Examples drawn from a distribution and labeled by an unknown predicate \(q \in \mathbb{Q} \). How big a study do we need to conduct to answer our questions and preserve privacy?

QUESTION FOR THIS WORK

Can we privately release/learn thresholds over infinite domains?

If not, does the sample complexity depend on \(R \)?

Answer: Thresholds require \(n > \log^* R \)

Prior Work & Our Results

- **No Privacy**
 - \(Q \) arbitrary
 - \(Q = \text{POINT}_a \)
 - \(Q = \text{THRESH}_a \)

- **(ε, δ)-diff. priv.**
 - Query release
 - \(O(\log^2 Q \log(R) \log^2 n) \)
 - \(\text{OPT} \)
 - \(\text{POINT} \)
 - \(\text{THRESH} \)

Our Work:

- \(\log^2 R < n < 2\log R \)

Our Techniques

- **Releasing Thresholds**
 - Input: Database \(D \in \{1, 2, \ldots, R\}^n \)
 - Output: Any \(x \) with \(\min D \leq x \leq \max D \)

- **Learning Thresholds**

- **Approximate Medians**

- **Undominated Point Problem**

Interior Point Lower Bound

- Hard distribution for domain size \(R(x) \)

Interior Point Upper Bound

- Hard distribution for domain size \(R(x) = 2^{2R(x)} \)

Differential Privacy

- \(D \) and \(D' \) are neighbors if they differ only on one user’s data

Pr[\(M(D) \in S \leq \epsilon \) \(\text{Pr}[M(D') \in S] + \delta \)

Think of \(\epsilon = O(1) \) and \(\delta = o(1/n) \)

Conclusions

- Releasing/learning thresholds requires sample complexity growing with \(R \)
- Separates private release/learning from non-private cases, even for \(VC(D) = 1 \)
- Open questions: Can we characterize the difference between private/non-private sample complexity? Extend results to improper learning?

References

Contact

mbun@seas.harvard.edu

Harvard School of Engineering and Applied Sciences

Maxwell Dworkin 138

33 Oxford St.

Cambridge, MA 02138