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ABSTRACT
We give new mechanisms for answering exponentially many queries
from multiple analysts on a private database, while protecting dif-
ferential privacy both for the individuals in the database and for
the analysts. That is, our mechanism’s answer to each query is
nearly insensitive to changes in the queries asked by other analysts.
Our mechanism is the first to offer differential privacy on the joint
distribution over analysts’ answers, providing privacy for data an-
alysts even if the other data analysts collude or register multiple
accounts. In some settings, we are able to achieve nearly optimal
error rates (even compared to mechanisms which do not offer an-
alyst privacy), and we are able to extend our techniques to handle
non-linear queries. Our analysis is based on a novel view of the pri-
vate query-release problem as a two-player zero-sum game, which
may be of independent interest.

Categories and Subject Descriptors
F.0 [THEORY OF COMPUTATION]: General

Keywords
Differential Privacy; Analyst Privacy; No-regret Learning; Breg-
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1. INTRODUCTION
Consider a tracking network that wants to sell a database of con-

sumer data to several competing analysts conducting market re-
search. The administrator of the tracking network faces many op-
posing constraints when deciding how to provide analysts with this
data. For legal reasons, the privacy of the individuals contained in
her database must be protected. At the same time, the analysts must
be able to query the database and receive useful answers. Finally,
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the privacy of the queries made to the database must be protected,
since the analysts are in competition and their queries may be dis-
closive of proprietary strategies.

This setting of analyst privacy was recently introduced in a beau-
tiful paper of Dwork, Naor, and Vadhan [7]. They showed that
differentially private stateless mechanisms — which answer each
query independently of the previous queries — can only give accu-
rate answers when the number of queries is at most quadratic in the
size of the database. This result rules out mechanisms that perfectly
protect the privacy of the queries, while accurately answering ex-
ponentially many queries — answers must depend on the state, and
hence on the previous queries. However, it turns out that mecha-
nisms that offer a differential-privacy-like guarantee with respect
to the queries are possible: Dwork, et al. [7] give such a mecha-
nism, with the guarantee that the marginal distribution on answers
given to each analyst is differentially private with respect to the set
of queries made by all of the other analysts. Their mechanism is
capable of answering exponentially many linear queries with error
Õ(1/n1/4), where n is the number of records in the database. A
linear query is a (1/n)-sensitive query of the form “What fraction
of the individual records in the database satisfy some property q?”,
so their mechanism gives non-trivial accuracy.

However, they note that their mechanism has several shortcom-
ings. First, it does not promise differential privacy on the joint
distribution over multiple analysts’ answers. Therefore, if multiple
analysts collude, or if a single malicious analyst registers several
false accounts with the mechanism, then the mechanism no longer
guarantees query privacy. Second, their mechanism is less accurate
than known, non-analyst private mechanisms — analyst privacy is
achieved at a cost to accuracy. Finally, the mechanism can only
answer linear queries, rather than general low-sensitivity queries.

In this paper, we address all of these issues. First, we consider
mechanisms which guarantee one-query-to-many-analyst privacy:
for each analyst a, the joint distribution over answers given to all
other analysts a′ 6= a is differentially private with respect to the
change of a single query asked by analyst a. This privacy guarantee
is incomparable to that of Dwork, et al. [7]: it is weaker, because
we protect the privacy of a single query, rather than protecting the
privacy of all queries asked by analysts a′ 6= a. However, it is
also stronger, because the privacy of one query from an analyst a is
preserved even if all other analysts a′ 6= a collude or register mul-
tiple accounts. Our first result is a mechanism in this setting, with
error at most Õ(1/

√
n) for answering exponentially many linear

queries. This error is optimal up to polylogarithmic factors, even
when comparing to mechanisms that only guarantee data privacy.

We then extend our techniques to one-analyst-to-many-analyst
privacy, where we require that the mechanism preserve the privacy
of analyst when he changes all of his queries, even if all other an-
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alysts collude. Our second result is a mechanism in this setting,
with error Õ(1/n1/3). Although this error rate is worse than what
we achieve for one-query-to-many-analyst privacy (and not neces-
sarily optimal), our mechanism is still capable of answering expo-
nentially many queries with non-trivial accuracy guarantees, while
satisfying both data and analyst privacy.

These first two mechanisms operate in the non-interactive set-
ting, where the queries from every analyst are given to the mecha-
nism in a single batch. Our final result is a mechanism in the online
setting that satisfies one-query-to-many analyst privacy. The mech-
anism accurately answers a (possibly exponentially long) fixed se-
quence of low-sensitivity queries. Although our mechanism oper-
ates as queries arrive online, it cannot tolerate adversarially cho-
sen queries (i.e. it operates in the same regime as the smooth mul-
tiplicative weights algorithm of Hardt and Rothblum [13]). For
linear queries, our mechanism gives answers with error at most
Õ(1/n2/5). For answering general queries with sensitivity 1/n
(the sensitivity of a linear query), the mechanism guarantees error
at most Õ(1/n1/10).

When answering k queries on a database D ∈ Xn consisting of
n records from a data universeX , our offline algorithms run in time
Õ(n · (|X |+k)) and our online algorithm runs in time Õ(|X |+n)
per query. These running times are essentially optimal for mech-
anisms that answer more than ω(n2) arbitrary linear queries [22],
assuming (exponentially hard) one-way functions exist.

Our Techniques. To prove our results, we take a novel view
of private query release as a two player zero-sum game between
a data player and a query player. For each element of the data
universe x ∈ X , the data player has an action ax. Intuitively, the
data player’s mixed strategy will be his approximation of the true
database’s distribution.

On the other side, for each query q ∈ Q, the query player has
two actions: aq and a¬q . The two actions for each query allow
the query player to penalize the data player’s play, both when the
approximate answer to q is too high, and when it is too low — the
query player tries to play queries for which the data player’s ap-
proximation performs poorly. Formally, we define the cost matrix
by G(aq, ax) = q(x) − q(D) and G(a¬q, ax) = q(D) − q(x),
where D is the private database. The query player wishes to max-
imize the cost, whereas the database player wishes to minimize
the cost. We show that the value of this game is 0, and that any
ρ-approximate equilibrium strategy for the database player corre-
sponds to a database that answers every query q ∈ Q correctly up
to additive error ρ. Thus, given any pair of ρ-approximate equi-
librium strategies, the strategy for the data player will constitute a
database (a distribution over X ) that answers every query to within
error O(ρ).

Different privacy constraints for the private query release prob-
lem can be mapped into privacy constraints for solving two-player
zero-sum games. Standard private linear query release corresponds
to privately computing an approximate equilibrium, where privacy
is preserved with respect to changing every cost in the game ma-
trix by at most 1/n. Likewise, query release while protecting one-
query-to-many-analyst privacy corresponds to computing an ap-
proximate equilibrium strategy, where privacy is with respect to
an arbitrary change in two rows of the game matrix — changing
a single query q changes the payoffs for actions aq and a¬q . Our
main result can be viewed as an algorithm for privately computing
the equilibrium of a zero-sum game while protecting the privacy of
strategies of the players, which may be of independent interest.

To construct an approximate equilibrium, we use a well-known

result: when two no-regret algorithms are played against each other
in a zero-sum game, their empirical play distributions quickly con-
verge to an approximate equilibrium. Thus, to compute an equi-
librium of G, we have the query player and the data player play
against each other using no-regret algorithms, and output the empir-
ical play distribution of the data player as the hypothesis database.
We face several obstacles along the way.

First, no-regret algorithms maintain a state — a distribution over
actions, which is not privacy preserving. (In fact, it is computed de-
terministically from inputs that may depend on the data or queries.)
Previous approaches to private query release have addressed this
problem by adding noise to the inputs of the no-regret algorithm.

In our approach, we crucially rely on the fact that sampling ac-
tions from the distributions maintained by the multiplicative weights
algorithm is privacy preserving. Intuitively, privacy will come from
the fact that the multiplicative weights algorithm does not adjust
the weight on any action too aggressively, meaning that when we
view the weights as defining a distribution over actions, changing
the losses experienced by the algorithm in various ways will have
a limited effect on the distribution over actions. We note that this
property is not used in the private multiplicative weights mecha-
nism of Hardt and Rothblum [13], who use the distribution itself as
a hypothesis. Indeed, without the constraint of query privacy, any
no-regret algorithm can be used in place of multiplicative weights
[21, 11], which is not the case in our setting.

Second, sampling from the multiplicative weights algorithm is
private only if the changes in losses are small. Intuitively, we must
ensure that changing one query from one analyst does not affect
the losses experienced by the data player too dramatically, so that
samples from the multiplicative weights algorithm will indeed en-
sure query privacy. To enforce this requirement, we force the query
player to play mixed strategies from the set of smooth distributions,
which do not place too much weight on any single action. It is
known that playing any no-regret algorithm, but projecting into the
set of smooth distributions in the appropriate way (via a Bregman
projection), will ensure no-regret with respect to any smooth dis-
tribution on actions. For comparison, no-regret is typically defined
with respect to the best single action, which is a not a smooth dis-
tribution. Thus, our regret guarantee is weaker.

The result of this simulation is an approximate equilibrium strat-
egy for the data player, in the sense that it achieves approximately
the value of the game when played against all but s strategies of the
query player, where 1/s is the maximum probability that the query
player may assign to any action. This corresponds to a synthetic
database, which we release to all analysts, that answers all but s
queries accurately. Then, since we choose s to be small, we can
answer the mishandled queries with the sparse vector technique [6,
21, 13] adding noise only Õ(

√
s/n) to these s queries. The result

is a nearly optimal error rate of Õ(1/
√
n)

Our techniques naturally extend to one-analyst-to-many-analyst
privacy by making the actions of the query player correspond to
entire workloads of queries, one for each analyst, where the query
player picks analysts that have at least one query that has high error
on the current hypothesis. Like before, a small number of analysts
will have queries that have high error, which we handle with a sep-
arate private query release mechanism for each analyst.

Finally, we use these techniques to convert the private multiplica-
tive weights algorithm of Hardt and Rothblum [13] into an online
algorithm that preserves one-query-to-many-analyst privacy, and
also answers arbitrary low-sensitivity queries. These last two ex-
tensions both give first-of-their-kind results, but at some degrada-
tion in the accuracy parameters: we do not obtain O(1/

√
n) error
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rate. We leave it as an open problem to achieve Õ(1/
√
n) error in

these settings, or show that the accuracy cost is necessary.

Related Work. There is an extremely large body of work on dif-
ferential privacy [5] that we do not attempt to survey. The study
of differential privacy was initiated by a line of work [4, 2, 5]
culminating in the definition by Dwork, Mcsherry, Nissim, and
Smith [5], who also introduced the basic technique of answering
low-sensitivity queries using the Laplace mechanism. The Laplace
mechanism gives approximate answers to nearly O(n2) queries
while preserving differential privacy.

A recent line of work [3, 6, 8, 21, 13, 10, 11, 12] has shown how
to accurately answer almost exponentially many queries usefully
while preserving differential privacy of the data. Some of this work
[21, 13, 11] rely on no-regret algorithms — in particular, Hardt and
Rothblum [13] introduced the multiplicative weights technique to
the differential privacy literature, which we use centrally.

However, we make use of multiplicative weights in a different
way from prior work in private query release — we simulate play
of a two-player zero-sum game using two copies of the multiplica-
tive weights algorithm, and rely on the fast convergence of such
play to approximate Nash equilibrium [9]. We also rely on the fact
that Bregman projections onto a convex set K can be used in con-
junction with the multiplicative weights update rule to achieve no
regret with respect to the best element in the setK [19]. Finally, we
use that samples from the multiplicative weights distribution can be
viewed as samples from the exponential mechanism of McSherry
and Talwar [18], and hence are privacy preserving.

Our use of Bregman projections into smooth distributions is sim-
ilar to its use in smooth boosting. Barak, Hardt, and Kale [1] use
Bregman projections in a similar way, and the weight capping used
by Dwork, Rothblum, and Vadhan [8] in their analysis of boosting
for people can be viewed as a Bregman projection.

The most closely related paper to ours is the beautiful recent
work of Dwork, Naor, and Vadhan [7], who introduce the idea
of analyst privacy. They show that any algorithm which can an-
swer ω(n2) queries to non-trivial accuracy must maintain com-
mon state as it interacts with many data analysts, and hence poten-
tially violates the privacy of the analysts. Accordingly, they give a
stateful mechanism which promises many-to-one-analyst privacy,
and achieves per-query error Õ(1/n1/4) for linear queries — their
mechanism promises differential privacy on the marginal distribu-
tion of answers given to any single analyst, even when all other an-
alysts change all of their queries. However, if multiple analysts col-
lude, or if a single analyst can falsely register under many ids, then
the privacy guarantees degrade quickly — privacy is not promised
on the joint distribution on all analysts answers. Lifting this limita-
tion, improving the error bounds and extending analyst privacy to
non-linear queries, are all stated as open questions.

Finally, the varying notions of analyst privacy we use can be
interpreted in the context of two-party differential privacy, intro-
duced by McGregor, et al. [17]. If we consider a single analyst
as one party, sending private queries to a second party consisting of
the mechanism and all the other parties indirectly, the many-to-one-
analyst privacy guarantee is equivalent to privacy of the first party’s
view. Here, the privacy must be protected even if the second party
changes its inputs arbitrarily, i.e., the other analysts change their
queries arbitrarily.

On other hand, if we consider all but one analyst as the first party,
sending queries to the mechanism and the remaining analyst, one-
query-to-many-analyst privacy is equivalent to the first party’s view
being private when the single analyst changes a query. One-analyst-

to-many-analyst privacy is similar: the first party’s view must be
private when the second party changes all of its queries.

2. PRELIMINARIES

Differential Privacy and Analyst Differential Privacy.
Let a database D ∈ Xn be a collection of n records (rows)
{x(1), . . . , x(n)} from a data universe X . Two databases D,D′ ∈
Xn are adjacent if they differ only on a single row, which we de-
note by D ∼ D′.

A mechanism A : Xn → R takes a database as input and out-
puts some data structure in R. We are interested in mechanisms
that satisfy differential privacy.

DEFINITION 2.1. A mechanismA : Xn →R is (ε, δ)-differentially
private if for every two adjacent databases D ∼ D′ ∈ Xn and ev-
ery subset S ⊆ R,

Pr [A(D) ∈ S] ≤ eεPr
[
A(D′) ∈ S

]
+ δ.

In this work we construct mechanisms that ensure differential
privacy for the analyst as well as for the database. To define analyst
privacy, we first define many-analyst mechanisms. Let Q be the set
of all allowable queries. The mechanism takes m sets of queries
Q1, . . . ,Qm and returns m outputs Z1, . . . , Zm, where Zj con-
tains answers to the queries Qj . Thus, a many-analyst mechanism
has the form A : Xn × (Q∗)m → Rm. Given sets of queries
Q1, . . . ,Qm, let Q =

⋃m
j=1Qj denote the set of all queries.

In guaranteeing privacy even in the event of collusion, it will be
useful to refer to the output given to all analysts other than some
analyst i. For each id ∈ [m] we write A(D,Q)−id to denote
(Z1, . . . , Zid−1, Zid+1, . . . , Zm), the output given to all analysts
other than id.

Let Q = Q1, . . . ,Qm and Q′ = Q′1, . . . ,Q′m. We say that Q
and Q′ are analyst-adjacent if there exists id∗ ∈ [m] such that for
every id 6= id∗, Qid = Q′id. That is, Q ∼ Q′ are analyst adjacent
if they differ only on the queries asked by one analyst. Intuitively, a
mechanism satisfies one-analyst-to-many-analyst privacy if chang-
ing all the queries asked by analyst id∗ does not significantly affect
the output given to all analysts other than id∗.

DEFINITION 2.2. A many-analyst mechanismA satisfies (ε, δ)-
one-analyst-to-many-analyst privacy if for every database D ∈
Xn, every two analyst-adjacent query sequences Q ∼ Q′ that dif-
fer only on one set of queriesQid,Q′id, and every S ⊆ Rm−1,

Pr [A(D,Q)−id ∈ S] ≤ eεPr
[
A(D,Q′)−id ∈ S

]
+ δ.

Let Q = Q1, . . . ,Qm and Q′ = Q′1, . . . ,Q′m. We say that Q
and Q′ are query-adjacent if there exists id∗ such that for every
id 6= id∗, Qid = Q′id and |Qid∗4Q′id∗ | ≤ 1. That is, Q ∼
Q′ are query adjacent if they differ only on one of the queries.
Intuitively, we say that a mechanism satisfies one-query-to-many-
analyst privacy if changing one query asked by analyst id∗ does not
significantly affect the output given to all analysts other than id∗.

DEFINITION 2.3. A many-analyst mechanismA satisfies (ε, δ)-
one-query-to-many-analyst privacy if for every database D ∈ Xn,
every two query-adjacent query sequencesQ ∼ Q′ that differ only
on one query inQid,Q′id, and every S ⊆ Rm−1,

Pr [A(D,Q)−id ∈ S] ≤ eεPr
[
A(D,Q′)−id ∈ S

]
+ δ.

In our proofs of both differential privacy and analyst privacy, we
will often establish that for any D ∼ D′, the two distributions
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A(D),A(D′) are such that with probability at least 1 − δ over
y ←R M(D), ∣∣∣∣ln( Pr[A(D) = y]

Pr[A(D′) = y]

)∣∣∣∣ ≤ ε.
This condition implies (ε, δ)-differential privacy [8].

Queries and Accuracy. In this work we consider two types of
queries: low-sensitivity queries and linear queries. Low-sensitivity
queries are parameterized by ∆ ∈ [0, 1]: a ∆-sensitive query is any
function q : Xn → [0, 1] such that maxD∼D′ |q(D) − q(D′)| ≤
∆.A linear query is a particular type of low-sensitivity query, spec-
ified by a function q : X → [0, 1]. We define the evaluation of q
on a database D ∈ Xn to be q(D) = 1

n

∑n
i=1 q(x

(i)), so a linear
query is evidently (1/n)-sensitive.

Since A may output a data structure, we must specify how to
answer queries inQ from the outputA(D). Hence, we require that
there is an evaluator E : R × Q → R that estimates q(D) from
the output of A(D). For example, if A outputs a vector of “noisy
answers”Z = {q(D)+Zq|q ∈ Q}, whereZq is a random variable
for each q ∈ Q, then R = RQ and E(Z, q) is the q-th component
of Z. Abusing notation, we write q(Z) and q(A(D)) as shorthand
for E(Z, q) and E(A(D), q), respectively.

DEFINITION 2.4. An outputZ of a mechanismA(D) isα-accurate
for query set Q if |q(Z) − q(D)| ≤ α for every q ∈ Q. A mecha-
nism is (α, β)-accurate for query setQ if for every database D,

Pr [∀q ∈ Q, |q(A(D))− q(D)| ≤ α] ≥ 1− β,

where the probability is taken over the coins of A.

Differential Privacy Tools. We will use a few previously known
differentially private mechanisms. When we need to answer a small
number of queries we will use the well-known Laplace mecha-
nism [5], with an improved analysis from [8].

LEMMA 2.5. Let F =
{
f1, . . . , f|F|

}
be a set of ∆-sensitive

queries fi : Xn → [0, 1], and let D ∈ Xn be a database. Let
ε, δ ≤ 1. Then the mechanism ALap(D,F) that outputs fi(D) +

Lap

(
∆
√

8|F| log(1/δ)

ε

)
for every fi ∈ F is:

1. (ε, δ)-differentially private, and

2. (α, β)-accurate for any β ∈ (0, 1] and
α = ε−1∆

√
8|F| log(1/δ) log(|F|/β).

When we need to answer a large number of queries, we will use
the multiplicative weights mechanism from [13], with an improved
analysis from Gupta et al. [11].

LEMMA 2.6. LetF =
{
f1, . . . , f|F|

}
be a set of (1/n)-sensitive

linear queries, fi : Xn → [0, 1]. LetD ∈ Xn be a database. Then
there is a mechanism AMW(D,F) that is:

1. (ε, δ)-differentially private, and

2. (α, β)-accurate for any β ∈ (0, 1] and

α = O

(
log1/4 |X|

√
log(|F|/β) log(1/δ)

ε1/2n1/2

)
.

REMARK 2.7. We use the above lemma as a black box, agnostic
to the algorithm which instantiates these guarantees.

Our algorithms also use the private sparse vector algorithm. This
algorithm takes as input a database and a set of low-sensitivity
queries, with the promise that only a small number of the queries
have large answers on the input database. Its output is a set of
queries with large answers on the input database. Importantly for
this work, the sparse vector algorithm (cf. [13, 20]) ensures the pri-
vacy of the input queries in a strong sense.

LEMMA 2.8. Let F =
{
f1, . . . , f|F|

}
be a set of ∆-sensitive

functions, fi : Xn → [0, 1]. Let D ∈ Xn be a database, α ∈
(0, 1], k ∈ [|F|] such that | {i | fi(D) ≥ α} | ≤ k. Then there is
an algorithm ASV(D,F) that

1. is (ε, δ)-differentially private with respect to D,

2. returns I ⊆ [|F|] of size at most k such that with probability
at least 1− β,{

i | fi(D) ≥ α+ ε−1∆
√

8k log(1/δ) log(|F|/β)
}

⊆ I ⊆ {i | fi(D) ≥ α} ,

3. and is perfectly private with respect to the queries:
if F ′ =

{
f1, . . . , f

′
j , . . . , fk

}
, then for every D and i 6= j,

Pr [i ∈ ASV(D,F)] = Pr
[
i ∈ ASV(D,F ′)

]
.

We will also use the Composition Theorem of Dwork, Rothblum,
and Vadhan [8].

LEMMA 2.9. Let A : X ∗ → RT be a mechanism such that
for every pair of adjacent inputs x ∼ x′, every t ∈ [T ], every
r1, . . . , rt−1 ∈ R, and every rt ∈ R,

Pr [At(x) = rt | A1,...,t−1(x) = r1, . . . , rt−1]

≤ eε0Pr
[
At(x′) = rt | A1,...,t−1(x′) = r1, . . . , rt−1

]
+ δ0

for ε0 ≤ 1/2. Then A is (ε, δ)-differentially private for ε =√
8T log(1/δ) + 2ε2

0T and δ = δ0T .

Multiplicative Weights. Let A : A → [0, 1] be a measure
over a set of actions A. We use |A| =

∑
a∈AA(a) to denote

the density of A. A measure naturally corresponds to a probability
distribution Ã in which Pr

[
Ã = a

]
= A(a)/|A| for every a ∈ A.

Throughout, we will use calligraphic letters (A) to denote a set of
actions, lower case letters (a) to denote the actions, capital letters
(A) to denote a measure over actions, and capital letters with a
tilde to denote the corresponding distributions (Ã). Let L : A →
[0, 1] be a loss function (losses L). Abusing notation, we can define

L(A) = E
[
L(Ã)

]
.Given an initial measureA1, we can define the

multiplicative weights algorithm in Algorithm 1.

Algorithm 1 The Multiplicative Weights Algorithm, MWη

For t = 1, 2, . . . , T :
Sample at ←R Ãt
Receive losses Lt (may depend on A1, a1, . . . , At−1, at−1)
Update: For each a ∈ A:

Update At+1(a) = e−ηLt(a)At(a) for every a ∈ A
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The following theorem about the multiplicative weights update
is well-known.

THEOREM 2.10 (SEE E.G. [19]). LetA1 be the uniform mea-
sure of density 1, and let {a1, . . . , aT } be the actions obtained
by MWη with losses {L1, . . . , Lt}. Let A∗ = 1a=a∗ , for some
a∗ ∈ A, and δ ∈ (0, 1]. Then with probability at least 1− β,

E
t←R[T ]

[Lt(at)] ≤ E
t←R[T ]

[Lt(A
∗)] + η +

log |A|
ηT

+
4 log(1/β)√

T
.

We need to work with a variant of multiplicative weights that
only produces measuresA of high density, which will imply that Ã
does not assign too much probability to any single element ofA. To
this end, we will apply (a special case of) the Bregman projection to
the measures obtained from the multiplicative weights update rule.

DEFINITION 2.11. Let s ∈ (0,U ]. Given a measure A such
that |A| ≤ s, let ΓsA be the (Bregman) projection of A into the
set of density-s measures, obtained by computing c ≥ 1 such that
s =

∑
a∈Amin{1, cA(a)} and setting ΓA(a) = min{1, cM(a)}

for every a ∈ A. We call s is the density of measure A.

Algorithm 2 The Dense Multiplicative Weights Algorithm,
DMWs,η

For t = 1, 2, . . . , T :
Let A′t = ΓsAt, and sample at ←R Ã

′
t

Receive losses Lt (may depend on A1, a1, . . . , At−1, at−1)
Update: For each a ∈ A:

Update At+1(a) = e−ηLt(a)At(a)

Given an initial measure A1 such that |A1| ≤ s, we can define
the dense multiplicative weights algorithm in Algorithm 2. Note
that we update the unprojected measure At, but sample at using
the projected measure ΓsAt. Observe that the update step can only
decrease the density, so we will have |At| ≤ s for every t. Like be-
fore, given a sequence of losses {L1, . . . , LT } and an initial mea-
sure A1 of density s, we can consider the sequence {A1, . . . , AT }
whereAt+1 is given by the projected multiplicative weights update
applied to At, Lt. The following theorem is known.

THEOREM 2.12. Let A1 be the uniform measure of density 1
and let {a1, . . . , aT } be the sequence of measures obtained by
DMWs,η with losses {L1, . . . , LT }. Let A∗ = 1a∈S∗ for some
set S∗ ⊆ A of size s, and δ ∈ (0, 1]. Then with probability 1− β,

E
t←R[T ]

[Lt(ΓAt)] ≤ E
t←R[T ]

[Lt(A
∗)] + η +

log |A|
ηT

+
4 log(1/β)√

T
.

See e.g. [19] for a thorough treatment of this result.

Regret Minimization and Two-Player Zero-Sum Games.
Let G : AR × AC → [0, 1] be a two-player zero-sum game be-
tween players (R)ow and (C)olumn, who take actions r ∈ AR and
c ∈ AC and receive losses G(r, c) and −G(r, c), respectively. Let
∆(AR),∆(AC) be the set of measures over actions in AR and
AC , respectively. The well-known minimax theorem states that

v := min
R∈∆(AR)

max
C∈∆(AC)

G(R,C) = max
C∈∆(AC)

min
R∈∆(AR)

G(R,C).

We define this quantity v to be the value of the game.

Freund and Schapire [9] showed that if two sequences of actions
{r1, . . . , rT } , {c1, . . . , cT } are “no-regret with respect to one an-
other”, then r̃ = 1

T

∑T
t=1 rt and c̃ = 1

T

∑T
t=1 ct form an approxi-

mate equilibrium strategy pair. More formally, if

max
c∈AC

E
t

[G(rt, c)]− ρ ≤ E
t

[G(rt, ct)] ≤ min
r∈AR

E
t

[G(r, ct)] + ρ,

then v − 2ρ ≤ G(r̃, c̃) ≤ v + 2ρ. Thus, if Row chooses actions
using the multiplicative weights update rule with losses Lt(rt) =
G(rt, ct) and Column chooses actions using the multiplicative weights
rule with losses Lt(rt) = −G(rt, ct), then each player’s distribu-
tion on actions converges to a minimax strategy.

For query privacy in our view of query release as a two player
game, Column must not put too much weight on any single query.
Thus, we need an analogue of this result in the case where Column
is not choosing actions according to the multiplicative weights up-
date, but rather using the projected multiplicative weights update.
In this case we cannot hope to obtain an approximate minimax
strategy, since Column cannot play any single action with signif-
icant probability. However, we can define an alternative notion of
the value of a game where Column is restricted in this way: let
∆s(AC) be the set of measures over AC of minimum density at
least s, and define

vs := min
R∈∆(AR)

max
C∈∆s(AC)

G(R,C).

Notice that vs ≤ v, and vs can be very different from v.

THEOREM 2.13. Let {r1, . . . , rT } ∈ AR be a sequence of
row-player actions, {C1, . . . , CT } ∈ ∆s(AC) be a sequence of
high-density measures over column-player actions, and {c1, . . . , cT } ∈
AC be a sequence of column-player actions such that cj ←R Cj
for every t ∈ [T ]. Further, suppose that

max
C∈∆s(AC)

E
t

[G(rt, C)]− ρ

≤ E
t

[G(rt, ct)] ≤ min
R∈∆(AR)

E
t

[G(R, ct)] + ρ

Then, vs− 2ρ ≤ G(r̃, c̃) ≤ v+ 2ρ. Moreover, r̃ is an approximate
min-max strategy with respect to strategies in ∆s(AC), i.e., vs −
2ρ ≤ maxC∈∆s(AC) G(r̃, C) ≤ v + 2ρ.

We omit the proof, which closely follows the argument of Freund
and Schapire [9] for the unconstrained case.

COROLLARY 2.14. Let G : AR × AC → [0, 1]. If the row
player chooses actions {r1, . . . , rT } by running MWη with loss
functions Lt(r) = G(r, ct) and the column player chooses ac-
tions {c1, . . . , cT } by running DMWs,η with the loss functions
Lt(c) = −G(rt, c), then with probability at least 1−β, vs−2ρ ≤
maxc∈Cs G(r̃, c) ≤ v + 2ρ, for

ρ = η +
max{log |AR|, log |AC |}

ηT
+

4 log(2/β)√
T

.

3. A ONE-QUERY-TO-MANY-ANALYST PRI-
VATE MECHANISM

We define our offline mechanisms for releasing linear queries in
Algorithm 3.

Accuracy Analysis
THEOREM 3.1. The offline algorithm for linear queries is (α, β)-

accurate for

α = O

(√
log(|X |+ |Q|) log(1/δ) log(|Q|/β)

ε
√
n

)
.
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Algorithm 3 Offline Mechanism for Linear Queries with One-
Query-to-Many-Analyst Privacy

Input: Database D ∈ Xn and sets of linear queries
Q1, . . . ,Qm.
Initialize: LetQ =

⋃m
j=1Qj ∪¬Qj ,D0(x) = 1/|X | for every

x ∈ X , Q0(q) = 1/|Q| for every q ∈ Q,

T = n·max{log |X |, log |Q|}, η =
ε

2
√
T log(1/δ)

, s = 12T

DataPlayer:
On input a query q̂t, for each x ∈ X :

Update Dt(x) = Dt−1(x) · exp
(
−η
(

1+q̂t(D)−q̂t(x)
2

))
Choose x̂t ←R D̃t and send x̂t to QueryPlayer

QueryPlayer:
On input a data element x̂t, for each q ∈ Q:

Update Qt+1(q) = Qt(q) · exp
(
−η
(

1+q(D)−q(x̂t)
2

))
Let Pt+1 = ΓsQt+1

Choose q̂t+1 ←R P̃t+1 and send q̂t+1 to DataPlayer

GenerateSynopsis:
Let D̂ = (x̂1, . . . , x̂T ).
Run sparse vector on D̂, obtain a set of at most s queriesQf
Run Laplace Mechanism, obtain answer aq for each q ∈ Qf
Output D̂ to all analysts.
For each q ∈ Qf , output (q, aq) to the analyst that issued q.

PROOF. Observe that the algorithm is computing an approxi-
mate equilibrium of the game GD(x, q) = 1+q(D)−q(x)

2
. Let v, vs

be the value and constrained value of this game, respectively. First,
we pin down the quantities v and vs.

CLAIM 3.2. For every D, the value and constrained value of
GD is 1/2.

We omit the proof, which considers the payoff to the data player if
he plays the true database D as his strategy.

Let D̂ = 1
T

∑T
t=1 xt. By Corollary 2.14,

vs − 2ρ ≤ max
Q∈∆s(Q)

(
1

2
E

q←RQ̃

[
1 + q(D)− q(D̂)

])
≤ v + 2ρ.

Applying Claim 3.2 and rearranging terms, with probability at least
1− β/3,∣∣∣∣ max

Q∈∆s(Q)

(
E

q←RQ̃

[
q(D)− q(D̂)

])∣∣∣∣
= O

(√
log(|X |+ |Q|) log(1/δ) + log(1/β)

ε
√
n

)
:= αD̂.

The previous statement suffices to show that |q(D) − q(D̃)| ≤
αD̂ for all but s queries. Otherwise, the uniform distribution over
the bad queries would be a distribution over queries contained in
∆s(Q), with expected error larger than αD̂ .

We can now run the sparse vector algorithm (Lemma 2.5). With
probability at least 1−β/3, it will identify every query q with error
larger than αD̂ + αSV for

αSV = O

(√
s log(1/δ) log(|Q|/β)

εn

)
.

Since there are at most s such queries, with probability at least 1−
β/3, the Laplace mechanism (Lemma 2.8) answers these queries
to within error

αLap = O

(√
s log(1/δ) log(s/β)

εn

)
.

Now, observe that in the final output, there are two ways that a
query can be answered: either by D̂, in which case its answer
can have error as large as αD̂ + αSV, or by the Laplace mecha-
nism, in which case its answer can have error as large as αLap.
Thus, with probability at least 1− β, every query has error at most
max{αD̂ + αSV, αLap}. Substituting our choice of s = 12T =
O(n log(|X |+ |Q|)) and simplifying, we conclude that the mech-
anism is (α, β)-accurate for

α = O

(√
log(|X |+ |Q|) log(1/δ) log(|Q|/β)

ε
√
n

)
.

Data Privacy
THEOREM 3.3. Algorithm 3 satisfies (ε, δ)-differential privacy

for the data.

Before proving the theorem, we will state a useful lemma about
the Bregman projection onto the set of high density measures (Def-
inition 2.11).

LEMMA 3.4 (PROJECTION PRESERVES PRIVACY). LetA0, A1 :
A → [0, 1] be two full-support measures over a set of actions A
and s ∈ (0, |A|) be such that |A0|, |A1| ≤ s and | ln(A0(a)/A1(a))| ≤
ε for every a ∈ A. Let A′0 = ΓsA0 and A′1 = ΓsA1. Then
| ln(A′0(a)/A′1(a))| ≤ 2ε for every a ∈ A.

We omit the proof of this lemma for lack of space. Now we prove
the main result of this section.

PROOF OF THEOREM 3.3. We focus on analyzing the privacy
properties of the output D̂ = (x̂1, . . . , x̂T ), the privacy of the fi-
nal stage of the mechanism will follow from standard arguments in
differential privacy. We will actually show the stronger guarantee
that the sequence v = (x̂1, q̂1, . . . , x̂T , q̂T ) is differentially private
for the data. Fix a pair of adjacent databases D0 ∼ D1 and let
V0, V1 denote the distribution on sequences v when the mechanism
is run on database D0, D1 respectively. We will show that with
probability at least 1− δ/3 over v = (x̂1, q̂1, . . . , x̂T , q̂T )←R V0,
|ln (V0(v)/V1(v))| ≤ ε/3, which is no weaker than (ε/3, δ/3)-
differential privacy. To do so, we analyze the privacy of each ele-
ment of v, x̂t or q̂t, and apply the composition analysis of Dwork,
Rothblum, and Vadhan [8]. Define ε0 = 2ηT/n.

CLAIM 3.5. For every v, and every t ∈ [T ],∣∣∣∣ln(V0(x̂t | x̂1, q̂1, . . . , x̂t−1, q̂t−1)

V1(x̂t | x̂1, q̂1, . . . , x̂t−1, q̂t−1)

)∣∣∣∣ ≤ ε0.

PROOF OF CLAIM 3.5. The left-hand side is as follows.∣∣∣∣∣∣ln
exp

(
−(η/2)

∑t−1
j=1 1 + q̂j(D0)− q̂j(x̂t)

)
exp

(
−(η/2)

∑t−1
j=1 1 + q̂j(D1)− q̂j(x̂t)

)
∣∣∣∣∣∣

=
η

2

∣∣∣∣∣
t−1∑
j=1

q̂j(D0)− q̂j(D1)

∣∣∣∣∣ ≤ η(t− 1)

2n
≤ ηT

2n
≤ ε0
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CLAIM 3.6. For every v, and every t ∈ [T ],∣∣∣∣ln(V0(q̂t | x̂1, q̂1, . . . , x̂t)

V1(q̂t | x̂1, q̂1, . . . , x̂t)

)∣∣∣∣ ≤ ε0.

PROOF OF CLAIM 3.6. The sample q̂t is made according to P̃t,
which is the distribution corresponding to the projected measure
Pt. First we’ll look at the unprojected measure Qt. Observe that,
for any database D and query q,

Qt(q) = exp

(
−(η/2)

t−1∑
j=1

1 + q(D)− q(x̂j)

)
.

Thus, if Q0(q) is the measure we would have when database D0 is
the input, and Q1(q) is the measure we would have when database
D1 is the input, then∣∣∣∣ln(Q0(q)

Q1(q)

)∣∣∣∣ ≤ η

2

∣∣∣∣∣
t−1∑
j=1

qj(D0)− qj(D1)

∣∣∣∣∣ ≤ ηT

2n
,

for every q ∈ Q. Given that Q0 and Q1 satisfy this condition,
Lemma 3.4 guarantees that the projected measures satisfy

|ln (P0(q)/P1(q))| ≤ ηT/n.

Finally, we note that if the above condition is satisfied for every
q ∈ Q, then the distributions P̃0, P̃1 satisfy∣∣∣ln(P̃0(q)/P̃1(q)

)∣∣∣ ≤ 2ηT/n ≤ ε0,

because the value of the normalizer also changes by at most a multi-
plicative factor of e±ηT/n. We observe that Vb(q̂t | x̂1, q̂1, . . . , x̂t) =

P̃b(q̂t) for b ∈ {0, 1}, which completes the proof of the claim.

Now, the composition lemma (Lemma 2.9) (for 2T -fold composi-
tion) guarantees that with probability at least 1− δ/3,

|ln (V0(v)/V1(v))| ≤ ε0

√
4T log(3/δ) + 4ε2

0T,

which is at most ε/3 by our choice of ε0. This implies that D̂ is
(ε/3, δ/3)-differentially private.

We note that the sparse vector computation to find the s queries
with large error is (ε/3, δ/3)-differentially private, by our choice
of parameters (Lemma 2.8), and the answers to the queries found by
sparse vector are (ε/3, δ/3)-differentially private for our choice of
parameters (Lemma 2.5). The theorem follows from composition.

Query Privacy

THEOREM 3.7. Algorithm 3 satisfies (ε, δ)-one-query-to-many-
analyst differential privacy.

Before proving query privacy of Algorithm 3, we will state a
useful composition lemma. The lemma is a generalization of the
“secrecy of the sample lemma” [15, 8] to the interactive setting.
Consider the following game:

• Fix an (ε, δ)-differentially private mechanism A : U∗ → R
and a bit b ∈ {0, 1}. Let D0 = ∅.

• For t = 1, . . . , T :

– The (randomized) adversary B(y1, . . . , yt; r) chooses
two distributions B0

t , B
1
t such that SD(B0

t , B
1
t ) ≤ σ.

– Choose xt ←R B
b
t and let Dt = Dt−1 ∪ {xt}.

– Choose yt ←R A(Dt).

For a fixed mechanism A and adversary B, let V 0 be the distribu-
tion on (y1, . . . , yT ) when b = 0 and V 1 be the distribution on
(y1, . . . , yT ) when b = 1.

LEMMA 3.8. If ε ≤ 1/2 and Tσ ≤ 1/12, then with probability
at least 1− Tδ − δ′ over y = (y1, . . . , yT )←R V

0,∣∣ln (V 0(y)/V 1(y)
)∣∣ ≤ ε(Tσ)

√
2T log(1/δ′) + 30ε2(Tσ)T.

We omit the proof of this lemma for lack of space.
We also need another lemma about the Bregman projection onto

the set of high-density measures (Definition 2.11)

LEMMA 3.9. Let A0 : A → [0, 1] and A1 : A∪{a∗} → [0, 1]
be two full-support measures over their respective sets of actions
and s ∈ (0, |A|) be such that 1) |A0|, |A1| ≤ s and 2) A0(a) =
A1(a) for every a ∈ A. Let A′0 = ΓsA0 and A′1 = ΓsA1. Then
SD(Ã′0, Ã

′
1) ≤ 1/s.

We omit the proof of this lemma for lack of space. Now we can
prove one-query-to-many-analyst privacy.

PROOF OF THEOREM 3.7. Fix a database D. Consider two ad-
jacent query sets Q0 ∼ Q1 and, without loss of generality assume
Q0 = Q1 ∪ {q∗} and that q∗ ∈ Qid for some analyst id. We write
the output to all analysts as v = (x̂1, . . . , x̂T , b1, . . . , b|Q|, a1, . . . , a|Q|)

where D̂ = {x̂1, . . . , x̂T } is the database that is released to all an-
alysts, b1, . . . , b|Q| is a sequence of bits that indicates whether or
not qj(D̂) is close to qj(D), and a1, . . . , a|Q| is a sequence of ap-
proximate answers to the queries qj(D) (or ⊥, if qj(D̂) is already
accurate). We write v−id for the portion of v that excludes outputs
specific to analyst id’s queries. Let V0, V1 be the distribution on
outputs when the query set isQ0 andQ1, respectively.

We analyze the three parts of v separately. First we show that D̂,
which is shared among all analysts, satisfies analyst privacy.

CLAIM 3.10. With probability at least 1 − δ over the samples
x̂1, . . . , x̂T ←R V0,∣∣∣∣ln(V0(x̂1, . . . , x̂T )

V1(x̂1, . . . , x̂T )

)∣∣∣∣ ≤ ε.
PROOF OF CLAIM 3.10. To prove the claim, we show how the

output x̂1, . . . , x̂T can be viewed as the output of an instantiation
of the mechanism analyzed by Lemma 3.8. For every t ∈ [T ] and
q̂1, . . . , q̂t−1, we define the measure Dt over database items to be

Dt(x) = exp

(
−(η/2)

t−1∑
j=1

1 + q̂j(D)− q̂j(x)

)
.

Notice that if we replace a single query q̂` with q̂′` and obtain the
measure D′t, then for every x ∈ X ,

∣∣∣ln(D̃t(x)/D̃′t(x)
)∣∣∣ ≤ η.

Thus we can view x̂t as the output of an η-differentially private
mechanism AD(q̂1, . . . , q̂t−1), which fits into the framework of
Lemma 3.8. (Here, x̂t plays the role of yt and q̂1, . . . , q̂t−1 plays
the role of Dt−1 in the description of the game, while the input
database D is part of the description of A).

Now, in order to apply Lemma 3.8, we need to argue the distri-
bution on samples q̂t when the query set isQ0 is statistically close
to the distribution on samples q̂t when the query set isQ1. Fix any
t ∈ [T ] and let Q0, Q1 be the measure Qt over queries maintained
by the query player when the input query set is Q0,Q1, respec-
tively. For q 6= q∗, we have

Q0(q) = Q1(q) = exp

(
−(η/2)

t−1∑
j=1

1 + q(D)− q(x̂j)

)
.
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Additionally, we set Q0(q∗) = 0 (for notational convenience),
while Q1(q∗) ∈ (0, 1]. Thus, if we let P0 = ΓsQ0 and P1 =

ΓsQ1, we will have SD(P̃0, P̃1) ≤ 1/s by Lemma 3.9. Since the
statistical distance is 1/s = 1/12T , we can apply Lemma 3.8 to
show that with probability at least 1− δ,∣∣∣∣ln( V (x̂1, . . . , x̂T )

V ′(x̂1, . . . , x̂T )

)∣∣∣∣ ≤ η
√
T log(1/δ)

8
+

5η2T

2
≤ ε.

Now that we have shown D̂ satisfies (ε, δ)-one-query-to-many-
analyst differential privacy, it remains to show that the remainder of
the output satisfies perfect one-query-to-many-analyst privacy. Re-
call from the proof of Theorem 3.1 that D̂ will be accurate for all
but s queries. That is, if we let {fj}j∈[|Q|] consist of the functions

fj(D) = |qj(D) − qj(D̂)|, then | {j | fj(D) ≥ α} | ≤ s, where
α is chosen as in Theorem 3.1. By Lemma 2.8, the sparse vector
algorithm will release bits b1, . . . , b|Q| (the indicator vector of the
subset of queries with large error) such that for every j ∈ [|Q|], the
distribution on bj does not depend on any function fj′ for j′ 6= j.
Thus, if z−a contains all the bits of b1, . . . , b|Q| that do not cor-
respond to queries in Qa, then the distribution of z−id does not
depend on the queries asked by analyst id, and thus z−id is per-
fectly one-query-to-many analyst private. Finally, for each query
qj such that bj = 1, the output to the owner of that query will in-
clude aj = qj(D) + zj where zj is an independent sample from
the Laplace distribution. These outputs do not depend on any other
query, and thus are perfectly one-query-to-many analyst private.
This completes the proof of the theorem.

4. A ONE-ANALYST-TO-MANY-ANALYST
PRIVATE MECHANISM

In this section we present an algorithm for answering linear queries
that satisfies the stronger notion of one-analyst-to-many-analyst pri-
vacy. The algorithm is similar to Algorithm 3, but with two notable
modifications.

First, instead of the “query player” of Algorithm 3, we will have
an “analyst player” who chooses analysts as actions and is trying to
find an analyst id ∈ [m] for which there is at least one query inQid

with large error (recall that the queries are given to the mechanism
in sets Q1, . . . ,Qm). That is, the analyst player attempts to find
id ∈ [m] to maximize maxq∈Qid q(D)− q(D̂).

Second, we will compute a database D̂ such that maxq∈Qid |q(D)−
q(D̂)| is small for all but s analysts in the set [m], rather than hav-
ing the smishandled queries in Algorithm 3. We can still use sparse
vector to find these s analysts, however we can’t answer the queries
with the Laplace mechanism, since each of the analysts may ask an
exponential number of queries. However, since there are not too
many analysts remaining, we can use s independent copies of the
multiplicative weights mechanism (each run with ε′ ≈ ε/

√
s) to

handle each analyst’s queries. Due to space requirements we omit
the proofs, which follow those of the previous section quite closely.

THEOREM 4.1. Algorithm 4 is (α, β)-accurate for

α = Õ

(√
log(|X |+m) log |Qid| log(m/β) log3/4(1/δ)

εn1/3

)
.

THEOREM 4.2. Algorithm 4 satisfies (ε, δ)-differential privacy
for the data.

THEOREM 4.3. Algorithm 4 satisfies (ε, δ)-one-analyst-to-many-
analyst differential privacy.

Algorithm 4 Offline Mechanism for Linear Queries with One-
Analyst-to-Many-Analyst Privacy

Input: Database D ∈ Xn, and m sets of linear queries
Q1, . . . ,Qm. For id ∈ [m], letQid = Qid ∪ ¬Qid.
Initialize: Let D0(x) = 1/|X | for each x ∈ X , I0(q) = 1/m
for each id ∈ [m],

T = n2/3 max{log |X |,m}, η =

√
T log(1/δ)

2ε
, s = 12T.

DataPlayer:
On input an analyst îdt, for each x ∈ X , update:

Dt(x) = Dt−1(x) · exp

(
−η max

q∈Q
îdt

(
1 + q̂t(D)− q̂t(x)

2

))

Choose x̂t ←R D̃t and send x̂t to AnalystPlayer

AnalystPlayer:
On input a data element x̂t, for each id ∈ I, update:

It+1(id) = It(id) · exp

(
−η max

q∈Qid

(
1 + q(D)− q(x̂t)

2

))
Let Pt+1 = ΓsIt+1

Choose îdt+1 ←R P̃t+1 and send îdt+1 to DataPlayer

GenerateSynopsis:
Let D̂ = (x̂1, . . . , x̂T )

Run sparse vector on D̂, obtain a set of at most s analysts:
If = {id1, . . . , ids} ⊆ [m]

For each analyst id ∈ If , runAMW(D,Qid) with parameters

ε′ = ε

10
√
s log(3s/δ)

and δ′ = δ
3s

Obtain a sequence of answers ~aid.
Output D̂ to all analysts.
For each id ∈ [m] \ If , output ~aid to analyst id

5. A ONE-QUERY-TO-MANY-ANALYST
PRIVATE ONLINE MECHANISM

In this section, we present a mechanism that provides one-query-
to-many-analyst privacy in an online setting. The mechanism can
give accurate answers to any fixed sequence of queries that are
given to the mechanism one at a time, rather than the typical setting
of adaptively chosen queries.

The mechanism is similar to the online multiplicative weights
algorithm of Hardt and Rothblum [13]. In their algorithm, a hy-
pothesis about the true database is maintained throughout the se-
quence of queries. When a query arrives, it is classified according
to whether or not the current hypothesis accurately answers that
query. If it does, then the query is answered according to the hy-
pothesis. Otherwise, the query is answered with a noisy answer
computed from the true database and the hypothesis is updated us-
ing the multiplicative weights update rule.

The main challenge in making that algorithm query private is to
argue that the hypothesis does not depend too much on the previ-
ous queries. We overcome this difficulty by “sampling from the
hypothesis.” (recall that a database can be thought of as a distri-
bution over the data universe). We must balance the need to take
many samples — so that the database we obtain by sampling ac-
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curately reflects the hypothesis database, and the need to limit the
impact of any one query on the sampled database. To handle both
these constraints, we introduce batching — instead of updating ev-
ery time we find a query not well-answered by the hypothesis, we
batch together s queries at a time, and do one update on the average
of these queries to limit the influence of any single query.

Algorithm 5 Analyst-Private Multiplicative Weights for Linear
Queries

Input:Database D ∈ Xn, sequence q1, . . . , qk of linear queries
Initialize: D0(x) = 1/|X | for each x ∈ X , H0 = D0, U0 = ∅,
s0 = s+ Lap(2/ε), t = 0, r = 0,

η =
1

n2/5
, s =

128n2/5
√

log |X | log(4k/β) log(1/δ)

ε
,

n̂ = 32n4/5 log(4k/β), T = n4/5 log |X |, R = 2sT,

σ =
20000 log3/4 |X | log1/4(4k/β) log5/4(4/δ)

ε3/2n2/5
,

τ =
80000 log3/4 |X | log5/4(4k/β) log5/4(4/δ)

ε3/2n2/5
.

AnswerQueries:
While t < T, r < R, i ≤ k, on input query qi:

Let zi = Lap(σ)
If |qi(D)− qi(Ht) + zi| ≤ τ : Output qi(Ht)
Else:

Let u = sgn(qi(Ht)− qi(D)− zi) · qi, Ut = Ut ∪ {u}
Output qi(D) + zi
Let r = r + 1
If |Ut| > st:

Let (Dt+1, Ht+1) = Update(Dt,Ut)
Let Ut+1 = ∅, st+1 = s+ Lap(2/ε)
Let t = t+ 1

Advance to query qi+1

Update:
Input: distribution Dt, update queries Ut = {u1, . . . , ust}
For each x ∈ X :

Let ut(x) = 1
3s

∑st
j=1 uj(x)

Update Dt+1(x) = exp(−(α′/2)ut(x))Dt(x)
Normalize Dt+1

Let Ht+1 be n̂ independent samples from Dt+1

Return: (Dt+1, Ht+1)

A note on terminology: the execution of the algorithm takes
place in several rounds, where each round processes one query.
Rounds where the query is answered using the real database are
called bad rounds; rounds that are not bad are good rounds. We
will split the rounds into T epochs, where the hypothesis Ht is
used during epoch t.

Accuracy. First, we sketch a proof that the online mechanism
answers linear queries accurately. Intuitively, there are three ways
that our algorithm might give an inaccurate answer, and we treat
each separately. First, in a good round, the answer given by the
hypothesis may be a bad approximation to the true answer. Second,
in a bad round, the answer given may have too much noise. We
address these two cases with straightforward arguments showing
that the noise is not too large in any round.

The third way the algorithm may be inaccurate is if there are
more than R bad rounds, and the algorithm terminates early. We
show that this is not the case using a potential argument: after suf-
ficiently many bad rounds, the hypothesis DT and the sample HT
will be accurate for all queries in the stream, and thus there will
be no more bad rounds. The potential argument is a simple exten-
sion of the argument in Hardt and Rothblum [13] that handles the
additional error coming from taking samples fromDt to obtainHt.

THEOREM 5.1. Algorithm 5 is (α, β)-accurate for

α = O

(
log3/2(k/β)

√
log |X | log(1/δ)

ε3/2n2/5

)
.

Due to space constraint, we omit the proof.

Data Privacy

THEOREM 5.2. Algorithm 5 is (ε, δ)-differentially private.

The proof follows from the modular privacy proof in [11].

Query Privacy. More interestingly, we show that this mecha-
nism satisfies one-query-to-many-analyst privacy.

THEOREM 5.3. Algorithm 5 is (ε, δ)-one-query-to-many-analyst
private.

PROOF. Fix the input database D and the coins of the Laplace
noise — we will show that for every value of the Laplace random
variables, the mechanism satisfies analyst privacy. Consider any
two adjacent sequences of queriesQ0,Q1. Without loss of general-
ity, we will assume that Q = q1, . . . , qk and Q′ = q∗, q1, . . . , qk.
For notational simplicity, we assume that every query in Q has a
fixed index, regardless of the presence of q∗. More generally, we
could identify each query in the sequence by a unique index (say,
a long random string) that is independent of the other queries. We
want to argue that the answers to all queries in Q are private, but
not that the answer to q∗ is private (if it is requested).

We will represent the answers to the queries in Q by a sequence
{(Ht, it)}t∈[T ] where Ht is the hypothesis used in the t-th epoch
and it is the index of the last query in that epoch (the one that
caused the mechanism to switch to hypothesis Ht). Observe that
for a fixed database D, Laplace noise, and sequence of queries Q,
we can simulate the output of the mechanism for all queries in Q
given only this information — once we fix a hypothesisHt, we can
determine whether any query q will be added to the update pool
in this epoch. So once we begin epoch t with hypothesis Ht, we
have fixed all the bad rounds, and once we are given it, we have
determined when epoch t ends and epoch t + 1 begins. At this
point, we fix the next hypothesis Ht+1 and continue simulating.

Formally, let V0, V1 be distribution over sequences {(Ht, it)}
when the query sequence is Q0,Q1, respectively. We will show
that with probability at least 1−δ, if {(Ht, it)}t∈[T ] is drawn from
V0, then |ln (V0({(Ht, it)})/V1({(Ht, it)}))| ≤ ε.

Recall that Ut is the set of queries that are used to update the
distribution Dt to Dt+1. We will use U≤t =

⋃t
j=0 Ut to denote

the set of all queries used to update the distributions D0, . . . , Dt.
Notice that if q∗ does not get added to the set U0, then V0 and V1

will be distributed identically. Therefore, suppose q∗ ∈ U0. First
we must reason about the joint distribution of the first component
of the output. We omit the proofs.
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CLAIM 5.4. For allH0, i0, |ln (V0(H0, i0)/V1(H0, i0))| ≤ ε/2.

Now we reason about the remaining components (H1, i1), . . . , (HT , iT ).

CLAIM 5.5. For every H0, i0, with probability at least 1 − δ
over the choice of components v = (H1, i1, . . . , HT , iT )←R (V0 |
vt−1), we have |ln (V0(v | H0, i0)/V1(v | H0, i0))| ≤ ε/2.

Combining these two claims proves the theorem.

Handling Arbitrary Low-Sensitivity Queries. We can also
modify this mechanism to answer arbitrary ∆-sensitive queries, al-
beit with worse accuracy bounds. As with our offline algorithms,
we modify the algorithm to run the multiplicative weights updates
over the set of databases Xn and adjust the parameters. When we
run multiplicative weights over a support of size |X |n (rather than
|X |), the number of epochs increases by a factor of n, which in turn
affects the amount of noise we have to add to ensure privacy. We
omit this calculation for lack of space.

The final error bound we obtain (ignoring the parameters β and
δ) is

O

(
∆2/5n3/10 log3/10 |X | log9/20 k

ε2/5

)
,

which gives a non-trivial error guarantee when ∆� 1/n3/4.

6. CONCLUSIONS
We have shown that it is possible to privately answer many queries

while also preserving the privacy of the data analysts even if multi-
ple analysts may collude, or if a single analyst may register mul-
tiple accounts with the data administrator. In the one-query-to-
many-analyst privacy for linear queries in the non-interactive set-
ting, we are able to recover the nearly optimal Õ(1/

√
n) error

bound achievable without promising analyst privacy. However, it
remains unclear whether this bound is achievable for one-analyst-
to-many-analyst privacy, or for non-linear queries, or in the inter-
active query release setting.

We have also introduced a novel view of the private query release
problem as an equilibrium computation problem in a two-player
zero-sum game. This allows us to encode different privacy guaran-
tees by picking strategies of the different players and the neighbor-
ing relationship on game matrices (i.e., differing in a single row for
analyst privacy, or differing by 1/n in `∞ norm for data privacy).
We expect that this will be a useful point of view for other prob-
lems. In this direction, it is known how to privately compute equi-
libria in certain types of multi-player games [16]. Is there a useful
way to use this multi-player generalization when solving problems
in private data release, and what does it mean for privacy?
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