Increasingly, governments and businesses are collecting, analyzing, and sharing detailed information about individuals over long periods of time. Vast quantities of data from new sources and novel methods for large-scale data analysis promise to yield deeper understanding of human characteristics, behavior, and relationships and advance the state of science, public policy, and innovation. At the same time, the collection and use of fine-grained personal data over time is associated with significant risks to individuals, groups, and society at large. In this article, we examine a range of longterm data collections, conducted by researchers in social science, in order to identify the characteristics of these programs that drive their unique sets of risks and benefits. We also examine the practices that have been established by social scientists to protect the privacy of data subjects in light of the challenges presented in long-term studies. We argue that many uses of big data, across academic, government, and industry settings, have characteristics similar to those of traditional long-term research studies. In this article, we discuss the lessons that can be learned from longstanding data management practices in research and potentially applied in the context of newly emerging data sources and uses.
Privacy Tools for Sharing Research Data: Publications
"Concentrated differential privacy" was recently introduced by Dwork and Rothblum as a relaxation of differential privacy, which permits sharper analyses of many privacy-preserving computations. We present an alternative formulation of the concept of concentrated differential privacy in terms of the Renyi divergence between the distributions obtained by running an algorithm on neighboring inputs. With this reformulation in hand, we prove sharper quantitative results, establish lower bounds, and raise a few new questions. We also unify this approach with approximate differential privacy by giving an appropriate definition of "approximate concentrated differential privacy."
Adaptivity is an important feature of data analysis---the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated the formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a sequence of adaptively chosen queries about the unknown distribution P. How many samples n must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions: (i) We give upper bounds on the number of samples n that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015, NIPS, 2015). (ii) We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries. As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that stability implies low generalization error. We also study weaker stability guarantees such as bounded KL divergence and total variation distance.
In the context of statistical databases, the release of accurate statistical information about the collected data often puts at risk the privacy of the individual contributors. The goal of differential privacy is to maximize the utility of a query while protecting the individual records in the database. A natural way to achieve differential privacy is to add statistical noise to the result of the query. In this context, a mechanism for releasing statistical information is thus a trade-off between utility and privacy. In order to balance these two "conflicting" requirements, privacy preserving mechanisms calibrate the added noise to the so-called sensitivity of the query, and thus a precise estimate of the sensitivity of the query is necessary to determine the amplitude of the noise to be added. In this paper, we initiate a systematic study of sensitivity of counting queries over relational databases. We first observe that the sensitivity of a Relational Algebra query with counting is not computable in general, and that while the sensitivity of Conjunctive Queries with counting is computable, it becomes unbounded as soon as the query includes a join. We then consider restricted classes of databases (databases with constraints), and study the problem of computing the sensitivity of a query given such constraints. We are able to establish bounds on the sensitivity of counting conjunctive queries over constrained databases. The kind of constraints studied here are: functional dependencies and cardinality dependencies. The latter is a natural generalization of functional dependencies that allows us to provide tight bounds on the sensitivity of counting conjunctive queries.
The traditional notion of generalization---i.e., learning a hypothesis whose empirical error is close to its true error---is surprisingly brittle. As has recently been noted in [DFH+15b], even if several algorithms have this guarantee in isolation, the guarantee need not hold if the algorithms are composed adaptively. In this paper, we study three notions of generalization---increasing in strength---that are robust to postprocessing and amenable to adaptive composition, and examine the relationships between them. We call the weakest such notion Robust Generalization. A second, intermediate, notion is the stability guarantee known as differential privacy. The strongest guarantee we consider we call Perfect Generalization. We prove that every hypothesis class that is PAC learnable is also PAC learnable in a robustly generalizing fashion, with almost the same sample complexity. It was previously known that differentially private algorithms satisfy robust generalization. In this paper, we show that robust generalization is a strictly weaker concept, and that there is a learning task that can be carried out subject to robust generalization guarantees, yet cannot be carried out subject to differential privacy. We also show that perfect generalization is a strictly stronger guarantee than differential privacy, but that, nevertheless, many learning tasks can be carried out subject to the guarantees of perfect generalization.
We propose graph encryption schemes that efficiently support approximate shortest distance queries on large-scale encrypted graphs. Shortest distance queries are one of the most fundamental graph operations and have a wide range of applications. Using such graph encryption schemes, a client can outsource large-scale privacy-sensitive graphs to an untrusted server without losing the ability to query it. Other applications include encrypted graph databases and controlled disclosure systems. We propose GRECS (stands for GRaph EnCryption for approximate Shortest distance queries) which includes three schemes that are provably secure against any semi-honest server. Our first construction makes use of only symmetric-key operations, resulting in a computationally-efficient construction. Our second scheme, makes use of somewhat-homomorphic encryption and is less computationally-efficient but achieves optimal communication complexity (i.e., uses a minimal amount of bandwidth). Finally, our third scheme is both computationally-efficient and achieves optimal communication complexity at the cost of a small amount of additional leakage. We implemented and evaluated the efficiency of our constructions experimentally. The experiments demonstrate that our schemes are efficient and can be applied to graphs that scale up to 1.6 million nodes and 11 million edges.
Widespread sharing of scientific datasets holds great promise for new scientific discoveries and great risks for personal privacy. Dataset handling policies play the critical role of balancing privacy risks and scientific value. We propose an extensible, formal, theoretical model for dataset handling policies. We define binary operators for policy composition and for comparing policy strictness, such that propositions like "this policy is stricter than that policy" can be formally phrased. Using this model, The policies are described in a machine-executable and human-readable way. We further present the Tags programming language and toolset, created especially for working with the proposed model. Tags allows composing interactive, friendly questionnaires which, when given a dataset, can suggest a data handling policy that follows legal and technical guidelines. Currently, creating such a policy is a manual process requiring access to legal and technical experts, which are not always available. We present some of Tags' tools, such as interview systems, visualizers, development environment, and questionnaire inspectors. Finally, we discuss methodologies for questionnaire development. Data for this paper include a questionnaire for suggesting a HIPAA compliant data handling policy, and formal description of the set of data tags proposed by the authors in a recent paper.
Recent work has constructed economic mechanisms that are both truthful and differentially private. In these mechanisms, privacy is treated separately from truthfulness; it is not incorporated in players’ utility functions (and doing so has been shown to lead to nontruthfulness in some cases). In this work, we propose a new, general way of modeling privacy in players’ utility functions. Specifically, we only assume that if an outcome o has the property that any report of player i would have led to o with approximately the same probability, then o has a small privacy cost to player i. We give three mechanisms that are truthful with respect to our modeling of privacy: for an election between two candidates, for a discrete version of the facility location problem, and for a general social choice problem with discrete utilities (via a VCG-like mechanism). As the number n of players increases, the social welfare achieved by our mechanisms approaches optimal (as a fraction of n).
Differential privacy is a mathematical definition of privacy for statistical data analysis. It guarantees that any (possibly adversarial) data analyst is unable to learn too much information that is specific to an individual. Mironov et al. (CRYPTO 2009) proposed several computational relaxations of differential privacy (CDP), which relax this guarantee to hold only against computationally bounded adversaries. Their work and subsequent work showed that CDP can yield substantial accuracy improvements in various multiparty privacy problems. However, these works left open whether such improvements are possible in the traditional client-server model of data analysis. In fact, Groce, Katz and Yerukhimovich (TCC 2011) showed that, in this setting, it is impossible to take advantage of CDP for many natural statistical tasks. Our main result shows that, assuming the existence of sub-exponentially secure one-way functions and 2-message witness indistinguishable proofs (zaps) for NP, that there is in fact a computational task in the client-server model that can be efficiently performed with CDP, but is infeasible to perform with information-theoretic differential privacy.
Emerging large-scale data sources hold tremendous potential for new scientific research into human biology, behaviors, and relationships. At the same time, big data research presents privacy and ethical challenges that the current regulatory framework is ill-suited to address. In light of the immense value of large-scale research data, the central question moving forward is not whether such data should be made available for research, but rather how the benefits can be captured in a way that respects fundamental principles of ethics and privacy.
In this paper we initiate the study of adaptive composition in differential privacy when the length of the composition, and the privacy parameters themselves can be chosen adaptively, as a function of the outcome of previously run analyses. This case is much more delicate than the setting covered by existing composition theorems, in which the algorithms themselves can be chosen adaptively, but the privacy parameters must be fixed up front. Indeed, it isn't even clear how to define differential privacy in the adaptive parameter setting. We proceed by defining two objects which cover the two main use cases of composition theorems. A privacy filter is a stopping time rule that allows an analyst to halt a computation before his pre-specified privacy budget is exceeded. A privacy odometer allows the analyst to track realized privacy loss as he goes, without needing to pre-specify a privacy budget. We show that unlike the case in which privacy parameters are fixed, in the adaptive parameter setting, these two use cases are distinct. We show that there exist privacy filters with bounds comparable (up to constants) with existing privacy composition theorems. We also give a privacy odometer that nearly matches non-adaptive private composition theorems, but is sometimes worse by a small asymptotic factor. Moreover, we show that this is inherent, and that any valid privacy odometer in the adaptive parameter setting must lose this factor, which shows a formal separation between the filter and odometer use-cases.
We provide an overview of PSI (“a Private data Sharing Interface”), a system we are devel- oping to enable researchers in the social sciences and other fields to share and explore privacy- sensitive datasets with the strong privacy protections of differential privacy.
Poster presented at Theory and Practice of Differential Privacy (TPDP 2016).
merging large-scale data sources hold tremendous potential for new scientific research into human biology, behaviors, and relationships. At the same time, big data research presents privacy and ethical challenges that the current regulatory framework is ill-suited to address. In light of the immense value of large-scale research data, the central question moving forward is not whether such data should be made available for research, but rather how the benefits can be captured in a way that respects fundamental principles of ethics and privacy.
In response, this Essay outlines elements of a new ethical framework for big data research. It argues that oversight should aim to provide universal coverage of human subjects research, regardless of funding source, across all stages of the information lifecycle. New definitions and standards should be developed based on a modern understanding of privacy science and the expectations of research subjects. In addition, researchers and review boards should be encouraged to incorporate systematic risk-benefit assessments and new procedural and technological solutions from the wide range of interventions that are available. Finally, oversight mechanisms and the safeguards implemented should be tailored to the intended uses, benefits, threats, harms, and vulnerabilities associated with a specific research activity.
Development of a new ethical framework with these elements should be the product of a dynamic multistakeholder process that is designed to capture the latest scientific understanding of privacy, analytical methods, available safeguards, community and social norms, and best practices for research ethics as they evolve over time. Such a framework would support big data utilization and help harness the value of big data in a sustainable and trust-building manner.
We present a new algorithm for locating a small cluster of points with differential privacy [Dwork, McSherry, Nissim,and Smith, 2006]. Our algorithm has implications to private data exploration, clustering, and removal of outliers. Furthermore, we use it to significantly relax the requirements of the sample and aggregate technique [Nissim, Raskhodnikova,and Smith, 2007], which allows compiling of "off the shelf" (non-private) analyses into analyses that preserve differential privacy.