Private Release and Learning of Thresholds Mark Bun (3rd year Ph.D., supported by NDSEG Fellowship) Joint work with Kobbi Nissim, Uri Stemmer, and Salil Vadhan

MOTIVATING QUESTION

How many **data samples** do we need to achieve both differential privacy and statistical accuracy?

i.e. How big a study do we need to conduct to answer our questions and preserve privacy?

PRIVATE QUERY RELEASE

Counting queries: What fraction of rows in a database satisfy property q?

e.g. $q(x) = Age(x) \ge 42?$

	DarkSide?	Age	Home	Weight	
	0	896	Dagobah	17	$q(x_1) = 1$
6	0	19	Alderaan	49	$q(x_2)=0$
	0	19	Tatooine	77	$q(x_3)=0$
	1	42	Tatooine	136	$q(x_4) = 1$

q(D) = 1/2

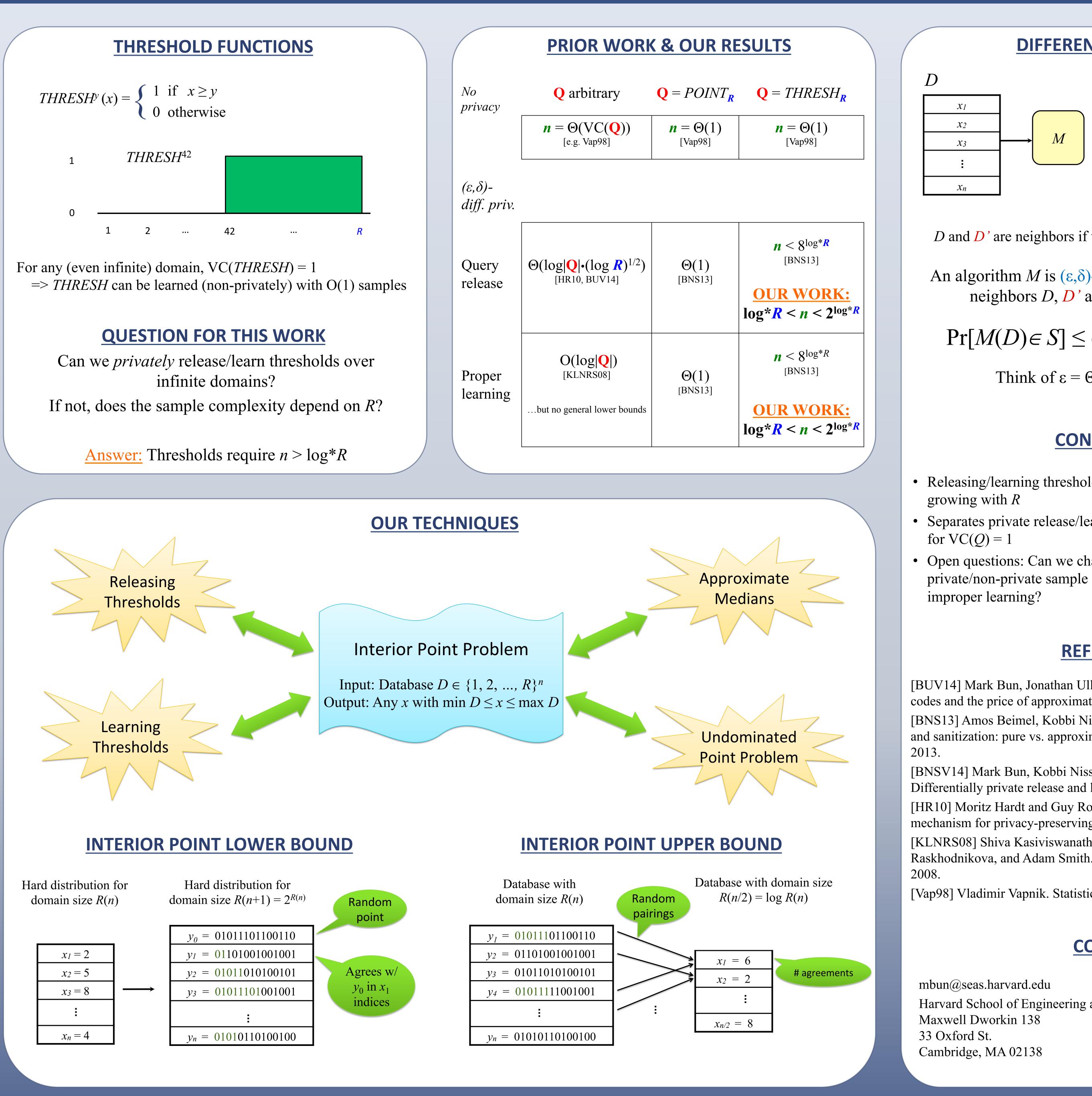
Goal: Privately answer *all* $q \in Q$ to within 0.05 error

PRIVATE (PROPER) LEARNING

Examples drawn from a distribution and labeled by an unknown predicate $q \in Q$

e.g. $q(x) = Age(x) \ge 42?$

Goal: Output $q' \in Q$ that classifies new examples with 95% accuracy

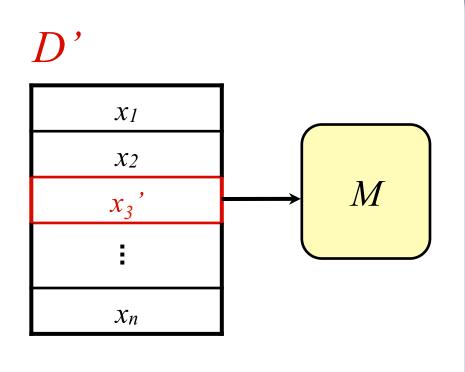


Privacy Tools for Sharing Research Data A National Science Foundation

The Institute for Quantitative Social Science at Harvard University

Secure and Trustworthy Cyberspace Project

DIFFERENTIAL PRIVACY



D and D' are neighbors if they differ only on one user's data

An algorithm *M* is (ε, δ) -differentially private if for all neighbors D, D' and every $S \subseteq \text{Range}(M)$,

$\Pr[M(D) \in S] \le e^{\varepsilon} \Pr[M(D') \in S] + \delta$

Think of $\varepsilon = \Theta(1)$ and $\delta = o(1/n)$

CONCLUSIONS

• Releasing/learning thresholds requires sample complexity

• Separates private release/learning from non-private cases, even

• Open questions: Can we characterize the difference between private/non-private sample complexity? Extend results to

REFERENCES

[BUV14] Mark Bun, Jonathan Ullman, and Salil Vadhan. Fingerprinting codes and the price of approximate differential privacy. In STOC, 2014. [BNS13] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: pure vs. approximate differential privacy. In RANDOM,

[BNSV14] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release and learning of thresholds. *Manuscript*, 2014. [HR10] Moritz Hardt and Guy Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS, 2010. [KLNRS08] Shiva Kasiviswanathan, Homin Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. What can we learn privately? In FOCS

[Vap98] Vladimir Vapnik. Statistical Learning Theory. 1998.

CONTACT

Harvard School of Engineering and Applied Sciences

DATA PRIVACY LAB