arxXiv:1311.1616v4 [cs.CC] 28 Apr 2014

Hardness Amplification and the Approximate Degree of
Constant-Depth Circuits

Mark Bun* Justin Thalef
mbun@seas.harvard.edu jthaler@fas.harvard.edu

Abstract

We establish a generic form of hardness amplification forapproximability of constant-depth
Boolean circuits by polynomials. Specifically, we show ttia Boolean circuit cannot be pointwise
approximated by low-degree polynomials to within constambr in a certain one-sided sense, then
an OR of disjoint copies of that circuit cannot be pointwiggmximated even with very high error.
As our main application, we show that for every sequence gfetsd(n), there is an explicit depth-
three circuitF’ : {—1,1}" — {—1,1} of polynomial-size such that any degrégolynomial cannot

pointwise approximaté’ to error better than — exp (—Q(nd*”)). As a consequence of our main
result, we obtain anxp (—Q(n2/5)) upper bound on the the discrepancy of a function irpAmw an

exp (Q(n2/5)) lower bound on the threshold weight of /QCimproving over the previous best results
of exp (—Q(n'/?)) andexp ((n'/?)) respectively.

Our techniques also yield a new lower boundbénl/Q/ log(d_Q)/Q(n)) on the approximate degree
of the AND-OR tree of depth, which is tight up to polylogarithmic factors for any constd, as well
as new bounds for read-once DNF formulas. In turn, thesdtsesoply new lower bounds on the

communication and circuit complexity of these classes, @grdonstrate strong limitations on existing
PAC learning algorithms.

1 Introduction

The e-approximate degree of a Boolean functipn {—1,1}" — {—1,1}, denotedﬁgée(f), is the mini-
mum degree of a real polynomial that approximate® errore in the /., horm. Approximate degree has
pervasive applications in theoretical computer sciencg.eikample, lower bounds on approximate degree
underly many tight lower bounds on quantum query complety., [2, 4, 8,28,52]), and have been used to
resolve several long-standing open questions in commiimiceomplexity [14,16,35,50,%53,54,58]59] (see
the survey paper by Sherstov [47]). Meanwhile, upper bowmdapproximate degree underly many of the
fastest known learning algorithms, including PAC learrdigF and read-once formulds[[6)29], agnostically
learning disjunctiond [24], and PAC learning in the pregeotirrelevant information [30, 44].

Despite the range and importance of these applicatiorge lgaps remain in our understanding of ap-
proximate degree. The approximate degree ofgmgmetricBoolean function has been understood since
Paturi’'s 1992 papef [41], but once we move beyond symmaetrictfons, few general results are known.
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In this paper, we perform a careful study of the approximaigrele of constant-depth Boolean circuits.
In particular, we establish a generic form of hardness dioglion for the pointwise approximation of
small depth circuits by low-degree polynomials: we show tha Boolean circuitf cannot be pointwise
approximated to within constant error in a certain oneisiense by polynomials of a given degree, then
the circuit F' obtained by taking an OR of disjoint copies fifcannot be approximated even with error
exponentially close to 1. Notice that ffis computed by a circuit of polynomial size and constant laept
then so isF.

Our proof extends a recent line of work [15] 8445, 55] thatkseto prove approximate degree lower
bounds by constructing expliaiual polynomialswhich are dual solutions to a linear program that captures
the approximate degree of any function. Specifically, wensti@mt given a dual polynomial demonstrating
that f cannot be approximated to within constant error, we cantoactsa dual polynomial demonstrating
that F' cannot be approximated even with error exponentially close

As the main application of our hardness amplification teghaj for anyd > 0 we exhibit an explicit
function F' : {—1,1}" — {—1,1} computed by a polynomial size circuit of depth three for vahamy

degreed polynomial cannot pointwise approximatéto errorl — exp (—Q(nd‘3/2)). We then use this

result to obtain new bounds on two quantities that play eémes in learning theory, communication com-
plexity, and circuit complexitydiscrepancyandthreshold weightSpecifically, we prove a new upper bound

of exp (—Q(n2/5)) for the discrepancy of a function in A and a new lower bound @fp (Q(n2/5))

for the threshold weight of AR As a second application, our hardness amplification redlaivs us to
resolve, up to polylogarithmic factors, the approximatgrde of AND-OR trees of arbitrary constant depth.
Finally, our techniques also yield new lower bounds for reade DNF formulas.

2 Overview of Results and Techniques

This section provides an overview of our results and theriiggies we use to establish them. We defer
detailed proofs to later sections.

2.1 Hardness Amplification

Recall that thec-approximate degree of a Boolean functifis the minimum degree of a real polynomial
that pointwise approximatesto errore. Another fundamental measure of the complexityf o its thresh-
old degree denotedleg_ (f). The threshold degree g¢fis the least degree of a real polynomial that agrees
in sign with f at all Boolean inputs.

Central to our results is a measure of the complexity of a &molfunction that we calbne-sided
approximate degreeThis quantity, which we denote m/&e/gg( f), is an intermediate complexity measure
that lies betweenr-approximate degree and threshold degree. Unlike appaigirdegree and threshold
degree, one-sided approximate degree treats inpyts'ifi) and inputs inf ~!(—1) asymmetrically.

More specifically,%e(f) captures the least degree obmae-sided approximatiofor f. Here, a one-
sided approximatiom for f is a polynomial that approximatefsto error at most at all pointsz € f~1(1),
and satisfies the threshold conditipfr) < —1 + ¢ at all pointsz € f~!(—1). Notice that&_i\e/ge(f) is
alwaysat most&ééa( f), but can be much smaller. SimilarbﬁE/ga( f) is alwaysat leastdeg_ (f), but can
be much larger.

One-sided approximate degree is the complexity measutevinamplify for constant-depth circuits:
given a depttk circuit f onm variables that has one-sided approximate degree greated,ttve show how
to generically transforny into a depthk + 1 circuit F' ont - m variables such that’ cannot be pointwise



approximated by degreépolynomials even to errar — o[

Theorem 1. Supposef : {—1,1}™ — {—1, 1} has one-sided approximate degmfggl/z(f) > d. Denote
by F : {—1,1}™* — {—1,1} the block-wise compositio®R;(f,..., f), whereOR; denotes the OR
function ont variables. Therf’ cannot be pointwise approximated by degiepelynomials even to within
error 1 — 2~ by degreed polynomials. That is, thél — 2~*)-approximate degree df is greater thand.

Remark: Theoreni]l demonstrates th/ﬁ/eg(f) admits a form of hardness amplification within Q@vhich
does not generally hold for the ordinary approximate dedreeed, Theoremn 1 fails badly if the condition
<§&e7g1/2(f) > d is replaced with the weaker conditicdféél/?(f) > d (in fact, f = OR,, is a counter-
example; see the discussion in Secfibn 4 for details).

A dual formulationof one-sided approximate degree was previously exploiyeddyinsky and Sherstov
to separate the multi-party communication versions of NiP@iNP [19], as well as by the current authors
[15] and independently by Sherstav [45] to resolve the axiprate degree of the two-level AND-OR tree. In
this paper, we introduce the primal formulation of one-didpproximate degree, which allows us to express
Theorenfll as a hardness amplification result. We also argubgomportance of one-sided approximate
degree as a Boolean function complexity measure in its ogirt.ri

Prior Work on Hardness Amplification for Approximate Degree. For the purposes of this discussion,
we informally consider a hardness amplification result fopraximate degree to be any statement of the
following form: Fix two functionsf : {-1,1}™ — {-1,1} andg : {-1,1}} — {-1,1}. Then the
composed functiog(f, ..., f) : {—1,1}* — {—1,1} is strictly harder to approximate in thg, norm

by low-degree polynomials than is the original functipn

We think of such a result as establishing that applicatiothefouter functiory to ¢ disjoint copies
of f amplifies the hardness ¢gf. Here we consider polynomial degree to be a resource, andeh#o
approximate” can refer either to the amount of resourcesimed, for the approximation, to the error of the
approximation, or to a combination of the two.

Two particular kinds of hardness amplification results fopraximate degree have received particular
attention.Direct-sumtheorems focus on amplifying the degree required to obtaiapproximation, but do
not focus on amplifying the error. For example, a typicaédirsum theorem identifies conditions prand
g that guarantee thaleg_(g(f,..., f)) > deg.(g) - deg.(f). In contrast, alirect-producttheorem focuses
on amplifying both the error and the minimum degree requitedchieve this error. AXOR lemmads
a special case of either type of theorem where the combiningtibn g is the XOR function. Ideally, an
XOR lemma of the direct-product form establishes that tleaists a sufficiently small constafit> 0 such
thatdeg; _,-s: (XOR(f, ..., f)) > t - deg;5(f). Thatis, an XOR lemma establishes that approximating
the XOR oft disjoint copies off requires &-fold blowup in degree relative t@, even if one allows error
exponentially close to 1.

O’Donnell and Servedid [40] proved an XOR lemmatimeshold degreeestablishing that XORY, ..., f)
has threshold degregimes the threshold degree 6f In later work, Sherstov [55] proved a direct sum re-
sult for approximate degree that holds whenever the comdpifiinctiong has low block-sensitivity. His
techniques also capture O’Donnell and Servedio’s XOR lerfonghreshold degree as a special case. In
[52], Sherstov proved a number of hardness amplificationltefor approximate degree. Most notably, he
proved an optimal XOR lemma, as well as a direct-sum theonatrhiblds whenever the combining function
has close to maximal approximate degree (i.e., approxidedese2(t)). Sherstov used his XOR lemma to
prove direct product theorems for quantum query compleaityg in subsequent work [53], to show direct
product theorems for the multiparty communication of ssjaintness.

IFollow-up work by SherstoV [46] has established a lower looom thethreshold degreef F. Specifically, he has shown that
there is some constantsuch thatdeg (F') > min{ct, d}. See Section 215 for further discussion of this result.



Comparison to Prior Work. In this paper, we are interested in establishing approxndagree lower
bounds for constant-depth circuits over the bgdsi&\D, OR,NOT}. For this purpose, it is essential to
consider combining functions (such as OR, see The@tem fLpteahemselves in AQ; ruling out the use
of XOR as a combining function. Our hardness amplificaticsulte(Theorenil) is orthogonal to direct-
sum theorems: direct-sum theorems focus on amplifyingeseut not error, while Theorelm 1 focuses on
amplifying error but not degree. Curiously, Theoriem 1 isetbeless a critical ingredient in our proof of a
direct-sum type theorem for AND-OR trees of constant deptie¢reni8).

Proof Idea. As discussed in the introduction, our proof of Theofdm lesebn a dual characterization
of one-sided approximate degree (cf. Theofem 15). Spebjfi¢ar any m-variate Boolean functiorf
satisWingcﬁEél/z(f) > d, there exists a dual objeg¢t: {—1, 1} — R that witnesses this fact — we refer
to ¢ as a “dual polynomial” forf. As we show in Theorein 15, satisfies three important properties: (1)
1 has high correlation wittf, (2) v has zero correlation with all polynomials of degree at mbstnd (3)
Y(x) agrees in sign withyf (z) for all z € f=%(—1). We refer to the second property by saying thatas
pure high degreel, and we refer to the third property by saying thiahasone-sided error

Our proof proceeds by taking a dual witnesgo the high one-sided approximate degreefptnd a
certain dual witnes¥ for the functionOR;, and combining them to obtain a dual witngsi®r the fact that
deg;_o-+(OR¢(f,..., f)) > d. Our analysis of the combined dual witness crucially expltio properties:
first, thaty has one-sided error and second, that the vector whoseseatdall equal te-1 has very large
(in fact, maximal) Hamming distance from the unique inpu@iﬁ;l(l).

Our method of combining the two dual witnesses was first chtoed by Sherstov [55, Theorem 3.3]
and independently by Lee [B4]. This method has also beewiggglby the present authors In[15] to resolve
the approximate degree of the two-level AND-OR tree, and liigr&ov [52] to prove direct sum and direct
product theorems for polynomial approximation. Howeverl&scussed above, prior work used this method
of combining dual witnesses exclusively to amplify dhegreein the resulting lower bound; in contrast, we
use the combining method in the proof of Theofem 1 to amptigetrror in the resulting lower bound.

From a technical perspective, the primary novelty in theopaf Theoren{l lies in our choice of an
appropriate (and simple) dual witnedsfor OR;, and the subsequent analysis of the correlation of the
combined witnesg with OR.(f, ..., f). By our choice ofl, we are able to show thathas correlation with
OR.(f, ..., f) that isexponentiallyclose tol, yielding a lower bound even on the degree of approximations
with very high error.

2.2 Lower Bounds For ACY
2.2.1 A New One-Sided Approximate Degree Lower Bound for A8

Our ultimate goal is to use Theordr 1 to construct a funcfibim ACO that is hard to approximate by
low-degree polynomials even with error exponentially elas1. However, in order to apply Theoréin 1, we
must first identify an A€ function f such thab/cfe/gm(f) is large.

To this end, we identify fairly general conditions guaraitg that the one-sided approximate degree
of a function isequalto its approximate degree, up to a logarithmic factor. Toresp our result, let
[N] ={1,...,N}, and letm, N, R be a triple of positive integers such that> N, andm = N - log, R.

In most cases, we will takB = N. We specifically consider Boolean functiofien{—1, 1} that interpret
their inputz as the values of a functio, mapping[N| — [R]. That is, we breale up into N blocks each
of lengthlog, R, and regard each block; as the binary representation @f(:). Hence, we think off as
computing someroperty ¢ of functionsg, : [N] — [R]. We say that a property is symmetridf for all
g : [N] — [R], all permutationsr on [R], and all permutations on [V], it holds thatp(g) = ¢(c o g o).



Theorem 2. Let f : {—1,1}"" — {—1,1} be a Boolean function corresponding to a symmetric propgfty
of functionsg,, : [N] — [R]. Suppose that for every pait,y € f~'(—1), there is a pair of permutations
on[R] andx on[N] such thaty, = o o g, o . Thengae/ga(f) > @ -aééa(f) forall e > 0.

Proof Idea. It is enough to show that any one-side@pproximationp to f can be transformed into an
actuale-approximationr to f in a manner that does not increase the degree by too mughr(isemanner
guaranteeing thateg(r) < (log, R) deg(p)).

Our transformation fronp to r consists of two steps. In the first step, we tgrinto a “symmetric”
polynomialp®¥™(z) := E,,[p(y)] wherey ~ z if g, = 0 o g, o m for some permutations on [R] andr
on [N]. It follows from work of Ambainis[[4] (see LemmiaP3) that theapp — p*Y™ increases the degree
of p by a factor of at moslog, R. In the second step, we argue that there is an affine tranafmmr of
p¥YMthat is an actuat-approximation tof, completing the construction.

The existence of the affine transformationf p>Y™ follows from two observations: (1) # is a one-sided
approximation forf, then so i*™ (this holds because; is symmetric), and (2)>¥™ takes on a constant
valuewv on f~1(—1), i.e.,pY™(x) = v forall z € f~'(—1) (this holds because ~ y for every pair of
inputsz,y € f~1(—1)). These observations imply that everp#™ is a very poor approximation t¢ on
f~1(—1), we can still obtain a good pointwise approximatiohy applying an affine transformation to the
range ofpY™ that map to —1 and moves all values closer 1o Sectiorf 5.1L contains the details.

In our primary application of Theorefd 2, we I¢t: {—1,1}™ — {—1,1} be the EEMENT Dis-
TINCTNESS function (defined in Sectiohl 3). Aaronson and Shi [2] showeat the approximate degree
of ELEMENT DISTINCTNESSIs Q((m/ log m)2/3). ELEMENT DISTINCTNESSis computed by a CNF of
polynomial size, and Aaronson and Shi's result remainsngisdlg the best-known lower bound for the
approximate degree of a function in RC Theoreni® applies to  EMENT DISTINCTNESS Yielding the
following corollary.

Corollary 3. Letf : {—1,1} — {—1,1} denote th&ELEMENT DISTINCTNESSfunction. Ther&i\e/g(f) =
Q(m?/3).

The best known lower bound on the one-sided approximatesdegfran A® function that followed
from prior work wasQ(m'/?) (which holds for theAND function [19]39], cf. Fact16 in Sectidd 3).
Sectior 2.b describes some further implications of Thedem

Remark: In an earlier version of this work, we gave a differehtal proof of Corollary[B. Specifically
we showed (cf. Appendik]C) that any dual witness for the highraximate degree of IEMENT Dis-
TINCTNESS can be transformed into a dual witness with one-sided erfdis proof in fact shows that
Sae/g(f) = aéé(f) (i.e. without incurring the loss of &/log, R factor as in Theorerfl 2). However it
remains unclear how to generalize this dual argument to thre general class of properties to which Theo-
rem[2 applies (including the 2o-1 property discussed in Section2.5 below). Thedrem 2 ther@rovides
an example of a setting in which the primal view of one-sidpdreximate degree introduced in this work
may be easier to reason about than the dual formulation ngatbr work.

2.2.2 Accuracy-Degree Tradeoff Lower Bounds for A@

By Corollary[3, we can apply Theorelm 1 ta EMENT DISTINCTNESSt0 obtain a depth-three Boolean cir-
cuit F with ¢ - m inputs such thadeg_(F) = Q(m?/3), fore = 1—2~*. By choosingt andm appropriately,
we obtain a depth-three circuit an= ¢ - m variables of sizeoly(n) such that any degreépolynomial

cannot pointwise approximaie to error better thann — exp (—Q(nd‘3/2)).



Reference Discrepancy Bound Circuit Depth
Sherstov([51] exp(—Q(n'/?)) 3
Buhrman et al.[[14] exp(—Q(n'/3)) 3
Sherstov([50] exp(—Q(n'/?3)) 3
This work exp (—Q(n2/5)> 4

Table 1. Comparison of our new discrepancy bound fopAsﬁ:prior work. The circuit depth column lists
the depth of the circuit used to exhibit the bound.

Corollary 4. For everyd > 0, there is a depth-3 Boolean circuff' : {—1,1}" — {—1,1} of size
poly(n) such that any degreé-polynomial cannot pointwise approximafé to error better thanl —

exp (—Q(nd—3/2)>. In particular, there is a depth-3 circuif’ such that any polynomial of degree at most

n?/> cannot pointwise approximate to error better thanl — exp (—Q(nz/ 5)).

2.2.3 Discrepancy Upper Bound

Discrepancy, defined formally in Sectibn15.4, is a centramdify in communication complexity and cir-
cuit complexity. For instance, upper bounds on the disarepaf a functionf immediately yield lower
bounds on the cost of small-bias communication protocalsdmputingf (SectiorL 8 has details). The first
exponentially small discrepancy upper bounds foOAgere proved by Burhman et al. [14] and Sherstov
[50,51], who exhibited constant-depth circuits with dégzancyexp(—Q(n'/3)). Our results improve the
best-known upper bound ts;p (—Q(n2/5)).

Our result relies on a powerful technique developed by $teif&0], known as the pattern-matrix
method (stated as Theorém 26 in Seclion 5.4). This techratioes one to automatically translate lower
bounds on the-approximate degree of a Boolean functibhinto lower bounds on thdiscrepancyof a
related functionF” as long as is exponentially close to one. By applying the pattern-iratrethod to
Corollary[4, we obtain the following result.

Corollary 5. There is a depth-4 Boolean circuit : {—1,1}" — {—1, 1} with discrepancyxp (—Q(n2/5)).

2.2.4 Threshold Weight Lower Bound

A polynomial threshold functio(PTF) for a Boolean functiorf is a multilinear polynomiap with integer
coefficients that agrees in sign withon all Boolean inputs. Thaveight of an n-variate polynomialp
is the sum of the absolute value of its coefficients. Tegreed threshold weighof a Boolean function
f:{-1,1}" = {—1,1}, denotedV ( f, d), refers to the least weight of a degré®TF for f. We letWW ( f)
denote the quantity¥’(f,n), i.e., the least weight of any threshold function foregardless of its degree.
As discussed in Sectidn 8, threshold weight has importapitcgtions in learning theory.

Threshold weight is closely related ¢eapproximate degree wheris very close td (see Lemm&a20 in
Se%tiorB_'JZ). This allows us to translate Corollary 4 intowadr bound on the degregthreshold weight of
ACY.

Corollary 6. For everyd > 0, there is a depth-3 Boolean circuft : {—1,1}" — {—1, 1} of sizepoly(n)
such thatlV (F, d) > exp (Q(nd—3/2)). In particular, W (F,n?/%) = exp (Q(n2/5)).

A result of Krause[[32] (see Lemmial27 in Sectionl 5.5) allowsousxtend our new degregthreshold
weight lower bound forF’ into adegree independeithreshold weight lower bound for a related function
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F' (we also provide a new and simple proof of Krause’s resuletyas LP duality, cf. AppendixID). The
previous best lower bound on the threshold weight oPA@sexp (Q(n'/?)), due to Krause and Pudlak

[33].
Corollary 7. There is adepth-4 Boolean circuit : {—1,1}" — {—1, 1} satisfyingV (F’) = exp (Q(n2/5)>.

Moreover, while the threshold weight bound of Corollgly Btisted for polynomial threshold functions
over{—1, 1}", we show that the same threshold weight lower bound alssloigpolynomials ovef0, 1}".

2.3 Approximate Degree Lower Bounds for AND-OR Trees

Thed-level AND-OR tree om variables is a function described by a read-once circuieptluld consisting
of alternating layers of AND gates and OR gates. We assunsirfglicity that all gates have fan-im'/<.
For example, the two-level AND-OR tree is a read-once CNFlhictvall gates have fan-in'/2.

Until recently, the approximate degree of AND-OR trees gfttdwo or greater had resisted charac-
terization, despite 19 years of attention[[4,[15/ 22], 3658%57]. The case of of depth two was reposed as
a challenge problem by Aaronson in 2008 [1], as it capturedithitations of existing lower bound tech-
niques. This case was resolved last year by the current mulh®], and independently by Sherstov|[45],
who proved a lower bound &t(,/n), matching an upper bound of Hagyer, Mosca, and de Wolf [22}yHo
ever, the case of depth three or greater remained open. Tkmowledge, the best known lower bound for
d > 3 wasQ(n!/*t1/24) which follows by combining the depth-two lower boundI[15] 4ith an earlier
direct-sum theorem of Sherstdv [55, Theorem 3.1].

By combining the techniques of our earlier work[15] with dwrdness amplification result (Theorem

[), we improve this lower bound @ <n1/2/log(d_2)/2(n)> for any constant/ > 2. A line of work on

quantum query algorithms][6,22)43] established an uppentofO(n'/?) for AND-OR trees of any depth,
demonstrating that our result is optimal up to polylogamiih factors (see Sectidn 6 for details).

Theorem 8. Let AND-ORy,, denote thei-level AND-OR tree om variables. Therﬁéé(AND—ORd,n) =
0 (n1/2/ log(4=2)/2 n> for any constant! > 0.

Proof Idea. To introduce our proof technigue, we first describe the netieed in[[15] to construct an
optimal dual polynomial in the caseé= 2, and we identify why this method breaks down when trying to
extend to the casé = 3. We then explain how to use our hardness amplification ré$tkorent]l) to
construct a different dual polynomial that does extend éocidisel = 3.

Let M/ denote the fan-in of all gates DR-AND, ,,2. In our earlier workI[[15], we constructed a dual
polynomial forOR-AND, ,,2 as follows? By Fact{I6 there is a dual polynomigj witnessing the fact that
odeg(AND ) = © (M'/2), and a dual polynomia, witnessing the fact thateg(OR ) = Q (M*/2).

We then combined the dual witnessgsand~, using the same “combining” technique as in the proof of
Theorent L, to obtain a dual witnegs: {—1, 1}M2 — R for the high approximate degree@R-ANDy j2.

Recall that we say a dual witness lase high degred if it has zero correlation with every polynomial
of degree at most. It followed from earlier work[[55] thaty; has pure high degree equal to the product of
the pure high degree af and the pure high degree ¢f, yielding anQ2(1/) lower bound on the pure high
degree ofy;. The new ingredient of the analysis [n [15] was to use thesided error of the “inner” dual
witnessy; to argue that;z also had good correlation WithR-AND ;2.

We actually constructed a dual polynomial fAND-OR, 2, but the analysis for the case OfFR-AND, ;2 is entirely
analogous.



Extending to Depth Three. Let M/ = n'/3 denote the fan-in of all gates IAND-OR3 ,,. In construct-
ing a dual witness foAND-OR3,, = ANDj;(OR-ANDj p2,...,OR-AND, js2), it is natural to try
the following approach. Let, be a dual polynomial witnessing the fact that the approxenaEgree of
AND,; = Q(v/M). Then we can combing; and~, in the same manner as above to obtain a dual function
Y5+

The difficulty in establishing thats is a dual witness to the high approximate degred ND-ORs3 ,,
is in showing thaty; has good correlation witAND-OR3. In our earlier work, we showegs has large
correlation withOR-AND- ,, by exploiting the fact that the inner dual witnegshad one-sided error, i.e.,
~1(y) agrees in sign witlAND,, whenevery € AND;}(—l) . However,~; itself does not satisfy an
analogous property: there are inputse OR-AND; ! (—1) such thatys(z;) > 0, and there are inputs

2,M?
z; € OR-AND; 1, (1) such thatys(z;) < 0.
To circumvent this issue, we use a different inner dual ve$ng in place ofvs. Our construction of
~4 utilizes our hardness amplification analysis to achievedhewing: while 4 has error “on both sides”,
the error from the “wrong side” is very small. The hardnesolifination step causes) to have pure
high degree that is lower than that of the dual witngssonstructed in[[15] by g/Tog n factor. However,
the hardness amplification step permits us to prove theatkkiwver bound on the correlation ¢f with

AND-OR3 ,,. The proof for the general case, which is quite technical,mfound in Sectionl 6.

2.4 Lower Bounds for Read-Once DNFs and CNFs

Our techniques also yield new lower bounds on the approxirdagree and degrekthreshold weight of
read-once DNF and CNF formulas. Before stating our reswksiscuss relevant prior work.

In their seminal work on perceptrons, Minsky and Papertletdd a read-once DNFF : {—1,1}" —
{—1, 1} with threshold degre€(n'/3) [37]. That s, a real polynomial requires degfe@:'/3) just to agree
with f in sign. However, to our knowledge no non-trivial lower bdwn the degreé-thresholdweightof
read-once DNFs was known for atly= w(n'/?).

In an influential result, Beigel [11] exhibited a polynoméite (read-many) DNF called ODD-MAX-
BIT satisfying the following: there is some constant 0 such thatleg, ,_;,,s2(ODD-MAX-BIT) > d,
and hence alst/ (ODD-MAX-BIT ,d) = exp ((n/d?)) (see Section3]2). Motivated by applications in
computational learning theory (see Secfidn 8), Klivans @advedio showed that Beigel's lower bound is
essentially tight ford < n'/3 [30]. Very recently, Servedio, Tan, and Thaler showed agrditive lower
bound on the degre¢-threshold weight of ODD-MAX-BIT. Specifically, they showekat 1/ (ODD-

MAX-BIT ,d) = exp (Q (x/n/d)) [44]. The lower bound of Servedio et al. improves over Beésgielr

anyd > n'/3, and is essentially tight in this regime (i.e., whén- n!/3).

While ODD-MAX-BIT is a relatively simple DNF (in fact, it is @ecision lis}, it is not a read-once
DNF. Our results extend the lower bounds of Servedio et afl EBeigel from decision lists to read-once
DNFs and CNFs. In the statement of the results below, wecaestirselves to DNFs, as the case of CNFs
is entirely analogous.

2.4.1 Extending the Lower Bound of Servedio et al. to Read-Gie DNFs

In order to extend the lower bound of Servedio et al. to reackdNFs and CNFs, we extend our hardness
amplification techniques from one-sided approximate degwea new quantity we catlegreed one-sided
non-constant approximate weighthis quantity captures the leat weight(excluding the constant term)
of a polynomial of degree at mogtthat is a one-sided approximation $f We denote the degretone-
sided approximate weight of a Boolean functipby W ( f, d), wherez is an error parameter.

We prove the following analog of Theordm 1.



Theorem 9. Fix d > 0. Letf : {-1,1} — {-—1,1}, and suppose thaW;M(f,d) > w. LetF :

{—1,1}™t — {—1,1} denote the functio®R,(f,..., f). Then any degred-polynomial that approxi-
matesF to within error 1 — 2~ requires weigh2=>!w.

Adapting a proof of Servedio et al., we can show tHa},(AND,,,, d) > 282m/d) By applying The-
orem[® withf = AND,,, along with standard manipulations, we are able to exteadawer bound of
Servedio et al. to read-once CNFs and DNFs.

Corollary 10. For eachd = o(n/log” n), there is a read-once DNF satisfyinglV (F, d) = exp (Q ( n/d)).

In particular, there is a read-once DNF that cannot be coeapby any PTF oboly(n) weight, unless
the degree i§)(n).

2.4.2 Extending Beigel's Lower Bound to Read-Once DNFs

It is known thatodeg(AND,,) = Q(m!/2) (cf. FactIb). By applying Theoref 1 with = AND,,, we
obtain the following result.

Corollary 11. There is an (explicit) read-once DNF : {—1,1}" — {—1,1} with &1_2,n/d2 (F) =
Q(d).

We remark that forl < n'/3, Corollary[I1 is subsumed by Minsky and Papert’s seminallrékat
exhibited a read-once DNF with threshold degre®(n'/?) [37]. However, ford > n'/3, it is not subsumed
by Minsky and Papert’s result, nor by Corollary 10. Indeedrdllary[10 yields a lower bound on the degree-
d threshold weight of read-once DNFs, but not a lower boundheapproximate-degreef read-once DNFs
(see Sectioh 32 for further discussion on the separatitmees these quantities).

2.5 Discussion
2.5.1 Subsequent Work by Sherstov

In 1969, Minsky and Papert gave a lower boundf,'/3) on the threshold degree of an explicit read-once
DNF formula. Klivans and Servedio [29] proved their lowembd to be tight within a logarithmic factor
for DNFs of polynomial size, but it remained a well-known opgiestion to give a threshold degree lower
bound on(nl/3+5) for a function in A(f); the only progress prior to our work was due to O’Donnell and
Servedio[[4D], who established &{n'/3 log" n) lower bound for any constat > 0.

Let f denote the EEMENT DISTINCTNESS function onn3/5 variables. In an earlier version of this
work, we conjectured that the functidii = OR,2/5(f, ..., f) appearing in Corollary]4 in fact satisfies
deg_ (f) = Q(n*®), and observed that this would yield the first polynomial ioyement on Minsky and
Papert’s lower bound. Sherstdv [46, Theorem 7.1] has rcprived our conjecture. His proof, short and
elegant, extends our dual witness construction in the ppbdteorent]l to establish a different form of
hardness amplification, from one-sided approximate degrégeshold degree. Specifically, he shows that
if a Boolean functiory has one-sided approximate degiethen the block-wise compositi@ddR;(f, .. ., f)
has threshold degree at leasin{ct, d} for some constant. This result is incomparable to our Theorem 1
whent < d, but whent > d, Sherstov’s result is a substantial strengthening of Tévagt.

In the same work, Sherstov has also proven a much strongenareddifficult result: for any: > 2, he
gives a read-once formula of depttwith threshold degre@ (n(*~1/(2k=1)) " Notice that for any constant

0 > 0, this yields an A@® function with threshold degre@(n1/2‘5). This in turn yields an improvement

of our discrepancy upper bound (Corollddy 5) for A exp(—Q(n'/2-%)), and of our threshold weight
lower bound (Corollarffl7) texp(Q(n'/>-9)).



2.5.2 Subsequent Work by Kanade and Thaler

Existing applications of one-sided approximate degre¢[12545/46] have all been of a negative nature
(proving communication and circuit lower bounds, estdiitig limitations on existing PAC learning algo-
rithms, etc.). Kanade and Thalér [25] have recently idexttif positive (algorithmic) application of one-
sided approximate degree. Specifically, they show thatsished approximate degree upper bounds imply
fast algorithms in the reliable agnostic learning framewoir Kalai et al. [23]. This framework captures
learning tasks in which one type of error (such as false negatrors) is costlier than other types. Kanade
and Thaler use this result to give the first sub-exponeniia tlgorithms for distribution-independent reli-
able learning of several fundamental concept classes.

In light of these developments, we are optimistic that thigomoof one-sided approximate degree will
continue to enable progress on questions within the asabfdoolean functions and computational com-
plexity theory.

2.5.3 Future Directions

Beame and Machmouchil[9] established{am / log n) lower bound on the quantum query complexity of
a specific functionf : {—1,1}" — {-1,1} in ACO. The previous best lower bound was$(n/ log n)%/3),
which held for the EEMENT DISTINCTNESSfunction [2].

Beame and Machmouchi’s lower bound applies to theo21 function, which is computed by depth-
three circuit of polynomial size. This function interpréts input as a list ofV numbers from a range of
sizeR > N, and evaluates te 1 if and only if exactly N/2 numbers appear in the list, each with frequency
exactly 2. They pose as an open question the problem of iegdhe approximate degree of>-18 (recall
that the approximate degree ffis a lower bound on the quantum query complexityfobut polynomial
separations between approximate degree and quantum curapfexity are known[5]).

For simplicity, we focus on the case wheRe= N. We observe that Theordm 2 applies to thec241
function, revealing that its one-sided approximate degadémost equal to its approximate degree.

Corollary 12. Let f : {—1,1}"* — {—1,1} denote the2-To-1 function onm variables. For any > 0,
odeg.(f) > deg.(f)/logm.

Combining Corollary_IP and the recent result/[46, Theorethallows us to transform angpproximate
degreelower bound for the 2ro-1 function into athreshold degredower bound for a related depth-four
circuit.

Corollary 13. Let f : {—1,1}'* — {—1,1} denote the2-To-1 function onm variables, and letd =
odeg(f) = deg(f)/logm. Letn = m - d, and definef" : {-1,1}" — {—1,1} via F' = ORq4(f,..., f).
Thendeg. (F)) = Q(d). In particular, if deg(f) = Q(m/logm), thendeg, (F) = Q (n/2/logn).

Thus, establishing a quasilinear lower bound on the apprate degree of 2:0-1 would immediately
yield a functionF' computable by a depth-four circuit of polynomial size witineshold degreé)(nl/2), a
polynomial improvement over SherstoWqn(*—1)/(2k=1)) bound for any constant depth Even a lower
bound on(m3/ 4+9) for some positive constaiton the approximate degree of ther®-1 function would
yield a depth four circuit with threshold degré}f{n3/7+5') for somed’ > 0. This would constitute a
polynomial improvement over the current best lower boun@@f3/7) for depth 4, and would additionally
imply improved lower bounds on the threshold weight andrdisancy of depth five circuits.

3Technically speaking, they ask about ther@-1-VS-ALMOST-2-To-1 function, which is a promise variant of the1®-1
function.
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While the best known lower bound on the approximate degréieeo? To-1 function ornm variables is
currentlyQ((m/ log m)?/3) (this can be derived by reduction ta BMENT DISTINCTNESS, we conjecture
that its approximate degree is in fdetm /log m), and interpret Beame and Machmouchi’s quantum query
lower bound as providing mild evidence in favor of this cajee.

2.6 Paper Roadmap

Sectior B establishes terminology, introduces our maimiiecie based on LP-duality, and proves essential
technical lemmas. Sectidh 4 establishes our central hescamaplification result for one-sided approximate
degree (Theore] 1). Sectibh 5 establishes our new one-ajgfximate degree lower bound for ac
(Theoreni 2, Corollari]3), and combines this with Theokém dltmin our new lower bounds on “accuracy
vs. degree” tradeoffs for pointwise approximating Q\h\/ polynomials (Corollary}4). It then proves our
new discrepancy upper bound for an Aeinction (Corollanyf®) and our new threshold weight loweuhd

for ACO (Corollaried 6 andl7). Sectidd 6 proves our new approximatgeak lower bound for AND-OR
trees (Theorerhnl8). Secti@h 7 proves our new lower boundsfat-once DNFs (Theorenh 9, Corollary 10,
and CorollaryIl1). Sectidn 8 highlights several appliaatiof these results to communication complexity,
circuit lower bounds, and learning theory.

3 Preliminaries

We work with Boolean functiong : {—1,1}" — {—1, 1} under the standard convention that 1 corresponds
to logical false, and-1 corresponds to logical true. For a real-valued function{—1,1}" — R, we let
[7]loc = maxzeq_113n [r(x)| denote thelo, norm of r. We let OR, and AND, denote the OR function
and AND function onn variables respectively. Defingn(t) = —1if ¢ < 0 and 1 otherwise. For a set
S Cn]={1,...,n}, letxs(x) := [],cq x; denote the parity function over variables indexedshy

We now define the notions of approximate degree, approximaight, threshold degree, threshold
weight, and their one-sided variants.

3.1 Polynomial Approximations and their Dual Characterizations
3.1.1 Approximate Degree

Thee-approximate degree of a functigh: {—1,1}" — {—1,1}, denote(ﬁééa(f), is the minimum (total)
degree of any real polynomial such thatllp — f|l < e, i.e.,|p(z) — f(z)| < eforallz € {—1,1}".
We usedeg(f) to denotedegl/g(f), and use this to refer to thepproximate degreef a function without

qualification. The choice of /3 is arbitrary, asdﬁeé(f) is related to@ée(f) by a constant factor for any
constant € (0,1).

Given a Boolean functiorf, let p be a real polynomial that minimizél® — f||.. among all polynomials
of degree at mosi. Since we work over € {—1,1}", we may assume without loss of generality that
is multilinear with the representatign(z) = ngd csxs(z) where the coefficientss are real numbers.
Thenp is an optimum of the following linear program.

min €

suchthat |f(z) — > g<qcsxs(z)| <e foreachz € {-1,1}"
cs €R for each|S| < d
e>0

11



The dual LP is as follows.

max Dwef-1,1yn O(2) f(2)
suchthat }- oy yn |o(2)] =1
> wef—1,1yn ?(@)xs(z) =0 foreach|S| <d
o(z) eR for eachz € {—1,1}"

Strong LP-duality thus yields the following well-known daharacterization of approximate degree (cf.

[50)).

Theorem 14. Let f : {—1,1}" — {—1,1} be a Boolean function. Theteg_(f) > d if and only if there is
a polynomiale : {—1,1}" — R such that

Y f@)ex) >e, (1)
ze{—1,1}"
> o) =1, 2)
ze{-1,1}"
and
> ¢(x)xs(x) = 0foreach|S| < d. (3)

ze{-1,1}"

If ¢ satisfies EqL{3), we sayhaspure high degred. We refer to any feasible solutiafto the dual LP
as adual polynomialfor f.

3.1.2 One-Sided Approximate Degree

We introduce a relaxed notion of the approximate degreg which we call the one-sidegtapproximate
degree, denoted bydeg.(f). This is the least degree of a real polynompalith that is anz-one-sided
approximationto f, meaning

1. |p(z) — 1] < eforallz € f~1(1).
2. p(z) < —1+4eforallz € f~1(—1).

That is, we require to be very accurate on inputs fit!(1), but only require “one-sided accuracy” on
inputs inf~1(—1). We useo/d\e/g(f) to denoteo/d\e/gl/g(f), and refer to this quantity without qualification
as theone-sided approximate degreé f.

The primal and dual LPs change in a simple but crucial way ifoe& at one-sided approximate degree
rather than approximate degree. pét) = E\S|§d csxs(z) be a polynomial of degreé for which the
e-one-sided approximate degreefofs attained. Them is an optimum of the following linear program.

min c

suchthat |f(z) — 3|gj<qcsxs(a)| <e foreachr € f1(1)
Z\Slgd csxs(r) < —1+e for eachr ¢ f~1(—1)
cs € R for each|S| < d
e>0

The dual LP is as follows.
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max Zme{_171}n o(z)f(2)
suchthat 3- . yn |0(2)| =1
> zef—11} ?(@)xs(z) =0 for each|S| < d
#(x) < 0foreachz € f~1(—-1)
o(z) eR for eachz € {—1,1}"

We again appeal to strong LP-duality for the following duladuacterization of one-sided approximate
degree.

Theorem 15. Let f : {—1,1}" — {—1,1} be a Boolean function. Thej/d\e/ga(f) > d if and only if there
is a polynomialp : {—1,1}" — R such that

Y. @)@ > e, 4)
ze{-1,1}"
> gl =1, 5)
ze{-1,1}"
> ¢(x)xs(z) = 0foreach|S| < d, (6)
ze{-1,1}"
and
¢(x) < 0foreachz € f~1(—1). (7

Observe that a feasible solutignto this dual LP is a feasible solution to the dual LP for apprate
degree, with the additional constraint thgtr) agrees in sign witlf (x) wheneverr: € f~1(—1). We refer
to any such feasible solutighas a dual polynomial fof with one-sided error Dual polynomials with one-
sided error have recently played an important role in résglepen problems in communication complexity
[19] and resolving the approximate degree of the two-lewdDAOR tree [15, 45]. They will play a critical
role in our proof of Theorern]1 as well.

Prior work using the dual formulation of one-sided approatendegree exploited the fact that the AND
function has one-sided approximate degree equal to iteangiapproximate degree [15)19] 45]. This fact
also plays an important role in the applications of our hassnamplification technique to AND-OR trees
(Sectior6) and to read-once DNF formulas (Sedfion 7).

Fact 16. o -
odeg(AND,,) = deg(AND,,,) = Q(v/m).

Fact[16 can be seen by observing that Nisan and Szegedy’s tpamﬂa—g/;(ANDm) = Q(y/m) in
fact extends to one-sided approximate degree [39]. Alteely, it can be directly shown that any dual
witness (as defined in Theorém] 14) for the fact thaf{( AND,,,) = Q(,/m) must have one-sided error (cf.
[19, Theorem 5.1]).

3.1.3 Approximate Weight

We define thedegreed s-approximate weighof f, W.(f,d), to be the minimum weight of a degree-
polynomial that approximate$ pointwise to errore. Recall that the weight of a polynomialis the L,
norm of its coefficients. lfleg_(f) > d, we definelV,(f, d) = occ.

For a fixed error parameterand degred, the degreet s-approximate weight of a functiofiis captured
by the following optimization problem.

13



min >_is|<d les]
such that ‘f(x) — X isj<aCsxs(z)| < e foreachr € {—1,1}"
cs €R for each|S| < d

A standard substitution of each tefny| in the objective with an auxiliary non-negative variablg as
well as the addition of the constraints < ¢y and—cg < ¢, shows that this is in fact a linear program.
The dual LP is as follows.

max Dosef—113n P(@)f(@) =111y [6(2)]
such that (er . qﬁ(ac)xg(:ﬂ)‘ <1 for each|S| < d
o(z) eR for eachr € {—1,1}"

We thus obtain the following duality theorem.

Theorem 17. Let f : {—1,1}" — {—1,1} be a Boolean function. ThéW.(f,d) > w if and only if there
is a polynomiak : {—1,1}" — R such that

Yo f@e@)—e D o) > w, ®)

ze{-1,1}" ze{-1,1}"

S d@)xs(e)

ze{-1,1}"

< 1foreach|S| <d. 9)

3.1.4 One-Sided Non-Constant Approximate Weight

To derive our new lower bound on the degreéireshold weight of read-once DNFs (Corollary 10), we
need the following technical variation on approximate waeigGiven a polynomiap(z) = > ¢ csxs(z),
define thenon-constant weightf p to be theL; norm of its coefficients excluding the constant term, i.e.,
Zsﬂ les|. We then define thelegreed one-sided non-constastapproximate weighof f, denoted by
WZ(f,d) to be the minimum non-constant weight of aone-sided approximation tf. Linear program-
ming duality yields the following characterization Bf*(f, d).

Theorem 18. Let f : {—1,1}" — {—1, 1} be a Boolean function. Théw(f,d) > w if and only if there
is a polynomiak : {—1,1}" — R such that

Yo f@e@) - Y @) > w, (10)
ze{-1,1}" ze{-1,1}"
> ¢(x)xs(z)| < 1foreacho < [S] < d, (11)
ze{-1,1}"
Y. @) =0, (12)
ze{—-1,1}"
#(z) < 0for eachz € f~(—1). (13)
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3.1.5 Threshold Degree and Threshold Weight

We say a polynomiap(z) = > ¢ csxs(z) with integer coefficients is a polynomial threshold function
(PTF) for a Boolean functiorf if p sign-representg at all Boolean inputs, i.e., if (z)p(x) > 0 for all
x € {—1,1}". Thethreshold degreef f, deg. (f), is the minimum degree of a PTF fdr
Thethreshold weightV ( f) is the minimum weight of any PTF fgf. Observe that this definition is only
meaningful because the coefficients of any PTFffare required to be integers, as any positive constant
multiple of a PTF forf also sign-represents More generally, it is of interest to study the tradeoff betn
the weight and degree necessary for PTF representationshisTend, we define thdegreed threshold
weightW (£, d) to be the minimum weight of a degreePTF for f. If deg, (f) > d, defineW (f,d) = cc.
While threshold weight is naturally captured byiategerprogram rather than a linear program, it still
admits an important dual characterization, obtained byhinimg results of Freund [18] and Hajnal et al.

[21] (see alsd[20,50]).

Theorem 19. Let f : {—1,1}" — {—1,1} and fix an integed > deg(f). Then for every probability
distribution z on{—1,1}",

1
> <d.
|Egmulf(x)xs(x)]| > W for each|S| < d (14)
Moreover, there exists a distributignfor which
on 1/2
< | — < d.
|Exmulf(x)xs(x)]] < (W(f, d)> for each|S| < d (15)

3.2 Relating Degreed Threshold Weight to High-Error Approximations

In this paper, we will often need to translate lower bound&%@g(f) for some functionf with ¢ very
close to 1 into lower bounds on the degeetireshold weight off. This is possible because degé@-TFs

of weight w are closely related to degrelepointwise approximations with errdr— 1/w. In fact, these
notions are essentially equivalent wher> (Z) [50Q]. The relationships we will need are formalized in the
following lemma.

Lemma 20. Let f : {—1,1}" — {—1,1} be a Boolean function, and let > 0. Then (1)= (2) = (3).
(1) deg,_1(f) > d.
(2) Wy_1(f,d)>1.

3) W(f,d) > w.

Lemmd20D implies that a PTF of degréand weightw can be transformed intd —1 /w)-approximation
of degreed. Indeed, the proof will go by way of such a transformation.

Proof. Clearly (1) implies (2), sinc&/, . (f,d) = co whendeg, 1 (f) > d. To show that (2) implies (3),
suppose there is a PTHor f having Weiahm and degred. Sinceff has integer coefficients and is nonzero

on Boolean inputgp(x)| > 1 on{—1,1}". Moreover,|p(z)| < w by the weight bound, so the polynomial

Lp(z)isa(l — 1)-approximation tof with weight1. O

Remark: We stress that the converse of Lemima 20 fails badly whes ('}). For example, we show in
Corollary[10 that for anyl > 0 there exists a read-once DNF satisfyingW (F,d) > exp ( n/d). In

particular, this yields an exponential lower bound on thgreled threshold weight of for anyd = n'=o,
with 6 > 0 a constant. Yet it follows from a result of SherstovI[48] thag, ;3(F') = O(n'/?) for any
read-once DNF.
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4 Hardness Amplification for Approximate Degree

In this section, we show how to generically transform a gir¢uwith one-sided approximate degréénto

a circuit I with e-approximate degreéfor ¢ = 1 — 27t. That is, whilef cannot be approximated to error
1/2 by degreel polynomials,F’ cannot even be approximated to ertor 2~* by polynomials of the same
degree.

Theorem[d. Let f : {—1,1} — {—1,1} be a function with;c_i\e/gl/z(f) > d. LetF : {-1,1}™ —
{—1,1} denote the functio®R.(f, ..., f). Then&éél_th(F) > d.

We remark that it is necessary that thiee-sidedapproximated degree ¢f is large, rather than that
just the approximate degree ffis large. Theorerfil1 is easily seen to be false with one-sigpdbaimate
degree replaced by approximate degree. Consider for egathplcase wher¢g = OR,,. ThenF =
OR:(OR,y, ..., OR,,) = OR,yye. Sincedeg(OR,,) = Q(y/m), applying Theorerfil1 witkleg in place of
odeg would say thatleg; , +(ORyne) = Q(v/mi). Yet the polynomialy(y) = 4 (1/2 — S0 57 i)
demonstrates thatﬁeél_ﬁ(ORmt) = 1 for all values oft. However, Theoreril1 does not apply because
the one-sided approximate degreefof OR,,, is constant.

Proof. Let be a dual polynomial fof with one-sided error whose existence is guaranteed by thergs
tion thatodeg; /»(f) > d. By Theoreni 1by satisfies:

Y v f@)>1/2, (16)
ze{-1,1}m
> W) =1, (17)
ze{-1,1}m
> w(z)xs(x) = 0for each|S| < d and (18)
ze{-1,1}m
Y(z) < 0foreachr € f~1(—1). (19)

We will construct a dual solutiog that witnesses the fact th?d-Eél_th(F) > d. Specifically, must
satisfy the three conditions of Theoréni 14:

> C(xn,. . ) F(xr,...,2) >1 =271 (20)
(:Bl’"'vmt)e({_lvl}m)t

> (21, a)| = 1. (21)

(x1,..,zt)E({—=1,1}m)"
> C(x1,...,2)xs(x1,...,x) = 0for each|S| < d. (22)
(x1,..,xt)E({—=1,1}m)*

The construction of is as follows. Letl denote the all-ones vector. Lét: {—1,1}' — {-1,1} be
defined such tha¥ (1) = 1/2, ¥(—1) = —1/2, and¥(z) = 0 for all otherz. Notice that

Z \If(l'l,...,l’t) =0 (23)

(z1,.xe)E{—1,1}¢
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We define : ({—1,1}")" — R by

C(x1,. .. my) == 220(. .., sgn(v(xs)),...) H [ ()], (24)

wherez; = (zi1,...,%im).

Eq. (24) combines dual functionsands) to obtain a dual witnessin exactly the same manner as in the
works of Sherstov [55, Theorem 3.3] and Le€l[34]. The ansliysihese works implies without modification
that( satisfies Equations Eq._(21) and Hqg.[(22). That is, thesesgitkw

Claim 21.
> IC(@1, ... 2)] = 1.
(@1,0ym)€({=1,13m)?
Claim 22.
> C(z1,. .. x)xs(x1, ..., x) = 0foreach|S| < d.
(@1,.m)E({—=1,13m)?

We provide this analysis in AppendiX A for completeness, @@ focus on arguing that (20) holds. As
we remarked earlier, the properties we exploit to show ttaqH) thaty) has one-sided error and (2) that the
the vector—1 has Hamming distancefrom the (unique) input irORt‘l(l).

We now prove that[{20) holds. Let be the distribution or{{—1,1}™)" given by u(x1,...,z;) =
Hle |v(z;)|. Sincew is orthogonal to the constant polynomial, it has expectddevd, and hence the
string (..., sgn(y(x;)), ... ) is distributed uniformly in{—1, 1}* when one sample&:, . .., x;) according
to u. Observe that

Z C(z1,...,z)F(xr,. .. xp)

(Z’1,...,Z’t)6({—1,1}m)t

— 2B, [U(... sgn(e(x:)), ... ) ORe (.., f(xi),...)]

= > \I/(z)( > ORt(...,f(gc,-),...)u(gcl,...,xtz)), (25)
(z1,007t)

ZE{—l,l}t e({_l’l}'m)t
wherey(x|z) denotes the probability of undery, conditioned or. . ., sgn(¢(z;)),...) = 2.
Let Ay = {z € {-1,1}" : ¢(z) > 0,f(x) = —1}andA_; = {z € {-1,1}™ : ¢(z) <
0, f(z) = 1}, so Ay U A_; is the set of all inputse where the sign of)(x) disagrees withf(z). No-

tice that) © . 4,u4_, [¥(2)] < 1/4 because) has correlatiori /2 with f.
Let A be the distribution o —1, 1} defined by\(z) = [¢(x)|. Then for any bib,

Pr [f(z) # sgn((2))sen(v(z)) = b] =2 Y [v(2)].

T
rEA

Therefore, as noted in [65], for any giverne {—1, 1}, the following two random variables are identically
distributed:

e The string(..., f(z;),...) when one chooses. ., z;, ... ) from the conditional distributiomp(-|z).

e The string(...,v;z;,...), wherey € {—1,1}! is a random string whosi¢h bit independently takes
on value—1 with probability23 -, [¥(z)| < 1/2.
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Thus, Expressiori (25) equals

> U(2)-E[ORe(... 0z, ... )], (26)

ze{-1,1}*

wherey € {—1,1}! is a random string whosgh bit independently takes on valuel with probability
23 sea. ()| < 1/2. We first argue that the term correspondingzte= 1 contributesW¥(z) = 1/2
to Expréssion[(ZB). By EqL(19), if(x) = —1, theny(x) < 0. This implies that4; is empty; that is,
if sgn(y(xz)) = 1, then it must be the case thatx) = 1. Therefore, forz = 1, they;’s are all1 with
probability 1, and henc&,[OR; (..., vz, ...)] = OR; (1) = 1. Thus the term corresponding to= 1
contributes¥ (z) OR,(z) = 1/2 to Expression[(26) as claimed.

All z ¢ {1, —1} are given zero weight by and hence contribute nothing to the sum. All that remains is
to show that the contribution of the term= —1 to the sum isé—(l —27%). Since eachy; = 1 independently
with probability at leastl /2, andOR(...,—y;,...) = —1 as long as there is at least ope# —1, we
conclude thatE[ORy(...,yiz,...)] > 1 — 271 |t follows that the term corresponding to= —1
contributes at leasf(1 — 27**1) to the sum. Thus,

(1—27h =1-27"

| =

+

| =

> U(2)-E[OR(...,piz,...)] =

ze{-1,1}¢
This completes the proof. O

Remark: Since the setd; within the proof of Theorerll1 is empty, the “combined” duatnveiss¢ con-
structed in the proof in fact has one-sided error. Thus, tbefgestablishes thai/ae/gl_w(F) > d, which

is a stronger conclusion than tﬁéél_w(F) > d bound appearing in the theorem statement. We chose
to state Theorerfl 1 as an approximate degree lower bouney thén as a one-sided approximate degree
lower bound, for easier comparison with prior work on apprate degree.

5 Lower Bounds for ACO

In this section, we establish a new lower bound on the onedsaghproximate degree of /QCCombining
this lower bound with Theorefd 1, we establish new lower bewrdaccuracy vs. degree tradeoffs forhc
This in turn yields a new upper bound on the discrepancy, amelalower bound on the threshold weight
of ACD.

5.1 The One-Sided Approximate Degree of Symmetric Propergis

We identify a fairly general criterion under which the origesl approximate degree of a Boolean function is
equal to its approximate degree. This criterion appliesaayrfunctions previously studied in the literature,
including theAND function, the EEMENT DISTINCTNESSand QoLLISION functions [2,4], and the Zo-

1 function [9]. Our result applies to Boolean functions esponding t@symmetric propertieswe refer the
reader to Section 2.2.1 for the relevant notation and difirst

Theorem 2. Let f : {—1,1}"* — {—1,1} be a Boolean function corresponding to a symmetric propgfty
of functionsg, : [N] — [R]. Suppose that for every pait,y € f~'(—1), there is a pair of permutations

on[R] andx on[N] such thaty,, = o o g, o w. Thenodeg,(f) > @ -aééa(f) forall e > 0.
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Proof. Supposegc_i\e/gs(f) = d. Letp be any degred-one-sided approximation tf with errore. As
described in the proof overview in Section 2]12.1, we show twtransformp into an actuak-approximation
r for f such thatleg r < (log, R) deg p. Our transformation fromp to » consists of two steps.

In the first step, we turp into a “symmetric” polynomiapsY™(x) defined below. The following sym-
metrization lemma shows that the map-> p*>Y™ increases the degree phy at most a factor olog, R.

Lemma 23. Letm = N -log, R. Forz,y € {—1,1}", write y ~ « if there is a pair of permutations on
[R] and7 on[N] such thaty, = o o g, o 7. Letp : {—1,1}" — R be a real polynomial. Define

P (z) = Ey~z [p(y)]-
Thendeg(p™™) < (log, R) deg(p).
The proof of Lemma&a 23 exploits a result of Ambainis [4] andequs in AppendikB.

We now turn to the second step of our transformation, in winehdentify an affine transformation
of p*Y™ that is an actuat-approximation tof. To this end, we make two further observations about the
polynomial p®y™.,

Claim 24. If ¢, is a symmetric property anglis anc-one-sided approximation tf, thenp®™ is also an
e-one-sided approximation tg.

Claim 25. LetS C {—1,1}". If x ~ y for every pairz,y € S, thenp®™ is constant ort.

We first show how these claims together imply the theorem. BainC24, p®¥™ is anc-one-sided
approximation tof. By Claim[25,p*Y™ is constant on the set of inpufs' (—1), where it takes some value
v< —1l4e lfv>—1—¢, thenp™™ is itself anc-approximation tof and we are done. Otherwise, define
the polynomial
2(p™™(x) — 1)

lv—1]

Thenr(z) = —1for allz € f~1(—1). Moreover, sincév — 1| > 2, we haver(z) € [l —¢,1 + ¢] for all
x € f~1(1). Thusr is as-approximation tof.

We now proceed to prove Clairhs|24 25.

r(x) =1+

Proof of Clain{Z%. Suppose thap; is a symmetric property and thatis anc-one-sided approximation to
f. Thenp(x) € [1 —e,1+¢|forallz € f71(1), andp(x) < —1 + e forallz € f~(—1). We focus on
some fixedr € f~1(1); handling inputs inf~!(—1) is entirely analogous. Sinegy is symmetric, we have
y € f~1(1) whenevery ~ x. Thereforep(y) € [1 — ¢, 1 + £] whenever ~ x, so

P () = Eyelp(y)] € [L —&,1 4 €.
A similar argument holds far € f~!(—1), sop®™™ is ans-one-sided approximation tp. O

Proof of Clain{2b.Fix a setS C {—1,1}"™, and suppose ~ y for everyx,y € S. Fix somez* € S, and
letz € S be arbitrary. It suffices to show that™ (z) = p™™(z*). Write o - « - 7 for the valuey for which
gy = 0og,om. Leto,, m, be a pair of permutations whete= o, - z* - m,. Note that the map — o oo,

is a bijection from the symmetric group ovigt] to itself; similarly the mapr — =, o 7 is a bijection from
the symmetric group oveéV] to itself. Hence, it holds that

Eynalp(y)] = Eonlp(o - 2 - m)]
=Eox[p((000z) 3" (mg 0m))]
=E;[p(o-z* - )]
= Eyvo[p(y)].
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Thus we have™™ (z) = p*¥™(z*), showing thap®™™ is constant orb.

The proof of these claims concludes the proof of Thedrem 2. O

5.2 The One-Sided Approximate Degree of A8

Prior to our work, the best lower bound on the one-sided aqpmaie degree of an A& function onm
variables was$2(,/m) attained by theAND,,, function (Facf-1b). However, to obtain stronger lower baind
for ACO via our hardness amplification technique, we need a cordtgth circuit with polynomially larger
one-sided approximate degree. We now exhibit a depth-tvanitihaving one-sided approximate degree
Q(m?/3). Let N and R be positive integers such thaf > R and R is a power of 2. We define the
ELEMENT DISTINCTNESS function with rangeR as follows. The function takes: = N log, R bits as
input, and interprets its input as blocks (z1, ..., xy) with each block consisting dbg, R bits. Each
block is interpreted as a number in the rangé and the function evaluates to TRUE if and only if all
numbers are distinct.

It is straightforward to check that fd® = poly(NN), the EEEMENT DISTINCTNESSfunction with range
R is computed by a CNF formula of polynomial size. Indeed, threefion evaluates to TRUE if and only if
there is no numbeK < [R] for which there is a pair of distinct indicésj € [N] such thaty; = z; = K.
Thus, the following natural CNF computes BMENT DISTINCTNESS (noting that for any fixedx, the
inner formula is computed by a bitwise OR):

R
flar,..on) = \ N@i#EK)V(z; #K).

K=11i#j

Aaronson and Shi[2] showed that whé&> 3N/2, the approximate degree oLEMENT DISTINCT-
NESSis Q(N?/?). Ambainis [4] extended the lower bound to the “small-rangase wheré? = N. For the
remainder of the paper, we will use the termeIENT DISTINCTNESSwithout qualification to refer to the
small-range case.

In the language of properties of functions, the propékty determines whether a function is one-to-one.
That is,¢ep(g) = 1 if and only if the functiong : [N] — [R] is injective. Note thatgp is a symmetric
property, since injectivity is preserved under permutetiof a function’s domain and range. Furthermore,
it is straightforward to verify that EEMENT DISTINCTNESSsatisfies the hypothesis of TheoreEm 2: for any
two inputsz,y corresponding to one-to-one functions, g, : [N] — [R], there exist permutations, =
such thaty, = o o g, o m. Thus, Theoreril2 implies that the one-sided approximateedenf ELEMENT
DISTINCTNESSIiS Q(N?/3/log R).

In a prior version of this work, we gave a different proof oistfact for the small-range casé = R
by manipulating a dual witness for the high approximate ee@f EEMENT DISTINCTNESS We provide
this alternative argument in Appendi¥ C. In fact, in the dmahge case, the fact the propettyp holds
for exactly one input function up to permutatiah the domain onlallows us to prove a stronger one-
sided approximate degree lower boundXfN?/?) (i.e, without the loss of &g R factor that arises from
symmetrizing over the range in the proof of Theofdm 2).

Corollary 3. Letf : {—1,1}"" — {—1, 1} denote th&ELEMENT DISTINCTNESSsfunction. Theraﬁe/g(f) =
Q(m?/3).

5.3 Accuracy vs. Degree Tradeoffs for A€

We are now in a position to prove our new lower bound on “aaurs. degree” tradeoffs for pointwise

approximating A® functions by polynomials.
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Corollary 4. For everyd > 0, there is a depth-3 Boolean circulf : {—1,1}" — {—1,1} of size
poly(n) such that any degreé-polynomial cannot pointwise approximafé to error better thanl —

exp (—Q(nd—3/2)>. In particular, there is a depth-3 circuif’ such that any polynomial of degree at most

n?/> cannot pointwise approximate to error better thanl — exp (—Q(nz/ 5)).

Proof. Lett = n/d*?, andm = d*?2. DefineF = ORy(f,...,f) wheref : {—1,1}" — {-1,1}
computes the EEMENT DISTINCTNESSproblem. The discussion in Section]5.2 implies thig computed
by a depth-2 circuit, and that has one-sided approximate degfe@n?/3). The claim now follows by
TheorenilL. O

5.3.1 Onthe Tightness of Theorerhll and Corollari/14

We now argue that the approximate degree lower bound provédaoreni Il is essentially tight. In particu-
lar, we show that the functiof for which Corollary(# yields 41 — exp(—Q(n?/%))-error lower bound for
approximating polynomials of degree/® actually admits d1 — exp(—O(n?/®))-approximating polyno-
mial of degreeD(n?/%).

Our nearly-matching upper bound makes use of a well-knowadigm for constructing low-weight
PTFs (and hence, by Lemrhal 20, low-accuracy pointwise appations) for composed functions by way
of rational approximationgsee e.g.[[12,49]). Suppoge {—1,1}"" — {—1, 1} is pointwise approximated
by a rational function in the sense that for every {—1,1}™,

wherep, ¢ are polynomials of degre¢ and weightw andg(z) > 0 on {—1,1}™. Then observe that the
block composition

ORy(f(21),- .., f(x)) = sgn(l — t + f(z1) + - + f(ay)) = sgn <1 gy M) pm)) .

alz1) ~ qlz)

Multiplying (1 -1+ % + ... ZEiﬁi) by the positive quantity(x1)-- - --¢(z;) and clearing denominators

yields a PTF for the composed function of degté@and weight at most’ (m + tw).

We now construct a rational approximation for= ELEMENT DISTINCTNESSwith the desired prop-
erties. Recall from Sectidn 5.2 that EMENT DISTINCTNESS on m variables has a CNF representation
where the topAND gate has fan-is := O(m?) and eactOR gate has fan-i) (log m). It is easy to check
thatAND, : {—1,1}* — {—1, 1} admits the rational approximation

ts—14+t>7
ts+14+t>7  x

with error 1/t, degreed = 1, and weightw = O(st). Moreover, each bottor®R gate in the CNF can
be computed exactly by a degré&logm) polynomial with weightO(1). Composing these constructions
yields a rational approximation fortEMENT DISTINCTNESS with error 1/t, degreed = O(logm) =
O(logt) and weightO(st) = poly(t). Therefore,F has a PTF of degre€(t) and weightexp(O(t)).
By the construction of LemmaR@; also has d1 — exp(—O(t)))-approximation of degre®(t). When

t = n?/°, we obtain g1 — exp(—O(n?/®))-approximating polynomial of degre®(n?/®) for F' as claimed.
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5.3.2 A Sharp Threshold in Accuracy-Degree Tradeoffs

The rational approximations developed in the previousi@@ctombined with the lower bound of Theo-
rem[1 and Corollar{/14, reveal a “sharp threshold” in the degegjuired to approximate a particular func-
tion F' within a given error parameter. Recall that Theofém 1 ancblZoy [4 yield a lower bound of
d = Q(m?/3/logm) on thes-approximate degree df = OR,(f, ..., f), wheref is the ELEEMENT Dis-
TINCTNESsfunction onm variables and = 1—2-". In the following discussion, consider aty= d'~%1).

If our goal is to approximaté” to within error (1 — exp(—O(t))), then the rational approximation
techniques described in the preceding section yield anoappating polynomial of degreé(t). On the
other hand, if we desire even slightly better errot f 27, then our accuracy-degree tradeoff lower bound
of Theorent]L shows that we require degiee w(t). That is, if we demand error that is slightly better than
1 — exp(—O(t)), there is an asymptotic jump frof(t) to Q(d) in the required degree.

5.4 Discrepancy of Ad

In this section we prove our new exponentially small uppeurtotbon the discrepancy of a function in
ACO. Consider a Boolean functiofi : X x Y — {—1,1}, and letA()) be its communication matrix
M) = [f(2,y)]zex.yey- A combinatorial rectangle ok x Y is a set of the formd x B with A C X
andB C Y. For a distributionu over X x Y, the discrepancy of with respect tq. is defined to be the
maximum over all rectangleRB of thebiasof f on R. That is:

discy(f) =max| > p(z,y)f ()|

(z,y)ER

The discrepancy of, disc(f) is defined to benin, disc,(f).
Sherstov’s pattern matrix methdd [50] shows how to genllyitensform an A® function with high
threshold degree or high threshold weight into anotheP A@ction with low discrepancy.

Theorem 26([50], adapted from Corollary 1.2 and Theorem 7.B¢t F : {—1,1}" — {—1,1} be given,
and define the communication probldih: {—1,1}4" x {—1,1}*" — {-1,1} by

F'(m,y) = F( vey \/?zl(xm- A yi,j)a e )

Then for every integef > 0,

2
diSC(F’,)2 S max {I/V(TZ—U’ 2_d} .

We apply this theorem to the functiofi : {—1,1}" — {—1,1} of Corollary[4. This function has
c-approximate degree?/> for e = 1 — 2-%*®) and hence by by Lemnial20 it holds that( f, n%/5) =
22(n*’®) \We thus obtain our new discrepancy upper bound foP A€ stated in Corollaryl 5, restated here
for the reader’s convenience.

Corollary 5. There is a depth-4 Boolean circuit : {—1,1}" — {—1, 1} with discrepancyxp (—Q(n2/5)).

5.5 Threshold Weight of ACO

Combing Lemma&_20 with Corollafy 4 yields Corolldry 6, resthhere for the reader’s convenience.
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Corollary 6. For everyd > 0, there is a depth-3 Boolean circuft : {—1,1}" — {—1,1} of sizepoly(n)
such thatlV (F, d) > exp (Q(nd‘3/2)>. In particular, W (F,n?/%) = exp (Q(n2/5)>.

A result of Krausel[[32] allows us to extend our new degfdbreshold weight lower bound for A
into an exp (Q (n2/5)> degree independerthreshold weight lower bound for a related functiéh. In

LemmalZY below, we give a slight modification of Krause’s imdd) result that is cleaner to apply, and
asymptotically recovers Krause’s result when the weightseu consideration are superpolynomially large.
Our restatement admits a new and simple proof based on LRydiait we present in AppendixID.

Lemma 27. LetF : {—1,1}"* — {—~1,1} be a Boolean function, and defid& : {—1,1}3" — {—1,1} by
F'(T1, o Ty YLy e ey Yny 215 -5 2n) = F (o (i ANz V(2 Ayi), o).

Then for every integef > 0,

W (F")? > min { W(i 9) , 2d} .

Combining Corollary b and LemniaR27 yields Corollaty 7. Thigroves over the previous best thresh-
old weight lower bound for A&, which wasexp (Q(n'/?)) [33].

Corollary 7. There is a depth-4 Boolean circuit : {—1,1}" — {—1, 1} satisfyingiV’ (F) = exp (Q(n2/5)>.

Proof. Let I be the circuit of Corollarj}4 and l€t’ be the depth-four circuit obtained by applying Lemma
toF. Letd = n2/5/ log® n for a sufficiently large constamt Then Corollaryb implies that/ (F, d) >

2124, and hencdV (F’) > 24/2 = 22*°) py | emmd2V. O

Remark: While the threshold weight bound of Corolldry 7 is stateddolynomial threshold functions over
{=1,1}" (i.e., for polynomials that are integer linear combinasiaf parities), the same threshold weight
lower bound also holds for polynomials ovéb, 1}, or equivalently, for integer linear combinations of
conjunctions. This can be seen as follows.

Given a setS C [n], let ANDg : {—1,1}" — {—1,1} denote the AND function restricted to variables
in S. Given a sign-representatign= ) ¢ cg AND for F' of weightw, let) "¢ p(S)xs denote the Fourier
representation op. It is easy to check that thé;-norm of the Fourier coefficients of each conjunction
ANDyg is at most3, so the weight of the Fourier expansionois v’ := > "¢ [p(S)| < 3w. However, we
cannot simply conclude that/3 > w' > W (f) because the coefficient$S) are not necessarily integers.

Nonetheless, note thgi(x)| > 1 for all z € {—1,1}", sincep has integer coefficients. That isjs a
sign-representation fof over{—1,1}" of weightw’ and with margin at least 1. It follows by Theoré€ni 19

thatexp (Q(n2/5)> = W(f) < 2n(w')? = poly(n,w). We conclude thaty = exp (Q(n2/5)) as desired.
The same argument shows that all of our lower bounds on degiteeshold weight proved in this paper
hold for PTFs ovef0, 1}", in addition to PTFs ovef—1,1}".

6 Lower Bounds for AND-OR Trees

Thed-level AND-OR tree (respectively, OR-AND tree) arvariables is a function described by a read-once
circuit of depthd consisting of alternating layers of AND gates and OR gateth thie root gate being an
AND gate (respectively, an OR gate). We assume throughdsiséttion that all gates have fansift/?;

for example, the two-level AND-OR tree is a read-once CNF hicl all gates have fan-in'/2. The
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assumption on the fan-in is not essential to our analysikighgection, which in fact applies to any read-
once Boolean circuit such that all gates at any given layee ltize same fan-in. We will l’fAND-ORq,,
(respectivelyOR-AND, ,,) denote theil-level AND-OR tree (respectively, OR-AND tree) arvariables.

The current author§ [15], and independently Sherstov [4Shlved the approximate degreeddfD-ORz ,,
by proving an optimaf2(n'/?) lower bound in this case. However, the techniques of [15p4&ak down
for the case of depth three or greater; to the best of our leuyd, the best lower bound that follows from
prior work isQ(n!/4+1/24) 'which can be derived by combining the depth-two lower bof{45] with an
earlier direct-sum theorem of Sherstbv|[55, Theorem 3.1].

In this section, we extend the methods of our prior wbrk [t6ptove a2 (n1/2/ log(4=2)/2 n) lower
bound on the approximate degree/AdiD-OR,,, for any constant/ > 0.

Up to alog!@~2)/2 p, factor, this matches an upper bound(f»'/2) which was established for AND-OR
trees of any depth via a line of work on quantum query algor#hé| 22| 43]. Specifically, Hayer, Mosca,
and De Wolf [22] proved an upper bound@fc?—'n'/2) for some constant on the approximate degree of
any depthd AND-OR tree in which all gates at any given layer have the stanen. Subsequent work by
Ambainis et al.[[6] established an upper boundyb220(VIee™) for any depth, and further refinements by
Reichardt culminated in af(n'/?) upper bound for any depth [43]. A remarkable result of Slerf8],
on making polynomials robust to noisy inputs, yields a vefferent proof of Hayer, Mosca, and De Wolf’s
O(c*=n'/?) upper bound.

Theorem 8. Let AND-ORy ,, denote thei-level AND-OR tree om variables. Thera@é(AND-ORd,n) =
0 (n1/2/ log(4=2)/2 n> for any constant! > 0.

Proof. We begin by proving the claimed lower bound #8§ND-OR3 ,, before explaining how to extend the
argument ttAND-OR ,, for an arbitrary deptld > 0.

Notation. There will be a total of seven intermediate dual witnesses dhise in our construction of a
dual witness/; for AND-OR3 ,,. We will denote these seven dual witnessegas. ., 7. Let M = nt/3
denote the fan-in of all gates ND-OR3 ,,. Our goal is to construct a dual witnegs to demonstrate that
Elzé(AND—ORgm) =0 (711/2/10g1/2 n)

To this end, letys be a dual polynomial withessing the fact th%t\e/g.gg(ANDM) = Q(vM). By
TheorenIH#, there is somag = Q(v/M) such thatys satisfies:

> 4e(a) ANDys(a) > .99, (27)
ae{-1,1}M
S Wela) =1, (28)
ae{-1,1}M
> wela)xs(a) = 0 for each|S| < ds and (29)
ae{-1,1}M
¥(—1) < 0. (30)

As stated in the proof outline (Sectién R2.3), we are ultifyatging to construct a function)s :
{-1, 1}M2 — R that serves as a dual witness to the high approximate dedréReAND, »,2 while
having “almost no error on the wrong side”. More formally, wiél show
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Claim 28. There exists a dual witnegsg for the fact that the).98-approximate degree @R-AND, ,2 is at
leastQ (M //log n) with the following property. Il _; = {z € {~1,1}*" : ¢5(z) < 0 and OR-ANDy y2(z) =

1}, then
> Iws(2) <n?

z€A_1

We will then define our final dual witnegs; via

Yr(xy, .. xar) = 2Mapg(. .., sgn(vs(z H s ()| (31)

wherez; = (z1,...,%; pr2).
We now prove the existence @fs (Claim[28) before returning to the analysis of the combinadld
witnessy;.

Proof of Claim(Z8. As discussed in the introduction, the constructionygttombines our hardness amplifi-
cation technique (Theorem 1) with the technique of comigiminal witnesses in our earlier wofk [15].

Construction of 5. Consider the functio®@R-AND, ;2. Lett = 21logn. We view the root OR gate as an
OR of ORs, where the top OR has fan#ifi/t and the bottom OR gates each have fan-ifhus, we are now
thinking of the two-level OR-AND tree as a three-level citcwhere the top two levels consist of OR gates,
and the bottom level consists of AND gates. Consider thetiomd = OR;(ANDjy, ..., ANDj;), which
allows us to writtOR-AND, 52 = ORy . (F, ..., F'). By our hardness amplification technique, there is
a dual witness)s for the high one-sided approximate degreeFpfeven with error inverse polynomially
close tol. We will constructys by combiningys with a dual witness), for the high approximate degree
of ORM/t

In more detail, applying Theorefd 1 to tHeND,,; function (see Fadi16) yields a dual witnegs
demonstrating that there is sondg = Q(v/M) such that;i\e/gl_th(F) > d3 (see the Remark following
the proof of Theorerh]1). For the case of degth- 3, we may use)3 as a black box. However, to enable
induction in the case of gener@| we recall that the dual withess;, was defined via:

P31, .., by) i= 2"a(... ,Sgn (¢ (b H |11 (bi

whereb; = (bi1,...,bim), 1 was a dual witness to the high one-sided approximate dedraéNd ,,,

andi, was defined such that, (1) = 1/2, ¢¥»(—1) = —1/2, andi), evaluates to O for all other inputs in
{—1,1}t.
By Theoreni_Ib the dual witnesgs, satisfies:
> sF()>1-2"=1-n"%, (32)
be{-1,1}tM
S lwsb) =1, (33)
be{—1,1}t-M
> s(b)xs(b) = 0for each|S| < ds and (34)
be{-1,1}tM
Y3(b) < 0 for eachb € F~1(—1). (35)
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Now let ), denote a dual witness to the fact thﬁaﬁ.gg(ORM/t) = Q(y/M/t). By Fact(18, this dual

witness has one-sided error, but on the side opposite frenotle we used to definﬁ\e/g. Thus there is
somed, = Q(y/M/t) such that the following equations hold:

> Yu(w) ORygpe(w) > .99, (36)

we{—1,1}M/t

> u(w) =1, (37)
we{—1,1}M/t
> Yu(w)xs(w) = 0 for each|S| < d, and (38)
we{—1,1}M/1
Pa(1) = 0. (39)

Finally, we combine the dual withesses and; to obtain the desired functions:

M/t

Us(z1, o zage) = 2MMa (s (vs(24)) H |13 (2i)| (40)
wherez; = (2i1,...,2it.M)-

Analysis of y5. The analysis in[[15] immediately implies that hasL,-norm equal to 1, has pure high
degree at leasts - dy = Q (M/\/t) = Q (M/+/logn), and that the correlation afs with OR-AND; j2

is at least99 — 2~ > .98. What remains is to show that has “almost no error on the wrong side”. Recall
thatA_; = {z € {~1,1}™" : ¢5(2) < 0,0R-AND, y2(2) = 1}. We will show that:

> s(z)] <n? (41)
z€EA_1

To establish Eq[{41), we first collect some observationst Be; = {z; € {—1,1}M"* : 3(z) <
O,F(ZZ‘) = 1}

e Observation 1: For every = (21,...,2zp) € ({—1,1}t‘M)M/t in A_q, the following property
must hold: z; € B_; for everyi such thatys(z;) < 0. This holds becausé'(z;) = 1 for all
i€ {l,...,M/t}, sinceOR-AND, yp2(2) = 1.

e Observation 2: For every = (z1,...,zy) € ({—1, 1}t'M)M/t € A_;, there must exist a; such
thatvys(z;) < 0. This is because, if3(z;) > 0 forall i € {1,..., M/t}, thenys(z) agrees in sign
with ¢4(1) > 0 (see Eq.[(39)), contradicting the assumption that A_;.

« Observation 3: Le be the distribution ofi—1,1}* defined viayu(z1, . . ., zar1) = [T’ W3 (21)].
Sinces is balanced, the string . . ,sgn(3(z)), . . . ) is distributed uniformly in{—1, 1}M/t when
one samples = (z1,. .., z)7/) according tqu.

e Observation 4: Becausg; has correlationl — n~2 with F' (see Eq.[(3R)), the following equation

holds:
2.

l\')lr—t

> sz <

zi€B_1
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e Observation 5: As in the proof of Theorém 1, J€t:|w) denote the probability of undery, condi-
tioned on(...,sgn(vs(z;)),...) = w. If z ~ pu(-|w) for some stringw wherew; = —1, then the
probability thatF'(z;) = 1 whensgn(is(2)) = wi is23", | [¥3(z)].

Thus, we may write:

> @) = > 2" (..., sgn(vs(z) |H|7/)3 (2]

z€EA_1 z€EA_1

< Z |Ya(w)| - Pr [z € By Vi:w, = —1]
we{—1,1}M/t w1 zrplhw)

< Y [a(w) et <

we{—1,1}M/t

Here, the equality holds by definition g§ (see Eq.[(40)), the first inequality holds by Observations 1,
2 and 3, the second inequality holds by Observations 4 anddbthee fourth inequality holds because the
Ly norm of), is 1 (see EqL(37)).
O

Recall that we defined the combined dual witness
br(ay, .. ) =2 (. sgn(ys(x Hrwg, ()]

whereuyg is a dual polynomial for the high one-sided approximate ee@f the topAND ,, function. In the
remainder of the proof, we show that is a dual witness foAND-ORg3,,.

Bounding the Correlation of 17 with AND-OR3,,. Using Equation Eq[{41), it is possible to adapt the
analysis of[[15] to show
Claim 29.

> " 4pr(z) AND-OR3 () > .97.

Proof of ClainT29. The idea is to show that

Zw )AND-ORsn(z) ~ > t6(a) ANDys(a) > .99, (42)

ae{-1,1}M

Tothisend, letd_; = {z € {—1, 1} : y5(2) < 0, OR-AND, js2(z) = 1} as above, and let; = {z
{=1,1}2M ;s (2) > 0, OR-AND, 52(2) = —1}. Notice thatd; U A_; is the set of all inputs where
the sign ofys(z) disagrees WittOR-AND, 5/2(z). Notice thaty>_. 4,4 | [1h5(z)| < .01 because)s has
correlation at least8 with OR-AND, y2.

M

Let v be the distribution or({—l, 1}M2> given byv(zy,...,xp) = ]_[f‘il |v(z;)|. Sincev is or-
thogonal to the constant polynomial, it has expected val@m0 hence the string. . , sgn(s(z;)),... ) is
distributed uniformly in{—1,1}* when one sampleg:y, . .., z)s) according tav. Letv(z;|a) denote the
probability ofz; underv, conditioned or(.. ., sgn(v¥s(x;)),...) = a.

For any giveru € {—1,1}*, the following two random variables are identically distried:
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e The string(...,OR-ANDg ys2(z;), ... ) when one chooses. ., z;, . .. ) from the conditional distri-
butionv(-|a).

e The string(...,y;a;,...), wherey € {—1,1}™ is a random string whosi¢h bit independently takes
on value—1 with probability2} ., |v(z;)] < .02.

Thus, the left hand side of Expressiénl(42) equals

> wela) - E[AND (... yias, ... ), (43)

ae{-1,1}M

wherey € {—1,1}M is a random string whosih bit independently takes on valuel with probability

229“_&1% [t(x;)| < .02.

All ¢ # —1); can be handled exactly as in [15] and[[55] to argue that theyriboite at leasf1 —
.02)16(a) to the sum. The key property exploited here is tA&D,, has lowblock-sensitivityon these
points, allowing us to apply the following proposition.

Proposition 30 ([55]). Let f : {—1,1} — {-1,1} be a given Boolean function. Letc {—1,1}M
be a random string whosgh bit is set to—1 with probability at mosty € [0, 1], and to+1 otherwise,
independently for each Then for every, € {—1,1}M,

Py[f(alv"'7a1\/[) 75 f(a1y17"' ,(IM(IM)] < 2’7bSa(f)

In particular, since hR§AND),) = 1 for all a« # —1),, Propositio_3D implies that for all # —1,,,
anda = ANDy,, Py[f(al, C ,CLM) = f(alyl, . ,aMyM)] >1-.02.

We next argue that the term correspondingzte= —1,, contributes at leastl — 2Mn~2)g(a) to
Expression(43). By Eq_{41) and a union bounddet —1,,, they,’s areall 1 with probability1—2A/n =2,
and henceE,[AND y/ (..., yia;,...)] < (1 —2Mn~=2)ANDy (—1y) = —(1 — 2Mn~2). By Eq. [30),
sgn(vg(—1a7)) = —1, and thus the term correspondingite= —1,, contributes at leagtl —2Mn~2)vyg(a)
to Expression[(26) as claimed. We conclude thatvy7(z) AND-ORs3,, > .97. O

Completing the proof for d = 3. The proof thaty); has Li-norm 1 and has pure high degree at least
ds - dg = O <n1/2 / 1og1/2(n)> is identical to prior work[[55] (see also Appendk A). Coméihwith Claim
showing that) " ¢7(z) AND-OR3, > .97, we conclude that); is a dual witness to the fact that
Elzé_w(AND—OR&H) =Q <n1/2/10g1/2(n)>.

Extending to generald. For ease of exposition, we focus on the case wHeseodd; the case of evehis
similar. To enable a proof by induction, we will show that

Claim 31. For d odd, there exists a dual witnegg showing that the99-approximate degree ¢{ND-ORg,,
is Q(n'/2/1og!=Y/2(n)). Moreover,
> sy <2072 (44)
yeAL
whereAd; = {y : ¢¥5(y) > 0, AND-ORy ,,(y) = —1}.
For d even, the same statement holds for the approximate degré&®eiND,, where we replace
Eq. (44) with the corresponding bound @yeA,l |5 (y)|, whereA_; = {y : ¢5(y) < 0,OR-AND,,,(y) =
1}.

Eq. (43) intuitively captures the property thét has “almost no error on the wrong side”.
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Proof of Clain[31.As a base case of the induction, the dual witngsghat we used in the casé = 3
clearly satisfies the above properties (in fagthad one-sided error, and therefore satisfied an even stronge
condition than Eq[{44)).

As suggested by our choice ¢ as the name of the function we want to construct, the indectase
mimics the proof of Claini 28. To emphasize the similarityviegn this argument and the proof of Claim
28, we will show that assuming the induction hypothesis \allé — 2 implies the induction hypothesis at
leveld — 1, for d odd. The case of even is similar.

To construct a dual witness; proving thatdeg(OR-AND_; 11-1/a) = Q(n(171/D/2 /10g@=2)/2 (i)
with “almost no error on the wrong side,” we inductively assuthat there exists a dual witnegs for the
high approximate degree of the functioh= AND-OR,;_, ,,1-2/4 With almost no error on the wrong side.

That is, there exists @] and ad, = Q(n(1=2/4/2 /10g(4=3)/2(n)) such that

> Yw)G(y) > 99, (45)

ye{—1,1}n! /4
> IWil=1 and (46)

ye{_171}n1—2/d
> ¥i(y)xs(y) = 0foreach|S| < dj, (47)

ye{_171}n172/d
in addition to having “almost no error on the wrong side.”
Now we seth = n'/4, and defineps, 13, . . . , 15 exactly as in the casé= 3, but with the dual witness

Y} in place of the dual witnesg;. That is, we letys : {—1,1}} — R be defined viayy(1) = 1/2,
o(—1) = —1/2, andio(b;) = 0 for all otherb; € {—1,1}*. We define

P3(by, ..., be) = 244ha(. .., g (] (bs H |4 (b

whereb; = (b; 1,...,z; ). We definey, to be a dual witness to the fact th/ﬁjg.gg(ORM/t) =Q(/M/t)
for t = 21log n. We defineys exactly as in Eq[{40).

The analysis of)5 proceeds as in the proof of Claim|28, with one modificatiorthincase ofl = 3, 1,
had one-sided error, so we could directly invoke our harsliaesplification result (Theoref 1) to conclude
that3 also had one-sided error, as well as correlation 2~ with the target functiorOR,(G, ..., G).

In the case of general, ¥| does not have one-sided error. Howewgr,“almost” has one-sided error, as
formalized by Eq.[(44). It is straightforward to modify theopf of TheoreniIL to show thougly, satisfies
a weaker condition than digd,, the dual witnesg); nonetheless satisfies the following properties.

Let BLy = {z € {—1,1}"" 7"t y3(z) < 0,0R(G,...,G)(z) = 1}, and letB; = {z €

{1,137 4hg(2) > 0,0R(G, ..., G)(z) = —1}. Then:

e > . cp, [Ws(z) <27

° zZiEBl |¢3(z2)| <t- 2n1_2/d/n2.

That is,3 has error exponentially small inon one side, and the error on the other side blows up by at
most a factor of relative toi;. This permits us to obtain a variant of Eg.(41), namely:

> Iws(2)| < 2tM/n?, (48)

z€A_1
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where as abovd _; is defined via:

1—-1/d

A= {Z S {—1, 1}” : 1/)5(2) <0, OR—ANDd_17n171/d(Z) = 1}.

This completes the induction and the proof.
O

With Claim[3] in hand, we can construgt as in the proof of the@ = 3 case to obtain Theorelnh 8. That
is, we defing)s to be a dual witness to the high one-sided approximate ded&a&D ,,, and we define);
exactly as in Eq[(31).

As before i hasL;-norm 1 and pure high degree at ledst dg = <n1/2/10g(d_2)/2(n)>. Here,

ds = Q (n(l‘l/d)/z/log(d‘Q)/z(n)> denotes the pure high degreesaf andds = Q (M'/?) denotes the
pure high degree afs. Finally, the analysis establishing thai has high correlation withAND-OR g, is
the same as in the casedE 3.

O

7 Lower Bounds for Read-Once DNFs

In this section we derive new approximate degree and defjtbesshold weight lower bounds for read-
once DNF formulas. The lower bounds we prove are essentithtical to those proved by Beigél [10] and
Servedio et al.[[44] for thelecision listODD-MAX-BIT, which is not computable by a read-once DNF.

Our first construction (Corollafy10) yields a degrégreshold weight lower bound Gf’(\/"_/d), matching
the lower bound proved by Servedio et al. for the decisianQiBD-MAX-BIT. In Section[Z.3, we show
that this is essentially optimal in the “high-degree” regimhered = Q(n1/3).

Our second lower bound (Corollalry]11) exhibits a DNF w(ith— 2—"/d2)-approximate degre@(d),
matching Beigel’s lower bound for ODD-MAX-BIT. As we remak in Sectiofi 2J4, foid < n'/3, Corol-
lary[11 is subsumed by Minsky and Papert’'s seminal resulibéitiy a read-once DNFE" with threshold
degree)(n'/3). However, ford > n'/3, it is not subsumed by Minsky and Papert’s result, nor by Camp
[Id. While CorollanyID yields a lower bound on the degigreshold weight of read-once DNFs, it does
not yield a lower bound on thepproximate-degreef read-once DNFs. As described in Secfiod 3.2, while
deg,_1 (F) > d implies thatW (F,d) > w, the reverse implication doe®t hold whenw < (’}) (and in
fact the read-once DNF considered in Corollary 10 is an eitkample of the reverse implication failing
badly).

7.1 Extending the Lower Bound of Servedio et al. to Read-OncBNFs
7.1.1 Hardness Amplification for Approximate Weight

We now extend our hardness amplification techniques fromoappate degree to approximate weight. This
extension forms the technical heart of our proof that theslodound of Servedio et al. applies to read-once
DNFs.

Theorem[3. Let f : {—1,1}" — {—1,1} be a function with one-sided non-constant approximate hieig
W§/4(f, d) > w. LetF : {—1,1}™ — {—1,1} denote the functio®R,(f,..., f). ThenF has degreet

(1 — 27%)-approximate weightV; _,—«(F,d) > 275w,

Proof. Let ) be a dual polynomial fof with one-sided error whose existence is guaranteed by thergs
tion thatWy,(f,d) > w. Then by Theorern 18, satisfies:
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> @@ -2 Y W) >w (49)

ze{-1,1}™ ze{-1,1}m
> w(z)xs(x)| < 1foreacho < |S| < d, (50)
ze{—1,1}m
> ¥(z) =0, and (51)
ze{—-1,1}m
Y(x) < 0foreachs € f~'(—1). (52)

We will construct a dual solutiod that witnesses the fact thet; _,—« (F,d) > 2~°w. Specifically, by
Theoreni 1l7{ must satisfy the following conditions:

Z C(zy, ..., x)F(x1,. .., z¢) — (1 =279 |C(xy, ... 2p)| > 27w (53)
(IE1,...,$;§)€({—1,1}"")t

> C(z1,. . z)xs(x1, ..., x)| < 1foreach|S| < d. (54)
(xlv"'vxt)e({_lvl}m)t
As before, let¥ : {—1,1}' — {—1,1} be defined such thab(1) = 1/2, ¥(-1) = —1/2, and
W(x) = 0 for all otherz, wherel denotes the all-ones vector. We define({—1,1}"™)" — R by

t

C(@r, .oy 2e) = MU (.. 5gn((er), ...) [] 1), (55)
i=1
wherez; = (z;1,..., ;) andM; is a normalization term to be determined later.

We start with Eq.[(54) to determine an appropriate choic&/pf Notice that sincel is orthogonal on
{—1,1}* to constant functions, its expected value is 0. Thus, we nitg ¥he Fourier representation fér
as

Uz)= Y W(T)xr(z)
TC{L, .t}
T40
for some real number&(7'). We can thus write

C(1,..wyae) = My Z U(T) H V() H |1 (z:)]-

T#0 €T i@T

Given a subset C {1,...,t} x {1,...,m} with |S| < d, partitionS = ({1} x S1)U--- U ({t} x S¢)
where eacth; C {1,...,m}. Then

> (@1, z)xs (@, 2)

(x1,eme)E({—1,1}m)"

MtZ@<T>H( ) w<xi>><si<xi>)ﬂ( ) ¢<xi>><si<:cz->).

T#0 €T \ze{-1,1}m i¢T \z;e{—1,1}m
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Since|S| < d, we have thatS;| < d for every index € {1,...,t}. For each sef’, each of the underbraced
factors is bounded in absolute value biy (50). Writing

lolhi= Y (@)

ze{-1,1}m
for notational convenience, we see that
A~ _ T _ —
2. Car,o s m)xs (@) < My Y WO < My r2
(@1,0mze)E({—1,1}m)" T#0

Taking M, = 272||¢||} " gives [G%).

We now proceed to verify (33). Let be the distribution or{{—1,1}™)" given by u(z1,...,2;) =
[l TTEZ, [%(24)]. Sincey is orthogonal to the constant polynomial, it has expectéatvd, and hence the
string (... ,sgn(¢y(x;)), ... ) is distributed uniformly in{—1, 1}* when one sample@, . .., z;) according
to . Observe that

Z C(ay, ... ) F(x1,. .., 2)

(Z‘1,...,Z‘t)6({—1,1}m)t
= M| Eu[¥ (... sgn(y (@), ... ) ORe (..., f(xi), - )]

=2 ¥yl Y U(z) ( 3 ORy (..., f(x1),..) plars .. w>) . (56)
ze{~1,1}* (@1,z)€({~1,13m)"
wherey(x|z) denotes the probability of undery, conditioned or. . . ,sgn(¢(z;)),...) = 2.
LetA; = {z € {-1,1}" : ¢(x) > 0, f(x) = =1} andA_; = {x € {-1,1}"" : () < 0, f(z) =
1} Then2y 404, [0(@)] < 1l1¥]li — w because) has correlation at least + ||| with f.
As before, for any: € {—1,1}¢, the following two random variables are identically distried:

e The string(..., f(z;),...) when one chooses. ., z;, ... ) from the conditional distributiomp(-|z).

e The string(...,v;2i,...), wherey € {—1,1}! is a random string whosth bit independently takes
on value—1 with probability 2 7, c 4 [¥(2)] < 1/4 —w/|[]]1.

Thus, the correlation is

27l Y W(2)-E[OR(-. ., iz, )], (57)
ze{—1,1}¢

wherey € {—1,1}! is a random string whosgh bit independently takes on valuel with probability
2% pea, [U(x)] < 1/4 —w/|[¢|l1. As in the proof of Theorerl1, the one-sided erfor (52) of theld
witnessiz implies that the input = 1 contributes¥(z) = 1/2 to Expression[(37). Alk ¢ {1,—1}
are given zero weight by and hence contribute nothing to the sum. All that remains show that the
contribution of the termx = —1 to the sum is%(l — 272+ Since eachy; = 1 independently with
probability at leas8/4 + w/||¢||1, andORy(...,—vy;,...) = —1 as long as there is at least ope~ —1,
we conclude thaE[OR(...,y;z;,...)] > 1 — 272+ It follows that the term corresponding to= —1
contributes at leasg(1 — 27%*!) to the sum. Thus,

2l 3 WEEIOR e )] 2 2 ol (54 50— 27 ) =22

ze{—1,1}t
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Since is orthogonal to the constant polynomial by Hg.l(51), it hgseeted value 0, and hence the
string (..., sgn(y(x;)), ... ) is distributed uniformly in{—1, 1}* when one sample&, . .., x;) according
to u. Thus,

> s sm)l =27l >0 ()] =27,

(1’1,...,xt)6({—1,1}m)t ze{-1,1}

Now the left-hand side of Expressidn {53) is at least
27 (1 = 2729l — (1 —27%) - 27 [l > 27 [l > 27w,

where the last inequality follows from conditidn {49). Thismpletes the proof.

7.1.2 Completing the Proof of Corollary[10

We adapt an argument of Servedio et al. to prove the followimgrsided approximate weight lower bound
for the functionAND,,.

Lemma 32. Letd = o(n/log?n). Then the functioAND,, has one-sided non-constant approximate
weightWs, (AND,,, d) = 270"/,

Our proof of Lemma 32 follows a symmetrization argument du&eérvedio et al.[[44]. The key in
their proof is the following Markov-type inequality thatvgis a sharp bound on the derivative of a bounded
polynomial in terms of both its degree and weight.

Lemma 33([44], Lemma 1) Let P : R — R be a degreet polynomial such that
1. The coefficients aP each have absolute value at mastand
2. 1/2 < maxge—11) [p(z)| < R.

Thenmax,c(_y,1) |[p'(z)| = O(d - R - max{log W,log d}).

Proof of Lemma32Let p : R” — R be a real polynomial with degreéand non-constant weighit that
has one-sided distance at magtt from AND,,. Specifically,p(—1) < —1/4 and1/4 < p(z) < 7/4 at
all other Boolean inputs. We will show that = 2%(*/9), First observe that if(—1) < —7/4, then the
polynomial () )
2(p(z) — 1
1= e
is a true(3/4)-approximation tcAND,, with weight smaller thamw + 1, so we can assume without loss of
generality thap is in fact a(3/4)-approximation tAAND,,.
Define the univariate polynomial

+1

P(t) := By [p(2)]

wherey, is the product distribution ove—1, 1} where each coordinate; is independently set to with
probability (1 + ¢)/2. Notice thatP(¢) is obtained from the multivariate expansiongfcy, ..., z,) by
replacing each variable; with ¢. It is readily verified that” satisfies the following properties.

1. P(~1) = p(~1) andP(1) = p(1),

2. |P(t)] < fforallt € [-1,1], and
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3. deg P < degp = d.
4. P has non-constant weight at mast

By combining properties (1) and (4), we additionally sed tha constant tern®(0) has absolute value at
mostw + . We can then verify thaP satisfies the conditions of Lemral 33.

1. The coefficients of each have absolute value at most- g and
2. 1/2 < max,e_11)|P(t)] < 1.

Thus we conclude thaf’ (¢)| = O(d max{log w,log d}) for t € [—1,1]. On the other hand, & = —1 +
2/n, we havePr,. ,, [v = —1"] = (1 — +)" < 1/e, SOP(t) > 1— 2. SinceP(—1) = p(—1) < —1, by
the mean value theorem, there is same[—1, to] whereP’(t) > %. Thus we havel max{log w,log d} =
Q(n), and hencev = 2°4"/9) as long asl = o(n/log? n). O

Finally, we are in a position to prove Corolldryl10, restdtede for the reader’s convenience.

Corollary 10. For eachd = o(n/log* n), there is a read-once DNF satisfyinglV (F, d) = exp (Q ( n/d)).

Proof. Setm = av/nd wherea is a constant to be determined later, andtlet n/m = Q(y/n/d). Let
F = OR{(AND,,,...,AND,,). By LemmaZ32, the inner functioAND,,, has degre@- one-sided non-
constant approximate weight;,, (AND,;,, d) = 28m/d for some constant. Sinced = o(m/ log? m), by
Theoreni® the composed functidhhas degree-approximate weight

W _gt(F,d) = 275+Am/d — o(=5/a+B)\/n/d

Settinga > 5/, we get that this approximate weight is greater thanBy Lemmal20, we have that
W (F,d) > 27t = 2%/n/d), O

7.2 Extending Beigel’'s Lower Bound to Read-Once DNFs

Corollary 11. There is an (explicit) read-once DNF : {—1,1}" — {—1,1} with aéél_z,n/dz (F) =
Q(d).

Proof. Letm = d?,t = n/d?, andf = AND,,. Then Theorerfil1 guarantees that
deg, 5+ (ORy(AND,,, ..., AND,,)) > odeg(f).

By Fact 16, the one-sided approximate degreé isfQ2(,/m). This completes the proof. O

7.3 On the Tightness of Corollarie$ 10 an@ 11

In Section[5.311, we showed that Corollddy 4 is essentiadfiattby exhibiting a nearly-matching upper
bound based on rational approximations. A similar consitacshows that any DNF of top fan-itis

computed by a PTF of degre@(t) and weightexp (O(t)). This construction immediately shows that
Corollary[T0 is tight (up to logarithmic factors) for all> n'/3. Indeed, the DNF for which Corollary[10
demonstrate$V (F,d) > exp(Q(y/n/d)) has top fan-int = /n/d, which is less tham for all d > n'/3,
This construction also reveals a sharp thresholding phenom for the read-once DNFs considered in
Corollaried 10 an@11 that is similar to the one observedHerdepth-three circuit considered in Section
5.3.2.
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However, we can provide an alternative construction thatatestrates the tightness of both Corollaries
10 and 11. Specifically, rather than utilizing rational apqimation techniques, we can construct a PTF for a
read-once DNF by composing a PTF for the €0R gate with low-degree (polynomial, rather than rational)
pointwise approximations to each of the individual term® phbvide this construction because of its power
to explain why the lower bounds of Corollaries 10 11 thlegr particular forms.

Fix any functionf : {-1,1}"* — {-—1,1}, and letp : {—1,1}" — {—1,1} be a polynomial of
degreed and weightw such that|p(z) — f(z)| < 1/t for all x € {—1,1}™. Let F(xy,...,2;) =
ORy(f(x1),-.., f(z¢)). Then for(zy,...,z;) € {—1,1}"1, the identity F(z1,...2;) = sgn(l — ¢ +
S, p(x;)) yields a PTF forF of degree at most and weight at mostw + ¢ + 1.

Recall that Corollary 10 yields a lower bound bf(F, d) = exp (Q( n/d)), whereF is the read-

once DNF with top fan-in roughly = \/n/d and bottom fan-in roughlyn = v/nd. Servedio et al.[[44]
showed that for any > m!/2, there is a polynomiab of degreeD(d) and weighiexp (O(m/d + log t)> =

exp (O ( n/d)) that approximates the functichND,,, to error1/¢2. Hence, as long aé > n'/3, the

polynomiall — ¢ + >"'_ p(x;) is a PTF forF of degreeO(d) and weightexp (O( n/d)), showing that
Corollary[I0 is tight up to logarithmic factors. -

Similarly, recall that Corollarf/ 11 yields a lower bounddafz, .2 (F) = Q(d), whereF is the read-
once DNF with top fart = n/d? and bottom fan-inn = d2. It is well-known that a transformation of the
Chebyshev polynomials yields a polynomjabf degree@(m1/2) and weightexp <O~(ml/2 + log t)) that
approximatesAND,,, to error better than /¢ (see e.g.[[30]). Hencd, — ¢ + >!_, p(z;) is a PTF forF’

of degreeO(d) and weightexp(O(d + logt)) = exp(O(n/d?)) whend < n'/?. The transformation of
Lemmd 20 then shows that Corolldryl 11 is tight up to logarithfactors in this parameter range.

8 Applications

In this section, we detail applications of the results dbescr above to communication complexity, circuit
complexity, and computational learning theory.

8.1 Communication Complexity

Letf: X xY — {—1,1}, whereX andY are finite sets. Consider a two-party communication problem
in which Alice is given an input: € X, Bob is given an inpuy € Y, and their goal is to computg(x, y)
with probability 1/2 + (3 for some biass > 0. Alice and Bob each have access to an arbitrarily long
sequence of private random bits, and the ¢@&P) of a protocol P is the worst-case number of bits they
must exchange over all inputs,y) € X x Y. Babai et al. [[V] defined thBP communicatioomodel to
capture the complexity of computingwith small bias. The PP communication complexity fofdenoted
by PP(f), is the minimum value of'(P) + log(1/5(P)) over all protocolsP that computef with positive
bias.

It is well known [27] that PP communication is essentiallpdtterized by discrepancy: fif: {—1,1}"x

{—=1,1}" = {—1,1}, thenPP(f) = © (log (1/ disc(f)) + log n). It follows immediately that ouexp (—Q(n2/5))

upper bound on the discrepancy of an%tDnctionf implies anQ(n2/%) lower bound on PP¥). The pre-
vious best lower bound on PP) for an AC function f was(n'/3) [1450].
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8.2 Circuit Complexity

Constant-depth circuits of majority gates are known to bipriingly powerful. Most strikingly, Allender

[3] showed that any function in Aecan be computed by a depth three circuit of majority gatesiasigpoly-
nomial size. This prompted Krause and Pudlak [33] to asktkdreevery A® function could be computed
by depthtwo majority gates of polynomial size. This question was resolin the negative by Sherstov
[51]], who exhibited an A® function that cannot be computed even by majority-of-thoés circuits of
sizeexp(n'/%) (later sharpened texp(n'/3) [50]), and independently by Buhrman, Vereshchagin, and de
Wolf [14], who obtained amxp(nl/3) lower bound on the size of majority-of-threshold circuitsrguting

a different ACY function.

It is well-known that a discrepancy upper bound forields a lower bound on the size of majority-of-
threshold circuits computing’ [20,21/38,51], and indeed, the circuit lower bounds_of [BG}51] are all
proved using discrepancy. Through this connection, owréjmncy upper bound of Corolldry 5 sharpens
the previous lower bounds by yielding a depth-four Boolemoud F' of polynomial size such that any

majority-of-threshold circuit computing' requires sizexp (Q(n2/5)).

Corollary 34. There is a depth-four Boolean circulf : {—1,1}" — {—1,1} of sizepoly(n) such that
every majority-of-threshold circuit computirfg has sizexp (Q(nz/ 5)).

8.3 Learning Theory

Our results have a number of consequences in computateenalihg theory. We discuss them below.

Technical Background: The Generalized Winnow Algorithm. The Generalized Winnow algorithm is
one of the most powerful known algorithms for online leagnfB0/36/ 44]. Suppose we are given a concept
classC of functions mapping:.-bit inputs to{—1, 1}, as well as a collection of polynomial-time computable
“feature” functionsF. The Generalized Winnow algorithm learns a concepf iy maintaining as a hy-
pothesis a low-weight linear threshold function of feasure?.

Suppose that each e C has a low-weight linear threshold representation

f(z) =sgn (Z wihi(fﬂ)) ,

hi ceF

where eachw; is an integer, and", |w;| < . Aremarkable property of the Generalized Winnow algorithm
is that its mistake bound depends oldgarithmically on the size of the feature s&t and polynomially on
the weight boundV (here the mistake bound refers to the worst-case numberstdikais an online learning
algorithm makes over any sequence of examples). Meanvitsilajnning time per example is polynomial
in the size of the feature set. Standard techniques can loetoagensform any online learning algorithm
into a PAC learning algorithm whose sample complexity igoprtional to the mistake bound.

PAC Learning ACOvia Generalized Winnow. Valiant famously posed the problem of PAC learning DNF
formulas in his original paper [60] introducing the PAC mbdEhe fastest known algorithm for this prob-
lem is due to Klivans and Servedio. It is based on linear @nwgning, and takes timexp O(n1/3)) [29].

At the core of this algorithm is a fundamental structurabtefor DNFs: Klivans and Servedio showed that
every DNF of sizes can be computed by a polynomial threshold function of degrg€ /3 log s). However,
the weight of the PTF arising in this construction can growhdg-exponentially withn. Klivans and Serve-
dio asked whether it is possible that every polynomial-8&& has a PTF of degre(é(nl/3), and weight
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exp (O(nl/?’)) — an affirmative answer to this question would imply that tren&alized Winnow Algo-

rithm (run over the feature set of all low-degree paritiem) also PAC learn DNFs in timexp ( O(n'/3)).

Such a result would be attractive, as the Generalized Wiralgarithm is substantially simpler than the
linear programming algorithm of Klivans and Servedio.

While we do not resolve the question of Klivans and ServedidNFs, we do resolve it in the negative
for depth-three circuits. In fact, we rule out the posdipilof the Generalized Winnow algorithm PAC
learning depth-three Boolean circuits in tirep (O(n2/5)) regardlessof the underlying feature set. That
is, our lower bound holds even on feature sets that are net&gree parities.

Specifically, Corollary implies the following result. Tpeoof is identical to[[511, Theorem 8.1] and is
omitted for brevity.

Corollary 35. LetC denote the concept class of polynomial-size depth-thregeBo circuits. LetF =
{h1,..., hm : {—1,1}" — {—1,1}} be arbitrary Boolean functions such that evgrg C can be expressed
as f(z) =sgn (3., w;ih;(x)) for some integersy, . .., wy, with [wy| + - - + |wy,| < W. Thenm - W >

exp <Q(n2/5)).

PAC Learning AC9 via Boosting. While anexp (Q(n1/3))-time algorithm is known for PAC learning

polynomial-size DNF formulas, nexp (o(n))-time algorithm is known even for learning polynomial-size
depth-three Boolean circuits. A natural approach to thiblem is as follows. Suppose that every function
f in a concept clas€ can be computed by a PTF (of arbitrary degree) dwen }" with weight at most
W. The well-knowndiscriminator lemmaof Hajnal et al. [[21] implies that undemy distribution, there is
some conjunction (possibly of width(n)) that has correlation at leastW with f. One can then apply an

agnostic learning algorithm for conjunctions (such aSem(O(nl/2)>—time polynomial regression algo-
rithm of Kalai et al. [24]), combined with standard boostieghniques, to PAC-leaiin time polynomial
in max (exp (O(nl/z)) ,W).

Thus, if one could prove asxp(O(n'/?)) upper bound (for PTFs ovéh, 1}™) on the threshold weight
of ACO, one would obtain anxp(O(n'/2))-time algorithm for PAC learning A While ourexp(Q(n?/%))
threshold weight lower bound for Atdoes not rule out this possibility, it does establish newitéitions
for this technique. In particular, our threshold weight ébbound implies that even if faster algorithms for
agnostically learning conjunctions are discovered, thissting-based approach to Iearningqléannot run

in time better tharxp (Q(n2/5)>.

Attribute-Efficient Learning.  Attribute-efficient learning is a clean framework that caps the challeng-
ing and important problem of learning in the presence ofduant information[[1B]. A clas€ of Boolean
functions over{—1, 1}" is said to be attribute-efficiently learnable if there i@y (n)-time online algo-
rithm that learns any € C with mistake bound polynomial in the representation siz¢.ofFor example,
the concept class of read-once DNFs that depen# en n of their input variables is attribute-efficiently
learnable if there is an online learning algorithm for thigss that runs in timgoly(n) per example and
achieves mistake boungbly (k, logn).

Attribute-efficient learning is a challenging problem, andny simple concept classes are not known to
be attribute-efficiently learnable, including decisicstdiand read-once DNFs. The Generalized Winnow al-
gorithm, run over the feature-space of low-degree payitiegks the best progress toward attribute-efficient
learning of these concept classes (see €.d.[[30, 44]). friour work, it was unknown whether this ap-

proach could learn read-once DNFs depending gariables in time:xp (O(n1/3)> per example and with
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mistake boundoly (k,log n), as such a guarantee would hold if every read-once DNF wariables were
computed by a polynomial threshold function of degé@'/?) and weightpoly(n). Corollary[I0 rules
out this possibility in a very strong sense, as it implies ékestence of a read-once DNF that cannot be
computed by any PTF gfoly(n) weight, unless the degree §§n). Similarly, Corollary[# establishes
new limitations on the efficiency of the Generalized Winndgoathm in the context of attribute-efficient
learning of depth-three Boolean circuits.

Acknowledgements.We are grateful to Sasha Sherstov, Rolépalek, Li-Yang Tan, and the anonymous
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A Final Details of the Proof of Theorem[1

A.1 Proof of Claim 21

Let 1 be the distribution orf{—1,1}™)" given byu(zy,...,2;) = [['_, [¢¥(x;)|. Sincey is orthogonal to
the constant polynomial, it has expected value 0, and héwstting(. . ., sgn(¢(z;)), ... ) is distributed

uniformly in {—1, 1} when one sample&:, . .., x;) according tqu. Thus,
> )= D W) =[T@)| +[¥(-1) =1,
(@1,0ym)€({—=1,13m)? 2e{—1,1}¢
proving Eq.[(Z21). O

A.2 Proof of Claim
We prove that the polynomigl defined in Eq.[(24) satisfies E@.{22), reproduced here foramuance.

> C(z1,....x)xs(x1,...,z) =0foreach|S| < d. @)
(1’1,...,xt)€({—1,1}m)t

To prove Eqg.[(2R), notice that sinck is orthogonal on{—1,1}! to constant functions, we have the
Fourier representation

V()= Y U(D)xr()
TC{1,...,t}
T#0
for some realsl(T'). We can thus write

Clrr,.ymy) =20 W(T) [T () [T ().

T#0) ieT igT
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Given a subset C {1,...,t} x {1,...,m} with |S| < d, partitionS = ({1} x S1)U--- U ({t} x S¢)
where eacth; C {1,...,m}. Then

Z C('ml»"'>xt)XS(x1>---7$t)

(x1,..,x¢)E({—1,1}m)"

2tZ¢f<T>H( ) w<wi>xsi<wi>)H< 3 w<asi>><sl<xi>).

T#0) i€T \wie{—1,1}m i¢T \zie{—1,1}m

Since|S| < d, we have thatS;| < d for every indexi € {1,...,t¢}. Thus for each séf, at least one of the
underbraced factors is zero, gs, is orthogonal ta) whenevel.S;| < d.

B Proof of Symmetrization LemmalZ3

We now give a proof of Lemm{a 23, which roughly shows that themgtrization map — p*™ does not
increase the degree pfby too much. The notation in the lemma and proof is defined ti@&2.2.1. We
also use the shorthanrd- z - 7 to denote the boolean vectgifor which g, = o o g, o 7.

Lemma 23. Letm = N -log, R. For z,y € {—1, 1}, writey ~ « if there is a pair of permutations on
[R] and7 on[N] such thaty, = o o g, o 7. Letp : {—1,1}" — R be a real polynomial. Define

PP (@) = Eyalp(y)]-
Thendeg(p™™) < (log, R) deg(p).

The proof proceeds in three steps. In the first step, we perioichange of variables showing that
p(z) can be written as another polynomigk), wheredeg g < degp. Aninputt € {0,1}"V# to the new
polynomialq offers a different representation of a functign: [N] — [R] as follows: the variable;; = 1
if g:(7) = j, andt;; = 0 otherwise.

In the second step, we apply a lemma of Ambainis [4], whiclwshthhatg can be partially symmetrized
to yield a polynomial@) over yet a different set of variables, again without inciegsts degree. This
symmetrization yields a polynomi&) whose input now represents a function in a manner invariadeu
permutations of the function’s domain. Specifically, thputs to the polynomiaf) are now variables;,
wherez; counts the number afe [V] for which some functiony. (i) = j. Notice that ifg,, = g, o 7 for a
permutationr, thenw = z and henc&)(w) = Q(z).

The third and final step is to symmetrize the polynonglabnce again (without increasing its degree) so
that it is invariant under permutations of its input vargi,;. Again interpreting each; as the number of
i for which some functiory, (i) = j, the resulting polynomiad)*¥™ is now invariant under permutations of
both the domairmand codomain of the functiom., .

However, in terms of the original variables the new variables;; are each polynomials of degree
log, R. Therefore, converting the fully symmetrized polynon#l™ back into a polynomiap™™ over x
potentially incurs dog, R factor blow-up in degree.

Proof. Letp : {—1,1}" — R be a polynomial of degre€. Recall that our proof proceeds in three stages.
In the first, we define a new polynomialover a different set of variablesc {0,1}V%, and show that
degq < degp. To this end, define a map : {—1,1} — {0,1}V% by T;;(x) = 1if g.(i) = 7, and
T;j(z) = 0 otherwise. We claim that there is a polynomigl: {0,1}¥* — R of degreed such that
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q¢(T'(z)) = p(x) forall z € {—1,1}"™. To see this, write: as a list of blocks: = (1, ..., zy) where each
block has lengthiog, R, and letx;;, denote the:’'th bit of block z;. Then

rp=1-2 > Ty(=),
Jir=—1

wherejy is thek’th bit of the binary representation gfe [N]. Hence we can set

Q(---atija-“)p('--712 Z tij)"')

Juk=—1

and havey(T'(x)) = p(x), wheredeg ¢ < degp = d.

Recall that we can think of the variablgs themselves as representing functigns[N] — [R] when-
evert is the image of a boolean vector under the rlag hat is, ift = T'(x) for somexz € {—1,1}"™, then
we can define the functiog : [N] — [R] by ¢; = g,. Specifically,g:(¢) is the uniquej wheret;; = 1.

In the second step, we apply a lemma of Ambainis [4] showswieatan symmetrize the polynomiagl
again without increasing its degree.

Lemma 36 ([4], Lemma 3.4) Letq : {0,1}V'® — R be a polynomial of degreé . Then there is a
polynomial@ : {0,1,..., N}¥ — R of degreed such that

Q(- s Y tijr-.) =Eqg(t- )]
1=1

whenevet = T'(z) for somer € {—1,1}". Here,t - 7 is shorthand for the for whichgs = g, o 7.

Applying the lemma yields a polynomigé) such that
Qs Y Tiy(a),...) = Ex[q(T() - 7)] = Exlp(a - 7)].
=1

Foreachy = 1,...,R, letZ;(z) = > 7 | T;;(x). Notice thatZ;(x) counts the number of inpuise [N]
for which g, (i) = j. This implies that for any permutationon the rangér], we also have that, -1 ;) ()
counts the number afe N for which (¢ o g,)(i) = j. Hence for any fixed,

Q(Zaﬂ(l)(x), ceey Zo-fl(R) (x)) = Eﬂ[p(O' A 7T)]

This observation allows us to complete the third step of tlwofp which is symmetrization of the
polynomial . That s, if we let

stm(z) = EO’[Q(’ZO'(l)7 <+ 20(R) )]7

then
QY™ (Z1(z),..., Zr(x)) =Esrp(o - - m)] = p¥™(2).

Notice that since&) is a polynomial of degreé, the symmetrizatiod)*>™ clearly also has degreg To
complete the argument, we need to show that each fungtjgn) is a polynomial of degrelg, R. To see
this, recall thatZ; is a linear combination of the functior§;, so it suffices to show thaf;; has degree
log, R. The functionT;;(x) evaluates td if the blockz; equals to binary representation pfand evaluates
to 0 otherwise. Thus we can write

logy, R

Tyj(x) = R [ Grwa + 1),
k=1
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wherex;;, is thek’th bit of block x;, andjy, is thek’th bit of the binary representation gf This expression
shows thafl}; has degreéog, R, so the polynomiap™™ has degred log, R.
O

C One-Sided Approximate Degree oELEMENT DISTINCTNESS Alternative
Proof of Corollary B

Improving on results of Aaronson and Shi [2], Ambainis [4psled that the EEMENT DISTINCTNESS
problem with small range has approximate degﬂ?&eﬁ/?’). Recall that the EEMENT DISTINCTNESS
problem on input sizen = N log, N, whereN is a power of2, takes as inpuiV blocks of lengthlog, N
and evaluates te-1 if and only if the blocks are distinct. We will show that thesea dual witnessl for
the high approximate degree of EMENT DISTINCTNESShaving one-sided error. Hence, this dual witness
actually demonstrates that EMENT DISTINCTNESShas highone-sidedapproximate degree.

The idea is that any dual witness foLEEMENT DISTINCTNESS can be “symmetrized” to produce a
new dual witnessl that is constant on inputs € 7', whereT' is the set of inputs for which EEMENT
DISTINCTNESSevaluates to true. We then use the fact thas balanced to argue that thatal correlation
of U with ELEMENT DISTINCTNESSIS a constant multiple of the correlation restricted to iisgn7’. Since
¥ has positive correlation with I EMENT DISTINCTNESS it follows that¥ must have the correct sign on
all inputs inT", as desired.

Formally, lety) be a dual witness for the fact thgt= ELEMENT DISTINCTNESS hase-approximate
degreel = Q(m?/?) for some constant. By Theoreni 14,

>, f@p(@) > (58)
ze{-1,1}™
> k@l=1 (59)
ze{-1,1}™
and
> w(x)xs(z) =0 foreach|S| < d. (60)
ze{—-1,1}m
For any permutationr € SV, andx = (z1,...,2x) € {—1,1}™, define
O'(ﬂj‘) = (xo(l)v s 7'1'0'(]\7))'

That is,c acts on{—1, 1} by permuting theV blocks of lengtHog N. Observe that for every permutation
o and everyr € {—1,1}"™,
flo(x)) = f(=). (61)
Now define the symmetrized dual witness
V() = Epesn[t(o(x))].

We will show thatV is a dual witness fof with one-sided error by checking the conditions of Thedrém 1
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First,

Y U(@)f(z) = Epegn Z?/}(U(fﬂ))f(w)]

ze{-1,1}m

= Boesv | D ¥(2)f (x)] by Eq. [61)

> € by (&8),
verifying (4). Condition[(b) is immediate frorh (59). Conidit (G) follows because

Y V(@)xs(@) = Egeon [Z ()Xo (s) (w)]

ze{-1,1}™

whereo (S) = {0 (i) : i € S} and from [&D).

Finally, we check the one-sided error conditibh (7). We ¥iiit show thatl is constant ory ~*(—1).
Let 2* = (x7,...,2}) Wherex] is the binary encoding of. Since there are onlyv distinct strings of
lengthlog N, f(z) = —1ifand only if z = o, (x*) for someo, € S™. Therefore, iff (z) = —1, then

U(x) = Egesn [(0(2))] = Egesn [P((0 0 02)(27))] = ¥(z7),

so W is constant orf ~!(—1).
By condition [4) it holds that

Yo U@ - D> Ta)>e
zef~1(1) zef~1(=1)
and by condition[(b) applied tgg for S = ( it holds that
Yo U@+ > @) =0
zef~1(1) zef~1(-1)
Subtracting the second equation from the first, we conclhde t
-2 > Ya)>e
zef~1(=1)
SinceV is constant orf ~'(—1), this implies that(z) < 0 wheneverr € f~!(—1), proving [7).

D Degree Independent Threshold Weight Bounds via Duality

In this section, we use the dual characterization of thigsh&ight to give a new proof of a version of
Krause’s result translating degrdehreshold weight lower bounds for a functiéhinto degree independent
threshold weight lower bounds for a related functioh Specifically, we prove the lemma

Lemma27. LetF : {—1,1}" — {—1,1} be a Boolean function, and defid& : {—1,1}3" — {—1,1} by
F'(Z1, o Ty YLy ooy Yny 215 -+ 2n) = F (o (i Az) V(28 Ayi)s - ).

Then for every integef > 0,




Proof. By TheoreniIP (conditiori(14)), it suffices to exhibit a diatition 1/ over {—1,1}3" for which

9 1/2
\E(LW)NM/[F/(%% 2)xs(z,y, 2)]| < max { (W(; d)> 72—d/2} forall S C {1,...,3n}.

We construct the distributiop’ as follows. By condition[{1l5) of Theorem]19, there is a pralitsb
distributiony over{—1, 1}" such that

1/2
B F(w)xs (w)]] < <%> for each|S| < d. 62)

Definey (z,y, 2) = 272" u(Sel, (z, y)), whereSel, (x,y) = (..., (Z; Az;) V (zi Ayi), - .. ) selects for each
index in[n] a bit from eitherz or y according tc:. The distributiony’ has a natural interpretation as follows:
it first selects the string uniformly at random from{—1,1}". Next, it sets the values of the variables in
(z,y) that are selected by so that they are distributed according to the distribugiorinally, it sets the
values of the unselected variables(iny) uniformly at random.

Note thaty/ is indeed a probability distribution, as for every strimgs {—1, 1}, there are exactlg?"
strings(z, y, z) for which Sel, (z, y) = w. Moreover, this observation allows us to write

E(x,y,z)Nu’ [F,(l‘, Y, z)XS (l’, Y, Z)] = 2—2n Z F(w)lu’(w) Z Xg(l’, Y, Z).
we{-1,1}" (z,y,2):Sel; (z,y)=w

Write S as the disjoint uniof{1} x S1) U ({2} x S2) U ({3} x S3) whereS}, Sa, S3 correspond to indices
in z,y, z respectively. Then the expectation becomes

9—2n Z XSg(z) Z F(w)l‘(w) Z XSt (x)st (y)

ze{-1,1}" we{-1,1}" (z,y):Sel; (z,y)=w

Let G(z) denote the underbraced sum.

Suppose there is an indéxe Ss that is not contained i, U S;. Then for everyz € {—1,1}",
the stringz* obtained fromz by flipping the bit at index satisfiesys,(z') = —xs,(z). On the other
hand, for any(z,y) € {—1,1}?", if we seta’ = (x1,...,25_1,¥:, Tit1,...,2,) and analogously set
v = (Y1, Yio1,Tir Yit1,- - -, Yn), thenSel,(z,y) = Sel.i(z’,y’). Moreover, because ¢ S; U Sy,
it holds thatys, (z')xs,(v') = xs, (z)xs,(y)- It follows thatG(z) = G(z'), as each ternfz, y) in the
underbraced sum definir@(z) is “matched” by term(z’, /') in the underbraced sum definifg2*). When
combined with the fact thags, (z°) = —xs,(2), we see that the terms corresponding tmd>* in the outer
sum cancel out, and hence the entire outer sum evaluatesoto/de conclude that for the expectation to be
nonzero, we must havg; C S; U S5, and we assume this holds for the remainder of the proof.

Consider anyi € S;. Then we claim thatz(z) = 0 wheneverz; selectsy;, i.e., for anyz such
that z; = —1. This can be seen by another pairing argumentelf (z,y) = w but z; selectsy;, then
Sel, (z%,y) = w as well. Howeveryg, (z) = —xg, (") becausé € Si. This ensures that the innermost
sum is zero and hend&(z) = 0. The analogous statement holds also for amy S, so forG(z) to be
nonzero, it must hold that; = 1 forall « € S; andz; = —1 for all « € S,. Below, we refer to such aas
a “contributing” z, and all other values of as “non-contributing”. In particular, we must hagg N Sy = ()
for z to be contributing.

For any fixed contributing, it holds that

Z XS1 (w)st (y) = 2nXS1U52 (w)
(z,y):Sel (z,y)=w
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Therefore, it holds that

S xs,(2)G()

ze{-1,1}"

<27 )

2:G(2)#0

|]E(Z"y7z)/\.//j/ [F/(ﬂj‘, Y, Z)XS (:L'v Y, Z)” = 2—2n

Z F(w)u(w)XS1US2 (w)

we{-1,1}"

< 9~ 151|=[52]

Z F(w)u(w)XS1USQ (U))

we{-1,1}"

; (63)

where inequality[(63) used the fact th@fz) = 0 for any non-contributing..
Now we consider two cases for the sizef First supposéS| < d, so in particular,S; U Sa| < d.
Then Eq.[(6R) and inequality (b3) implies that

on  \ /2
]Ex ZN/FIQZ',Z/,ZX x,Y,z §<7> .
B ('3, 20x5 0921 < (g
Second, suppose thg| > d. We have argued that &, , .,/ [F'(z,y, 2)xs(z,y, 2)] # 0, thenS3 C
S1 U Ss. Hence, it must be the case tha{| + |S2| > |S|/2 > d/2. Therefore, inequality(63) implies that
E(eye)op [F (2,9, 2)xs(2,y, 2)] < 27%2 This completes the proof.
U
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