
Answering n^{2+o(1)} Counting Queries
with Differential Privacy is Hard∗

Jonathan Ullman†
Harvard University

jullman@seas.harvard.edu

ABSTRACT
A central problem in differentially private data analysis is
how to design efficient algorithms capable of answering large
numbers of counting queries on a sensitive database. Count-
ing queries are of the form “What fraction of individual
records in the database satisfy the property q?” We prove
that if one-way functions exist, then there is no algorithm
that takes as input a database D ∈ ({0, 1}d)n, and k =

Θ̃(n2) arbitrary efficiently computable counting queries, runs
in time poly(d, n), and returns an approximate answer to
each query, while satisfying differential privacy. We also con-
sider the complexity of answering “simple” counting queries,
and make some progress in this direction by showing that
the above result holds even when we require that the queries
are computable by constant-depth (AC0) circuits.

Our result is almost tight because it is known that Ω̃(n2)

counting queries can be answered efficiently while satisfying
differential privacy. Moreover, many more than n2 queries
(even exponential in n) can be answered in exponential time.

We prove our results by extending the connection be-
tween differentially private query release and cryptographic
traitor-tracing schemes to the setting where the queries are
given to the sanitizer as input, and by constructing a traitor-
tracing scheme that is secure in this setting.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General
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Consider a database D ∈ ({0, 1}d)n, in which each of
the n rows corresponds to an individual’s record, and each

record consists of d binary attributes. The goal of privacy-
preserving data analysis is to enable rich statistical analyses
on the database while protecting the privacy of the indi-
viduals. It is especially desirable to achieve differential pri-
vacy [7], which guarantees that no individual’s data has a
significant influence on the information released about the
database.

Some of the most basic statistics on a database are count-
ing queries, which are queries of the form, “What fraction
of individual records in D satisfy some property q?” In par-
ticular we would like to construct differentially private san-
itizers that, given a database D and k counting queries
q1, . . . , qk from a family Q, outputs an approximate answer
to each of the queries. We would like the number of queries,
k, to be as large as possible, and the set of feasible queries,
Q, to be as general as possible. Ideally, Q, would contain all
counting queries.1 Moreover, we would like the algorithm to
run as efficiently as possible.

Some of the earliest work in differential privacy [7] gave
an efficient sanitizer—the so-called Laplace Mechanism. The
Laplace Mechanism answers any set of k arbitrary efficiently
computable counting queries by perturbing the answers with
appropriately calibrated random noise, providing good accu-
racy (say, within ±.01 of the true answer) as long as k � n2.

The ability to approximately answer n2 counting queries is
quite powerful, especially in settings where data is abundant
and n is large. However, being limited to n2 queries can be
restrictive in settings where data is expensive or otherwise
difficult to acquire, and n is small. It can also be restric-
tive when the budget of queries is shared between multiple
analysts. Fortunately, a remarkable result of Blum et al. [2]
(with subsequent developments in [8, 10, 17, 14, 12, 13]),
showed that differentially private algorithms are not lim-
ited to n2 queries. They showed how to approximately an-
swer arbitrary counting queries even when k is exponentially
larger than n. Unfortunately, their algorithm, and all sub-
sequent algorithms capable of answering more than n2 arbi-
trary counting queries, run in time (at least) poly(2d, n, k).

The result of Blum et al., raises the exciting possibility of
an efficient algorithm that can privately compute approxi-
mate answers to large numbers of counting queries. Unfortu-

1It may require super-polynomial time just to evaluate an
arbitrary counting query, which would rule out efficiency
for reasons that have nothing to do with privacy. For this
discussion, we restrict attention to queries that are efficiently
computable, so are not the bottleneck in the computation.
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nately, Dwork et al. [8] gave evidence that efficient sanitizers
are inherently less powerful than their computationally un-
bounded counterparts. They study the problem of construc-
ing differentially private one-shot sanitizers that, given a
database D, produce a summary from which approximate
answers to every query in Q can be computed, while both
the sanitizer and the summary run in time much less than

the size of Q. Dwork et al. constructed a family of 2
˜O(
√
n)

queries for which there is no efficient (time poly(d, n)) one-
shot sanitizer (under certain cryptographic assumptions),
even though there is an inefficient (time poly(2d, n, |Q|))
one-shot sanitizer even if |Q| is nearly 2n. For any family
Q, constructing an efficient one-shot sanitizer is one way of
constructing an efficient sanitizer that answers any polyno-
mial number of queries from Q. Thus, hardness results for
one-shot sanitizers rule out a particular way of construct-
ing efficient sanitizers. However, ultimately a polynomial-
time analyst will only be able to ask a polynomial number
of queries, and hardness results for one-shot sanitzers still
leave hope that there might be an efficient sanitizer that
can answer many more arbitrary counting queries than the
Laplace Mechanism.

Unfortunately, we show that this is not the case—there
is no efficient, differentially private algorithm that takes a

database D ∈ ({0, 1}d)n, and Θ̃(n2) arbitrary, efficiently
computable counting queries as input and outputs an ap-
proximate answer to each of the queries. One way to sum-
marize our results is that, unless we restrict the set Q of al-
lowable queries, or allow exponential running time, then the
Laplace Mechanism is essentially the best possible algorithm
for answering counting queries with differential privacy.

1.1 Our Results and Techniques
As discussed above, in this paper we give new hardness

results for answering counting queries while satisfying dif-
ferential privacy. To make the statement of our results more
concrete, we will assume that the counting queries are given
to the sanitizer as input in the form of circuits that, on input
an individual record x ∈ {0, 1}d, decide whether or not the
record x satisfies the property q. We say the queries are ef-
ficiently computable if the corresponding circuits are of size
poly(d, n).

Theorem 1.1. Assuming the existence of one-way func-
tions, there is no algorithm that, on input a database D ∈
({0, 1}d)n and Θ̃(n2) efficiently computable counting queries,
runs in time poly(d, n) and returns an approximate answer
to each query to within ±.49, while satisfying differential
privacy.

In particular, Theorem 1.1 applies to interactive san-
itizers, which are sanitizers that receive (possibly adap-
tively chosen) queries one at a time. Many positive results
achieve this stronger notion of sanitization. In particular,
the Laplace mechanism is an efficient interactive sanitizer

that answers Ω̃(n2) queries and there exist interactive sani-
tizers that can answer nearly 2n queries in time poly(2d, n)
per query interactively [17, 14, 12].

We also show that, the same theorem holds even for queries
that are computable by unbounded-fan-in circuits of depth
6 over the basis {∧,∨,¬} (a subset of the well-studied class
AC0), albeit under a stronger (but still plausible) crypto-
graphic assumption.

Theorem 1.2. Under the assumptions described in Sec-
tion 5.6, there is no algorithm that, on input a database

D ∈ ({0, 1}d)n and Θ̃(n2) efficiently computable depth-6
queries (circuits), runs in time poly(d, n) and returns an
approximate answer to each query to within ±.49, while sat-
isfying differential privacy.

Theorem 1.2 should be contrasted with the results of Hardt,
Rothblum, and Servedio [15] as well as Thaler, Ullman, and
Vadhan [19], which give efficient sanitizers for answering

nΩ(
√

k) � n2 monotone k-way conjunction queries, a much
simpler class than polynomial-size depth-6 circuits.2

We now describe our techniques.

The Connection with Traitor-Tracing.
We prove our results by building on the connection be-

tween differentially private sanitizers for counting queries
and traitor-tracing schemes discovered by Dwork et al. [8].
Traitor-tracing schemes were introduced by Chor, Fiat, and
Naor [5] for the purpose of identifying pirates who violate
copyright restrictions. Roughly speaking, a (fully collusion-
resilient) traitor-tracing scheme allows a sender to generate
keys for n users so that 1) the sender can broadcast en-
crypted messages that can be decrypted by any user, and 2)
any efficient pirate decoder capable of decrypting messages
can be traced to at least one of the users who contributed a
key to it, even if an arbitrary coalition of the users combined
their keys in an arbitrary efficient manner to construct the
decoder.

Dwork et al. show that the existence of traitor-tracing
schemes implies hardness results for one-shot sanitizers. Very
informally, they argue as follows: Suppose a coalition of
users takes their keys and builds a database D ∈ ({0, 1}d)n
where each record contains one of their user keys. The fam-
ily Q will contain a query qc for each possible ciphertext c.
The query qc asks “What fraction of the records (user keys)
in D would decrypt the ciphertext c to the message 1?” Ev-
ery user can decrypt, so if the sender encrypts a message
m ∈ {0, 1} as a ciphertext c, then every user will decrypt c
to m. Thus the answer to the counting query, qc, will be m.

Suppose there were an efficient one-shot sanitizer for Q.
Then the coalition could use it to efficiently produce a sum-
mary of the database D that enables one to efficiently com-
pute an approximate answer to every query qc, which would
also allow one to efficiently decrypt the ciphertext. Such a
summary can be viewed as an efficient pirate decoder, and
thus the tracing algorithm can use the summary to trace one
of the users in the coalition. However, if there is a way to
identify one of the users in the database from the summary,
then the summary is not differentially private.

In order to instantiate their result, they need a traitor-
tracing scheme. Since Q contains a query for every ci-
phertext, the parameter to optimize is the length of the ci-
phertexts. Using the fully collusion-resilient traitor-tracing
scheme of Boneh, Sahai, and Waters [3], which has cipher-

texts of length Õ(
√
n), they obtain a family of queries of

size 2
˜O(
√

n) for which there is no efficient one-shot sanitizer.
Dwork et al. also discovered a converse—proving hardness

2A monotone k-way conjunction query on a database D ∈
({0, 1}d)∗ is specified by a set of positions S ⊆ [d], |S| =
k ≤ d, and asks “What fraction of records in D have a 1 in
every position in S?”.
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of one-shot sanitization for a smaller family of queries re-
quires constructing traitor-tracing schemes with shorter ci-
phertexts, which is a seemingly difficult open problem.

Our Approach.
In our setting of sanitization (rather than one-shot saniti-

zation), we don’t expect to answer every query in Q, only a
much smaller set of queries requested by the analyst. At first
glance, this should make answering the queries much easier,
and thus make it more difficult to demonstrate hardness.
However, the attacker does have the power to choose the
queries to which he wants answers, and can choose queries
that are most difficult to sanitize. Our first observation is
that in the traitor-tracing scenario, the tracing algorithms
only query the pirate decoder on a polynomial number of
ciphertexts, which are randomly chosen and depend on the
particular keys that were instantiated for the scheme. For

many schemes, even Õ(n2) queries is sufficient. Thus it
would seem that the tracing algorithm could simply decide
which queries it will make, give those queries as input to
the sanitizer, and then use the answers to those queries to
identify a user and violate differential privacy.

However, this intuition ignores an important issue. Many
traitor-tracing schemes (including [3]) can only trace state-
less pirate decoders, which essentially commit to a response
to each possible query (or a distribution over responses) once
and for all. For one-shot sanitizers, the private summary is
necessarily stateless, and thus the result of Dwork et al. can
be instantiated with any scheme that allows tracing of state-
less pirate decoders. However, an arbitrary sanitizer might
give answers that depend on the sequence of queries. Thus,
in order to prove our results, we will need a traitor-tracing
scheme that can trace stateful pirate decoders.

The problem of tracing stateful pirates is quite natural
even without the implications for private data analysis. In-
deed, this problem has been studied in the literature, origi-
nally by Kiayias and Yung [16]. They considered pirates that
can abort and record history. However, their solution, and all
others known, does not apply to our specific setting due to a
certain “watermarking assumption” that doesn’t apply when
proving hardness-of-sanitization (see discussion below). To
address this problem, we also refine the basic connection
between traitor-tracing schemes and differential privacy by
showing that, in many respects, fairly weak traitor-tracing
schemes suffice to establish the hardness of preserving pri-
vacy. In particular, although the pirate decoder obtained
from a sanitizer may be stateful and record history, the ac-
curacy requirement of the sanitizer means that the corre-
sponding pirate decoder cannot abort, which will make it
easier to construct a traitor-tracing scheme for these kinds
of pirates. Indeed, we construct such a scheme to establish
Theorem 1.1.

The scheme also has weakened requirements in other re-
spects, having nothing to do with the statefulness of the pi-
rate or the tracing algorithm. These weakened requirements
allow us to reduce the complexity of the decryption, which
means that the queries used by the attacker do not need
to be arbitrary polynomial-size circuits, but instead can be
circuits of constant depth, which allows us to establish The-
orem 1.2. Another technical issue arises in that all k queries
must be given to the sanitizer at once, whereas tracing algo-
rithms typically are allowed to query the pirate interactively.
However, we are able to show that the scheme we construct

can be traced using one round of queries. See Sections 3.1
and 4 for a precise statement of the kind of traitor-tracing
scheme that suffices and Section 5 for our construction.

Our construction is based on a well-known fully collusion
resilient traitor-tracing scheme [5], but with a modified trac-
ing algorithm. The tracing algorithm uses fingerprinting
codes, which have been employed before in the context of
traitor-tracing and content distribution, but our tracing al-
gorithm is different from all those we are aware of. It is not
so surprising that the scheme doesn’t appear in the litera-
ture, since it is only traceable against a weak form of stateful
adversary, and doesn’t achieve novel parameters or function-
ality. The motivation for constructing a new scheme is to
allow for tracing with a minimal number of non-adaptively
chosen queries, to achieve tracing without context-specific
watermarking assumptions, and to simplify the decryption
circuit (at the expense of weakening the security parameters
and functionality). None of these features are especially de-
sirable in the setting of content distribution, which explains
why the scheme was not previously known.

1.2 Additional Related Work
Stronger hardness results are known for sanitizers whose

output is a “synthetic database”—roughly, a new database
(of the same dimensions) that approximately preserves the
answer to some set of queries. Ullman and Vadhan [21],
building on Dwork et al. [8], showed that it is hard to gen-
erate a private synthetic database that is accurate for es-
sentially any non-trivial family of queries! This barrier ap-
plies even to families of queries of size 	 n2, for which effi-
cient sanitizers that do not output synthetic data are known
(e.g. the Laplace mechanism). Thus these results say more
about the hardness of synthetic data and the limitations of
current techniques than they do about the hardness of an-
swering large numbers of counting queries.

Gupta et al. [11] considered algorithms that access the
database only by making a polynomial number of “statistical
queries” (essentially counting queries). They showed that
such algorithms cannot be a one-shot sanitizer (even a non-
privacy-preserving one!) that approximately answers certain
simple families of counting queries with high accuracy. This
barrier only applies to algorithms that run in time sublinear
in the number of queries, which is not something we expect
in our setting.

Dwork, Naor, and Vadhan [9] gave information theoretic
lower bounds for stateless sanitizers, which take k queries as
input, but whose answers to each query do not depend on
the other k− 1 input queries. They showed that (even com-
putationally unbounded) stateless sanitizers can answer at

most Õ(n2) queries with non-trivial accuracy, while satisfy-
ing differential privacy. Although their result is information
theoretic, and considers a highly restricted type of sanitizer,
their techniques are related to ours. We elaborate on this
connection in the full version of this work.

As we mentioned earlier, there has also been considerable
interest, and some success, in constructing efficient sanitiz-
ers for very simple classes of counting queries such as con-
junctions [11, 15, 19], decision lists [19], and halfspaces [2].
There is a significant gap between these results—which ap-
ply to families of size 2poly(d) or even just poly(d)—and our
lower bound for constant-depth circuits of size poly(d, n),
which would be very interesting to try and close.
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2. PRELIMINARIES

Differentially Private Algorithms.
Let a database D ∈ ({0, 1}d)n be a collection of n rows

(x(1), . . . , x(n)) ∈ {0, 1}d. We say that two databasesD,D′ ∈
({0, 1}d)n are adjacent if they differ only on a single row, and
we denote this by D ∼ D′.

Definition 2.1 ([7]). LetM : ({0, 1}d)n →R be a ran-
domized algorithm that takes a database as input (where n
and d are varying parameters). M is (ε, δ)-differentially pri-
vate if for every two adjacent databases D ∼ D′ and every
subset S ⊆ R,

Pr [M(D) ∈ S] ≤ eεPr
[M(D′) ∈ S

]
+ δ.

If M is (ε, δ)-differentially private for some functions ε =
ε(n) = O(1), δ = δ(n) = o(1/n), we will drop the parameters
ε and δ and say that M is differentially private.

The parameters ε = O(1), δ = o(1/n) are essentially the
weakest possible, as (ε, δ)-differentially privacy is not a sat-
isfactory privacy guarantee for ε = ω(1) or δ = Ω(1/n).
That our lower bounds apply to the parameters specified
in Definition 2.1 makes our results stronger. Most positive
results achieve stronger privacy parameters.

Sanitizers for Counting Queries.
Since an algorithm that always outputs ⊥ satisfies Def-

inition 2.1, we also need to specify what it means for the
sanitizer to be useful. In this paper we study sanitizers that
give accurate answers to counting queries. A counting query
on {0, 1}d is defined by a predicate q : {0, 1}d → {0, 1}.
Abusing notation, we define the evaluation of the query
q on a database D = (x(1), . . . , x(n)) ∈ ({0, 1}d)n to be

q(D) = 1
n

∑n
i=1 q(x

(i)) We will use Q(d) to denote a set

of counting queries on {0, 1}d and Q =
⋃

d∈NQ(d).
We are interested in sanitizers that take a sequence of

queries from some set Q as input. Formally a sanitizer is a
functionM : ({0, 1}d)n × (Q(d))k → R

k (where, again, n, d,
and k are varying parameters). Notice that we assume that
M outputs k real-valued answers. Think of the j-th compo-
nent of the output ofM as an answer to the j-th query. For
the results in this paper, this assumption will be without
loss of generality.3 Definition 2.1 extends naturally to sani-
tizers by requiring that for every q1, . . . , qk ∈ Q, the sanitizer
Mq1,...,qk(·) =M(·, q1, . . . , qk) is (ε, δ)-differentially private
as a function of the input database.

Now we formally define what it means for a generic sani-
tizer to give accurate answers.

Definition 2.2 (Accuracy). Let D be a database and
q1, . . . , qk be a set of counting queries. A sequence of answers
a1, . . . , ak is α-accurate for q1, . . . , qk on D if

∀j ∈ [k], |qj(D)− aj | ≤ α.

3In certain settings,M(D, q1, . . . , qk) is allowed to output a
“summary” z ∈ R for some range R. In this case, we would
also require that there exists an “evaluator” E : R×Q → R

that takes a summary and a query and returns an answer
E(z, q) = a that approximates q(D). The extra generality
is used to allow M to run in less time than the number
of queries it is answering (e.g. releasing a fixed family of
queries), but this is not relevant for our range of parameters

where k = Õ(n2). In our setting we can always afford the
time required to answer each query explicitly.

Let Q be a set of counting queries, k ∈ N and α, β ∈ [0, 1] be
parameters. A generic sanitizer M is (α, β,Q, k)-accurate
if for every database D ∈ ({0, 1}d)n and every sequence of

queries q1, . . . , qk ∈ Q(d),M(D,Q) is α-accurate for D and
q1, . . . , qk with probability at least 1− β (over M’s coins).

If M is (α, β,Q, k)-accurate for any (constant) α < 1/2
and β = β(n) = o(1/n2), we will drop α and β and say that
M is (Q, k)-accurate.

The parameters α < 1/2, β = o(1/n2) are close to the weak-
est parameters possible, as a mechanism that answers 1/2 to
every query achieves α = 1/2, β = 0 for any number of arbi-
trary queries. That our lower bound applies to the param-
eters specified in Definition 2.2 makes our results stronger.
Again, most positive results achieve (much) stronger accu-
racy parameters.

Efficiency of Sanitizers.
Simply, a sanitizer is efficient if it runs in time polynomial

in the length of its input. To make the statement more
precise, we need to specify how the queries are given to the
sanitizer as input.

Notice that in order to specify an arbitrary counting query
q : {0, 1}d → {0, 1} requires 2d bits. In this case, a sanitizer
whose running time is polynomial in the time required to
specify the query is not especially efficient. Thus, we re-
strict attention to queries that are efficiently computable,
and have a succinct representation. In this work, we will
fix the representation to be Boolean circuits over the basis
{∧,∨,¬} with possibly unbounded-fan-in. In this represen-
tation, any query can be evaluated in time |q|, where | · |
denotes the size of the circuit computing q. We also want
to consider the case where the queries are computable by

circuits of low depth. For a constant h ∈ N, we use Q(d)
depth−h

to denote the set of all counting queries on {0, 1}d specified

by circuits of depth h. Finally, we use Q(d)
all to denote the

set of all counting queries on {0, 1}d.

Definition 2.3. A sanitizerM is efficient if, on input a

database D ∈ ({0, 1}d)n and k queries q1, . . . , qk ∈ Q(d)
all , M

runs in time poly(d, n, k, |q1|+ · · ·+ |qk|). For every h ∈ N,
a sanitizer M is efficient for depth-h queries if, on input a

database D ∈ ({0, 1}d)n and k queries q1, . . . , qk ∈ Q(d)
depth−h,

M runs in time poly(d, n, k, |q1|+ · · ·+ |qk|).

For comparison with our results, we will recall the properties
of some known mechanisms, stated in our terminology and
for our choice of parameters:

Theorem 2.4 (Laplace Mechanism [6, 7]). There
exists a sanitizer MLap that is 1) differentially private, 2)

efficient, and 3) (Q(d)
all , Ω̃(n

2))-accurate.

Theorem 2.5 ([2, 8, 10, 13]). There exists a sanitizer

MAdv that is 1) differentially private and 2) (Q(d)
all , 2

˜Ω(n/
√

d))-

accurate. For queries q1, . . . , qk ∈ Q(d)
all , MAdv runs in time

poly(2d, n, k, |q1|+ · · ·+ |qk|).

These mechanisms can achieve stronger quantitative privacy
and accuracy guarantees (in terms of ε, δ for privacy and α, β
for accuracy) with only a small degradation in the number
of queries.
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3. TRAITOR-TRACING SCHEMES
In this section we give a definition of a traitor-tracing

scheme, heavily tailored to the task of proving hardness re-
sults for generic sanitizers. We will sacrifice some consis-
tency with the standard definitions. See below for further
discussion of the ways in which our definition departs from
the standard definition of traitor-tracing. In some cases, the
non-standard aspects of the definition will be necessary to
establish our results, and in others it will be for convenience.
Despite these differences, we will henceforth refer to schemes
satisfying our definition simply as traitor-tracing schemes.

3.1 Traitor-Tracing Schemes
First we describe the syntax of a traitor-tracing scheme

more formally. For functions n, kTT : N → N, an (n, kTT)-
traitor-tracing scheme is a tuple of algorithms
(GenTT,EncTT,DecTT,TraceTT). We allow all the algorithms
to be randomized except for DecTT.

• The algorithm GenTT takes a security parameter, κ,

and returns a sequence of n = n(κ) user keys �sk =

(sk(1), . . . , sk(n)) ∈ {0, 1}κ. Formally,
�sk = (sk(1), . . . , sk(n))←R GenTT(1

κ).

• The algorithm EncTT takes a sequence of n user keys
�sk and a message bit b ∈ {0, 1}, and generates a ci-

phertext c ∈ C = C(κ). Formally, c←R EncTT( �sk, b).

• The algorithm DecTT takes any single user key sk and a
ciphertext c ∈ C, runs in time poly(κ, n(κ)) and deter-

ministically returns a message bit b̂ ∈ {0, 1}. Formally

b̂ = DecTT(sk, c).

• The algorithm TraceTT takes as input a set of user keys
�sk ∈ ({0, 1}κ)n(κ) and an oracle P : (C(κ))kTT(κ) →
{0, 1}kTT(κ), makes only a single kTT-tuple of queries,

(c1, . . . , ckTT
) ∈ C(κ) to its oracle (kTT = kTT(κ)), and

returns the name of a user i ∈ [n(κ)]. Formally, i ←R

TracePTT( �sk).

Intuitively, think of the oracle P as being given some sub-

set of keys �skS = (sk(i))i∈S for a non-empty set S ⊆ [n], and
TraceTT is attempting to identify a user i ∈ S. Clearly, if P
ignores its input and always returns 0, TraceTT cannot have
any hope of success, so we must assume that P is capable
of decrypting ciphertexts.

Definition 3.1. Let ΠTT be an (n, kTT)-traitor-tracing
scheme. Let P be a (possibly randomized) algorithm. We say
that P is a kTT-available pirate decoder if for every κ ∈ N,

every set of user keys �sk = (sk(1), . . . , sk(n)) ∈ {0, 1}κ, every
S ⊆ [n] such that |S| ≥ n− 1, and every c1, . . . , ckTT

∈ C(κ),
when (̂b1, . . . , b̂kTT

)←R P( �skS, c1, . . . , ckTT
)

Pr

⎡
⎣ ∃j ∈ [kTT], b ∈ {0, 1}
(∀i ∈ S,DecTT(sk(i), cj) = b) ∧

(
b̂j �= b

)
⎤
⎦ ≤ o

(
1

n(κ)2

)

In other words, if every user key sk(i) (for i ∈ S) decrypts c

to 1 (resp. 0), then P( �skS , ·) decrypts c to 1 (resp. 0), with
high probability.

Definition 3.2. Let ΠTT be an (n, kTT)-traitor-tracing
scheme. Let kTT : N→ N be a function. We say that ΠTT is a

secure (n, kTT)-traitor-tracing scheme if for every S ⊆ [n(κ)]
such that |S| ≥ n(κ) − 1, for every (possibly randomized)
algorithm P that 1) runs in time poly(κ, n(κ), kTT(κ)) and
2) is a kTT-available pirate decoder, we have

Pr
�sk←RGenTT(1κ)
P’s, TraceTT ’s coins

[
Trace

P( �skS ,·)
TT ( �sk) �∈ S

]
= o

(
1

n(κ)

)

Remarks About Our Definition of Traitor-Tracing.
The traitor-tracing schemes we consider are somewhat dif-

ferent than those previously studied in the literature.

• We do not require the encryption or tracing algorithms
to use public keys. In the typical application of traitor-
tracing schemes to content distribution, these would be
desirable features, however they are not necessary for
proving hardness of sanitization.

• We only require that the tracing algorithm succeeds
with probability 1 − o(1/n). Typically one would re-
quire that the tracing algorithm succeeds with proba-
bility 1− n−ω(1).

• We do not give the pirate decoder access to an encryp-
tion oracle. In other words, we do not require CPA
security. Most traitor-tracing schemes in the litera-
ture are public-key, making this distinction irrelevant.
Here, we only need an encryption scheme that is secure
for an a priori bounded number of messages.

• We allow the pirate decoder to be stateful, but in an
unusual way. We require (roughly) that if any of the

queries are ciphertexts generated by Enc( �sk, b), then
the pirate decoder answers b to those queries, regard-
less of the other queries issued. In many models, the
pirate is allowed to abort, and answer ⊥ if it detects
that it is being traced. However, we do allow our pirate
to correlate its answers to different queries, subject to
this accuracy constraint. We also allow the pirate to
see all the queries made by the tracer at once, which
is more power than is typically given to the pirate.

Roughly, the first three modifications will allow us to find
a candidate scheme with very simple decryption and the
fourth modification will allow us to trace stateful pirates
even in the setting of bit-encryption.

3.2 Decryption Function Families
For Theorem 1.2, we are interested in traitor-tracing schemes

where DecTT is a “simple” function of the user key (for every
ciphertext c ∈ C).

Definition 3.3 (Decryption Function Family). Let
(GenTT,EncTT,DecTT) be a traitor-tracing scheme where GenTT
produces keys in {0, 1}κ and EncTT produce ciphertexts in

C = C(κ). For every c ∈ C, we define the c-decryption func-
tion qc : {0, 1}κ → {0, 1} to be qc(sk) = DecTT(sk, c). We

define the decryption function family Q(κ)
DecTT

= {qc}c∈C(κ) .

In what follows, we will say that ΠTT is an traitor-tracing

scheme with decryption function family Q(κ)
DecTT

.

4. ATTACKING EFFICIENT SANITIZERS
In this section we will prove our main result, showing

that the existence of traitor-tracing schemes (as in Defini-
tion 3.2) implies that efficient sanitizers cannot answer too
many counting queries while satisfying differential privacy.
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Theorem 4.1. Assume a traitor-tracing scheme, ΠTT =
(GenTT,EncTT,DecTT,TraceTT), that is (n(κ), kTT(κ))-secure,

with decryption function family Q(κ)
DecTT

. Then there does not

exist any sanitizerM : ({0, 1}d)n× (Q(d)
DecTT

)kTT(d) → R
kTT(d)

that is simultaneously 1) differentially private, 2) efficient,

and 3) (QDecTT , kTT(d))-accurate for QDecTT = ∪d∈NQ(d)
DecTT

.

In the typical setting of parameters, we would have n(κ) =

poly(κ), kTT(κ) = Θ̃(n2), and decryption can be imple-
mented by circuits of size poly(n) = poly(κ). In this setting,
Theroem 4.1 says that there is no DP sanitizerM that takes
a database D ∈ ({0, 1}d)poly(d), runs in poly(d) time, and

accurately answers Θ̃(n2) queries implemented by circuits of
size poly(d).

We now sketch the proof: Every function qc ∈ Q(d) is
viewed as a query qc(x) on a database row x ∈ {0, 1}d. As-

sume there is an efficient sanitizer is that is (Q(d)
DecTT

, kTT(d))-
accurate. The fact thatM is accurate for these queries will
imply that (after small modifications)M is a kTT-available
pirate decoder. Here is where we differ from Dwork et al.,
who assume thatM accurately answers all queries in Q(d),
in which caseM can be viewed as a stateless pirate decoder
(but must solve a harder sanitization problem). We also dif-
fer in that we allow the traitor-tracing scheme to have the
relaxed functionality and security discussed at the end of
Section 3.

We complete the proof as in Dwork et al. Consider two
experiments: In the first, we construct an n-row database
D by running GenTT(1

d) to obtain n user keys, and putting
one in each row of D. Then we run TraceTT onM(D, ·) and
obtain a user i. Since M is useful, and ΠTT is secure, we
will have that i ∈ [n] with probability close to 1, and thus
there is an i∗ ∈ [n] such that i = i∗ with probability � 1/n.

In the second experiment, we construct a database D′

exactly as in the first, however we exclude the key sk(i∗).
Since D and D′ differ in only one row, differential privacy
requires that TraceTT, run with oracleM(D′, ·), still outputs
i∗ with probability Ω(1/n). However, in this experiment,

i∗, sk(i∗) is no longer given to the pirate decoder, and thus
security of ΠTT says that TraceTT, run with this oracle, must
output i∗ with probability o(1/n), a contradiction.

Proof of Thm 4.1. Assume we have a traitor-tracing
scheme ΠTT = (GenTT,EncTT,DecTT,TraceTT) and assume

there exists an efficient, differentially private, (Q(d), kTT(d))-
accurate sanitizer M. We define the pirate decoder PM as
follows: Since M is efficient, its running time is at most

Algorithm 1 The pirate decoder PM
Input: A set of user keys ( �skS) ∈ {0, 1}d and a set of
ciphertexts c1, . . . , ckTT

(kTT = kTT(d)).

Construct circuits for the queries qc1 , . . . , qckTT ∈ Q
(d)
DecTT

.

Construct a database D = (sk(i))i∈S ∈ ({0, 1}d)|S|.
Let a1, . . . , akTT

←R M(D, qc1 , . . . , qckTT ).

Round the answers a1, . . . , akTT
∈ [0, 1] to obtain

b̂1, . . . , b̂kTT
∈ {0, 1} (i.e. b̂j = �aj�)

Output: b̂1, . . . , b̂kTT
.

poly(d, n(d), kTT(d), |qc1 | + . . . + |qckTT |), which is at most

poly(d, n(d), kTT(d)). Recall that the size of the circuits

(queries) qc ∈ Q(d)
DecTT

is poly(d, n). In this case PM runs

in time poly(d, n(d), kTT(d)) as well, since constructing the
queries can be done in time polynomial in their size, and the
final rounding step can be done in time poly(kTT(d)).

Next, we claim that if M is accurate for Q(d), then PM
is a useful pirate decoder.

Claim 4.2. IfM is (QDecTT , kTT)-accurate, then PM is a
kTT-useful pirate decoder.

Proof of Claim 4.2. Let �sk ∈ {0, 1}d be a set of user
keys for ΠTT and let S ⊆ [n] be a subset of the users such

that |S| ≥ n − 1. Suppose c ∈ C(d) and b ∈ {0, 1} are such

that for every i ∈ S, DecTT(sk
(i), c) = b. Then we have that,

for D as in PM,

qc(D) =
1

|S|
∑
i∈S

qc(sk
(i)) =

1

|S|
∑
i∈S

DecTT(sk
(i), c) = b

Let c1, . . . , ckTT
be a set of ciphertexts, qc1 , . . . , qckTT and

a1, . . . , akTT
be as in PM. The accuracy ofM (with constant

error α < 1/2) guarantees that

Pr
[∃j ∈ [kTT],

∣∣aj − fcj (D)
∣∣ ≥ 1/2

]
= o(1/|S|2)

Since |S| ≥ n−1, o(1/|S|2) = o(1/n2). Assuming a1, . . . , akTT

is accurate up to error α < 1/2 for qc1 , . . . , qckTT , aj will be

rounded to exactly qcj whenever qcj (D) ∈ {0, 1}. That is,

Pr

⎡
⎣ ∃j ∈ [kTT], b ∈ {0, 1}
(∀i ∈ S,DecTT(sk(i), cj) = b) ∧

(
b̂j �= b

)
⎤
⎦ = o

(
1

n(κ)2

)

Thus, PM is kTT-useful. This proves the claim.

Since PM is a kTT-useful pirate decoder, and ΠTT is a
(n, kTT)-secure traitor-tracing scheme, running TraceTT on
PM will always return some user i ∈ [n]. Thus there must
be some user i∗ that TraceTT returns with probability � 1/n.
Specifically, for every κ ∈ N, there exists i∗(κ) ∈ [n(κ)] such
that,

Pr
�sk←RGenTT(1κ)
PM, TraceTT

[
Trace

PM( �sk,·)
TT ( �sk) = i∗

]
≥ 1

n(κ)
− o

(
1

n(κ)

)

(1)
Let S(κ) = [n(κ)] \ {i∗(κ)} Now we claim that if M is

differentially private, then TraceTT will output i∗(κ) with
significant probability, even PM is not given the key of user
i∗(κ).

Claim 4.3. If M is differentially private (for ε = O(1),
δ = o(1/n)), then

Pr
�sk←RGenTT(1κ)

PM’s, TraceTT’s coins

[
Trace

PM( �sk,·)
TT ( �sk) = i∗(κ)

]
≥ Ω

(
1

n(κ)

)
.

Proof of Claim 4.3. Fix any κ and let kTT = kTT(κ)

and i∗ = i∗(κ), S = S(κ) as above. Let D = �sk and

D−i∗ = �skS . Take T to be the set of responses b̂1, . . . , b̂kTT

such that TraceTT( �sk), after querying its oracle on cipher-

texts c1, . . . , ckTT
and receiving responses b̂1, . . . , b̂kTT

, out-
puts i∗ (T depends on the coins of GenTT and TraceTT). By
differential privacy, we have that

Pr
[
M(D, qc1 , . . . , qckTT ) ∈ T

]
≤ eO(1) · Pr

[
M(D−i∗ , qc1 , . . . , qckTT ) ∈ T

]
+ o

(
1

n

)
.
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Note that the queries constructed by PM depends only on

c1, . . . , ckTT
, not on �skS . Also note that the final rounding

step does not depend on the input at all. Thus, for every
T ⊆ {0, 1}kTT

Pr
[
PM( �sk, c1, . . . , ckTT

) ∈ T
]

≤ eO(1) · Pr
[
PM( �skS , c1, . . . , ckTT

) ∈ T
]
+ o

(
1

n

)
.

The claim follows by combining with (1).

To complete the proof, notice that the probability specified
in Claim 4.3 is exactly the probability that TraceTT outputs

the user i∗, when given the oracle PM( �skS), for S = [n] \
{i∗}. However, the fact that PM is efficient, and ΠTT is a
secure traitor-tracing scheme implies that this probability
is o(1/n). Thus we have obtained a contradiction. This
completes the proof of the Theorem.

5. TRAITOR-TRACING SCHEMES
In this section we show how to construct traitor-tracing

schemes that satisfy Definition 3.2, and thus can be used to
instantiate Theorem 4.1. First we will informally describe
a simple construction that requires the tracing algorithm to
make a sub-optimal number of queries, but will hopefully
give the reader more intuition about the construction and
how it differs from previous constructions of traitor-tracing
schemes. Then we will give precise definitions of the en-
cryption schemes (Section 5.2) and fingerprinting codes (Sec-
tion 5.3) required for our construction. Then we will present
the final construction more formally (Section 5.4). Due to
space requirements, we omit the full security proof. Finally,
we will use the weakened security requirements of the en-
cryption scheme to show that our traitor-tracing scheme
can be instantiated so that decryption is computable by
constant-depth circuits (Section 5.6).

5.1 Outlining the Construction
Our construction is a variant of the most basic tracing

traitor-tracing scheme [5]. Start with an encryption scheme

(Gen,Enc,Dec). Generate an independent key sk(i) ←R Gen
for each user (we will ignore the security parameter in the in-
formal description). To encrypt b ∈ {0, 1}, encrypt it under
each user’s key independently and concatenate the cipher-
texts. That is,

EncTT( �sk, b) = (Enc(sk(1), b), . . . ,Enc(sk(n), b)).

Each user can decrypt the ciphertext by applying Dec, as
long as she knows which part of the ciphertext to decrypt.

Now we describe how an available pirate decoder for this
scheme can be traced. As with all traitor-tracing schemes,
we will form ciphertexts that different users would decrypt
differently, assuming they decrypt as intended using the al-
gorithm DecTT(sk

(i), ·). We can do so with the following
algorithm:

TrEncTT( �sk, i) =(Enc(sk(1), 1), . . . ,

Enc(sk(i), 1),Enc(sk(i+1), 0), . . . ,Enc(sk(n), 0)

for i = 0, 1, . . . , n. The algorithm forms a ciphertext that
users 1, . . . , i will decrypt to 1 and users i + 1, . . . , n will
decrypt to 0.

The tracing algorithm generates a random sequence of in-
dices i1, . . . , ikTT

∈ {0, 1, . . . , n}, for kTT = (n+1)s, such that
each element of {0, 1, . . . , n} appears exactly s times, where
s is a parameter to be chosen later. Then, for every j it gen-

erates a ciphertext cj ←R TrEncTT( �sk, ij). Next, it queries
P �skS

(c1, . . . , ckTT
). Given the output of the pirate, the trac-

ing algorithm computes Pi = 1
s

∑
j:ij=iP( �sk, c1, . . . , ckTT

)j

for i = 0, 1, . . . , n. Finally, the tracing algorithm outputs
any i∗ such that Pi∗ − Pi∗−1 ≥ 1/n.

Now we explain why this algorithm successfully traces ef-
ficient available pirate decoders. Notice that if we choose c

according to TrEncTT( �sk, 0), then every user decrypts c to
0, so P0 = 0. Similarly, Pn = 1. Thus, there exists i∗ such
that Pi∗ − Pi∗−1 ≥ 1/n. Next, we argue that i∗ is in S

except with small probability. Notice that TrEncTT( �sk, i
∗)

and TrEncTT( �sk, i
∗−1) differ only in the message encrypted

under key sk(i∗), so if i∗ �∈ S, this key is unknown to
the pirate decoder. The security of the encryption scheme
(made precise in Definition 5.2) guarantees that if sk(i∗)

is unknown to an efficient pirate, then we can replace kTT
uses of Enc(sk(i∗), 1) with Enc(sk(i∗), 0), and this change will
only affect the success probability of the pirate by o(1/n).

But after we make this replacement, TrEncTT( �sk, i
∗) and

TrEncTT( �sk, i
∗−1) are (perfectly, information-theoretically)

indistinguishable to the pirate. Since the sequence of indices
i1, . . . , ikTT

is random, the pirate has no information about
which elements ij are i∗ and which are i∗ − 1. Thus, if the
pirate wants to make Pi∗ larger than Pi∗−1, for some i∗ �∈ S,

she can do no better than to “guess”. If we take s = Õ(n2),
and apply a Chernoff bound, it turns out that for every
i �∈ S, Pi − Pi−1 = o(1/n). This conclusion also holds af-
ter we take into account the security loss of the encryption
scheme, which is o(1/n). Thus, the scheme we described is a
secure traitor-tracing scheme in the sense of Definition 3.2.

In arguing that the scheme is secure, we used the fact that
P0 = 0 and Pn = 1 no matter what other queries are made
to the pirate. In many applications, this assumption would
not be reasonable. However, when the pirate is derived from
an accurate sanitizer, this condition will be satisfied.

For this scheme, the tracer makes (n+1)s = Õ(n3) queries.
Before proceeding, we will explain how to reduce the num-

ber of queries from Õ(n3) to Õ(n2). The high-level argument
that the scheme is secure used two facts:

1. By the availability of the pirate decoder, if every user
in S would decrypt a ciphertext c to b, then the pirate
decrypts c to b (in the above, P0 = 0, Pn = 1).

2. Because of the encryption, a pirate decoder without
user i’s key “doesn’t know” how user i would decrypt
each ciphertext.

Systems leveraging these two properties to identify a col-
luding user are called fingerprinting codes [4], and have been
studied extensively. In fact, the tracing algorithm we de-
scribed is identical to the tracing algorithm we define in
Section 5.4, but instantiated with the fingerprinting code of

Boneh and Shaw [4], which has length Õ(n3). Tardos [18]

constructed shorter fingerprinting codes, with length Õ(n2),
which we use to reduce the number of queries to trace.

Before giving the final construction, we a precise definition
of the security we need from an encryption scheme, and then
we will give a formal definition of fingerprinting codes.
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5.2 Encryption Schemes
An encryption scheme is tuple of three efficient algorithms

(Gen,Enc,Dec). All the algorithms may be randomized ex-
cept for Dec. The scheme has the following syntax:

• The algorithm Gen takes a security parameter κ, runs
in time poly(κ), and returns a private key sk ∈ {0, 1}κ.
Formally sk ←R Gen(1κ).

• The algorithm Enc takes a private key and a message
bit b ∈ {0, 1} and generates a ciphertext c ∈ C = C(κ).
Formally, c←R Enc(sk, b).

• The algorithm Dec takes a private key sk ∈ {0, 1}κ
and a ciphertext c ∈ C(κ), runs in time poly(κ), and

returns a message bit b̂.

Definition 5.1. An encryption scheme (Gen,Enc,Dec) is
(perfectly) correct if for every b ∈ {0, 1}, and every κ ∈ N,
Prsk←RGen(1κ) [Dec(sk,Enc(sk, b)) = b] = 1.

We require that our schemes have the following kEnc-message
security property.

Definition 5.2. Let εEnc : N→ [0, 1] and kEnc : N→ N,
TEnc : N×N→ N be functions. An encryption scheme ΠEnc is
(εEnc, kEnc,TEnc)-secure if for every TEnc(κ, kEnc(κ))-time al-
gorithm AEnc and every two sequences b = (b1, . . . , bkEnc

), b′ =
(b′1, . . . , b

′
kEnc

) ∈ {0, 1} (for kEnc = kEnc(κ)),∣∣∣∣∣ Pr
sk←RGen(1κ)

[AEnc(c1, . . . , ckEnc
) = 1]

− Pr
sk←RGen(1κ)

[AEnc(c
′
1, . . . , c

′
kEnc

) = 1
] ∣∣∣∣∣ ≤ εEnc(κ).

where cj ←R Enc(sk, bj) and c′j ←R Enc(sk, b′j).

Notice that we do not require ΠEnc to be secure against
adversaries that are given Enc(sk, ·) as an oracle. That is,
we do not require CPA security.

Definition 5.3 (Encryption Scheme). We say that
a tuple of algorithms ΠEnc is an (εEnc, kEnc,TEnc)-encryption
scheme if is correct and (εEnc, kEnc,TEnc)-secure.

5.3 Fingerprinting Codes
As we alluded to above, our tracing algorithm will use a

fingerprinting code, introduced by Boneh and Shaw [4]. A
fingerprinting code is a pair of efficient (possibly random-
ized) algorithms (GenFP,TraceFP) with the following syntax.

• The algorithm GenFP takes a number of users n as input
and outputs a codebook of n codewords of length 	FP =
	FP(n), W = (w(1), . . . , w(n)) ∈ {0, 1}�FP . Formally
W ←R GenFP(1

n). We will think of W ∈ {0, 1}n×�FP

as a matrix with each row containing a codeword.

• The algorithm TraceFP takes an n-user codebook W
and a word w′ ∈ {0, 1}�FP and returns an index i ∈ [n].
Formally, i = TraceFP(W,w′).

Given a non-empty subset S ⊆ [n] and a set of codewords

WS = (w(i))i∈S ∈ {0, 1}�FP , we define the set of feasible code-
words to be F (WS) =

{
w′ | ∀j ∈ [	FP]∃i ∈ S w′j = w

(i)
j

}
.

Informally, if all users in S have a 0 (resp. 1) in the j-th

symbol of their codeword, then they must produce a word
with 0 (resp. 1) as the j-th symbol. We also define the
critical positions to be the set of indices for which this con-
straint is binding. That is,

Crit(WS) =
{
j ∈ [	FP] | ∃bj ∈ {0, 1}∀i ∈ S w

(i)
j = bj

}
.

The security of a fingerprinting code asserts that an ad-
versary who is given a subset WS of the codewords should
not be able to produce an element of F (WS) that does not
trace to a user i ∈ S. More formally,

Definition 5.4 (Secure Fingerprinting Code). Let
εFP : N→ [0, 1] and 	FP : N→ N be functions. A pair of algo-
rithms (GenFP,TraceFP) is an (εFP, 	FP)-fingerprinting code if

GenFP(1
n) outputs a codebook W ∈ {0, 1}n×�FP(n), and fur-

thermore, for every (possibly inefficient) algorithm AFP, and
every non-empty S ⊆ [n],

Pr
W←RGenFP(1

n)

[
w′ ←R AFP(WS)

w′ ∈ F (WS) ∧ TraceFP(W,w′) �∈ S

]
≤ εFP(n)

where the two executions of AFP are understood to be the
same.

The following theorem is due to Tardos [18].

Theorem 5.5 ([18]). For every function εFP : N→ [0, 1],
there exists a

(
o(1/n2), O(n2 log n)

)
-finger-printing code.

5.4 The Traitor-Tracing Scheme
We are now ready to state the construction more formally

(Algorithms 2 & 3)

Algorithm 2 The traitor-tracing scheme ΠTT (without its
tracing algorithm).

Let an encryption ΠEnc = (Gen,Enc,Dec) and a function
n : N → N be parameters of the scheme. Assume that
n(κ) ≤ 2κ/2 for every κ ∈ N

GenTT(1
κ) :

For every user i = 1, . . . , n(κ), let sk
(i) ←R Gen(1κ/2)

Let sk(i) = (sk
(i)
, i) (padded with zeros to have length

exactly κ).

Output �sk = (sk(1), . . . , sk(n))

(We will sometimes use sk(i) and sk
(i)

interchangeably)

EncTT(sk
(1), . . . , sk(n), b) :

For every user i, let c(i) ←R Enc(sk(i), b)

Output c = (c(1), . . . , c(n))

DecTT(sk
(i), c) :

Output b̂ = Dec(sk(i), c(i))

5.5 Security of ΠTT

In this section we sketch why our construction is secure.
It can be verified from the specification of the scheme that it
has the desired syntactic properties, that it generates n(κ)
user keys, and that the tracing algorithm makes 	FP(n(κ))
non-adaptive queries to its oracle.

To argue traceability, as in the sketch (Section 5.1), we
want to generate a set of ciphertexts that different users
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decrypt in different ways. Specifically, given a fingerprint-
ing code W ∈ {0, 1}n×�FP (represented as a matrix with

w(i) in the i-th row), we want to generate a set of cipher-
texts c1, . . . , c�FP , such that user i, if she decrypts as in-

tended using DecTT(sk
(i), ·), will decrypt cj to w

(i)
j . That

is, DecTT(sk
(i), cj) = w

(i)
j . TraceTT will query the pirate de-

coder on these ciphertexts, treat these responses as a word
w′, run the tracing algorithm for the fingerprinting code on
w′, and use the output of TraceFP as its own output.

If P is available, its output will be a feasible codeword for
WS. To see this, recall that if every user i ∈ S decrypts cj
to the same bit, then an available pirate decoder P( �skS, ·),
decrypts cj to that bit. However, the critical positions of
WS are exactly those for which every user i ∈ S has the
same symbol in position j. Thus, the codeword returned by
the pirate is feasible, and the fingerprinting code’s tracing
algorithm can identify a user in S.

Algorithm 3 The tracing algorithm for ΠTT and a subrou-
tine TrEncTT.

Let a length 	FP = 	FP(n) fingerprinting code ΠFP =
(GenFP,TraceFP) be a parameter of the scheme and let ΠEnc

be as in Algorithm 2.

TrEncTT(sk
(1), . . . , sk(n),W ):

Let n× k be the dimensions of W
For every i ∈ [n], j ∈ [k], let c

(i)
j ←R Enc(sk(i),Wi,j)

For every j ∈ [k], let cj = (c
(1)
j , . . . , c

(n)
j )

Output c1, . . . , ck
(Notice that Dec(sk(i), c

(i)
j ) = Wi,j)

TracePTT( �sk):
Let n be the number of user keys and 	FP = 	FP(n)
Let W ←R GenFP(1

n)

Let b̂1, . . . , b̂�FP ←R P(TrEncTT( �sk,W )) and let w′ =

b̂1‖ . . . ‖b̂�FP
Output i←R TraceFP(W,w′)

The catch in this argument is that TrEncTT takes all of W
as input, however an attacker for the fingerprinting code is
only allowed to see WS, and thus cannot simulate TrEncTT
in a security reduction. However, if P only has keys �skS ,
and i �∈ S, then an efficient P cannot decrypt the i-th com-
ponent of a ciphertext c = (c(1), . . . , c(n)). But these are the

only components that depend on w(i). So w(i) is computa-
tionally hidden from P anyway, and we could replace that
codeword with a string of zeros without significantly affect-
ing the success probability of P . Formalizing this intuition
will yield a valid attacker for the fingerprinting code, and
obtain a contradiction.

Theorem 5.6. Let ΠEnc be an (εEnc, kEnc,TEnc)-secure en-
cryption scheme, and ΠFP be a (εFP, 	FP)-fingerprinting code,
ΠFP. Let n, kTT : N→ N be any functions such that for every
κ ∈ N, n(κ) ≤ 2κ/2 and

1. the encryption scheme and fingerprinting code have
sufficiently strong security, n(κ) ·εEnc(κ)+εFP(n(κ)) =

o
(

1
n(κ)2

)
,

2. the encryption scheme is secure for sufficiently many
queries, kEnc(κ) ≥ kTT(κ) = 	FP(n(κ)),

3. the encryption scheme is secure against adversaries
whose running time is as long as the pirate decoder’s,
for every a > 0, TEnc(κ/2, kTT(κ)) ≥ (κ + n(κ) +
kTT(κ))

a.

Then ΠTT instantiated with ΠEnc and ΠFP is an (n, kTT)-
traitor-tracing scheme.

Due to space limitations, we defer the full proof—which
follows this intuition very closely—to the full version.

5.6 Decryption Function Family of ΠTT

Recall that the two goals of constructing a new traitor-
tracing scheme were to trace stateful pirates and to reduce
the complexity of decryption. We addressed tracing of state-
ful pirates in the previous section, and now we turn to the
complexity of decryption. We do so by instantiating the
traitor-tracing scheme with various encryption schemes and
making two observations: 1) The type of encryption schemes
we require are sufficiently weak that there already exist plau-
sible candidates with a very simple decryption operation,
and 2) Decryption for the traitor-tracing scheme is not much
more complex than decryption for the underlying encryption
scheme. We summarize the second point with the following
simple lemma.

Lemma 5.7 (Decryption Func. Family for ΠTT).

Let ΠTT be as defined, with ΠEnc as its underlying encryption
scheme. Let (sk, i) = sk ∈ {0, 1}κ and c = (c(1), . . . , c(n)) ∈
C(κ) be any user key and ciphertext for ΠTT. Then

DecTT,c(sk) = DecTT,c(sk, i) =
∨

i′∈[n]

(
1i′(i) ∧ Dec

c(i
′)(sk)

)
Here, the function 1x(y) takes the value 1 if y = x and 0 oth-
erwise. The lemma follows directly from the construction of
DecTT. Also note that the function 1i′ : {0, 1}�log n� → {0, 1}
is just a conjunction of �log n� bits (a single gate of fan-in
O(log n)), and we need to compute n of these functions.
In addition to computing 1i′ and Dec

c(i
′) , there are n con-

junctions and a single outer disjunction. Thus we add an
additional n+1 gates, compute decryption n times, and in-
crease the depth by 2. Hence, an intuitive summary of the
lemma is that if Dec can be implemented by circuits of size
s and depth h, DecTT can be implemented by circuits of size

n · (s+O(log n)) = Õ(ns) and depth h+ 2. This summary
will be precise enough to state our main results.

By combining Lemma 5.7 with Theorem 5.6, we easily
obtain the following corollary.

Corollary 5.8. Let n = n(κ) be any polynomial in κ.
Assuming the existence of (non-uniformly secure) one-way

functions, there exists an (n, Õ(n2))-secure traitor-tracing

scheme with decryption function family Q(κ)
DecTT

consisting

only of circuits of size poly(κ)

Theorem 1.1 in the introduction follows by combining The-
orem 4.1 with Corollary 5.8.

By Lemma 5.7, in order to construct a traitor-tracing
scheme whose decryption can be computed by constant-
depth circuits, it is sufficient to find an encryption scheme
where decryption can be implemented by constant-depth cir-
cuits. A scheme meeting the relaxed security criteria of Def-
inition 5.2 can be constructed from a sufficiently good local
pseudorandom generator (PRG). A recent result of Apple-
baum [1] gave the first plausible candidate construction of a
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local PRG for the range of parameters we need, giving plau-
sibility to the assumption that such PRGs (and, as we show,
traitor-tracing schemes with constant-depth decryption) ex-
ist. We note that local PRGs actually imply encryption
schemes with local decryption, which is stronger than just
constant-depth decryption.

Definition 5.9 (Local PRG). An efficient algorithm

G : {0, 1}κ → {0, 1}sPRG(κ) is a εPRG-pseudorandom generator
if for every poly(sPRG(κ))-time adversary APRG∣∣Pr [APRG(G(Uκ)) = 1]− Pr

[APRG(UsPRG(κ)) = 1
]∣∣ ≤ εPRG(κ)

If, in addition, if each bit of the output depends only on
some set of L bits of the input, then G is a (εPRG, L)-local
pseudorandom generator.

It is a well known result in Cryptography that pseudoran-
dom generators imply encryption schemes satisfying Defini-
tion 5.2 (for certain ranges of parameters). We will use a
particular construction whose decryption can be computed
in constant-depth whenever the underlying PRG is locally-
computable (or, more generally, computable by constant-
depth circuits). The construction is the standard “computa-
tional one-time pad”, which we state below for concreteness.

Algorithm 4 An encryption scheme ΠLocalEnc that can be
decrypted in constant depth.

Gen(1κ) :
Let s←R {0, 1}κ and output sk = s

Enc(sk, b) :
Let r ←R {1, 2, . . . , sPRG(κ)}, output c = (r,G(sk)r ⊕ b)

Dec(sk, c) :
Let (r′, b′) = c and output: b = G(sk)r ⊕ b′

Lemma 5.10 (Local PRGs → Encryption). If there

exists a (εPRG(κ), L)-local PRG, G : {0, 1}κ → {0, 1}sPRG(κ),
then there exists an (εEnc = εPRG+k2

Enc/sPRG, kEnc)-Secure En-
cryption Scheme (Gen,Enc,Dec) with decryption func. fam-
ily QDec,κ consisting of circuits of size poly(κ) and depth 4.

We defer the proof of Lemma 5.10 to the full version of this
work. Proving security is straightforward using standard ar-
guments in Cryptography. The proof that decryption can be
computed in constant depth follows easily from expressing
decryption of a ciphertext c = (r, b) in the form

Dec(r,b)(s) =
∨

i∈[sPRG(κ)]
(1i(r) ∧ (Gi(s)⊕ b)) .

This scheme yields the following corollary.

Corollary 5.11. Let n = n(κ) be any polynomial in κ.
Assuming the existence of a (o(1/n2), n7, L)-local pseudo-
random generator for some constant L ∈ N, there exists

an (n, Õ(n2))-secure traitor-tracing scheme with decryption

function family Q(κ)
DecTT

consisting of circuits of size Õ(n) ·
poly(κ) and depth 6.

Theorem 1.2 in the introduction follows by combining The-
orem 4.1 with Corollary 5.11.
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