Motivation

Computational Social Science
The potential: massive new sources of data and ease of sharing will revolutionize social science.

Challenges for Sharing Sensitive Data

Complexity of Law
- Thousands of privacy laws in the US alone, at federal, state, and local levels, usually context-specific.
- HIPAA, FERPA, CIPESA, Privacy Act, PPRA, ESRA.

Difficulty of Deidentification
- Stripping "PII" usually provides weak protections and/or poor utility.

Inefficient Process for Obtaining Restricted Data
- Can involve months of negotiation between institutions, original researchers.

Vision

Target: Data Repositories

Approach: Integrated Privacy Tools

Bridging Law & CS Definitions of Privacy

Argue that Differential Privacy Satisfies FERPA and other privacy laws via two arguments:

1. **A technical argument supported by a technical argument**
 - The FERPA privacy standard is relevant for analyses computed with DP

2. **A technical argument supported by a legal argument**
 - Differential privacy satisfies the FERPA privacy standard
 - FERPA allows dissemination of de-identified information sufficient to show that DP satisfies outcome that is not identifiable
 - Extract a mathematical definition of privacy from FERPA and provide a mathematical proof that DP satisfies this definition

Other Accomplishments

- Many theoretical results illustrating the limits of differential privacy (lower bounds, algorithms, hardness results, attacks).
- Theoretical and empirical work bridging differential privacy & statistical inference (confidence intervals, hypothesis testing, Bayesian posterior sampling).
- Framework for modern privacy analysis: catalogue privacy controls, identify information uses, threats, and vulnerabilities, and design data programs that align these over data lifecycle.

Co-PIs & Senior Personnel

- Debbie Yehia, co-PI, CRCS & Georgetown
- James Honaker, Sr. Researcher, CRCS
- Michal Alon, co-PI, MIT
- Steve Chong, co-PI, CRCS
- Marco Gaboardi, University of Buffalo
- David O'Brien, Sr. Researcher, Berkman Klein Center
- João Viana, co-PI, CRCS
- Edoardo, co-PI, IQSS
- Steve Chong, co-PI, CRCS
- Marco Gaboardi, University of Buffalo
- David O'Brien, Sr. Researcher, Berkman Klein Center
- Letanya Swainley, co-PI, IQSS
- Edward Arel, co-PI, Harvard Data Dept
- Gary King, co-PI, IQSS
- Maria GobBIARDI, University of Buffalo
- David O'Brien, Sr. Researcher, Berkman Klein Center

Goals of PSI

• General-purpose: applicable to most datasets in repository.
• Automated: no differential privacy expert optimizing algorithms for a particular dataset or application.
• Tiered access: DP interface for wide access to rough statistical information, helping users decide whether to apply for access to raw data (cf. Census PUMS vs RDCs).

Privacy Budgeting Interface

Privacy Definition: effect of each individual must be "hidden"

Digital Privacy Interface:"Meets all Theory and Practical Definitions of Differential Privacy (DP) and satisfies ε=4.500000, δ=0.000001, 2016.

Integration w/Statistical Tools for Social Science

PSI (Ψ): a Private data plateau

PSI (Ψ) at Privacy (TPDP)

Integrated for research in social science and other human subjects research fields.

Training in multidisciplinary research: = 100 students, postdocs, interns from law, computer science, social science, statistics.

Numerous workshops and symposia organized, including public symposium "Privacy in a Networked World" with 700+ registrants.

New journal "Technology Science" utilizing DataTags

Open-access pedagogical materials on data privacy for many audiences.

Disclaimer:

*Data Owners:
- Kevin Wang, Obasi Alexandra Wood*

*Data Owner formalization and design data programs that align these over data lifecycle.

Bayesian posterior sampling). Statistical inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).

Bayesian inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).

Bayesian inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).

Bayesian inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).

Bayesian inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).

Bayesian inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).

Bayesian inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).

Bayesian inference (confidence intervals, hypothesis testing, privacy (lower bounds, algorithms, hardness results, attacks).