoffs that are above their minmax valuthé game) can be achieved as
an equilibrium of the repeated game (if players are patiantigh). The folk theorems can be
interpreted as either positive or negative statementsmRhe perspective of an optimist (or
a mechanism designer), they mean that high social-welfehawors (like cooperation in the
Prisoner’s Dilemma) can be supported as equilibria in reggegames, even though they cannot
be supported as equilibria of the stage game. From the ptrapef a pessimist (or a computer
scientist), they mean that the social welfare ofwwestequilibrium can get worse (i.e. the price
of anarchy increases). Regardless of the stance one takeside of the severe multiplicity
problem, Nash equilibria of repeated games lose much af phedictive power.

The simplest model of repeated games are repeated gamesesfigiat monitoring In these
games, after each period, each agent observes the exactpletyed by each of his opponents. In
several settings of interest, this assumption is unréali&tmore natural model is repeated games
with imperfect monitoringin which agents receive some kind of noisy signal about ki qt the
last period. This signal could be an estimate of the payoffauth of a player’s actions, a noisy
histogram of how many players played each action, or inftionahat is encoded as a set of
prices. The game could be ongarivate monitoringin which each player receives his own signal
privately, orpublic monitoring in which every player observes the same signal. Folk timesre
are known to hold in almost all models of repeated games, #wee with imperfect public or
private monitoring. SeEBudenberg, Levine, and Maskih994) for a classic reference in the case
of public monitoring,Sugaya(2011]) for a recent result in the case of private monitoring, and
Mailath and Samuelsof2006 for a textbook treatment.

In this paper, we show that these theorems will often ladgk iibit‘large” games of imperfect
monitoring. Particularly, we consider games where the mesksignals satisfy the notion of “dif-
ferential privacy” Dwork, McSherry, Nissim, and SmitR006, which we show arises naturally
in many games of imperfect monitoring with a large numberlafers. We show that in games
with differentially private signals, the set of equilibid the repeated games must involve play
of approximate equilibria of the stage game in every periagproximate Nash equilibrium in
the case of public monitoring and approximate correlatedliegium in the case of private mon-
itoring. Our results therefore suggests that in games wittigee number of players, we should
not expect to see “folk theorem equilibria.” This also addsitlong standing question in the
literature on repeated games—for a given fixadhat payoffs can be achieved by equilibria of
the repeated game?We implicitly provide an upper bound on this set—it is the sepayoffs
that can be achieved by the play of approximate stage gamibeiquin every period, with the

1See e.gMailath, Obara, and Sekiguc{002 for a characterization in the case of the Prisoner’s Dilemvith
perfect monitoring.



degree of approximation being bounded by our theorems.

A different way to view our results arises from a seeming aligimuity between dynamic
models with a continuum of players and those with a large Imitefinumber of players. In
a dynamic model, incentives are generated by agents puogisii rewarding others for past
play. When only aggregate play is observed, then the playnefsingle agent does not affect
the observed outcome in the continuum case, and hencedndivdeviations cannot be detected.
With a finite number of players, a deviation may be small, bistperfectly observable. Therefore
deviations can be punished or rewarded. A small literatttesrgts to bridge this discontinuity
by postulating a model of noisy observation. Our paper cathbeght of as a “quantitative”
version of their limit results for repeated games. In pattg the noisiness of our signals are
parametrized by two numbersand~. We show that as + ~ vanishes, we approximate the
unobservability of the continuum setting, while the petfelsservability setting corresponds to
e + v large.

1.1 RELATED WORK

It has long been understood (hence the term “folk theorehd) the intertemporal incentives
generated by repeated interaction can support more outctimaa just the equilibria of the
one-off interaction. The literature is too large to surveyd) we refer the interested reader to
the textbook byMailath and Samuelsof20069 for a comprehensive and up-to-date treatment.
We review concepts that are standard in the literature adedlei® Sectior2. Repeated games
have also been studied in the computer science literatureolder literature studies repeated
games when agents have limited computational resources-e-ge Megiddo and Wigderson
(1986, Papadimitriou and Yannakak(2994) or Abreu and Rubinstei(1988. There has also
been some recent interest in repeated games in the compigacas community. These con-
sider games of perfect monitoring, and study the compleigomputing an equilibrium of the
repeated game—see e.gorgs, Chayes, Immorlica, Kalai, Mirrokni, and Papadiroitr(2010
andHalpern, Pass, and Seem@013.

The idea that noisy observation may limit the equilibria gpeated games has some
precedent in the literature—notably the papers Gafeen (1980, Sabourian(1990 and
Al-Najjar and Smorodinsky2001).2 In relation to our setting, note that the first paper resrict
attention to trigger strategies, the first two papers asghmstage game is anonymous, and all
three consider public equilibria in a public monitoringts®j. By contrast our results apply to

2We thank Nabil Al-Najjar and Preston McAfee for pointing dhils connection to us.
3Levine and Pesendorfér999 study similar questions in dynamic games.



general games that satisfy the differential privacy coadjtand apply also to private monitor-
ing settings. The results in those papers are limit theorarhde we prove quantitative bounds
on the relationship between the “amount” of noise and theesegf deviation from stage-Nash
equilibria that can be supported. Finally, while their citiotis on the monitoring structure may
be hard to verify, we are able we use techniques from theatitee on differential privacy (see
below) to give examples of “natural” settings satisfying oanditions.

“Differential Privacy” is a condition that a family of probdity distributions (which are
parameterized by: agent “reports”) may satisfy, which provides a multipligatbound on
the influence that any single report can have on the resuttistgibution. It was first defined
by Dwork, McSherry, Nissim, and Smitf2006 in the computer science literature, and has be-
come a standard “privacy” solution concept. We do not usectihition here to deal with
privacy concerns, but instead just as a useful Lipschitditmm that is commonly satisfied
by many noisy families of signal distributions. The conmattbetween differential privacy
and game theory was first noted McSherry and Talwaf2007) who observed that when this
condition is applied to an auction mechanism, it can be useargue approximate truthful-
ness. They use it to derive prior-free near revenue-optimedhanisms for digital goods auc-
tions. Since then, differential privacy has been used a®hinca number of game theoretic
settings, including mechanism design without monisgim, Smorodinsky, and Tennenhgltz
2012 and mechanism design in prior-free settings of incompietermation with mecha-
nisms that have extremely weak powers of enforcemiéaains, Pai, Roth, and Ullmag014
Rogers and Roth2013. A related line of work seeks to use traditional tools in heausm
design in settings in which agents have preferences fovdpyi’, which are quantified by mea-
sures related to differential privacfiosh and Roth2013 Nissim, Orlandi, and Smorodinsky
2012 Xiao, 2013 Chen, Chong, Kash, Moran, and Vadh&013 Ghosh and Ligeft 2013
Nissim, Vadhan, and Xig®014). SeePai and Roti{2013 for a survey of this area and its con-
nections to mechanism design and game theory.

2 PRELIMINARIES

We consider infinitely repeated games that are played overiessof periods. Time is discrete
and isindexedby=10,1,2,....

STAGE GAME There aren players who repeatedly play a stage gatheEach player has a
finite set of actionsd;, and gets payofi,; : [[;_, 4; — [0, 1]. We will denote an action profile
(i.e. a vector of actions, one for each player)ady H;‘Zl A;. Mixed strategies are probability
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distributions over pure strategies, which we write/ag, for playeri. We writea; € AA; to
denote a mixed strategy for playgranda to denote a vector of mixed strategies. Payoffs for
mixed strategies are, as usual, the expected payoff wheprafiee of actions is drawn according
to the distribution specified by the mixed strategies.

All players discount the future at a ratec [0, 1). Therefore an annuity that paysn every
period, forever, has a present discounted valuie}g).f As is standard in the literature on repeated
games, we normalize all payoffs By — 6)—the value of the annuity of forever is therefore
normalized tol, while e.g. a payoff ofi today and nothing thereafter is normalized to- )
(because the agent would be indifferent between receivitigs period and nothing thereafter
and an annuity ofl — 9)).

Before we describe repeated games, we begin by reviewingappooximate equilibrium
concepts for the stage game.

DEFINITION 1. An n-approximate Nash equilibrium of the stage gafeis a vectora €
H?zl AA; of mixed strategies, such that for aland alla; € A;:

wi(o) > wi(a, ;) —n

DEFINITION 2. Ann-approximate correlated equilibrium of the stage gafhes defined by a set
of signalssS, a distributionD € AS™ overn-tuples of signals, and a functian : S — AA;
mapping signals to mixed strategies for each playe(D, o) is ann-approximate correlated
equilibrium if for every signat € S and every actiom,; € A;:

Esp(ui(oi(s), o-i(s—i))lsi = ] 2 Esuplui(ai, o-i(s—i))[si = s] —n

MONITORING We consider models of both public and private monitoringa mame ofpublic
monitoring at the end of every period, after players have played tloinras for that period, they
receive feedback about the actions taken by others pigbéc signal Formally, at the end of the
period, when the profile of actions takenaisall players commonly learn a signak S, where
s is drawn independently by a distributidy ¢ AS.*

In a game ofprivate monitoring, at the end of every period, after players haaygd their
actions for that period, each playereceives a private signa] € S. Playeri does not see the
signalss; for j # i. Formally, at the end of a period in which the profile of actidaken isa,

a vector of signals € S™ is drawn from a distributiorP, € AS™, and each playerobserves
componens; of s. Note that the signals that different players receive cacdoeelated. Further,

“Note that this model subsumes the standard perfect mamgtarodel—ifS = [] A; and Pa(s) = 1iff s = a.
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note that this generalizes the public monitoring settingelg monitoring is simply the case
where every player’s signal is identical.

The ex-post payoff of each playeis given by a functiort/; : A; x S — R so that the signal
a player receives is a sufficient statistic for the payofféeeives. We assume that

wi(ai, a_;) = Y Ui(ai, s) Pa(s), (1)
seS
so that the noisy payoff does not affect the incentive stinecof the game.
We consider a commonly satisfied condition on the distrdsutdf signals that players
observe—informally, that they ar@isyin a way that does not reveal “much” about the action of
any single player.

DEFINITION 3. A public monitoring signal structure is said to satigty~)-differential privacy
for somee, v > 0 if for every playeri and for everya = (ay, as, ..., a,),a = (a},a_;), and any
eventty C S,

exp(—€) Pur(E) — 7 < Pa(E) < exp(e) Par(E) + 7.

A private monitoring signal structure satisfigs )-differential privacy if for every playerand
for everya = (ay,as,...,a,),a = (a;,a_;), and for every event’ C 5",

exp(—¢) Par(E) — v < Pa(E) < exp(e) Pur(E) + 7.

REMARK 1. Differential privacy is a condition applied to study theivacy of random-
ized algorithms on a “database’(i.e. not generally appliedthe signal structure of
a repeated games), and was first defined by Dwork, McSherrgsimdj and Smith
(Dwork, McSherry, Nissim, and Smit20086.

REMARK 2. Due to (), the assumption that a signalling structure satisfies)-differential
privacy is nontrivial. Fixing values of, v, there exist stage games for which no suehy)-
differentially private signal structure can satisfy))( That said, several stage games of interest
can be paired with differentially private signal strucsir8roadly, this includes angrge game,

i.e. one in which any player, by unilaterally changing theache plays, has a small impact on
the stage-game utility of any other player. We present s¢ealamples in Sectiof

For technical reasons, the following definition is often umsed (see e.g.
Mailath and Samuelso(2006§). We say the that the monitoring structure is onenof ob-
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servable deviationsi.e. that the marginal distribution of private signals é&dull support
regardless of the action profile played. Formally:

DEFINITION 4. A repeated game of public monitoring is said to haesobservable deviationfs
Vac [[Ais€S: Pa(s)>0.
A repeated game of private monitoring is said to have no otadde deviations if

VaEHAZ-,sZ- ESI Pa(si) > 0.

Intuitively, in the repeated game agents will be trying tieimwhat other players played from
this signal—this assumption ensures that Bayesian upgetiwell defined after any observed
signal.

HISTORIES ANDSTRATEGIES In the public monitoring setting the public information iaenmod
t is the history of public signalg,’ = (s', s%, ..., s"!). The set of public histories is

H = UR,S

A history for a player includes both the public history and tiistory of actions he has také,=

(s',al,s%,a2,...s71 al™!). Given a a private history! = (s',a},s% a?,...s"" al™"), one can

define the public historyt’ = (s, s%,...s"!) as just the vector of public signals observed. The
set of private histories for playeiis

S = U2, (A x )L

We refer to the vector of private histories (one for each @tpyat periodt by h! =
(R, hS, ... ht). In the private monitoring setting, the history for a players the his-
tory of the actions he has taken, together with his sequefficprigate signals: h! =
(shal,s?,a2,... s al™h).

A pure strategy for playet is a mapping from the set of histories of playeo the set of
actions of playei:

g; - % — Ai7
and a mixed strategy is a mapping from histories to disti@mstover actions.
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Strategies in a repeated game can in general depend on @pay@ae history, but in a game
of public monitoring, we can also consideublic strategies which depend only on the public
signals observed so far (and not on the unobserved actiagsgby the player).

DEFINITION 5. A strategyo; is public if it only depends on the public histopy’, i.e. for any
periodt and two private histories!, h!" with the same public history,

Uz‘(hﬁ) = Uz‘(hf)

SoLuTION CONCEPTS Equilibria are defined with respect to the cumulative disted payoff
that players obtain when the play according to a profile aftegiess. Formally, recursively
define the expected payoff of strategy profiléo player: after historyh! as:

Vig(h') = (1= 8)ui(o(h") + 8> Vig((h, ) Poay (s).
seS
DEFINITION 6 (Nash Equilibrium)A set of strategies = (o4, . .., 0,,) is a Nash equilibrium of
a repeated game if for every playeand every strategy::

Vi) > Vi (o_,on ()

A subgame perfect Nash equilibrium requires that from arsyolny, the continuation play
forms a Nash equilibrium.

DEFINITION 7 (Subgame perfect Nash equilibriunr).a game of perfect monitoring, a set of
strategiess = (o4, ...,0,) IS @ subgame-perfect Nash equilibrium of a repeated gamar if f
every playet, every finite history.' and every strategy!:

V;,cr(ht) 2 V;',(U,i,ag) (ht)

In the case of imperfect monitoring, histories are not comrkiwowledge (agents privately
observe the actions they take), there is no well-defineddante.” There is, however, one in the
case where all players use public strategies. Formallyameg of public monitoring, we can de-
fine a “perfect public equilibrium.” This is a particularlyrscturally simple equilibrium concept
in repeated games, but one in which a folk theorem is knowmld. FAlthough our results hold
more generally, we will first prove our “anti-folk-theorerfor perfect public equilibrium.



DEFINITION 8. A perfect public equilibriunfPPE) is a profile of public strategies for each player
(Definition5) such that the continuation play from every public histaopstitutes a Nash Equi-
librium.

Fudenberg, Levine, and Mask{®994) show that as long as the signalling structure is rich
enough (satisfying a full rank condition), a Folk theorenhdsan perfect public equilibria.

Finally, to consider general (not necessarily public)tstyges in games of public monitoring,
and games of private monitoring, there are no counterparssitbgame perfect/ perfect public
equilibria. Consequently, the refinement that is normadlysidered is that of sequential equilib-
rium, which requires that for any playémnd any private historji’, the continuation play is a
best reply to the play of others given the agent’s beliefaiabwe private histories they observe.
Formally:

DEFINITION 9. Suppose game is one of no observable deviations (Defiditighstrategy profile
o is asequential equilibriunif for all private historiesh!, o;(hl) is a best reply td&[o_;(h" ;) |h}].

As we alluded to earlier, the assumption of no observablétiens is made to ensure that
the conditional expectatioB[o_;(h" ;)|h!] is well defined at every private history.

3 SIGNAL PriIvACY YIELDS ANTI-FOLK THEOREMS

3.1 FRUBLIC MONITORING
3.1.1 HRFECTPUBLIC EQUILIBRIA

As we said earlier, the main ideas in our construction areesti® explain for the case of public
perfect equilibria (Definitior8). The intuition is essentially encapsulated as followsgemeral,
the only thing that prevents an agent at some stdigem deviating from his equilibrium strategy,
and playing a (stage-game) best response to the distnibatier his opponent’s actions is fear
of punishment: if his opponents can detect this deviatibantthey can change their behavior
to lower his expectefuture payoff. Differential privacy provides us a simple, worsise way
of quantifying the decrease in expected future payoff thatresult from a single player’'s one-
stage unilateral deviation. If this decrease can be mad# sn@ugh, then it cannot serve as an
incentive to prevent any player from playing anything ottiean an (approximate) stage-game
best response to his opponents. Thus, every day, all playess be playing an approximate
equilibrium of the stage game. We formalize this intuitiarthie next theorem:



THEOREM 1. Fix any repeated game with discount factowith public signals that satisfy, ~)-
signal privacy. Lete = (oy,...,0,) be a perfect public equilibrium (DefinitioB). Then
for every historyh!, the distribution on actions that resultg; ('), ..., o,(h')), forms ann-
approximate Nash equilibrium of the stage game, for

n= (e +7).

1—90

PROOF. Sinceos forms a perfect public equilibrium of the repeated gameef@ry public history
ht we have:
V;,cr(ht) > V;',(U,i,ag)(ht)

Expanding this definition, and noting that in particulargéénstage deviations cannot be prof-
itable, we know for every single-stage deviatign

( ht +5Z‘/za ) U(ht( )
seS
>(1 = S)uilal, o_i(h') +6 Y Vie((h',9)) Paro () (5)-
ses

By the definition of(¢, v)-signal privacy, we also know that for &)

Pa(ht)(s) Z eXp(—E)P(a;707i(ht))(8) -

SinceV; . is the normalized infinite discounted sum of numbers betvieamd1, V; .(-) € [0, 1].
We can therefore derive:

(1 = d)ui(a(h))

2(1 —5) (CL (7_ ht —0—52‘/“, s P(a o z(ht))< )—Pa(ht)<8))
ses

2(1 — 5) (CL O'_ ht —|— 52 V;U , eXp(—G)P(a;,oﬂ.(ht))(S) — AS — Po(ht)(s))
seS

whereA, is the smallest non-negative value that satisfies the iniégua

Pony(s) 2 exp(—€) Pao_(nt))(s) — As.

Note that for signals such that, ¢ (s) < exp(—€) Plas o_;(nt))(8), As = 0. LetS, = {s € §:
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Ag > 0}. We continue, noting thatkp(—¢) > 1 — efore < 1:

(1 = d)ui(a(h))

>(1 = O)uilaj, o—i(h) + 6> Vie((h', ) (=€ Popuy(s) — A,)
SES
>(1 = )uy(al, 0_i(h")) =8 | e+ D Vio((h',5))A,
seSt

>(1 = 0)ui(a;, o—i(h")) — d(e + 7).

The last inequality follows becaugses+ A, is the smallest valuA that satisfies the inequality
Prynty(S4) = exp(—€)Pao_,nty)(S+) — A, but by our guarantee @k, v) signal privacy, we

know that we must havA < v, and sozses+ A, < . Dividing both sides by — § we get:

J

ui(o(h)) > wi(a}, o_;(R)) — -3

(e+7)

In other words, at any history, the prescribed strategy profigh’) must form a2 (e++)-
approximate Nash equilibrium of the stage game. O

With a bit more care, we can prove a related theorem that dgtenthe case of non-public
strategies. The proof is similar, but with two caveats:

First, we must now consider a deviation of player. that not only makes a single stage
game deviation ta; at some day, but then continues to play using an artificial history toat f
every dayt’ > t, records that on dag; player: played an action drawn from;(h!) instead of
having played:;.

Second, the strategies that form the stage-game equititaine not exactly;(h!), for with
these strategies, each player might be best-responding tlog strategies of his opponent, but
to theexpectedstrategies of his opponents (defined by their unknown hiesdr;, which take
into account not just the publicly observed signals, but &t privately known action history),
conditioned on the public part of the history.

Instead, the strategies that form the stage-game equitibare the randomized strategies
o;(ht]s), where the randomness is taken over the realization of tgepd (privately known)
action history, conditioned on the (publicly observednsighistory. We begin with some nota-
tion: Given a set of — 1 public signalss’ = (s1,...,s;_1) and a vector of actions for player
i,al = (al,...,a™"), write h(st, al) = (a},s1,...,a""", 5,_1) to denote the history that com-

bines them. Given a strategy for playeri mapping histories to actions, together with a vector
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of public signalss’ write: ;) to denote the probability distribution that plays eacharcdi; with
probability equal to:

Pria; ~ 6y = 3 Prlalls] - oy(hi(s", a))

t t—1
a,€A;

In other words g represents the distribution defined over actions playedlayep:, o;(h!)
when all that is known is the public history, and the randossng both over the choice of actions
a! that defineh!, as well as the randomness in the mixed strategigs ).

We can now state our theorem:

THEOREM 2. Fix any repeated game with discount factowith public signals that satisfy, ~)-
signal privacy and no observable deviation (Definitdn Leto = (oy,...,0,) denote be a
sequential equilibrium of the repeated game (Definit®)n Then for every public history of
signalss’, the distribution on actions played on d&ay(¢ys, . . ., 6,5t ), forms anmp-approximate
Nash equilibrium of the stage game, for

The proof is deferred to the appendix.

3.1.2 NON-SUBGAME PERFECT EQUILIBRIA

We can prove a similar theorem even for non-subgame perdediteium — except that now our
claim only applies to histories that occur with nonzero @bty when players play according
to the specified equilibrium.

THEOREM 3. Fix any repeated game with discount factowith public signals that satisfy, ~)-
differential privacy. Let = (o4, ..., 0,) denote a public equilibrium (not necessarily subgame
perfect). Then for every history that occurs with positive probability when players play ac-
cording too, the distribution on actions at staggo; (h'), ..., 0, (h")) forms anp-approximate
Nash equilibrium of the stage game, for

)
1—-9

n= (e+7)

PROOF. We will write Pr, [h'] to denote the probability that a given public histéfyarises when
players use strategies For eachj < ¢, write h*<7 to denote the sub-history &f consisting of
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the firstj periods, andi*’ to be the;j™" period history. Then:

t
= H Po.(ht,ﬁj) (ht’j)
j=1

Now fix any 7. We can write:

5T+1

Vie(0) = (1-10) ( > Pr[h”] ((Z otu; (o (hTS)) +1 Zm,a(hT,s)PU(ht)(s)»)

hTeST seS

Consider any history” such thatPr,[h’] > 0, and consider the deviation of playgro’
that is identical tar;, except that on historg” player: plays a stage-game best response to his
opponents.ci(h’) = argmax,ca, ui(a,o_;(hT)) = af. Sinceo is a Nash equilibrium of the
repeated game, we know th&t, () — Vi .»_,)(#) > 0. SincePr,[h"] > 0, we can divide and
write this difference as:

e Prg ] (Vo) = Vit (@)
= <6T — ul(a O'_ hT fjé ZVZU ) a(ht ( ) - P(af,O(hT))(S))>
ses
< <5T —ui(aj, oi(h"))) + fjg > (Poy(s) - P(a:,a(hT»(S))))
ses
< (5 Gt — et o ) + e )

where the last inequality follows frort¥, ~)-differential privacy, and the fact thakp(—e) >
1 — e. Dividing through bys” and rearranging, we find:

(ui(a, o_i(hT)) — wi(o (k7)) <

1_5(6+7)

which completes the proof. O

3.2 PRIVATE MONITORING

Next, we consider the case of private monitoring. Our thednere is slightly weaker: that when
playing a game with differentially private signals, evequaibrium of the repeated game must at
each stage play an approximatarelatedequilibrium of the stage game. The reason is natural:
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agents are no longer aware of the history that their oppsrastviewing, and so can no longer
consider deviations that are best responses to the distmistbeing played on that day by their
opponents. However, they may at any stage consider davédtat base their action on the past
private signals that they observe, which gives a posteiigiridution on the signals that their
opponents observe. Since the distribution on signals tlageps receive can be correlated; the
appropriate stage game solution concept is correlateditegum.

THEOREM4. Fix any repeated game with discount factand private signals that satisfy, ~)-
differential privacy and no observable deviations (Defamit4). Leto = (o4, ...,0,) denote a
sequential equilibrium of the repeated game (Defini®nThen for every history’, the distri-
bution on actions at stager; (h}), ..., 0, (h!)) forms annp-approximate correlated equilibrium
for

)

PROOF. Fix a sequential equilibriuna. Then, for every playei and every history:!, we
can define a posterior distributidR(i, k!, o_;) on historiesh’ , observed by the other play-
ers. Fix any historyh! = (h},... hl) for the n players. For some player definea* €
arg maxXg, e A, EhiiwD(i,hf,o,i)[ui(aiaU—i(ht—i))]- Define s to be the strategy that is identical to
o;, except on historyi!, it playsoi(ht) = a}, and then play in future periods is as if an action
drawn fromo;(h%) was played in period.

Formally, for any periodr > ¢, with realized historyh?, the deviation involves playing
o:(h7"), whereh?' is the same ak] except in the component corresponding to the action played
at timet; i.e. al' ~ o;(h!) whereas:! = a* by definition. Given the equilibrium strategieswe
can write:

Vio(ht) =(1 = 6)Ent ~pgnto olui(oi(hl), o_i(h",))]
63 Via((Bhs.a) Pls.ailh]

SGS,CL,L'EAZ'

Now consider’ to be the deviation we described above. Note that by playjrigpom historyh!
onwards, playei's expected discounted payoff can be written as:

Vito_ion(h') =(1 = 0Byt p(int,o_pluia™, o-i(h;))]
+6 Z Vio((hi, s, a;)) Pls|hi, a*| Plas|o(h})]

seS,a; €EA;
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Sinceco forms a sequential equilibrium of the repeated game foryelwistory i we have:
Vie(hi) 2 Vio_son ()
Substituting the definitions df; , (h!) and%(ofm;)(hf) into this inequality, we have:
(EhipD(z,hs,o,i) [ui(a®, o i(ho))] = Ent opint,o_ui(os(hy), U—i(ht—i))D

<15 ( > Vie((hls,a:))Pls, ailhf] = > mgz%smnpwwﬁﬂmmwmm>

seS,a;€A; seS,a;€EA;

By (¢, v)-differential privacy of the private signal, and the facathxp(—e) > 1 — ¢, therefore,
we have

J

<
—1-90

(e +7).

By Definition 2, therefore, the strategies involve the play of&(e + ~)-approximate cor-
related equilibrium in every period: the analogue of theraig signal observed by players in
that definition is the private history, which are correlated via the strategigsand monitoring
structure. U

4 EXAMPLES OF GAMES WITH SIGNAL PRIVACY

The rest of this paper will be devoted to showing by exammeghch differentially private signal
structures may naturally arise in large games. In particula will show that if the number of
playersn is large,e and~y may naturally be small. This suggests that in large socigirger-
temporal transfers may not support “much more” than rejggateey of the static equilibria of the
stage game.

Gaussian (i.e. normally distributed) mean-zero noise iataral form of perturbation that
arises in many settings of impartial information (it is timaiting distribution of many indepen-
dent random processes). It also happens to be a noise digtnibhat guarantees differential pri-
vacy. Formally, a theorem frol@work, Kenthapadi, McSherry, Mironov, and Na@006 will
be usefuf First we define thel{?) sensitivity of a function.

DEFINITION 10.A functionf : 7" — R? has L? sensitivitys if for anyt € 7", i < n and

5A proof of this theorem in the form stated here can be foundppéndix A ofHardt and Rot{2012.
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t' € T, we have that

1f(t) = f(# t)ll2 < s,
where||-||, is the standard Euclidean norm &,

THEOREMS5 (Dwork, Kenthapadi, McSherry, Mironov, and Ng@006). Suppose a functiofi :
T" — R? hasL? sensitivitys. Then the algorithm that computéét) + Z is (e, v)-differentially
private, whereZ ¢ R? is a random vector where each coordinate is drawn i.i.d. ftbeanormal

distribution N (0, o%) for
S (1.25)
o= —y/log| — |.
€ ot

The following corollary will be useful in our analysis.

COROLLARY 1. Suppose a functiofi : 7" — R¢ has L? sensitivitys(n) (here we assume the
sensitivity is a function ofi, which should be thought of as diminishing7h Then for any
constantr, the algorithm that compute§t) + Z whereZ € R? is a random vector where each
is drawn i.i.d. from the normal distributiov (0, o2) is (¢, v)-differentially private for

e+v€O0 (s(n) log ﬁ)

In particular if the sensitivitys(n) € O(1), we haver + v € O(E2)

n

4.1 LARGE ANONYMOUS GAMES

A class of games that has received much attention in thedites is the class of Large Anony-
mous games. In these games, all players have the same sailabkevactions and each player’s
payoff depends only on the action he takes and the histogfaictions taken by others (and not
on the identity of the players).

Consider a repeated game that has such a large anonymousiganstge game. A player's
payoff from playing actiom € A, when the population distribution of plays by otherais AA
isu;(a, ) € [0,1]. Suppose further that in every period, a noisy histogranhefatctions taken
by all agents is announced, i.e. when the realized distobuif plays isoe € A A, the announced
distribution isa + Z for Z € R4, with each component of ~ N (0, 2). Then, fixing players’

SPapers in this literature often refer to such games simplaage games.
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discount factow, by Corollaryl and Theoreni that any perfect public equilibrium of the re-
peated game must involve each player playingaapproximate Nash equilibrium of the stage
game for

0 +/logn
1-6 n '

neo <—
Note that as: tends largey — 0.

Note that a similar noise distribution resultsife AA is computed bysubsamplinglayer
actions. It can similarly be shown that the distributiont tlesults from subsampling (sufficiently
to get a constant error rate in the action histogram) regulis (¢, ) differential privacy guar-
antee with(e 4+ ) tending to0 asn grows large.

4.2 Noisy COURNOT GAMES

One of the classic empirical applications of repeated gastesstudy the possibility of collusion
in repeated oligopolistic competition—sEzeen and Porte1984) for a classic reference. We
demonstrate via their model that in a large oligopoly, itta may be impossible.

The stage game is-firm Cournot competition. Each firmnsimultaneously chooses quantity
¢; € [0,1] to produce, at a cost @fg;). For simplicity in calculations, take(q;) = ¢;. After all
firms have selected quantities, a price is determined franfrdrelized, stochastic) demand as

1 n
p=0P (E;%>>

where P(-) is a continuously differentiable decreasing demand fonctindé is the realized
demand shock. We assume tiias distributed log-normally witfE[f] = 1. Each firm: then
realizes a profit of its revenue less cost, iyg;, — c(q;). Further, only this price is observed
publicly by all the firms—firms do not directly observe the gtitees produced by other firms.
Taking logarithms, we have that

1 n
logp=1logf+logP =S ¢ |,
ogp = log + log (n;q>

Forn large, by a Taylor series expansion, we have that the sahsif log P(-) is

1 P'(x)
— sup .
1 zelo,1] (z)
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Note that fixing a functiorP, this quantity is diminishing at a rate 6f(1/n). Note also that since
6 is log-normally distributedpg ¢ is normally distributed. Therefore by Corollatyand Theorem
1, any Perfect Public equilibrium of the stage game must wrevtthe play of approximate Nash

Equilibrium of the stage game in every period fpe O <1%5\/1°%) :

4.3 Noisy COUNTERFACTUAL PAYOFFS

Now let us consider an example of an imperfect private moinigosetting. Fix an player game,
and assume that the gameuissensitive, i.e. for every playeand every playey # i, j changing
the action he plays can affect playiér payoff by at mosj: regardlessof what everyone else is

playing:

Vi # j,ai, a5, a5, a0 |ui(aq, ag,ai;) — ui(aq, df, ai)| <

After each period, each player receives a private signal (fagsy) estimate of the payoff
she would have received in the past period for each of therstshe could have taken,
i.e. S; = Rl and when other players play_;, playeri receives a signal where the
component corresponding to actianis u;(a,a_;) + N(0,0%). Such a signal structure has
been widely studied in both the game theory and machine ileaiiteratures. In the game
theory literature,Hart and Mas-Colell(2000Q and Foster and Vohra(1997 show that sim-
ple heuristic strategies (minimizing regret) played instlsietting will result in the empiri-
cal distribution of play converging to the set of correlatglilibria, see e.g. Chapter of
Nisan, Roughgarden, Tardos, and Vaziré2007) for a survey and the connections to machine
learning.

We note that in &-action game, the resulting signal distribution is over ateeof length
k - n (reporting the payoff to each of the players for each of theit actions). Since each
action is individuallyy. sensitive, the/, sensitivity of the entire vector of payoffs @&(v/nkpu).
Fixing players’ discount factar, by Corollaryl and Theoreni it follows that any perfect public
equilibrium of the repeated game must involve each playgripy anp—approximate Correlated
equilibrium of the stage game for

o / 1

Note that as: tends large, if: < =, 7 — 0.
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4.4 OrHER SETTINGS WITH PRIVATE SIGNALING

Finally, we remark that the three settings we have noted ictwne signals are naturally differ-
entially private (noisy anonymous games, noisy Cournotegrand noisy counterfactual pay-
offs) are not isolated examples. Differential privacy issavprful measure of “influence” in part
because it enjoys a strong “composition” property. A seqaai(e, )-differentially private dis-
trubutions (even chosen adaptively, as a function of thiizeshvalues of previous distributions)
remain(e’, v')-differentially private, for values of and~’ depending on the number of composi-
tions and the parametersand~. Informally, the~’s “add up” linearly, whereas theparameters
increase only with the square root of the number of such caitipns! Formally, we have the
following theorem due t®work, Rothblum, and Vadhaf2010:

THEOREM 6 (Composition for differential privacypwork, Rothblum, and Vadha{2010). Let
My (D), ..., M(D) be families of distributions such that eath is (¢;, v;)-differentially private
withe; < ¢. Then foranyy € [0,1): M (D) = (My(D), ..., My(D))is (¢,v + S._, ~;)-private

for
€ = /2log(1/7)ke + ké'(e€ — 1)

M (D) also satisfiege, ) differential privacy fore = Zle e, andy = Zle 7:.2 Moreover,
these compositional properties hold even if each distroul/; is chosen adaptively, i.e. only
after observing the realized values of distributiovig(D), ..., M; (D).

Most immediately, this means that our results hold for angloimation of the signalling
schemes discussed so far: for example, agents could obisetiva noisy price,and a noisy
histogram of actions that were played, and the resultingoasite signal would remain differen-
tially private. More generally, a large number of simplesyoiprimitives” guarantee differential
privacy: we have already seen that the natural operatioddihg Gaussian noise to a low sen-
sitivity vector is differentially private. However, manyher distributions guarantee differential
privacy as well, including the “Laplace” distribution (wdi is a symmetric exponential distri-
bution, and gives an even stronger guarantege of)-differential privacy compared to Gaussian
noise) Pwork, McSherry, Nissim, and Smitl200§. Other simple operations such as subsam-
pling k£ out of n player actions guarant€e, k /n)-differential privacy.

‘It is this property that makes differential privacy a morgealing notion of influence than mere statistical
distance (which corresponds(i®, ~)-differential privacy). If we were to talk only about stdiisl distance, then the
degradation of the statistical distance parameter woweyd be linear in the number of compositions, whereas the
degradation in the parameter in differential privacy can be much slower.

8For large values of, this simpler statement is substantially weaker than theersophisticated composition
statement. However, it can be stronger for small valués of
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Moreover, differential privacy does not degrade with pasieessing. The following fact is a
simple consequence of the definition:

THEOREM 7 (Post-processinglet M (D) be an(e, ~)-differentially private family of distribu-
tions over some rang®, and letf : O — O’ be any randomized mapping. Thé¢tW/ (D)) is
an (e, v)-differentially private family of distributions ove®p’.

What this means is that any signal distribution that can Iserilged as a differentially private
distribution (resulting, from e.g. the composition thearabove), followed by post-processing
(for example, we could have a noisy estimate of the fractibplayers playing each action,
truncated and renormalizei form a distribution) remains differentially private.

As a result of the composition theorem and the post-proegskeorem, differentially private
signaling distributions are not difficult to come by in natisettings. Most noisy settings can be
seen to satisfye, )-privacy for some finite values efand~. Our theorems apply when these
parameters and~ tend to zero as grows large — and as we have seen, this is generally the case
when the noise rate is fixed (independentifand the game is large.

5 CoONCLUSIONS ANDOPEN QUESTIONS

We have shown that in large games with (public or private)arfgct monitoring, it can naturally
arise that the signaling structure satisfies the constddifdifferential privacy”, in which the
privacy parametersand~ tend to O as the size of the game grows large. Moreover, we have
shown that whenever this is the case the equilibria of theatgul game collapse to the set of
equilibria of the stage game in large populations. This kion holds for a broad class of
equilibria of the repeated game, that e.g. need not nedgssaen be subgame perfect. With
public monitoring, the equilibrium set collapses to theddilashequilibria of the stage game,
and with private monitoring, the equilibrium set collapseshe set ofcorrelatedequilibria of
the stage game.

This “anti-folk-theorem” for large, noisy repeated games Beveral interpretations. On the
one hand, it means that cooperative, high welfare folk+td@oequilibria which cannot be sup-
ported as equilibria of the stage game are also impossitslegport in repeated games from this
natural class. On the other hand, it also eliminates lowaselequilibria of the repeated game
that are not supported in the stage game, and so in gemapbvesthe price of anarchywhen
computed over the set of Nash equilibria of the repeated g@uetheorem can also be seen as
an argument that equilibria of the repeated game can be mmedécpive in large noisy games,
than in general repeated games. By removing the bite of ttketieorem, the multiplicity of
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possible equilibria of the repeated game can be greatlyceztjun many cases to a single (or
small number of) Nash equilibria of the stage game.

There remain many interesting questions along this line@diry. For example, is there an
even more general condition than differential privacy tiaat yield the same results? One natural
candidate igoint differential privacy, introduced bi¢earns, Pai, Roth, and Ullmg2014), which
informally would state that in a game of private monitoriagynilateral change in action by a
single player will not substantially affect the distribiover signals observed logher players
(but in violation of the standard differential privacy ctmasnt, can arbitrarily affect that player’s
own signal distribution).

Similarly, there is the question of whether our theoremgjaaditatively tight. Certainly they
are in public monitoring settings — it is always possibleuport a sequence of stage game Nash
equilibria as an equilibrium of the repeated game, and we Is&aown that this is essentially
the only class of equilibria that can be supported in the games thaituay. However, in the
private monitoring setting, we have shown only that equidilof the repeated game must consist
of a series of (approximate) correlated equilibria of tregstgame. But is it the case that for
every stage game and every sequence of correlated equitibthat stage game, there exists a
private signaling structure that does indeed support theesece of correlated equilibria as an
equilibrium of the repeated game?
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APPENDIX

of Theoren®. Fix a sequential equilibriune = (o4,...,0,). For every playeri and every
history bl = hl(al, s'), we can define a posterior distributi@(i, hl,o_;) on historiesh! ; ob-
served by the other players. We note several things: firstesihe public signals' are fixed,
D(i, ht,o_;) defines a distribution only over the actiom?played by each of the other players
j # i. Second, since the actiora§ played by the other players are a function only of their
own past actions and the public signalsthey are conditionally independent of actiaridixing

the public historys. Hence, we can writ®(i, hl,0_;) = D(i,s',0_;). Finally, equivalently
note that the distribution over action?, at of any pair of playerg # k # i are conditionally
independent fixing the public signats, and so we can decompo8¥i, s',o_;) as a product

distribution:
D(i, st ,O_i) HD (1, st ,O_i)

whereD;(i, s', o_;) represents the marginal distribution on histofiésf player; fixing s.
Fix any set of public signal€’, and private historieg:!, . .., h) for then players consistent
with s'. For any playet, define

a* = arg max [ o~ D (it 0 )[ui(aiag—i(ht—i))]

a;€EA;
= arg max B in6yyt s &n‘st)[ui(ai, a_;)|
Defines! to be the strategy that is identicaldg except on history:!, it playso’(hl) = a}, and
then play in future periods is as if an action drawn freyth!) was played in period.
Formally, for any periodr > ¢, with realized historyh?, the deviation involves playing
o:(h7"), whereh?' is the same ak] except in the component corresponding to the action played
at timet; i.e. al ~ o;(h!) whereas:! = a* by definition. Given the equilibrium strategieswe
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can write:

Vi (h) =(1 = 0)Ba_in(ay 1.6, 00 [ws(03(h]), 0)]
+8 > Vigl(hls,a:)P[s, ai|hl]

s€S,a;€A;

Now consider’ to be the deviation we described above. Note that by playjrigom historyh!
onwards, playei's expected discounted payoff can be written as:

‘/;’(U*i’o—z,') (hf) :(1 - 6)Ea72"\’(&1\5t ----- a—n\st) [ui(a'*7 a—i)]

£6 3 Via((hls,a) Plslit, a”]Plaslo (k)

SGS,CL,L'EAZ'

Sincec forms a sequential equilibrium of the repeated game, foryevistory ! we have:
Vio(hi) = Vi ot (hi)

Substituting the definitions df; , (h;) andV; (,_, »+)(h;) into this inequality, we have:

(Ewm ..... e (110" 0] = B oy, o[ (0i(10), )

<13 ( Vie((hl,5,0:)) Pls, ailhl] = > Vig(( s,az))P[S\hﬁ,a*]P[ai|0'(h§)]>
s€S,a;,€A;

seS,a;€EA;

By (¢, )-differential privacy of the private signal, and the factéxp(—e) > 1—¢, we therefore
have that this is at most

J

<
—1-90

(e+7).

which completes the proof. O
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