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ABSTRACT

We give mechanisms in which each wfplayers in a game is given their component of an
(approximate) equilibrium in a way that guarantees diffitieg privacy — that is, the revelation
of the equilibrium components does not reveal too much médion about the utilities of other
players. More precisely, we show how to compute an appraeimarrelated equilibrium (CE)
under the constraint of differential privacy (DP), prouideis large and any player’s action affects
any other’s payoff by at most a small amount. Our results dré@resting connections between
noisy generalizations of classical convergence resultsderegret learning, and the noisy mech-
anisms developed for differential privacy. Our results lyrghe ability to truthfully implement
good social-welfare solutions in many games, such as gaittesmvall Price of Anarchyeven if
the mechanism does not have the ability to enforce outcomegive two different mechanisms
for DP computation of approximate CE. The first is computaity efficient, but has a subopti-
mal dependence on the number of actions in the game; thedecoomputationally inefficient,
but allows for games with exponentially many actions. We gje a matching lower bound,
showing that our results are tight up to logarithmic factors
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1 Introduction

The field of mechanism design studies how to provide inceatio implement a desired outcome
when agents have relevant private information. We revist with an additional desideratum moti-
vated by privacy concerns — that no agent’s information keated to any other agent, either directly
or by the portion of the outcome that is revealed to any agems is relevant for mechanism design
when the underlying private information is sensitive (dvgalthcare) or agents presume privacy (e.g.
agents’ activity on social networks). Similarly, if thereedunmodeled) future interactions between
the agents, privacy concerns are a reduced-form way topocate strategic concerns regarding the
future. For a broad class of games, we derive a mechanismhwduoproximately) truthfully imple-
ments an (approximate) correlated equilibrium, where fhgraimation error quickly approaches
zero as the size of the game grows. In particular, this gigesnapproximately truthful equilibrium
selection mechanismwhich does not need the power to enforce outcomes, but cé&rthsimply
make suggestions.

Consider a motivating example: imagine a city in which Geolylavigation has become the
dominant navigation service. Every morning, each persoergtheir starting point and destination
into their Google device, receives a set of directions, ambses his/her route according to those
directions. In this setting our question reduces to thegtesf the navigation service such that: 1)
Each agent should be incentivized to report his startingesmudpoints truthfully, and then follow the
driving directions provided. Both misreporting start amdi @oints, and truthfully reporting start and
end points, but then following a different (shorter) patbwdd be ruled out for each agent. 2) Players
are guaranteed tharivacy of their starting and ending points, i.e. the mechanism lshba such
that other player or players cannot infer ‘much’ about a gigkayer’s source or destination based on
the directions they received. As an alternative examplk parhaps more realistic privacy concerns,
consider a setting in which the members of a large populatiost contemplate revealing their status
regarding an infectious disease (infected, uninfectekinown) to a centralized mechanism that will
recommend vaccinations based on social or physical proxsmong members in a way that ensures
best responses (equilibrium). Again in this setting, maseuld like to receive the best-response
benefits of participation, but also want to strongly limifdrmation leakage about their infection
status.

Intuitively, our two desiderata are in conflict. In the coming example above, if we are to
guarantee that every player is incentivized to truthfubildw their suggested route, then we must
compute an equilibrium of the game in question. On the othedhto do so, our suggested route to
some playei mustdependon the reported location/destination pairs of each otheygslj £ i. This
tension seems also to pose a problem in terms of incentif@ge must compute an equilibrium of
a game that islefinedbased on the reports of the players in step 1), an agent cantjady benefit
by misreportingin the first step, causing us to compute an equilibriunthefwrong gameHowever,
as we show, both of these problems can be alleviated by camgpiite equilibrium subject to the
constraint of differential privacy.

Our mechanism is based on a combination of two ideas fromitérature. The first of these
ingredients is the use of ‘no-regret methods’ to compute@pmate correlated equilibria (see, e.g.
Foster & Vohra 6] and Hart & Mas-Colell R5]). A crucial feature of these methods is that equilibria
can be computedithout the algorithms having direct access to the game imdinstead, we “simu-
late play” of the game for only a small number of rounds, anednenly feed each algorithm certain
numeric values at each round: namely, the payoff that eanhlated agent would have received,
given the actions being played in the current round by therahlmulated agents. We show that these



algorithms are extremely noise tolerant: that is, they wadn if the reported payoffs are perturbed.
This means that we can compute equilibria by accessing time galy via a small number of per-
turbed numeric valued queries. We may therefore apply ttie lbody of literature in differential
privacy addressing the question of how to privately answneric valued queries as accurately as
possible.

We can view our algorithm as a mechanism that takes as inpbt @ayer’s report of (private)
type; and outputs a suggested action to each player. It mgsiés an approximate correlated equilib-
rium of the full information game given players’ reports. erbfore, as in our example, the mecha-
nism can also be used as a recommender mechanism for a garhielmagents take actions directly.
Further, this mechanism has both the desired incentiveeptiep and preserves the privacy of each
agent’s information. Moreover, the approximations quididcome exact as the size of the game (i.e.
the number of players) grows, so long as the game is “ingegisin a sense in which we precisely
define.

1.1 Overview of Model and Results

We consider a setting in which a centralized planner simaliasly receives type reports from each
agent and proposes an action to each. We study the designcbmsms that:

1. Propose an approximate equilibrium of the full informnatgame given the reports. Our solu-
tion concept here is-correlated equilibriun.

2. Make it an approximately-dominant strategy for agentgpmrt their type truthfully.

3. Preserve the privacy of each agent’s private informatitere we use a new variant of differen-
tial privacy defined in this paper. Informally speaking, veguire that simultaneously for each
playeri, the joint distribution over actions reported to playgrs: i be differentially private
in the report of playei. This means, roughly, that although playsrsuggested action can be
highly sensitive in his own reported type, it must be inséresio the reported type of any other
player.

We note that this natural variant of differential privacyhieh we calljoint differential privacyis
necessary in our setting, and may be of independent intdresur case, it provides equally strong
guarantees of privacy to each playgeeven if all other agentg # ¢ collude and share their outputs,
while allowing us to circumvent the impossibility of commg an equilibrium under the standard
notion of differential privacy.

It is easy to see that the goal of computing an approximatdilegum while preserving the
privacy of the player’s utility functions is hopeless irRglayer game (or more generally a small
number of players). Therefore we consider ‘largeplayer games. We define these formally in
Section2, but roughly speaking, these ateplayer games in which for all playeis# 7, i's choice
of action can affecj’s payoff by at most an additive-y. We cally the sensitivityof the game. In
what follows, we discuss our results for games wheie O(1/n), but our results extend to other
scales fory. Examples of such games include atomic routing games asldlgerpsize decreases

!For certain classes of games, this can be extendedish equilibria. The main constraint is our proof techeicu/e
need that the solution concept must be computable by an jag® distributed algorithm, to which we can add carefully
calibrated noise. In certain special cases, these conditice satisfied for Nash equilibrium, but in this paper wéricts
our attention to correlated equilibrium so as to maintainegality.



(i.e. as the game approaches a non-atomic routing game)ymoais matching games, and more
generally, any game in which a player’s payoff depends inestipschitz-continuous manner only
on the distribution of actions played (in aggregate) by lpisaments.

We consider two equilibrium concepts: coarse correlatedlibum (CCE), and correlated equi-
librium (CE). For both solution concepts, we give a compatelly efficient mechanism for privately
computinga-approximate versions in games wittactions wherex is O(poly(k)/+/n). Holding the
number of actions fixed, the approximation($1/+/n), or to put it alternately, we get almost exact
equilibria if the number of players is large.

For games with a large number of actions (relativeXthe above algorithm is not useful, due to
the poly(k) term in the numerator. For example, in the routing game dised earlier, the number of
actions available to a player is the number of paths, whichbeaexponentially large relative to the
size of the graph. For such settings with large numbers @ratwe show that positive results are
still possible as long as the number of possible types fan gayer is bounded. Formally, we show
that it is possible to privately compute anapproximate equilibrium in a largke-action n-player
game, withU types for each player, whereis O(log k log®/? |U|/+/n). However, the mechanism in
this case is computationally inefficient.

We also show a matching lower bound: we give a familyngblayer 2-action large games in
which it is not possible to privately compute arapproximate CCE (and therefore arapproximate
CE or anw-approximate Nash equilibrium) fer < 1//n, showing that even our efficient algorithm
gives nearly the best possible approximation guarantetbe icase that is small (i.e. a fixed number
independent of). Our inefficient upper bound of course remains tight up tacadr oflog k log®/% U
for arbitrary k-action games witl/ feasible utility functions. Whether there is afficientalgorithm
for privately computingx-approximate equilibria to errar = O(polylog(k,U)/+/n) is left as an
open guestion.

What do these results mean in terms of incentive properttds®s been observed previously that
differential privacy implies approximate strategy proeda (McSherry & Talward2]). Specifically,
an e differentially private mechanism is alseapproximate dominant strategy truthfulSince the
actions proposed jointly constituteccaapproximate correlated equilibrium of the full infornmaii
game defined by everyone’s reports, it iseat- «)-approximate Nash equilibrium for everyone to
follow the strategy “truthfully report type, then followeétrecommended actio”Note that crucially
this does not require the mechanism to have the power to@némy outcome! We show a mechanism
such that(e + «) quickly tends to zero in the size of the game. Therefore, easitte of the game
grows large, truthfully reporting type and following theggested action approaches an exact Nash
equilibrium of the full information game.

Finally, note that for many games of interest (including tiiadfic routing game that serves as our
running example), th@rice of Anarchyover the set of (coarse) correlated equilibria is very small
[3, 42]. Indeed, in anysmoothgame, the Price of Anarchy over this set of equilibria is naseo
than the Price of Anarchy over pure strategy Nash equilist#h Since our mechanism implements
a correlated equilibrium, it has welfare guarantees thabaiteast as strong as the Price of Anarchy
bound in the game of interest, which in many cases is extsestaing.

2In fact, everyaction is are-approximate dominant strategy in such a mechanism, whistblen a criticism of privacy
as a solution concep8§]. This objection does not apply to our setting, since thesagss reported to each agent iaoe
differentially private in their own reported type, but ontythe reported types of others.

%It is always anc-approximateDominantstrategy to truthfully report type. It is an+ « Nash equilibrium to follow
both parts of the two-part strategy, of truthfully repogtimnd then following the resulting suggested equilibriwatican.



1.2 Related Work and Discussion

Market and Mechanism Design Our work is closely related to the large body of literaturexwech-
anism/market design in ‘large games’. This literature bk exploit the large number of agents to
provide mechanisms which have good incentive propertie=n ehen the small market versions do
not. It stretches back to Roberts & PostlewaRé][who showed that market (Walrasian) equilibria
are approximately strategy proof in large economies. Mecemtly Immorlica and Mahdiar2y] ,
Kojima and Pathakd9], Kojima, Pathak and Roth3p] have shown that various two-sided match-
ing mechanisms are approximately strategy proof in largeketg There are similar results in the
literature for one-sided matching markets, market ecoasmind double auctions. Azevedo and
Budish P] in a recent paper provide conditions for a mechanism to trategy proof in the large’,
i.e. approximately strategyproof as the game grows large.

By comparison with these works, which study settings whieeerhechanism designer/principal
can enforce outcomes (or take actions on behalf of partitipawe study settings where the mecha-
nism only suggests an action to participants. This leadkgtiotly weaker incentive properties (due to
the possibility of ‘double-deviations’). Indeed, if our of&nism could act on behalf of participants,
it would be (e + «)-approximately strategy proof when anapproximate correlated equilibrium is
computed while satisfying-differential privacy’

On a related subject, there is literature suggesting thett éthe mechanism can enforce out-
comes rather than only suggest an action, other considesatnay require the mechanism to select a
‘equilibrium’ outcome of the underlying game rather thari@stimal’ outcome. An influential body
of work, starting with Roth and Xingd4[l] argues that in two-sided matching markets, centralized
mechanisms that implement a stable outcome (a full infdomatolution concept) are more resistant
to unraveling i.e. members of the market pre-empting the mechanism byamimg in advance.

Large Games Our results hold under two sufficient (and almost necessaogyitions: that the
number of players be ‘large’, and the game be insensitié&(io/ \/n ), i.e. a player’s action affects the
payoff of all others by a small amount. These are closelptedlto the literature on large games, see
e.g. Al-Najjar and Smorodinsky] or Kalai [28]. There has been recent work studying large games
using tools from theoretical computer science (but in tlaises studying robustness of equilibrium
concepts)— see Gradwohl and Reingdlé, [20].

Differential Privacy Differential privacy is a formalization of privacy first de&d by Dwork, Mc-
Sherry, Nissim, and SmitHL[] that has since become the standard privacy “solution quhaethe
theoretical computer science literature. It is a quantificeof theworst-case harnthat can befall an
individual as a result of his decision to allow his data to bediin some computation, as compared
to if he did not provide his data.

There is by now a very large literature on differential peiavhich we will not attempt to survey.
Instead, we mention here only the most relevant work. Istetereaders can consug, B7] for a
more thorough introduction to the field.

The most well studied problem in differential privacy is ttledl accurately answering numeric-
valued queries on a data set. A basic result is that any siugdey that has sensitivity at mos(i.e.
the addition or removal of a single individual from the dattan change the value of the query by at

“In fact, if the participants did not have the option of actindependently of the mechanism (i.e. still playing the game
but selecting an action without consulting the mechanishey, our mechanisms would bestrategyproof.



most1) can be answered in a computationally efficient manner vigndserving:-differential privacy,
and introducing error only)(1/¢) (Dwork et al [L0]). Another fundamental result in differential
privacy is that it composes gracefully: Any algorithm coreed ofT" subroutines, each of which are
O(e/\/T)-differentially private is itselfe-differentially private p, 13]. Combined with the previous
result, this gives an efficient algorithm for privately amsiag any7’ low sensitivity queries with
error that grows only withD(+/T'), a result which we make use of.

Another line of work has shown that it is possible to privatehswer queries much more accu-
rately using computationally inefficient algorithmg [L3, 21, 22, 24, 39]. Combining the results of
[24, 39 yields an algorithm which can privately answer arbitrasw Isensitivity queries, interactively
as they arrive, with error that scales only logarithmicatithe number of queries. We make use of
this when we consider games with large action spaces but srpalspaces.

There is also a line of work proving information theoretio/&r bounds on the accuracy to which
low sensitivity queries can be answered while preservirfgrdintial privacy b, 7, 11, 14]. Our
lower bounds for privately computing equilibria work by teihg the problem to privately answering
gueries: we design a game whose only equilibria encode aaswkarge numbers of queries about a
database.

Finally, related to this paper, there is arecent literatureonnections between differential privacy
and game theory. McSherry and Talw&2] were the first to observe that a differentially private
algorithm is also approximately truthful. This line of wonkas extended by Nissim, Smorodinsky,
and Tennenholtz35] to give mechanisms in several special cases which arelgsadthful (although
no longer privacy preserving) by combining private mechiars with non-private mechanisms which
explicitly punish non-truthful reporting. Huang and Kann@6] showed that the mechanism used
by Mcsherry and Talwar (the “exponential mechanism”) isantfmaximal in distributional range,
and so can be made exactly truthful with the addition of paysieWe remark that the immediate
connection between privacy and approximate incentive edimipty leveraged by these works only
holds in settings in which the mechanism has the power toremfits outcome or otherwise compel
actions. The novelty in our work relative to this line is tlbat mechanisms implement approximate
equilibria of the full information game. Therefore, truthfeporting and subsequently following the
suggested equilibria actions remain approximate besbrsgseven if the players have the ability to
act in the game, independently of the mechanism

Another interesting line of work considers the problem o$idgeing truthful mechanisms for
agents who explicitly experience a cost for privacy lossasqf their utility function p, 34, 43]. The
main challenge in this line of work is to formulate a reasdaabodel for how agents experience cost
as a function of privacy. We remark that the approaches tak#re former two can also be adapted
to work in our setting, for agents who explicitly value piiyaGradwohl L8] studies the problem of
implementation for various assumptions about playersepeace for privacy and permissible game
forms. A related line of work which also takes into accoungratgvalues for privacy considers the
problem of designing markets by which analysts can procuvate data from agents who explicitly
experience costs for privacy lossq 17, 31, 40]. See Roth 38] for a survey.



2 Model & Preliminaries

There is a set of. players,{1,2,...,n}, the generic player is indexed Playeri can take actions in
a setA, |A| = k.5 We denote a generic action gyand a generic action for playéby a;. A tuple of
actions, one for each player, will be denotee- (a1, as, ... a,) € A".8

Playeri’s payoff function will be denoted,;: A™ — R. We will restrict attention to ‘insensitive’
games. Roughly speaking a game-isensitive if a player’s choice of action affects any otHaypr’s
payoff by at mosty. Note that we do not constrain the effect of a playerg actions on his payoff.
Formally:

DEFINITION 1 (y-Sensitive) A game is said to be-sensitive if for any two distinct playeis# 7/,
any two actionsy;, a; for player: and any tuple of actions_; for everyone else:

uir (@i, a—i) — ug(aj,a—g)| <. (1)

Denote a distribution oved™ by 7, the marginal distribution over the actions of playday =,
and the marginal distribution over the (joint tuple of) aos of every player but playerby =_;.
We now present (approximate versions of) two standard isoluwtoncepts—correlated and coarse
correlated equilibrium.

DEFINITION 2 (Approximate Coarse Correlated Equilibriunhpt (u;, ug, . . . u,) be atuple of utility
functions, one for each player. Letbe a distribution over tuples of actiont™. We say thatr is
an a-approximate coarse correlated equilibriwinthe game defined by:;, us, . . . u,,) if for every
playeri, and anya, € A:

Ig[ul(a)] > 7rIEET_ [ui(aj, a—;)] —
DEFINITION 3 (Approximate Correlated Equilibriumlet (u;, uo, ... u,) be a tuple of utility func-
tions, one for each player. Let be a distribution over tuples of actiond™. We say thatr is
an a-approximate correlated equilibriuof the game defined by, us, . .. u,) if for every player
i € [N], and any functiory: A — A,

E [ui(a)] > E [ui(f(ar), a-)] — o

Let/ be the set of all possible utility functions for the playénsjth a generic profile of utilities
u = (ug,ug,...uy) € U™ A mechanism is a function from a profile of utility functions a
probability distribution ovefR™, i.e. M: U™ — AR™. HereR is an appropriately defined range
space.

First we recall the definition of differential privacy, both provide a basis for our modified
definition, and since it will be a technical building block aur algorithms. Roughly speaking, a
mechanism is differentially private if for everyand everyi, knowledge of the outpudt(u) as well
asu_; does not reveal ‘much’ about,.

®It is trivial to extend our results to the case where agente liifferent sets of actions; will then be an upperbound
on the number of actions across agents.

®In general, subscripts will refer indices i.e. players aadqas, while superscripts will refer to components of vest

"It is trivial to extend our results to the case where agente liifferent sets of possible utility function;. 4 will
then be J!"_; U;.



DEFINITION 4 ((Standard) Differential PrivacyA mechanism\ satisfieg e, ¢)-differential privacy
if for any playeri, any two possibility utility functions for playeéyu; andw;, and any tuple of utilities
for every else;_; and anyS C R™,

/Ia [(M(uj;u—y)) € 8] < eejla [(M(u;;u_i)) € S] + 0.
We would like something slightly different for our settingle propose a relaxation of the above
definition, motivated by the fact that the action recommentiea player is only observed by her.
Roughly speaking, a mechanismjantly differentially privateif, for each playeri, knowledge of
the othern — 1 recommendations (and submitted utility functions) doesregeal ‘much’ about
playeri’s report. Note that this relaxation is necessary in ouirggtisince knowledge of playeis
recommended action can reveal a lot of information abouttilisy function. It is still very strong-
the privacy guarantee remaimsen if everyone else colludes against a given playeso long as
1 does not himself make the component reported to him publhis felaxation also preserves the
approximate truthfulness properties of private mechagism

DerINITION 5 (Joint Differential Privacy)A mechanism\ satisfies(e, §)-joint differential privacy
if for any playeri, any two possible utility functions for playéru; and «}, any tuple of utilities for
everyone else_; and.S C R" 1,

SU—;)) < €f Fuy
P [(M(uzu-i)_ €8] <e P [(M(ul,u_l))_i € s] +4.
An important result we will use is that differentially prieamechanisms ‘compose’ nicely.

THEOREM 1 (Adaptive Composition1[3]). Let A: U/ — RT be aT-fold adaptive compositiéhof
(e, 6)-differentially private mechanisms. Thehsatisfies(s’, T'd + ¢')-differential privacy for

e =e\/2TIn(1/8") + Te(e® — 1).

In particular, for anye < 1, if A is a T-fold adaptive composition ofs/\/87 In(1/6),0)-
differentially privacy mechanisms, thehsatisfiess, ¢)-differential privacy.

Finally, differentially private mechanisms often involadding Laplacian random noise. We will
denote a (mean 0) and scateLaplacian random variable biyap(c). The following foundational
result shows that adding Laplacian noise to a insensitimetion makes it differentially private.

THEOREM 2 (Privacy of the Laplace Mechanis]). LetQ: ¢/ — R be any~-sensitive function.
Define the mechanist(u) = Q(u) + Lap(o). If o = /¢, thenM is (e, 0)-differentially private.

We state a known concentration inequality for Laplaciardosn variables that will be useful.

THEOREM 3 ([22)). Suppose(Y;}_, are i.i.d. Lap(c) random variables, and scalarg < [0, 1].
DefineY := £ >, ¢;Y;. Then for anyx < o,

T
Pr[Y > a] <exp <_%_2> .
o

8See [L3] for further discussion



2.1 No-Regret Algorithms: Definitions and Basic Properties

Here we recall some of the basics about no-regret learnieg [33] for a text-book exposition.
Let{1,2,...,k} be a finite set ok actions Let L = (I1,...,Ir) € [0,1]7** be aloss matrix

consisting ofl” vectors of losses for each of theactions. Lefll = {77 €[0,1]* | Ele 7l = 1} be

the set of distributions over thieactions and letryy be the uniform distribution. Awnline learning
algorithm A: TI x [0,1]* — I takes a distribution ovek actions and a vector df losses, and
produces a new distribution over ttheactions. We used,(L) to denote the distribution produced
by running.A sequentiallyt — 1 times using the loss vectors, . .., Il;_1, and then runningd on the
resulting distribution and the loss vectpr That is:

Ao(L) = 7y,
A(L) = A(Ar (L), 1),

We useA(L) = (Ao(L), A1 (L), ..., Ar(L)) whenT is clear from context.
Letm,...,mr € Il be a sequence @f distributions and lef. be aT-row loss matrix. We define
the quantities:

k
A, 1) =Y " ail,
j=1
1 T
Mmo, ... ,mp, L) = n ;A(wt,zt),

AA(L), L) = MAo(L), Ay (L)), ..., Ap(L)), L).

Note that the notation retains the flexibility to run the aition .4 on one loss matrix, but measure
the lossA incurs on a different loss matrix. This flexibility will be eful later.

Let F be a family of functionsf: {1,2,...,k} — {1,2,...,k}. For a functionf and a distribu-
tion 7, we define the distributiorf o to be

(foﬂ)j: Z s
3" fGN)=7

The distributionf o corresponds to the distribution on actions obtained by ¢lisbsing an action
according tar, then applying the functioif.
Now we define the following quantities:

>\(7T17 o 77TT7L7 f) = A(foﬂ-lvfoﬂ-% o 7fO7TT7L)>
P(A, Lv f) = A(Av L) - A(Av Lv f)a
p(A, L, F) = maxp(A, L, f).
feF
As a mnemonic, we offer the following\ refers to expected losg,refers to regret. Next, we define
the familiesFfixed, Fowap :

]:fixed = {fj(],) :j7 fora”j/ |j € {17277k}}
Fowap = {f :{1,2,...,k} = {1,2,...,k}}



Looking ahead, we will need to be able to handle not guptiori fixed sequences of losses, but
also adapted. To see why, note that for a game setting, arjsldgss will depend on the distribution
of actions played by everyone in that period, which will deghein turn, on the losses everyone
experienced in the previous period and how everyone’s ififgs reacted to that.

DEFINITION 6 (Adapted Loss)A loss functionl is said to be adapted to an algorithp if in each
periodt, the experienced lossése [0, 1]* can be written as:

lt = ﬁ(l07 A(l0)7 l17 A(ll)7 e 7lt—17 A(lt—l))'

We will make use of the following well-known results from ttieeory of no-regret algorithms,
which show the existence of algorithms that guarantee |lgneteeven against adapted losses (see e.g.
[33).

THEOREM4. There exists an algorithm..q such that for any adapted 105 p(Afixed, £, Ffixed) <

2logk  There also exists an algorithtswap SUCh that(Aswap, £, Fewap) < ky/ 2EE.
2.2 From No Regret to Equilibrium
Let (u1,...,u,) be utility functions for each of. players. LetS = {(m1,...,m7)},_, be a
collection ofn sequences of distributions oveactions, one for each player. Ligtl; 1, ..., 7)} ",

be a collection of: sequences of loss vectarse [0, 1]* formed by the action distribution. More
formally, for everyj, lft =1-Er_,, [ui(j,a—;)]. Define the maximum regret that any player has to
her losses 7

Pmax (S, L, F) = miaxp(Si,LZ-,]:)

wheresS; = (71‘2"0, e 77Ti,T) andL; = (li71, e >li,T)-

Given the collections, we define the correlated action distributidg be the average distribution
of play. That is[IIg is the distribution oved™ defined by the following sampling procedure: Choose
t uniformly at random from{1,2,...,T'}, then, for each player, choosez; randomly according to
the distributionr; ,, independently of the other players.

The following well known theorem (see, e.g33) relates pnax to the equilibrium concepts
(Definitions2 and3):

THEOREM 5. If the maximum regret with respect Biyeq is small, i.€.pmax (S, L, Fiixed) < , then
the correlated action distributiofilg is an c-approximate coarse correlated equilibrium. Similarly,
if pmax(S; L, Fswap) < , thenlIlg is ana-approximate correlated equilibrium.

3 Noise Tolerance of No-Regret Algorithms

In this section we show that no-regret algorithms are toket@ addition of ‘some’ noise, that is we
still get good regret bounds with respect to the real lodsee run the no-regret algorithm on noisy
losses (real losses plus low-magnitude noise).

Let L € [0,1]7** be a loss matrix. Definé = £+! (entrywise) and note that € [, 2]7>*.
The following states that running on L doesn't significantly increase the regret with respect ¢o th
real losses.

10



LEMMA 1. For every algorithmA, every familyF, and every loss matrix € [0, 1]7%¥,
p(A(L), L, F) < 3p(A(L), L, F).

In particular, for everyL € [0, 1]7<%

— 181log k — 181log k
p(-Afixed(L)aLajrfixed) § Tg and p(-Aswap(L)aLafswap) § k Tg .
PROOF. Let m,...,mp € II; be any sequence of distributions and let {1,2,...,k} —

{1,2,...,k} be any function. Then

p(mo,...,mr, L, f) = X(mo, ..., 7, L) — XN(fomg, ..., forp, L)

= 3(>\(7T07"'77TT7L) _/\(foﬂ-(]v"'»foﬂ-Taf))
:3(p(ﬂ07"'77TT>va)) .

The second equality follows from the definition bfand from linearity of expectation. The Lemma
now follows by setting 7, ..., nr) = A7r(L), taking a maximum ovef € F, and plugging in the
guarantees of Theoreh O

In light of Lemmal, for the rest of this section we will take to be a loss matrix ifh, 217,

This rescaling will only incur an additional factor 8fin the regret bounds we prove. LBte R7**

be a real valuedoise matrix LetL = L + Z (entrywise). In the next section we will consider the
case wheré” is an arbitrary matrix with bounded entries. Then we willyga tighter bound for the
case wher& consists of independent draws from a Laplace distribution.

3.1 General Noise

The next lemma states that when a no-regret algorithm is num moisy sequence of losses, it does
not incur too much additional regret with respect to the lesdes.

LEMMA 2 (Regret Bounds in the Presence of Bounded Nolssf)L ¢ [%, %]Tx’f be any loss matrix.

LetZ = (2]) € [—b,b]T** be an arbitrary matrix with bounded entries, and let= L+ Z. LetA
be an algorithm. Lef be any family of functions. Then
PA(L), L, F) < p(A(L), L, F) + 2b.

PROOF. Let(my,...,mr) be any sequence of distributions andfet{1,2,... k} — {1,2,... k}

11



be any function. Then:

p(ﬂ-Ov"'?ﬂ-Tvaf)_p(ﬂ-Ov"'?ﬂ-TvE»f)

= (A(mg, ..., 7T, L) — M fom, .. fowT,L)) — (Mo, ..., 7, L) = A(fomo, ..., forp, L)).
()\ TQy - 7TT, 7'('(), 7TT7 ()\(foﬂ'o,... fOﬂ'T,E) —)\(foﬂ'o,...,fOﬂ'T,E))
T k
Y () ! ZZ for )i —T) (by definition ofA)
T t=1 j=1 t=1 J=1
1 T K 1 T k o
= | 7 SO wld 7 YO (fom)4 (by definition ofz) ()
t=1 j=1 t=1 j=1

TN 1 I '
J : J
<b TZZ” +b TZ (fom) (Vj,t |21 < b)
t=1 j=1 t=1 j=1
= 2b,
where the final equality follows from the fact that, f o, are probability distributions. O

COROLLARY 1.LetL € |

1, 2|7k be any loss matrix and let € R”** be a random matrix such
thatPy [Z € [—b,b]7*F] > 1

— j3 for someb € [0, 1], and letL = L + Z. Then

1. Py |: (-Aﬁxed( ) L ]:flxed) % +2b:| < B
2. Py [ (Aswap(L), L, Fonap) > ky/ 21985 +2b} <

3.2 Laplacian Noise

Having handled the case of general noise, we will now provghaer bound on the additional regret
in the case where the entries Zfare iid samples from a Laplace distribution.

LEMMA 3 (Regret Bounds for Laplace Noisépet L [3, 3]TX’C be any loss matrix. Let = (zt) €

RT >k be a random matrix formed by taking each entry to be an indégensample fronbLap(o),

and letL. = L + Z. Let.A be an algorithm. Lef be any family of functions. Then for any< o.
P [p(A(L), L, F) = p(A(L), L F) > ] < 2/ F|e /2",

PROOF. Let (m,..., ) be any sequence of distributions andfet{1,2,...,k} — {1,2,...,k}
be any function. Recall by2§,

T k k
p(ﬂ-Ov"'?ﬂ-Tvaf)_p(ﬂ-Ov"'?ﬂ-TvE»f) = (’}“Zzﬂg’ztj) + (’}“ZZ(foﬂ-t)]zg) . (3)

12



We wish to place a high probability bound on the quantities:

1 Ik
Yoo, qr = T ZZTF?Z?

t=1 j=1

Changing the order of summation,

T 1 T
e X (M) (334,
t=1

at,..,ap€A \t=1

the equality follows by considering the following two wayssampling elementsf. The first ex-
pression represents the expected value/df ¢ is chosen uniformly from{1,2,..., T} and thenj
is chosen according te;. The second expression represents the expected valdedfafa, . .., ar)
are chosen independently from the product distributierx =5 x --- x w7 and thena; is chosen
uniformly from (ay, ..., ar). These two sampling procedures induce the same distiihudind thus
have the same expectation. Thus we can write:

T
TZ ]g]}» %Zztsn].
t=1

where the second inequality follows from the fact that thealdes z{ are identically distributed.
Applying TheorenB, we have that for any < o,

P|Y, >n| <  max
Z[ 70,mr > ai,.. ,aTEAZ

2 o2
P [Yry,..op > 1] <€ /07 (@)

Let (m,...,mr) = A(L). By Equation 8) we have
P [o(AD), L. /) = p(AL), L, f) > ]

1 T k o 1
J 5
SPlp 22 mHd > n2 +F

t=1 j=1 t

T &k
Zfoﬂ-t zt>77/27
=1 j=1
—n?T /2402
< 2 /207

where the last inequality follows from applyind)(to the sequencdsr, . .., nr) and(fom, ..., fo
mr). The Lemma now follows by taking a union bound oveér O

Finally, we obtain a tighter counterpart of Corollatywhen the noise is independent Laplacian
noise.

COROLLARY 2.Let L € [3,2]7*" be any loss matrix and let € R™** be a random matrix
formed by taking each entry to be an independent sampleffzgno) for o < & 0 and let

IC SERTTT)
L=L+Z.Then
E 4 gy /2000 4k/5)]

2. Py {p(Aswap(f),L,fswap) > ky/2oek 4 o 724’“0%4’“/5)] < 8.

IN
=

1. Py |: (Af.xed( L ]:flxed
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4  Private Equilibrium Computation

Having demonstrated the noise tolerance of no-regretigtigas, we now argue that for appropriately
chosen noise, the output of the algorithm constitutes alyadifferentially private mechanism, in the
sense of Definitiors. We prove two results of this type. First, in Sectibd we consider games with
‘few’ actions per player. While our algorithm for this casecionceptually more straightforward, it
will not be sufficient in certain cases of interest. For exlmm the routing games we described
in the introduction, the set of actions available to a play@rsists of all routes between her starting
point and her destination. Even if the graph (road netwaslgnall, the number of feasible routes
can be extremely large (exponential in the number of edgexl§)). However, in such games, the
set of types (utility functions) is small (i.e. the set of sdlurce-destination pairs). Motivated by this
observation, in Sectiof.2we consider games with large action spaces, but boundedpgues.

4.1 Games with Few Actions

To orient the reader at a high-level, our proof has two madpst First, we construct a ‘wrapper’
NRLAPLACEA which takes as input the parameters of the game, the repinpéel of utilities, and
any no-regret algorithrd. This wrapper runs the no-regret algorithiin every period for each
player on noisy losses, i.e. instead of reporting the trag 104, it reports the loss plus appropriately
chosen Laplacian noise. In Theordhwe show that this constitutes a jointly differentially pte
mechanism. Then, in Theorethand Corollary3, we show that this wrapper converges to an ap-
proximate coarse correlated equilibrium when the inpubrtlgm is As..q, and to an approximate
correlated equilibrium when the input algorithmAs,,ap.

4.1.1 Noisy No-Regret Algorithms are Differentially Private

NRLAPLACEA (us, . .. up)
PARAMS: ¢,6,v € (0,1],n,k, T € N
LET: 71 1,...,m,,1 each be the uniform distribution ovét, 2, ... k}.

LET o = Y4/ 8nkT In(1/6)

£

For t=1,2,...,T
LET: [, =1 —E;_,, [ui(j,a—;)] for every player, action;.
LET: Zf,t be an i.i.d. draw fromLap(o) for every player, actiony.
LET: I, = I, + 2], for every player, action;.

~

LET: ;441 = A(mis, li) fOr every player.
END FOR
OUTPUT:. (m;1,...,m 1) to playeri, for everyi.

THEOREM 6 (Privacy of NRIAPLACEA). For any A, the algorithmNRLAPLACE" satisfies(e, §)-
joint differential privacy.

We now sketch the proof. We'll fix a playérand utility functionsu_; and argue that the output
to all other players is DP with respect ig. It will be easier to analyze a modified mechanism that
outputs(lA_Z-vl, . ,lA_i,T). This output is sufficient to computer_; 1, ..., 7—; ) just by runningA,
so it is sufficient to prove that this output is DP.

14



Our goal will be to show that each element of the outhut,can be viewed asasensitive query
on u;. Sincel:@t is Iy + plus Laplacian noise, it will satisfy differential privagfor some suitable
parameters). Notice that , depends on the utility function; in two ways. The first is explicitly,
through the action of player This can vary arbitrarily withu;, but the loss is onlyy-sensitive to
this action. The second is indirect, in that playsrutility function affects the other players’ losses,
which will in turn affect the query we make. However, once welfie noisy losses for the first— 1
rounds, we can compute playgs actions in each round, and then only have to worry aboufitbie
effect. Thus, we can view the output of our mechanisri’ asunds of (possibly adaptively-chosen)
low-sensitivity queries om;, and apply standard composition arguments in that setting.

PROOF. Fix any player, any pair of utility functions fot, u;, «;, and a tuple of utility functions_;
for everyone else. To show differential privacy, we needralygze the change in the distribution of
the joint output for all players other than(z_; 1, ..., 7—; ) when the input iSu,, u_;) as opposed
to (uf, u—;).

It will be easier to analyze the privacy of a modified mechanibat outputs(lA_Z-,l, e ,ZA_i,T).
Observe that this output is sufficient to compute.; 1,...,7_; 7) just by runningA. Thus, if we
can show the modified output satisfies differential privélogn same must be true for the mechanism
as written.

For every player’ # i, actionj € {1,2,...,k}, andt < T, we define the quer;@f,’t(- ]
lA_M, ... ,lA_i,t_l) on the utility functionsu;, as well asu_; the output of the mechanism in rounds
1,...,t—1.

QUGWQg/,t(Uu U | Iy lie—1)

Usingu_;, u; andlA_i,l, . ,lA_i,t_l, computelg, .- Observe that this can be done in the following
steps:

1. Usingl_m, C >l—i,t—1’ A, andu_;, Computeﬂ_m, ey T t—1-
2. Usingw_i,l, ey T 1, A, andu;, Computeﬂi,l, ey T t—1.

3. Usingwt_l = (Wi,t—laﬂ—i,t—l)’ A, andu;, Computelg,i.

Observe that the only step of the query computation thattijrewolvesu; is the second. Chang-
ing player:’s utility function from v, to «; can (potentially) affectr; ;_;, and can (potentially) alter
it to an arbitrary stater; ;. However, observe that

Qf},t(ui | uiydoitye s lig1) =1— E [ug(j,a_in)]

W—i/,t

=1- E [E [Ui/(j,%a—(i',i))]} <

ﬂ——(i,i’),t Tt
1—- E {E [Ui’(j7aiaa—(i’,i))+fy]:| =

(i)t | Tist

QZ},t(ué, | u—i i1, lii—1) + 7,
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where the inequality comes from the fact thatis assumed to be-sensitive in the action of player
1 (Definition 1), and by linearity of expectation. A similar argument shows

Q{,,t(ui | u—ilin, ooy lig—1) > Qg/7t(ué | u—ili1yeeosloiz—1) =7

Note two facts about these queries: (1) The answ@{tg is exactlylg,vt, thus the noisy output to
these queries (i.e. answer plusp(c)) is indeed equal to the output of the (modified) algorithm NR-
LAPLACEA. (2) The noisy IosseELi,l, . ,lA_Z-vt_l have already been computed when the mechanism
reaches round, thus the mechanism fits the definition of adaptive compmsiti

Thus, we have rephrased the out@gl, e ,ZAZ-/,T) as computing the answersa@1" (adaptively
chosen) queries ofu,...,u,), each of which isy-sensitive to the input;;. Thus the Theorem

follows from our choice ofr = ye~!/8nkT log(1/5) and Theorem4 and2. O

4.1.2 Noisy No-Regret Algorithms Compute Approximate Equibria

Therefore we have shown how that the this ‘wrapper’ algarith jointly differentially private in the
sense of Definitiorb. We now proceed to show that using this algorithm with..q will result in an

approximate coarse correlated equilibrium (Theo@nand that using it withds,,., will result in an

approximate correlated equilibrium (Corollasy.

THEOREM 7 (Computing CCE)Let A = Ajsy,q. Fix the environment, i.e. the number of playets
the number of actions, the sensitivity of the game the degree of privacy desire, §), and the
failure probability 5. One can then select the number of rounds the algorithm ransfT, satisfying:

_ 1
e 1\/ 8nkT10g(1/5) S W, (5)

such that with probability at least— 3, the algorithmNRLAPLACE"fxd, returns anc-approximate

CCE for?®
a=0 (’ya_l\/nk log(1/6) log(1/5)> . (6)

Before we proceed to the proof, some discussion is apptepria is already well known that
no-regret alogrithms converge ‘quickly’ to approximateaiigria— recall Theoremg and5. In the
previous section, we showed that adding noise still leadtstaegret (and therefore to approximate
equilibrium). The tradeoff therefore is this. To get a mameect’ equilibrium, the algorithm has to be
run for more rounds. By the arguments in Theom@rthis will result in a less private outcome. The
current theorem makes precise the tradeoff between theRixmg the various parameter®)(tells
us the number of rounds the algorithm must run for. Theng)tell us that fixing the desired privacy
and failure probability, one can compute @approximate CCE forx = O(fyﬂ).

This is astrongly positiveresult— in several large games of interest, e.g. anonymaishimg
games;y = O(n~!). Therefore, for games of this sert= O(v/k/y/n). If k is fixed, butn is large,
therefore, a relatively exact equilibrium of the undertymame can be implemented, while still being
jointly differentially private to the desired degree.

PROOF OFTHEOREM 7. By our choice of the parametet in the algorithm NRIapLACE#:", which
is

o =ye '\/8nkT log(1/5),

°HereO hides (lower orderpoly (log 1, log k, log T, log(1/7), log(1/¢),log log(1/8), log log(1/8)) factors.
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and by assumption of the theorem),(we haves < 1/6log(4nkT/3). Applying Theorem2 we
obtain:
2logk v/ 24 log(4nk
Ig [P(m,h---,7Ti,T7Li,~7:ﬁxed) > SL og% nk/p)

B

T n

for any playeri, where L; is the loss matrix derived from the given utility functioms and the
distributions{; ; } Now we can take a union bound over all playgrgielding:

2logk J«/2410g;j§4nk/5)] s

T

i€[n],te[T]"

EZD [mlax p(ﬂ-i,la cee 77TZ',T7 Liy]:fixed) >

2logk 24 log(4nk
:Ig[pmam,aﬂxedb\/ LA Og;”/ﬂ)]gﬁ.

By Theorems5, therefore, the empirical distribution of play is ¢ 28 4 aimlogf(‘mk/ﬁ)-
approximate coarse correlated equlibrium.

To finish, substituter = ye~1,/8nkT log(1/4) into the expression above. Therefore, with prob-
ability at leastl — 3, no player has regret larger than

[2logk  v+/192nklog(1/6)log(4nk/p)
o= T + -

SinceT is a parameter of the algorithm, we can cho@st® minimize«. Sincea is monotonically
decreasing iri", we would like to chooséd" as large as possible. However, our argument requires
(5), which (roughly) requires/T < 1/vv/nk, where we have suppressed dependence on some of the
parameters. By choosirifj so thaty'T ~ 1/vv/nk we can make the first term of the erreryv/nk,

which would make it be of a similar order to the second ternis #asy to verify that we can choose

T is such a way thdf satisfies the assumption and the resulting value sdtisfies the conclusion of

the theorem. O

By consideringAs..., instead ofAg,.q, we easily get similar results for approximate correlated
equilibrium rather than coarse correlated equilibrium.

COROLLARY 3 (Computing CE)Let A = As,,,. Fix the environment, i.e. the number of players
the number of actions, the sensitivity of the gamg and the degree of privacy desiregd, ). One
can then select the number of rounds the algorithm musf/tusnd two numbers, 8 satisfying:

) 1
ve~L\/8nkT log(1/5) < 6log(4nkT/B)’ "

such that probability at least — 3, the algorithmNRLAPLACE“ = returns ana-approximate
correlated equilibrium for:0

5 <7k3/2\/—n log(1/9) log(l/ﬁ)>
g

YAgain O hides lower ordepoly(log N, log K,log T, log(1/A),log(1/e), loglog(1/53),loglog(1/d)) factors.
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PrRoOF. Following the same steps as the Proof of Theoigrbut noting that we are using regret
with respect taFg,,p rather thanFs,.q, we find that NRILlapLACE#s» will return, with probability
at leastl — 3, ana-approximate correlated equlibrium where

ok /21(1)§;k N Ak+/384nlog(1/0) log(4k:n/5).

3

As in Theoreni/, we will chooseT” ~ 1/~+v/nk to complete the proof. O

4.2 Upper bounds for Games with Bounded Type Spaces

Recall that in the previous section, we showed that a priggtélibrium can be computed with a

O(V'k/+/n) approximate equilibrium. While these results are positiresome settings (e.g. anony-

mous matching games for large populations), they have adrbgtettings where the number of actions
is as large (or larger) than the number of players. The pnolderoughly this— with large numbers of

actions, the no-regret algorithm will have to be run ‘marnyids. This would require that we either

sacrifice privacy, or introduce even more noise to ensukagyj which in turn would give make the

computed equilibrium a worse approximation.

4.2.1 The Median Mechanism

In order to get a better bound on the accuracy as a functidmeafiimber of queries, we will need a
mechanism that is capable of answering a large number ofeguaccurately. One such mechanism
is the so-called Median Mechanism of Roth and Roughgar8gjp paired with the privacy analysis
of Hardt and RothblumZJ4].**

THEOREM 8 (Median Mechanism For General Queri&®,[24]). Consider the followingR-round
experiment between a mechanigr,;, who holds a tuple.,...,uy € U, and a adaptive querier
B. Foreveryround- =1,2,..., R:

1. B(Q1,a1,...,Qr_1,a,_1) = Q,, WhereQ, is a~y-sensitive query.
2. ap < Mps(ut, ..., un; Q).

For everye, d,v, 8 € (0,1], N, R,U € N, there is a mechanisoM ,,; such that for every8
1. The transcript{ @1, a1,...,Qr,ar) satisfiege, )-differential privacy.

2. With probabilityl — 3 (over the randomizations o¥1,y), |a, — Qy(u1, - .., un)| < an,, for
everyr =1,2,..., R and for

apmy = 166171/ Nlog Ulog(2R/8) log(4/5).

"originally, the median mechanism &9] was only defined and analyzed for the case of linear quefiglk’ result,
first observed by Hardt and Rothblu2d] is that the Median Mechanism (when instantiated with a hatlgossible size:
datasets) can be applied to arbitrgrgensitive queries, which immediately yields Theo@when paired with the privacy
analysis of P4]. The simple proof can be found idZ].
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4.2.2 Noisy No-Regret via the Median Mechanism

We now define our algorithm for computing equilibria in gaméth exponentially many actions.

To keep notation straight, we will use= (u1, ..., uy) to denote the utility functions specified
by each of then players, and € U/ to denote a utility function considered within the mechanis
Let U = |U|, the size of the set of possible utility functions for anyygla

First we sketch some intuition for how the mechanism workgdrticular, why we cannot simply
substitute the Median Mechanism for the Laplace mechanisingat a better error bound. Recall
the queries we used in analyzing the Laplace-based algomﬁt(- | u_i,lA_i,l, . ,lA_Z-vT) in our
previous analysis. We were able to argue that fixingand the previous noisy losses, the query was
low-sensitivity as a function of its input;. This argument relied on the fact that we were effectively
runningindependentopies of the Laplace mechanism, which guarantees thaintheesis given to
each query do not explicitly depend on the previous quehaswere asked (although the queries
themselves may be correlated). However, in the mechanisarevabout to define, the queries are all
answered using singleinstantiation of the Median mechanism. The Median mechawmisrrelates
its answers across queries, and thus the answers to one magrgepend on the previous queries
that were made. This fact will be problematic, because tserggion of the querie®? , contains the
utility functionsu_;. Thus, the queries we made to construct the output for péayéier thari will
actually contain information about_;, and we cannot guarantee that this information does not leak
into the answers given to other sets of players.

We address this problem by asking a larger set of queriesewthescription does not depend on
any particular player’s utility function. We will make thetsof queries large enough that they will
actually contain every query that we might possibly haveedsk the Laplace-based algorithm, and
each player can select from the larger set of answers onbetladiich she needs to compute her
losses. Since the queries do not depend on any utility fomctire do not have to worry about leaking
the description of the queries.

In order to specify the mechanism it will be easier to defireefdllowing family of queries first.
Leti be any playerj any action any round of the algorithm, andany utility function. The queries
will be specified by these parameters and a sequance ., A,_; whereA, € R™**>U for every
1 <t <t— 1. Intuitively, the query is given a description of the “stadé the mechanism in all pre-
vious rounds. Each state variable encodes the losses that would be experienced by every [gssib
playeri and every actiory and every utility functiorw, given that the previous — 1 rounds of the
mechanism were played using the real utility functio&e will think of the variables\y, ..., A;_1
as having been previously sanitized, and thus we do not lbaweiry about the fact that these state
variables encode information about the real utility fuoit.

O o [Am )

Usinguy,...,un | A1,..., Avq, computelfftv =1—Er_,, [ui(j,a—;)]. This computation can
be done in the following steps:

1. For everyi’ # i, useA’ N, A andug to computery g, ., T .

ARTERE

2. Usingr_; 1, compute?

RN

Observe than is y-sensitive for every player, stept, actionj, and utility functionv. To see

2,t,v
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why, consider what happens when a specific playswitches her input fromy;: to «,. In that case
that: = 4/, this has no effect on the query answer, because piayatility is never used in computing
Qi,j,v- In the case that' # 7 then the utility function of playet’ can (potentially) affect the com-
putation ofr; ,_¢, and can (potentially) change it to an arbitrary stgig_,. But theny-sensitivity
follows from the~-sensitivity ofu;, the definition oflf,m, and linearity of expectation. Notice that
u; does not, however, affect the state of any other players,withase the losses\q,...,A; 1 t0
generate their states, not the actual states of the othgsrpla

Now that we have this family of queries in places, we can desd¢he algorithm. Our mechanism
uses two steps. At a high level, there is an inner mechanidRIVIEDIAN-SHARED, that will use

the Median Mechanism to answer each qt@ng ( ] Kl, e ,Kt_l), and will output a set of noisy

Iossesﬁl, e ,KT. The properties of the Median Mechanism will guarantee tiede losses satisfy
(e, 9)-differential privacy (in the standard sense of Definiti)n

There is also an outer mechanism that takes these losse$oam#ch player, uses the losses
corresponding to her utility function to run a no-regretaathm. This is NRMeDIAN which takes
the sequenc&l, e ,KT and using the utility function; will compute the equilibrium strategy for
playeri. Since each player’s output can be determined only from Werudility function and a set of
losses that ige, §)-differentially private with respect to every utility fution, the entire mechanism
will satisfy (e, ¢)-joint differential privacy.

NRMEDIAN-SHAREDA (uy, . .. uy)
PARAMS: ¢,6,v € (0,1],n,k, T € N
For: t=1,2,...,T
LET: T, , = My (ul, uns QLA ,T\t_l)) for everyi, j, v.
LeT: (i t,v) =1,
END FOR
OuTPUT: (Ay,...,Ar).

for everyi, j, v.

NRMEDIANA(uy, ... uy)
PARAMS: ¢,0,A € (0,1],n,k,T € N
LET: (Aq,..., A7) = NRMEDIAN-SHAREDA (uy, . .., uy).
FOrR i=1,...,N
LET: m; 1 be the uniform distribution ovefl, 2, ..., k}.
ForR: t=1,...,T
LET: my = A (Wi,t—h Ai,t—l,m)
END FOR
OUTPUT TO PLAYER: (T 1,...,TT)-
END FOR

THEOREM 9 (Privacy of NRMEDIAN). The algorithmNRMEDIAN satisfies(e, §)-joint differential
privacy.

PROOF. Observe that NRMIDIAN can be written ag(u) = (f1(g(u)),..., fn(g(u))) where f;
depends only om; for every playeti. (Here,g is NRMEDIAN-SHARED and f; is thei-th iteration of
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the main loop in NRMDIAN). The privacy of the Median Mechanism (Theoré&directly implies
thatg is (e, §)-differentially private (in the standard sense).

Consider a playerand two profilea1, u’ that differ only in the input of playet, and consider the
output (f_;(g(u))). LetS C Range(f—;) and letR(u) = {o € Range(g) | f~(0) € S}. Notice
that f is deterministic, saR is well-defined. Also notice thak depends only ot andu_; (in
particular, not ony;). Then we have

P [h7'(u) € S] = P [g(u) € R(u) = R(w)]

h(u) g(u)
< e e [g(u') € R(u) = R(1)] + 6
g(u’
<e P [h_i(u') €S]+46
h(u)

where the first inequality follows from the (standafd)é)-differential privacy ofg. Thus, NR M-
DIAN satisfies(e, 0)-joint differential privacy. O
4.2.3 Computing Approximate Equilibria

THEOREM 10 (Computing CCE)Let A be Aj..q. FiX the environment, i.e the number of players
the number of actions, number of possible utility functiorig, sensitivity of the game and desired
privacy (e, d). Supposes andT are such that:

16e'yy/nlog U log(2nkTU/B) log(4/5) < & (8)

Then with probability at least — $ the algorithmNRMEDIAN % returns ana-approximate CCE
for:12

a=0 (WW log® Ulog(k/5) log<1/6>>
3
Again, considering ‘low sensitivity’ games wheteis O(1/n), the theorem says that fixing the
(log U)% log k
VN
The tradeoff to the old results is in dependence on the nuwifietions. The results in the previous
section had a/k dependence on the number of actignsThis would have no bite if: grew even
linearly inn. We show that positive results still exist if the number okgible private types is is
bounded - the dependence on the number of actions and theenwhtypes is now logarithmic.
However this comes with two costs. First, we can only conssitaations where the number of types
any player could have is bounded, and grows sub-exponigritiak. Second, we lose computational
tractability— the running time of the median mechanism gogential in the number of players in the
game.

desired degree of privacy, we can computevespproximate equilibrium for = O

PrROOF. By the accuracy guarantees of the Median Mechanism:

B Pitgestil, 10> AMM] <8

Here, O hides lower orderpoly (log n, log log k, log T', log log U log(1/7), log(1/¢), log log(1/8), log log(1/4))
terms.

21



where
am,, = 167e71\/nlog U log(2nkTU/S3)log(4/6)
By (8), an,, < 1/6. Therefore,
;o 77 ' 1
/\LP)M |:E|Z,j,t,’l) S.t. ‘li,t,v B l?,t,v‘ > 6] < B
Applying Theoreml and substitutingd v,,, we obtain:

2log k
T

]g [31 S.t.p(ﬂ'Lh. .. 77Ti7T7L7-F}’ixed) > + 2aMM] < 5

Now we can choose/T = (y+/n)~! to conclude the proof. O

COROLLARY 4 (Computing CE)Let A be Ag,.p. Fix the environment, i.e the number of players
the number of actions, number of possible utility functiori$, sensitivity of the game, the desired
privacy (e, §), and the failure probabilitys. Supposé’ is such that:

16~ tyy/nlog U log(2nkTU/B)log(4/5) < % 9)

Then with probability at least — /3 the algorithmNRMEDIAN“s*» returns ana-approximate CCE
for:13

WD (v\/ﬁlog?’ﬂ U log(k/ ) 1og<1/6>>

€

PrROOF. By the accuracy guarantees of the Median Mechanism:

/\?M [Hi,t,j,v S.t. W,t,v - lf7t,v| > AMM] <6

where
My = 1671 \/nlog U log(2nkTU/B)log(4/d)
By (9), an,, < 1/6. Therefore,
./\EEIDM |:E|i,j,t,’U S.t. |lzj'7t,v - lzj',t,v| > %] < 5

Applying Theoreml and substitutingyq,,, we obtain:

) 2log k
]g [EIZ Stp(mit, ..., mix, L, Fixed) > I:g + QOZMMI <p

Now we can choose/T = k(y+/n)~! to conclude the proof. O

Here O hides lower orderpoly(log n, loglog k, log T', log log U log(1/v), log(1/¢), log log(1/8), log log(1/4))
terms.
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4.3 A Lower Bound

In the case where = O(1/n) andk = O(1), both of our algorithms from the previous Section
compute a differentially privatey-approximate equilibrium forv ~ 1/4/n (ignoring all other pa-
rameters). It is natural to ask whether or not we can achigréficantly smaller values af using
some other algorithm. In this section we prove a lower botnudving that this is not the case. Specif-
ically, we show that there is no algorithm that privately garies am-approximate equilibrium of
an arbitraryn-player 2-action game, forw < 1/y/nlogn. In other words, there cannot exist an
algorithm that privately computes a ‘signficantly’ more etxequilibrium.

Our proof is by a reduction to the problem of differentiallyivate subset-sum query relegse
for which strong information theoretic lower bounds arewnd?7, 14]. The problem is as follows:
Consider a database € {0,1}", which we denotdd,,...,d,). A subset-sum query C [n] is
defined by a subset of thedatabase entries and asks “What fraction of the entriésane contained
in ¢ and are set td?” Formally, we define the query asq(D) = %Zieq d;. Given a set of
subset-sum querie@ = {q1, - .., qn}, We say that an algorithmM (D) releasesQ to accuracyo if
M(D) = (a1, ..,an) such thata; = ¢;(D)| < a for everyj € [m].

Dinur and Nissim 7], showed that any differentially private algorithm thalegses sufficiently
many subset-sum queries must add a significant amount of.ndisquantitative improvement of
their result is given by Dwork and Yekhanit4]. They constructed a famil@py of sizem = O(n)
such that there is no differentially private algorithm theleaseQpy to accuracy(1/4/n). Thus, a
natural approach to proving a lower bound is to show that gordhm for computing approximate
equilibrium in arbitrary games could also be used to releasigrary sets of subset-sum queries accu-
rately. The following theorem shows that a differentialljvpte mechanism to compute approxmiate
equilibrium implies a differentially private algorithm tmmpute subset-sums.

THEOREM 11.For any a@ > 0, if there is an(e,d)-jointly differentially private mechanismt
that computes am-approximate coarse correlated equilibria im + m log n)-player, 2-action,
1/n-sensitive games, then there is @nod)-differentially private mechanism\1’ that releases6a-
approximate answers to amy subset-sum queries on a database of size

Applying the results of Dwork and Yekhanii4], a lower bound on equilibrium computation
follows easily.

COROLLARY 5.Any (¢ = O(1),d = o(1))-differentially private mechanism\1 that computes an
a-approximate coarse correlated equilibria inplayer2-action games witl) (1 /n)-sensitive utility
functions must satisfy = Q(——).

Vnlogn
Here, we provide a sketch of the proof of Theoréfn Let D € {0,1}" be ann-bit database
andQ = {qi,...,qn} be a set ofn subset-sum queries. For the sketch, assume that we have an

algorithm that computes exact equilibria. We will split the+ m ) players inton “data players” and
m “query players.” Roughly speaking, the data players willehatility functions that force them to
play “0” or “1”, so that their actions actually represent tetabase). Each of the query players
will represent a subset-sum queyyand we will try to set up their utility function in such a way
that it forces them to take an action that corresponds to proajmate answer tg(D). In order to
do this, first assume there amet 1 possible actions, denote{d), %, %, e 1}. We can set up the
utility function so that for each actiom, he receives a payoff that is maximized whencaainaction
of the data players ip are playingl. That is, when playing actioa, his payoff is maximized when
q(D) = a. Conversely, he will play the actianthat is closest to the true answgiD). Thus, we can
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read off the answer tg from his equilibrium action. Using each of the query players to answer a
different query, we can compute answersrigjueries. Finally, notice that joint differential privacy
says that all of the actions of the query players will sat{standard) differential privacy with respect
to the inputs of the data players, thus the answers we readilbtbe differentially private (in the
standard sense) with respect to the database.

This sketch does not address two important issues. Thedithat we do not assume that the
algorithm computes an exact equilibrium, only that it comgsuan approximate equilibrium. This
relaxation means that the data players do not have to plagattiect bit with probabilityl, and the
query players do not have to choose the answer that exacttymzas their utility. In the proof
we show that the error in the answers we read off is only a sfaetibr larger than the error in the
equilibrium computed.

The second is that we do not want to assume that the (quemgrglaave: + 1 available actions.
Instead, we uskg n players per query, and use each to compute roughly one bieafriswer, rather
than the whole answer. However, if the query players’ ytdittually depends on a specific bit of the
answer, then a single data player changing his action méaghtitrin a large change in utility. In the
proof, we show how to compute bits of the answer udifig-sensitive utility functions.

REMARK 12. We remark that we use@(n) linear queries in proving our lower bound, for
which a lower bound of2(1/y/n) is known for (e, §)-differentially private algorithms. Thus, our
Q(1/y/nlogn) lower bound also applies to games wiithear utility functions. However, stronger
lower bounds of2(1) are known for answerin@(n) low sensitivity nonlinear queries on a binary
valued databas@&] while preserving e, 0)-differential privacy. We could equally well use the qusrie
from the lower bound argument d][in our construction, to show that r{e, 0)-jointly differentially
private algorithm can compute anapproximate CCE to an-player,2-action, sensitivityl /n game
for any o < ¢, wherec is some fixed universal constant. This proves a strong sepadaetween
(e,0)-private equilibrium computation fof > 0, and (¢, 0)-private equilibrium computation. In
particular, with(e, 0)-privacy, it is not possible to compute an approximate éouiim where the
approximation factor tends t with the number of players, and therefore not possible tothyet
“strategyproofness in the large” results that we are abtébtain whery > 0.

4.4 Incentive Properties

One of the things touched upon in our introduction was thentiee properties of our proposed
mechanism. It is well understood that differentially ptezanechanisms are also approximately strat-
egy proof (This point was initially made in McSherry and Taij82]). This will give us the desired
incentive properties in our setting as well. The basic idessifollows: Fix some playérconsidering
changing his report. Joint differential privacy impliegtHixing the reports of the other players, for
any report of playet, the distribution over actions suggested to playefscannot change ‘much’.
Therefore playet’s gain from misreporting must also be small. Formally, weehthe following
theorem:

THEOREM 13. Consider a €, ¢)-jointly differentially private mechanism\1 which computes a-
correlated equilibrium of the full information game induicky players’ reports. Then:

1. If all players must follow their recommended actionsntlteis a (e — 1) + d-approximate
dominant strategy for each player to report their type tfutly.
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2. Itisa(e® — 1) + 0 + a-approximate Nash Equilibrium for players to each play tbiofving
strategy— “truthfully report your type to the mechanisnentfollow the suggested action”.

Part1 follows easily from the definition of joint differential praicy and the fact that payoffs are
bounded betweet and1. Part2 follows since the mechanism suggests.aapproximate correlated
equilibrium to the players.

It is easy to select, § anda so that the incentive properties are also ‘good’ for largaes In
particular recall thaty is O(y/log(1/8)/ey/n) (Corollary 3). Selecting e.g.e of O(n~'/%), and§
of O(1/n), we havex is O(n~'/*). Therefore for large:, the loss from privacy and approximation
of equilibrium computed by this mechanism will asymptotetd~urther it will be an almost exact
equilibrium for all players to truthfully report their typend then follow the suggested action— the
approximation ig + a + § = O(n=1/4).
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A Proofs

A.1 Proofs from Section3

PROOF OFCOROLLARY 1. We will prove only item1, the proof for2 is analogous. First, by the
assumption of the theorem, we will hatiec [0, 1]7** except with probability at most. Therefore,
by Theoreny,

2logk
T

ot [ (Aflxed( ) L ]:flxed) < B

Further, by Lemma, we know thatL. € [0, 1]7** implies
(Aflxed( ) L ]:) < p(Aflxed( ) L ]:) + 20.
Combining, we have the desired result, i.e.

2logk

(»Aflxed( ) L ]:flxed) T

+2b] < B. O

PROOF OFCOROLLARY 2. First, we demonstrate thét € [0, 1]7<k except with probability at most
5, which will be necessary to apply the regret bounds of ThaateSpecifically:

. . 1 1
P [azg st |2]| > g] <TkP {]zﬂ > 5] < 2Tke V%7 < /2, (10)

where the first inequality follows from the union bound, tleeand from the definition of Laplacian
r.v’s and the last inequality follows from the assumptibatt- < 1/6log(47k/B).

The Theorem now follows by conditoning on the evéne [0,1]7*% and combining the regret
bounds of Theorerd with the guarantees of Lemnta For parsimony, we will only demonstate
the first inequality, the second is analogous. Recall aggiiitieorem4, we have that whenever
1 €[0,1)Tk:

2logk
T

(Aflxed( ) L ]:flxed)

Further, by Lemm&, we know that:

(Aflxed( ) L ]:flxed) (Aflxed( ) L ]:ﬂxed) > 77] < 2|]:f|xed|€ n*T /240>

— ke tT/20%
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24 log(4k/B)

Substitutingy = o1/ ==, we get:
Ig [p(Afixed(E)>L>‘7:fixed) - p(Afixed(E)v E7]:1‘i><ed) > 77] < 5/2 (11)
The result follows by combininglQ) and @1). O

A.2 Proofs from Section4
A.3 Proof of Theorem11

Given a databas® < {0,1}", D = (di,...,d,) andm queriesQ = {q1,...,qmn}, we will
construct the followinglN = n + mlogn)-player 2-action game. We denote the set of actions
for each player byA = {0,1}. We also us€{(j, h)}je[m]vhe[bgn] to denote then logn players
{n+1,...,n+mlogn}. Forintuition, think of playel;, k) as computing thé-th bit of ¢;(D).

Each playei € [n] has the utility function

ui(a):{ if a; =d

0 otherwise

That is, playeri receives utility1 if they play the action matching theth entry in D, and utility 0
otherwise. Clearly, these afesensitive utility functions.

The specification of the utility functions for the query péay(j, 2) is somewhat more compli-
cated. First, we define the functiorfs, g5, : [0,1] — [0, 1] as

fh(x) =1- min ‘x — (2_(h+1) + T.2—(h—l))‘
7"6{0,...,2’%1_1}

gn(z) =1— min ‘1’ — (Q_h + 9~ (A1) 4 TQ—(h—l))‘
rE{O,...,thl—l}

Each player(j, #) will have the utility function

ugjn(a—gin),0) = falgi(a, ..., an))
ugim(a—gny»1) = gnlgilar, ..., an))

Sinceq(aq, . . ., a,) is defined to bé /n-sensitive in the actions,, . . . , a,,, andfy, g, arel-Lipschitz
inz, u(; ) is alsol /n-sensitive.

Also notice that since? is part of the definition of the game, we can simply define theofe
feasible utility functions to be all those we have given te fhayers. For the data players we only
used2 distinct utility functions, and each of the logn query players may have a distinct utility
function. Thus we only need the gétto be a particular set of utility functions of sizelogn + 2 in
order to implement the reduction.

Now we can analyze the structure @fapproximate equilibrium in this game, and show how,
given any equilibrium set of strategies for the query playewe can compute a set 6(«)-
approximate answers to the set of queiks

We start by claiming that in ang-approximate CCE, every data player players the acfian
most rounds. Specifically,
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CLAIM 1. Letw be any distribution overd”V that constitutes an-approximate CCE of the game
described above. Then for every data player

Pla; # di}) <
PROOF.
P la; # di] = 1 — E [ui(a;,a)
<1 < i(diya_;)] — a) (Definition of a-approximate CCE
=1-(1-a)= (Definition of u;) O
The next claim asserts that if we view the actions of the d&tgeps,a, ..., qa,, as a database,
theng(a,...,ay) is close tog(dy, . .., d,) on average.

CLAIM 2. Let 7 be any distribution overd”V that constitutes an-approximate CCE of the game
described above. LetC [n] be any subset-sum query. Then

IEHq(dl? 7dn) - Q(a17"' 7an)|] <o

PROOF.

Ig[lq(dl,...,dn) —q(al,...,a,)|] = E [iZ(dl — ai)]

7r .
1€q

< = ZE\d—al = Z]P’aﬁéd

zeq zeq

S%Za <a (Claim1,¢C[n]) O

We now prove a useful lemma that relates the expected uifiiiy action (under any distribution)
to the expected difference betwegfta, ..., a,) andg;(D).

CLAIM 3. Lety be any distribution oved” . Then for any query playej, h),

E [uem (0,a_(p))] — fh(Qj(D))‘ < IEHQJ‘(% oyan) —g;(D)]], and

B [un(10-60)] = (@5(D)| < Bl (a1 a0) = gD

PROOF. We prove the first assertion, the proof of the second is ickint

=&

(i (0, a-)] — fh(Qj(D))‘
- [l o)~ (D))

< Eflgj(ar;- -, an) — ¢;(D)|] (fn is 1-Lipschitz) O
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The next claim, which establishes a lower bound on the eggadility player(j, 2) will obtain
for playing a fixed action, is an easy consequence of Cl2iarsd3.

CLAIM 4. Let 7 be any distribution overd”V that constitutes an-approximate CCE of the game
described above. Then for every query plagrh),

B [u0(0,a-0)] = fulg;(D))] < o and

E [ugm(1,a-i)] = gh(qj(D))\ <a.

Now we state a simple fact about the functigijsandgy,. Informally, this asserts that we can find
alternating intervals of width near", that nearly partitior{0, 1], in which f;,(z) is significantly
larger thary;, (z) or vice versa.

OBSERVATION 1. Let3 < 2~ (h+1) f
ze U (r2_h + 8, (r+1)27h - 5)
ref{0,1,...2h—1-1}
then f4(z) > gn(x) + 8. We denote this regioh}, 3. Similarly, if
z e U ((7‘ +1)27 " 4+ 8, (r+2)27" — ﬁ)
re{0,1,...,2h-1-1}
thengy,(z) > fr(x) + 8. We denote this regiot¥;, 3
For example, wheh = 3, F3 3 = [0,3 —BJU[2+ 8,2 —BlU[s + 8,2 - BlU[S + B, % — 3]

By combining this fact, with Claind, we can show that if; (D) falls in the regionf}, , then in
ana-approximate CCE, playdrj, h) must be playing actiofi ‘often’.

CLAIM 5. Let 7 be any distribution overd”V that constitutes an-approximate CCE of the game
described above. Lgte [m] and2~" > 10a. Then, ifq;(D) € F}, 94, Px [a; = 0] > 2/3. Similarly,
if q]'(D) S Gh’ga, thenP, [CLZ‘ = 1] > 2/3

PROOF. We prove the first assertion. The proof of the second is ic&ntlf player (j, k) plays the
fixed action0, then, by Clairm,

IEJ [’LL(jﬁ)(O,a—(j,h))] > fu(g;(D)) — o

Thus, if 7 is ana-approximate CCE, playefj, k) must receive at least,(¢;(D)) — 2a underr.
Assume towards a contradiction tfi&l[a(m) = O] < 2/3. We can bound playe(j, h)’s expected
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utility as follows:

= P agn) = 0] E [ugn) (0, a—(n) | agn = 0]
1 E [ugm (1, a—gm) | agn =1]

]
< Plagn =0 <fh((Jj(D)) + E [lgi(a1,...,an) — ¢;(D)| | agip) = 0])

+Plagay = 1] (9@O) + E_[lx@r.eweva0) = (D) Lagy = 1] ) 12)
= fn(g;(D)) + o lgj(ar, ..., an) — q;(D)|] = P lagn = 1] (fa(g;(D)) — gnlg;(D)))
< fu(g;(D)) + @ — 9aP [ag;p) = 1] (13)
< fr(gj(D)) — 2a (14)

Line (12) follows from the Claim3 (applied to the distributions | a(;,) = 0 and= | a(jp) = 1).
Line (13) follows from Claim 2 (applied to the expectation in the second term) and the Ffeadt t
q;(D) € Fj, 9, (applied to the difference in the final term). Lirk4 follows from the assumption that
P [a;n) = 0] < 2/3. Thus we have established a contradiction to the facttii@anc-approximate
CCE. O

Given the previous claim, the rest of the proof is fairly gthéforward. For each query we will
start ath = 1 and consider two cases: If playgf, 1) plays0 and1 with roughly equal probability,
then we must have that (D) ¢ F 9o U G1,94. Itis easy to see that this will confing(D) to an
interval of width 18«, and we can stop. If playelj, 1) does play one action, say a significant
majority of the time, then we will know that; (D) € F} oo, Which is an interval of width /2 — 9«
However, now we can considér= 2 and repeat the case analysis: Eithief) does not significantly
favor one action, in which case we know thgtD) ¢ F5 9, U G2 94, Which confinesy;(D) to the
union of two intervals, each of width8«. However, only one of these intervals will be contained in
F1 94, which we know containg;(D). Thus, if we are in this case, we have learged) to within
18« and can stop. Otherwise, if playéf, 2) plays, sayp a significant majority of the time, then we
know thatg;(D) € Fi 9o N F3 94, Which is an interval of width /4 — 9«. Itis not too difficult to see
that we can repeat this process as longds> 18, and we will terminate with an interval of width
at most36« that containgy; (D).
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