Publications by Year: 2020

2020
Marco Gaboardi, Kobbi Nissim, and David Purser. 7/2020. “The Complexity of Verifying Loop-free Programs as Differentially Private.” In 47th International Colloquium on Automata, Languages and Programming (To appear - ICALP 2020). ArXiv VersionAbstract

We study the problem of verifying differential privacy for loop-free programs with probabilistic choice. Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal model to answer two different questions: first, deciding whether a program satisfies a prescribed level of privacy; second, approximating the privacy parameters a program realizes. We show that the problem of deciding whether a program satisfies "-differential privacy is coNP#P-complete. In fact, this is the case when either the input domain or the output range of the program is large.

Further, we show that deciding whether a program is (", )-differentially private is coNP#P-hard, and in coNP#P for small output domains, but always in coNP#P#P. Finally, we show that the problem of approximating the level of differential privacy is both NP-hard and coNP-hard. These results complement previous results by Murtagh and Vadhan [34] showing that deciding the optimal composition of differentially private components is #P-complete, and that approximating the optimal composition of differentially private components is in P.

ARXIV.pdf
Micah Altman, Stephen Chong, and Alexandra Wood. 7/2020. “Formalizing Privacy Laws for License Generation and Data Repository Decision Automation.” In 20th Privacy Enhancing Technologies Symposium (To appear - PET 2020). ArXiv VersionAbstract
In this paper, we summarize work-in-progress on expert system support to automate some data deposit and release decisions within a data repository, and to generate custom license agreements for those data transfers.
Our approach formalizes via a logic programming language the privacy-relevant aspects of laws, regulations, and best practices, supported by legal analysis documented in legal memoranda. This formalization enables automated reasoning about the conditions under which a repository can transfer data, through interrogation of users, and the application of formal rules to the facts obtained from users. The proposed system takes the specific conditions for a given data release and produces a custom data use agreement that accurately captures the relevant restrictions on data use. This enables appropriate decisions and accurate licenses, while removing the bottleneck of lawyer effort per data transfer. The operation of the system aims to be transparent, in the sense that administrators, lawyers, institutional review boards, and other interested parties can evaluate the legal reasoning and interpretation embodied in the formalization, and the specific rationale for a decision to accept or release a particular dataset.
ARXIV 2019.pdf
Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. 6/2020. “Better Secret-Sharing via Robust Conditional Disclosure of Secrets.” In 52nd ACM Symposium on Theory of Computing (To appear - STOC 2020). ePrint VersionAbstract

A secret-sharing scheme allows to distribute a secret s among n parties such that only some predefined

“authorized” sets of parties can reconstruct the secret, and all other “unauthorized” sets learn

nothing about s. The collection of authorized sets is called the access structure. For over 30 years, it

was known that any (monotone) collection of authorized sets can be realized by a secret-sharing scheme

whose shares are of size 2n-o(n)and until recently no better scheme was known. In a recent breakthrough,

Liu and Vaikuntanathan (STOC 2018) have reduced the share size to 20:994n+o(n), which was

later improved to 20:892n+o(n)by Applebaum et al. (EUROCRYPT 2019).

 

In this paper we improve the exponent of general secret-sharing down to 0:637. For the special case

of linear secret-sharing schemes, we get an exponent of 0:762 (compared to 0:942 of Applebaum et al.).

As our main building block, we introduce a new robust variant of conditional disclosure of secrets

(robust CDS) that achieves unconditional security even under limited form of re-usability. We show that

the problem of general secret-sharing reduces to robust CDS with sub-exponential overhead and derive

our main result by implementing robust CDS with a non-trivial exponent. The latter construction follows

by presenting a general immunization procedure that turns standard CDS into a robust CDS.

ePrint-Jan 2020.pdf ePrint-May 2020.pdf
Amos Beimel, Aleksandra Korolova, Kobbi Nissim, Or Sheffet, and Uri Stemmer. 6/2020. “The Power of Synergy in Differential Privacy: Combining a Small Curator with Local Randomizers.” In Information-Theoretic Cryptography (To appear - ITC 2020). ArXiv VersionAbstract

Motivated by the desire to bridge the utility gap between local and trusted curator modelsof differential privacy for practical applications, we initiate the theoretical study of a hybridmodel introduced by “Blender” [Avent et al., USENIX Security ’17], in which differentially private protocols of n agents that work in the local-model are assisted by a differentially private curator that has access to the data of m additional users. We focus on the regime where mn and study the new capabilities of this (m;n)-hybrid model. We show that, despite the fact that the hybrid model adds no significant new capabilities for the basic task of simple hypothesistesting, there are many other tasks (under a wide range of parameters) that can be solved in the hybrid model yet cannot be solved either by the curator or by the local-users separately. Moreover, we exhibit additional tasks where at least one round of interaction between the curator and the local-users is necessary – namely, no hybrid model protocol without such interaction can solve these tasks. Taken together, our results show that the combination of the local model with a small curator can become part of a promising toolkit for designing and implementing differential privacy.

ARXIV 2019.pdf
Aloni Cohen and Kobbi Nissim. 5/2020. “Towards formalizing the GDPR’s notion of singling out.” Proceedings of the National Academy of Sciences. Publisher's VersionAbstract
There is a significant conceptual gap between legal and mathematical thinking around data privacy. The effect is uncertainty as to which technical offerings meet legal standards. This uncertainty is exacerbated by a litany of successful privacy attacks demonstrating that traditional statistical disclosure limitation techniques often fall short of the privacy envisioned by regulators. We define “predicate singling out,” a type of privacy attack intended to capture the concept of singling out appearing in the General Data Protection Regulation (GDPR). An adversary predicate singles out a dataset x using the output of a data-release mechanism M(x) if it finds a predicate p matching exactly one row in x with probability much better than a statistical baseline. A data-release mechanism that precludes such attacks is “secure against predicate singling out” (PSO secure). We argue that PSO security is a mathematical concept with legal consequences. Any data-release mechanism that purports to “render anonymous” personal data under the GDPR must prevent singling out and, hence, must be PSO secure. We analyze the properties of PSO security, showing that it fails to compose. Namely, a combination of more than logarithmically many exact counts, each individually PSO secure, facilitates predicate singling out. Finally, we ask whether differential privacy and k-anonymity are PSO secure. Leveraging a connection to statistical generalization, we show that differential privacy implies PSO security. However, and in contrast with current legal guidance, k-anonymity does not: There exists a simple predicate singling out attack under mild assumptions on the k-anonymizer and the data distribution.
PNAS.pdf
Michael Fine. 4/2020. “Certifiably Accurate Private Data Release with Generative Adversarial Networks”.Abstract

Society is caught in a vise. The exponential growth in the power and ubiquity of computing devices has enabled the collection and analysis of data at an unprecedented scale. This Cambrian explosion in data collection promises enormous benefits across commercial, scientific, and policy fields. Unfortunately, this collection and analysis of increasingly-personal data has also proved to be a grave threat to individual’s privacy.

PDF
Victor Balcer and Albert Cheu. 4/2020. “Separating Local & Shuffled Differential Privacy via Histograms.” In In First Information-Theoretic Cryptography Conference (ITC). Publisher's VersionAbstract
Recent work in differential privacy has highlighted the shuffled model as a promising avenue to compute accurate statistics while keeping raw data in users' hands. We present a protocol in this model that estimates histograms with error independent of the domain size. This implies an arbitrarily large gap in sample complexity between the shuffled and local models. On the other hand, the models are equivalent when we impose the constraints of pure differential privacy and single-message randomizers.
ARXIV.pdf
Victor Balcer and Albert Cheu. 4/2020. “Separating Local & Shuffled Differential Privacy via Histograms.” In Information-Theoretic Cryptography (To appear - ITC 2020). ArXiv VersionAbstract

Recent work in differential privacy has highlighted the shuffled model as a promising avenue to compute accurate statistics while keeping raw data in users’ hands. We present a protocol in this model that estimates histograms with error independent of the domain size. This impliesan arbitrarily large gap in sample complexity between the shuffled and local models. On theother hand, we show that the models are equivalent when we impose the constraints of pure differential privacy and single-message randomizers.

ARXIV 2019.pdf
Aloni Cohen and Kobbi Nissim. 3/2020. “Towards formalizing the GDPR’s notion of singling out.” The Proceedings of the National Academy of Sciences (PNAS), 117, 15, Pp. 8344-8352.Abstract

There is a significant conceptual gap between legal and mathematica thinking around data privacy. The effect is uncertainty as to which technical offerings meet legal standards. This uncertainty is exacerbated by a litany of successful privacy attacks demonstrating that traditional statistical disclosure limitation techniques often fall short of the privacy envisioned by regulators.

We define “predicate singling out,” a type of privacy attack intended to capture the concept of singling out appearing in the General Data Protection Regulation (GDPR). An adversary predicate singles out a dataset x using the output of a data-release mechanism M(x) if it finds a predicate p matching exactly one row in x with probability much better than a statistical baseline. A data-release mechanism that precludes suchattacks is “secure against predicate singling out” (PSO secure). We argue that PSO security is a mathematical concept with legal consequences. Any data-release mechanism that purports to “render anonymous” personal data under the GDPR must prevent singling out and, hence, must be PSO secure. We analyze the properties of PSO security, showing that it fails to compose. Namely, a combination of more than logarithmically many exact counts, each individually PSO secure, facilitates predicate singling out. Finally, we ask whether differential privacy and kanonymity

are PSO secure. Leveraging a connection to statistical generalization, we show that differential privacy implies PSO security. However, and in contrast with current legal guidance, kanonymity does not: There exists a simple predicate singling out attack under mild assumptions on the k-anonymizer and the data distribution.

PNAS.pdf
Yiling Chen, Or Sheffet, and Salil Vadhan. 2020. “Privacy Games.” ACM Transactions on Economics and Computation, 8, 2, Pp. Article 9. Publisher's VersionAbstract

Version History: 

Previously published as: Yiling Chen, Or Sheffet, and Salil Vadhan. Privacy games. In Proceedings of the 10th International Conference on Web and Internet Economics (WINE ‘14), volume 8877 of Lecture Notes in Computer Science, pages 371–385. Springer-Verlag, 14–17 December 2014. (WINE Publisher's Version linked here: https://link.springer.com/chapter/10.1007/978-3-319-13129-0_30); PDF attached as WINE2014.

The problem of analyzing the effect of privacy concerns on the behavior of selfish utility-maximizing agents has received much attention lately. Privacy concerns are often modeled by altering the utility functions of agents to consider also their privacy loss. Such privacy aware agents prefer to take a randomized strategy even in very simple games in which non-privacy aware agents play pure strategies. In some cases, the behavior of privacy aware agents follows the framework of Randomized Response, a well-known mechanism that preserves differential privacy. 


Our work is aimed at better understanding the behavior of agents in settings where their privacy concerns are explicitly given. We consider a toy setting where agent A, in an attempt to discover the secret type of agent B, offers B a gift that one type of B agent likes and the other type dislikes. As opposed to previous works, B's incentive to keep her type a secret isn't the result of "hardwiring" B's utility function to consider privacy, but rather takes the form of a payment between B and A. We investigate three different types of payment functions and analyze B's behavior in each of the resulting games. As we show, under some payments, B's behavior is very different than the behavior of agents with hardwired privacy concerns and might even be deterministic. Under a different payment we show that B's BNE strategy does fall into the framework of Randomized Response.

ArXiv 2014.pdf TEAC 2020.pdf WINE 2014.pdf
Owen Arden, Anitha Gollamudi, Ethan Cecchetti, Stephen Chong, and Andrew C. Myers. 2020. “A Calculus for Flow-Limited Authorization.” Journal of Computer Security.Abstract

Real-world applications routinely make authorization decisions based on dynamic computation. Reasoning about dynamically computed authority is challenging. Integrity of the system might be compromised if attackers can improperly influence the authorizing computation. Confidentiality can also be compromised by authorization, since authorization decisions are often based on sensitive data such as membership lists and passwords. Previous formal models for authorization do not fully address the security implications of permitting trust relationships to change, which limits their ability to reason about authority that derives from dynamic computation. Our goal is a way to construct dynamic authorization mechanisms that do not violate confidentiality or integrity.

We introduce the Flow-Limited Authorization Calculus (FLAC), which is both a simple, expressive model for reasoning about dynamic authorization and also an information flow control language for securely implementing various authorization mechanisms. FLAC combines the insights of two previous models: it extends the Dependency Core Calculus with features made possible by the Flow-Limited Authorization Model. FLAC provides strong end-to-end information security guarantees even for programs that incorporate and implement rich dynamic authorization mechanisms. These guarantees include noninterference and robust declassification, which prevent attackers from influencing information disclosures in unauthorized ways. We prove these security properties formally for all FLAC programs and explore the expressiveness of FLAC with several examples.

JCS 2020 Submitted.pdf CSF 2016.pdf
The OpenDP Team. 2020. “The OpenDP White Paper.” In . Publisher's VersionAbstract

Talks: 

OpenDP is a community effort to build a trustworthy suite of open-source tools for enabling privacy-protective analysis of sensitive personal data, focused on a library of algorithms for generating differentially private statistical releases. The target use cases for OpenDP are to enable government, industry, and academic institutions to safely and confidently share sensitive data to support scientifically oriented research and exploration in the public interest. We aim for OpenDP to flexibly grow with the rapidly advancing science of differential privacy, and be a pathway to bring the newest algorithmic developments to a wide array of practitioners.

OpenDP is led by Faculty Directors Gary King and Salil Vadhan and an Executive Committee at Harvard University, funded in part by a grant from the Sloan Foundation. Its efforts so far have included implementing a differentially private curator application in collaboration with Microsoft, and developing a framework for a community-driven OpenDP Commons through the work of an Ad Hoc Design Committee including external experts. Going forward, the project plans to engage with a wide community of stakeholders, establish partnerships with a wide variety of groups from industry, academia, and government, and adopt increasing levels of community governance.

WHITE_PAPER 2020.pdf
Micah Altman, Kobbi Nissim, Salil Vadhan, and Alexandra Wood. 2020. Using Administrative Data for Research and Evidence-based Policy - A Handbook, Pp. 173 - 242. Cambridge: Abdul Latif Jameel Poverty Action Lab (J-PAL). Publisher's Version