Introduction

Database with binary attributes

- Data analysts need statistical information about the database.
- Analysts ask counting queries.
- E.g., What fraction of the patients are smokers?
- Most queries from the analysts focus on a small number of attributes.
- What fraction of the records have a specific attribute value?
- Goal of the server: Return accurate answers without revealing information about individual records.

Differential Privacy

- Database D contains n records, each containing d attributes, $D \in ([0,1]^d)^n$.
- Query family Q.
- Server employs a randomized algorithm $A: ([0,1]^d)^n \to [0,1]^d$.
- (c,ε)-Privacy: For any database D, every record $x \in D$, $\Pr[A(D) \neq x] \leq e^\varepsilon$.
- For any subset $S \subseteq [d]$, the output of A on D has Hamming weight at most $c \cdot \log_2 n$.

Related Work

- Accuracy and Privacy are conflicting goals.
- Converting data into lossless summaries is especially crucial for databases with small number of records.

Results

Question: Can we construct a k-way marginal query to design faster private algorithms that are accurate on databases of size $O(n^k)$?

- **Results for k-way Disjunction Query**
 - Since a subset $S \subseteq [d]$ of size at most k.
 - Answer is the fraction of records r in the database for which at least one of the attributes of the set S is TRUE.
 - The function value $f_S(r)$ is the answer to the query S on the database D.

- **Simplifying the problem**
 - Suppose we have a polynomial p_D for each function $f_D: [0,1]^d \to \{0,1\}$.
 - Sum of absolute values of coefficients of $p_D(x)$ is at most κ.

Polynomial Approximations

- Let $h_k \subseteq \{0,1\}^d$ be the subset of inputs with at most k bits set to TRUE.
- Goal: Find a polynomial $p_h: [0,1]^d \to \{0,1\}$ such that $p_h(x) = f_{h_k}(x)$ for every input $x \in h_k$.
- Sum of absolute values of the coefficients of $p_h(x)$ is at most W.
- Degree of p_h is $\leq t$.

Question: What is the least possible W and t?

Approach

(1) Learning Approach to Designing Private Algorithms

- For each $D \in ([0,1]^d)^n$, there is an underlying function $f_D: [0,1]^d \to \{0,1\}$.
- Input to the function is the indicator vector v of the query set S.
- k-way function dq_S inputs to the function have a most k bits set to TRUE.

Differentially Private Algorithms

- Maximum database size n.
- Number of monomials.
- Polynomial $p_D(x)$ is at most κ.
- Accuracy ϵ. Appear to be the subset $\{x \in [0,1]^d : |L(x)| \leq \kappa\}$.

Polynomial Approximations

- Suppose we have a polynomial p_D for each function $f_D: [0,1]^d \to \{0,1\}$.
- Sum of absolute values of coefficients of $p_D(x)$ is at most κ.
- Degree of p_D is $\leq t$.

- Can derive a learning algorithm:
 - Given samples $\{g_D(x)v_D\}$, need to learn a hypothesis h satisfying $|L(h) - L(g_D)| < \delta$ for every input x.
- The polynomial p is a function of the polynomial f_D.
 - Use Multiplicative Weights Method.
 - Each monomial is an expert.
 - The weight on the expert is the coefficient of the monomial.

- Construct: View disjunction as a function of m disjunctions.
- Optimize the final parameters.
- Input to the outer level disjunction has Hamming weight at most k.

Lower bounds:

- Exponentially strong lower bound on the linear size of the linear decision list guarantee constant accuracy for a k-way query.

Future Directions

- Use polynomial approximations for $(OR)_{k=0}^m$ to derive goal online algorithms and turn faster private and accurate algorithms.
- The polynomial approximations can be viewed as linear combination of monomials.
- A linear combination of some other small set of functions with similar properties can be used by the same approach to improve run-time.
- There is a collection of functions $\{f_{\Gamma_1}, \ldots, f_{\Gamma_m}\} \subseteq \{1,-1\}$ such that for each $x \in [0,1]^d$, there exists a linear combination $\sum_{\Gamma \in C} \alpha_{\Gamma} f_{\Gamma}(x)$.

References

