
•  The data set X is in {0,1}n. 
•  The parameter θ is a real number in [0,1], and gives the probability that 

any given data point of X is equal to 1.  
•  The prior Θ is Beta(α,β), which is the conjugate prior distribution for the 

binomial; this can be interpreted as us having seen α-1 prior instances of 
a 1 and β-1 prior instances of a 0. 

 

Results: 
•  II is not ε-differentially private. 

 
 
 
 
 
 
 
Probability density functions of θ|X for an extreme example of 
neighboring data sets X=110 and X=(1, 09), respectively. As we can see, 
the probabilities vary dramatically between these two data sets. 

•  There exists c where II is (ε, δ)-differentially private if 
 
 
Key point: the condition for ε-differential privacy is satisfied so long as 
the value of θ drawn lies close to its expectation. So long as α,β are large 
enough that we have seen a reasonable number of examples of both 0’s 
and 1’s in our prior and data, then the probability that θ is drawn far 
away from its expectation is exponentially small in the distance. 

•  There exists c where III is ε-differentially private if  
 
 
where m is the number of synthetic data points drawn.  

•  There exists c where IV is ε-differentially private if  
 
 
If θ is not redrawn for each synthetic data point, then 
this is also a lower bound on the strength of the prior 
distribution needed to achieve privacy.  

•  There exists c, c1 where IV is (ε, δ)-differentially private 
for sufficiently large n and c1n synthetic data points if 
 
 
where θ is redrawn for each synthetic data point. 
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Do Bayesian inference and related methods of synthetic 
data generation in statistics satisfy differential privacy? 

 
While various differential-privacy specific methods for calculating 
statistical values have been developed [DL08, Smith08], we are interested 
in the degree to which standard techniques in statistics already fit the 
definition of differential privacy.  
 
In particular, given that these techniques already involve: 
1.  randomness via sampling from various distributions  
2.  boiling down the dataset into a small number of (summary) parameters 
they raise the possibility that we already get some privacy by default. 
 
 

Mo#va#on	  

Inference	  Algorithms	  

Bernoulli/Binomial	  Distribu#ons	  

•  The data set X is in [-R,R]n for some real number R. 
(If the data points are allowed to be unrestricted real numbers, then we 
effectively cannot obtain either ε or (ε, δ)-differential privacy.) 

•  The parameters θ=(µ,σ2) are real numbers, of which σ2 is known while µ 
is unknown. 

•  The (conjugate) prior Θ on µ is another normal distribution N(0,σ0
2). 

 

Results (preliminary): 
•  II is not ε-differentially private if we allow µ to be 

unrestricted. 

•  There exists c where II is ε-differentially private if we 
restrict µ to [-R,R] and 
 
 
 

•  There exists c where II is (ε, δ)-differentially private if 
 
 

•  Neither III nor IV are (ε, δ)-differentially private. 

•  There exists c where III and IV are ε-differentially 
private for a single synthetic data point z if we restrict z 
to [-R,R] and 
 
 
 
 
 
 
 
 
 
 
The probability density functions for z in the cases of neighboring data 
sets X=(R10) and X=(-R, R9) with R=5 and σ=σ0=1. The log-ratio of 
these two density functions is actually a linear function of z, which 
explains why we cannot achieve ε-differential privacy without 
restricting z.  

•  There exists c where III and IV are (ε, δ)-differentially 
private for sufficiently large n if we restrict z to [-R,R] 
and 
 
 

Normal	  Distribu#ons	   Conclusions	  

•  So far, the randomness involved in inference seems to 
provide privacy in some cases for the two distributions 
examined, with the bounds being polynomial in the 
relevant privacy parameters of 1/ε and ln(1/δ).  

•  Generating synthetic data in these two cases appears 
more private than releasing the parameter, shown by the 
looser bounds on parameters needed to satisfy privacy. 

•  Some commonalities between the two distributions are: 
•  We tend to lose ε-differential privacy whenever the 

parameter drawn lies far away from its expectation. 
•  The range of “good” parameters decreases with the 

size of the data set, but the probability that it lies far 
away also decreases.  

•  However, it is not clear how the restrictions we needed 
to achieve privacy in the case of a normal distribution 
could be applied to other distributions. 

•  Moving forward, the goal is to generalize these results; 
we would like to pull out characteristics of the 
distributions which imply privacy, as has been done for 
a variant of differential privacy [DNMR 13].  
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Important parameters: 
•  A data set X of n points, whose points are numbers in some range 
•  The points are assumed to be drawn independently from some 

distribution D(θ), with θ unknown  
•  There is a prior distribution Θ(θ0) for θ, parameterized by value(s) θ0 

 
 
When we generate synthetic data, we do so by first determining a value of 
θ, and then drawing data points from D(θ). Unlucky draws of θ  can be 
guarded against in IV (below) by drawing multiple values of θ and 
generating a few synthetic data points based upon each one. 
 
We look at four types of information releases: 
 
 
 
 
 
 
 
 
 
 
 
 

Undergraduate	  Researcher	  (Harvard	  College	  ‘15)	  
Joy	  Zheng,	  advised	  by	  Salil	  Vadhan	  

DifferenCal	  Privacy	  of	  Bayesian	  Inference	  

Differen#al	  Privacy	  
An algorithm A is (ε, δ)-differentially private if for all neighboring data sets 
X, X’ which differ on only one data point, and for all sets S of outputs,    

Pr[A(X)∈ S]≤ eε Pr[A(X ')∈ S]+δ.

Generation of θ 
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