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CONCLUSIONS
g(x1)=1 \ Answer: Thresholds require n > log*R / \ /

0 19 Alderaan 49 q(x2)=0 * Releasing/learning thresholds requires sample complexity
0 19 Tatooine 77 g(x3)=0 growing with R
OUR TECHNIQUES * Separates private release/learning from non-private cases, even
q(x4)=1 for VC(Q) =1
* Open questions: Can we characterize the difference between
q(D)=1/2 Releasing Approximate private/non-private sample complexity? Extend results to
Thresholds Medians improper learning?
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