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DIFFERENTIAL	
  PRIVACY	
  

PRIVATE	
  QUERY	
  RELEASE	
  

Counting queries: What fraction of rows in a database 
satisfy property q? 
       e.g. q(x) = Age(x) ≥ 42? 
 

An algorithm M is (ε,δ)-differentially private if for all 
neighbors D, D’ and every S ⊆ Range(M), 

Pr[M(D)∈ S] ≤ eε Pr[M(D’)∈ S] + δ  
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D and D’ are neighbors if they differ only on one user’s data 

q(x1)=1 

MOTIVATING	
  QUESTION	
  

How many data samples do we need to achieve both 
differential privacy and statistical accuracy? 

 
i.e. How big a study do we need to conduct to answer our 

questions and preserve privacy? 

Goal: Privately answer all q∈Q to within 0.05 error 

Think of ε = Θ(1) and δ = o(1/n)  

THRESHy (x) =  1  if   x ≥ y 
0  otherwise 
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QUESTION	
  FOR	
  THIS	
  WORK	
  
Can we privately release/learn thresholds over 

infinite domains?  
If not, does the sample complexity depend on R? 

 
Answer: Thresholds require n > log*R 

No 
privacy 

Q arbitrary Q = POINTR Q = THRESHR 

n = Θ(VC(Q))  
[e.g. Vap98] 

n = Θ(1)  
[Vap98] 

n = Θ(1)  
[Vap98] 

(ε,δ)- 
diff. priv. 

 
Query 
release 

 
Θ(log|Q|�(log R)1/2) 

[HR10, BUV14] 

 
Θ(1) 

[BNS13] 

 

n < 8log*R  
[BNS13] 

 
OUR WORK: 

log*R < n < 2log*R  

 
Proper 
learning 

   
 O(log|Q|) 

[KLNRS08] 
 
 

…but no general lower bounds 

 
Θ(1) 

[BNS13] 

 

n < 8log*R  
[BNS13] 

 
OUR WORK: 

log*R < n < 2log*R  

Interior	
  Point	
  Problem	
  
 

Input: Database D ∈ {1, 2, …, R}n 
Output: Any x with min D ≤ x ≤ max D 

Approximate	
  
Medians	
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Learning	
  
Thresholds	
  

Releasing	
  
Thresholds	
  

Undominated	
  
Point	
  Problem	
  

x1 = 2 
x2 = 5 
x3 = 8 

xn = 4 

y0  =  01011101100110 

y1   =  01101001001001 

y2   =  01011010100101 

y3   =  01011101001001 

yn  =  01010110100100 

Hard distribution for 
domain size R(n) 

	
  

Hard distribution for 
domain size R(n+1) = 2R(n) 

	
  
Random	
  
point	
  

Agrees w/ 
y0 in x1 
indices 

INTERIOR	
  POINT	
  UPPER	
  BOUND	
  

Database with  
domain size R(n) 

	
  

y1  =  01011101100110 

y2   =  01101001001001 

y3   =  01011010100101 

y4   =  01011111001001 

yn  =  01010110100100 

x1   =  6 

x2   =  2 

xn/2  =  8 

Database with domain size 
R(n/2) = log R(n) 
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PRIOR	
  WORK	
  &	
  OUR	
  RESULTS	
  

OUR	
  TECHNIQUES	
  

For any (even infinite) domain, VC(THRESH) = 1 
    => THRESH can be learned (non-privately) with O(1) samples 

DarkSide? Age Home Weight 

0 896 Dagobah 17 

0 19 Alderaan 49 

0 19 Tatooine 77 

1 42 Tatooine 136 

q(x2)=0 

q(x3)=0 

q(x4)=1 

q(D)=1/2 

PRIVATE	
  (PROPER)	
  LEARNING	
  

Examples drawn from a distribution and labeled by an 
unknown predicate q∈Q  
       e.g. q(x) = Age(x) ≥ 42? 
 

Goal: Output q’∈Q that classifies new 
examples with 95% accuracy 

Age q(x) 

896 1 

19 0 

19 0 

42 1 

n samples 

q’(x) =  
Age(x) ≥ 35? 

CONCLUSIONS	
  

•  Releasing/learning thresholds requires sample complexity 
growing with R 

•  Separates private release/learning from non-private cases, even 
for VC(Q) = 1 

•  Open questions: Can we characterize the difference between 
private/non-private sample complexity? Extend results to 
improper learning? 
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