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Abstract

We establish a generic form of hardness amplification for theapproximability of constant-depth
Boolean circuits by polynomials. Specifically, we show thatif a Boolean circuit cannot be pointwise
approximated by low-degree polynomials to within constanterror in a certain one-sided sense, then
an OR of disjoint copies of that circuit cannot be pointwise approximated even with very high error.
As our main application, we show that for every sequence of degreesd(n), there is an explicit depth-
three circuitF : {−1, 1}n → {−1, 1} of polynomial-size such that any degree-d polynomial cannot

pointwise approximateF to error better than1 − exp
(
−Ω̃(nd−3/2)

)
. As a consequence of our main

result, we obtain anexp
(
−Ω̃(n2/5)

)
upper bound on the the discrepancy of a function in AC0, and an

exp
(
Ω̃(n2/5)

)
lower bound on the threshold weight of AC0, improving over the previous best results

of exp
(
−Ω(n1/3)

)
andexp

(
Ω(n1/3)

)
respectively.

Our techniques also yield a new lower bound ofΩ
(
n1/2/ log(d−2)/2(n)

)
on the approximate degree

of the AND-OR tree of depthd, which is tight up to polylogarithmic factors for any constant d, as well
as new bounds for read-once DNF formulas. In turn, these results imply new lower bounds on the
communication and circuit complexity of these classes, anddemonstrate strong limitations on existing
PAC learning algorithms.

1 Introduction

Theε-approximate degree of a Boolean functionf : {−1, 1}n → {−1, 1}, denoted̃degε(f), is the mini-
mum degree of a real polynomial that approximatesf to errorε in the ℓ∞ norm. Approximate degree has
pervasive applications in theoretical computer science. For example, lower bounds on approximate degree
underly many tight lower bounds on quantum query complexity(e.g., [2,4,8,28,52]), and have been used to
resolve several long-standing open questions in communication complexity [14,16,35,50,53,54,58,59] (see
the survey paper by Sherstov [47]). Meanwhile, upper boundson approximate degree underly many of the
fastest known learning algorithms, including PAC learningDNF and read-once formulas [6,29], agnostically
learning disjunctions [24], and PAC learning in the presence of irrelevant information [30,44].

Despite the range and importance of these applications, large gaps remain in our understanding of ap-
proximate degree. The approximate degree of anysymmetricBoolean function has been understood since
Paturi’s 1992 paper [41], but once we move beyond symmetric functions, few general results are known.
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In this paper, we perform a careful study of the approximate degree of constant-depth Boolean circuits.
In particular, we establish a generic form of hardness amplification for the pointwise approximation of
small depth circuits by low-degree polynomials: we show that if a Boolean circuitf cannot be pointwise
approximated to within constant error in a certain one-sided sense by polynomials of a given degree, then
the circuitF obtained by taking an OR of disjoint copies off cannot be approximated even with error
exponentially close to 1. Notice that iff is computed by a circuit of polynomial size and constant depth,
then so isF .

Our proof extends a recent line of work [15, 34, 45, 55] that seeks to prove approximate degree lower
bounds by constructing explicitdual polynomials, which are dual solutions to a linear program that captures
the approximate degree of any function. Specifically, we show that given a dual polynomial demonstrating
thatf cannot be approximated to within constant error, we can construct a dual polynomial demonstrating
thatF cannot be approximated even with error exponentially closeto 1.

As the main application of our hardness amplification technique, for anyd > 0 we exhibit an explicit
function F : {−1, 1}n → {−1, 1} computed by a polynomial size circuit of depth three for which any

degree-d polynomial cannot pointwise approximateF to error1 − exp
(
−Ω̃(nd−3/2)

)
. We then use this

result to obtain new bounds on two quantities that play central roles in learning theory, communication com-
plexity, and circuit complexity:discrepancyandthreshold weight. Specifically, we prove a new upper bound

of exp
(
−Ω̃(n2/5)

)
for the discrepancy of a function in AC0, and a new lower bound ofexp

(
Ω̃(n2/5)

)

for the threshold weight of AC0. As a second application, our hardness amplification resultallows us to
resolve, up to polylogarithmic factors, the approximate degree of AND-OR trees of arbitrary constant depth.
Finally, our techniques also yield new lower bounds for read-once DNF formulas.

2 Overview of Results and Techniques

This section provides an overview of our results and the techniques we use to establish them. We defer
detailed proofs to later sections.

2.1 Hardness Amplification

Recall that theε-approximate degree of a Boolean functionf is the minimum degree of a real polynomial
that pointwise approximatesf to errorε. Another fundamental measure of the complexity off is its thresh-
old degree, denoteddeg±(f). The threshold degree off is the least degree of a real polynomial that agrees
in sign withf at all Boolean inputs.

Central to our results is a measure of the complexity of a Boolean function that we callone-sided
approximate degree. This quantity, which we denote bỹodegε(f), is an intermediate complexity measure
that lies betweenε-approximate degree and threshold degree. Unlike approximate degree and threshold
degree, one-sided approximate degree treats inputs inf−1(1) and inputs inf−1(−1) asymmetrically.

More specifically,̃odegε(f) captures the least degree of aone-sided approximationfor f . Here, a one-
sided approximationp for f is a polynomial that approximatesf to error at mostε at all pointsx ∈ f−1(1),
and satisfies the threshold conditionp(x) ≤ −1 + ε at all pointsx ∈ f−1(−1). Notice thatõdegε(f) is

alwaysat mostd̃egε(f), but can be much smaller. Similarly,̃odegε(f) is alwaysat leastdeg±(f), but can
be much larger.

One-sided approximate degree is the complexity measure that we amplify for constant-depth circuits:
given a depthk circuit f onm variables that has one-sided approximate degree greater thand, we show how
to generically transformf into a depthk + 1 circuit F on t ·m variables such thatF cannot be pointwise
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approximated by degreed polynomials even to error1− 2−t.1

Theorem 1. Supposef : {−1, 1}m → {−1, 1} has one-sided approximate degreẽodeg1/2(f) > d. Denote
by F : {−1, 1}m·t → {−1, 1} the block-wise compositionORt(f, . . . , f), whereORt denotes the OR
function ont variables. ThenF cannot be pointwise approximated by degree-d polynomials even to within
error 1− 2−t by degree-d polynomials. That is, the(1− 2−t)-approximate degree ofF is greater thand.

Remark: Theorem 1 demonstrates that̃odeg(f) admits a form of hardness amplification within AC0, which
does not generally hold for the ordinary approximate degree. Indeed, Theorem 1 fails badly if the condition
õdeg1/2(f) > d is replaced with the weaker conditioñdeg1/2(f) > d (in fact, f = ORm is a counter-
example; see the discussion in Section 4 for details).

A dual formulationof one-sided approximate degree was previously exploited by Gavinsky and Sherstov
to separate the multi-party communication versions of NP and co-NP [19], as well as by the current authors
[15] and independently by Sherstov [45] to resolve the approximate degree of the two-level AND-OR tree. In
this paper, we introduce the primal formulation of one-sided approximate degree, which allows us to express
Theorem 1 as a hardness amplification result. We also argue for the importance of one-sided approximate
degree as a Boolean function complexity measure in its own right.

Prior Work on Hardness Amplification for Approximate Degree. For the purposes of this discussion,
we informally consider a hardness amplification result for approximate degree to be any statement of the
following form: Fix two functionsf : {−1, 1}m → {−1, 1} and g : {−1, 1}t → {−1, 1}. Then the
composed functiong(f, . . . , f) : {−1, 1}m·t → {−1, 1} is strictly harder to approximate in theℓ∞ norm
by low-degree polynomials than is the original functionf .

We think of such a result as establishing that application ofthe outer functiong to t disjoint copies
of f amplifies the hardness off . Here we consider polynomial degree to be a resource, and “harder to
approximate” can refer either to the amount of resources required for the approximation, to the error of the
approximation, or to a combination of the two.

Two particular kinds of hardness amplification results for approximate degree have received particular
attention.Direct-sumtheorems focus on amplifying the degree required to obtain an approximation, but do
not focus on amplifying the error. For example, a typical direct-sum theorem identifies conditions onf and
g that guarantee that̃degε(g(f, . . . , f)) ≥ d̃egε(g) · d̃egε(f). In contrast, adirect-producttheorem focuses
on amplifying both the error and the minimum degree requiredto achieve this error. AnXOR lemmais
a special case of either type of theorem where the combining functiong is the XOR function. Ideally, an
XOR lemma of the direct-product form establishes that thereexists a sufficiently small constantδ > 0 such
that d̃eg1−2−δt(XORt(f, . . . , f)) ≥ t · d̃eg1/3(f). That is, an XOR lemma establishes that approximating
the XOR oft disjoint copies off requires at-fold blowup in degree relative tof , even if one allows error
exponentially close to 1.

O’Donnell and Servedio [40] proved an XOR lemma forthreshold degree, establishing that XORt(f, . . . , f)
has threshold degreet times the threshold degree off . In later work, Sherstov [55] proved a direct sum re-
sult for approximate degree that holds whenever the combining functiong has low block-sensitivity. His
techniques also capture O’Donnell and Servedio’s XOR lemmafor threshold degree as a special case. In
[52], Sherstov proved a number of hardness amplification results for approximate degree. Most notably, he
proved an optimal XOR lemma, as well as a direct-sum theorem that holds whenever the combining function
has close to maximal approximate degree (i.e., approximatedegreeΩ(t)). Sherstov used his XOR lemma to
prove direct product theorems for quantum query complexity, and in subsequent work [53], to show direct
product theorems for the multiparty communication of set disjointness.

1Follow-up work by Sherstov [46] has established a lower bound on thethreshold degreeof F . Specifically, he has shown that
there is some constantc such thatdeg±(F ) > min{ct, d}. See Section 2.5 for further discussion of this result.
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Comparison to Prior Work. In this paper, we are interested in establishing approximate degree lower
bounds for constant-depth circuits over the basis{AND,OR,NOT}. For this purpose, it is essential to
consider combining functions (such as OR, see Theorem 1) that are themselves in AC0, ruling out the use
of XOR as a combining function. Our hardness amplification result (Theorem 1) is orthogonal to direct-
sum theorems: direct-sum theorems focus on amplifying degree but not error, while Theorem 1 focuses on
amplifying error but not degree. Curiously, Theorem 1 is nonetheless a critical ingredient in our proof of a
direct-sum type theorem for AND-OR trees of constant depth (Theorem 8).

Proof Idea. As discussed in the introduction, our proof of Theorem 1 relies on a dual characterization
of one-sided approximate degree (cf. Theorem 15). Specifically, for any m-variate Boolean functionf
satisfyingõdeg1/2(f) > d, there exists a dual objectψ : {−1, 1}m → R that witnesses this fact — we refer
to ψ as a “dual polynomial” forf . As we show in Theorem 15,ψ satisfies three important properties: (1)
ψ has high correlation withf , (2) ψ has zero correlation with all polynomials of degree at mostd, and (3)
ψ(x) agrees in sign withf(x) for all x ∈ f−1(−1). We refer to the second property by saying thatψ has
pure high degreed, and we refer to the third property by saying thatψ hasone-sided error.

Our proof proceeds by taking a dual witnessψ to the high one-sided approximate degree off , and a
certain dual witnessΨ for the functionORt, and combining them to obtain a dual witnessζ for the fact that
d̃eg1−2−t(ORt(f, . . . , f)) > d. Our analysis of the combined dual witness crucially exploits two properties:
first, thatψ has one-sided error and second, that the vector whose entries are all equal to−1 has very large
(in fact, maximal) Hamming distance from the unique input inOR−1t (1).

Our method of combining the two dual witnesses was first introduced by Sherstov [55, Theorem 3.3]
and independently by Lee [34]. This method has also been exploited by the present authors in [15] to resolve
the approximate degree of the two-level AND-OR tree, and by Sherstov [52] to prove direct sum and direct
product theorems for polynomial approximation. However, as discussed above, prior work used this method
of combining dual witnesses exclusively to amplify thedegreein the resulting lower bound; in contrast, we
use the combining method in the proof of Theorem 1 to amplify theerror in the resulting lower bound.

From a technical perspective, the primary novelty in the proof of Theorem 1 lies in our choice of an
appropriate (and simple) dual witnessΨ for ORt, and the subsequent analysis of the correlation of the
combined witnessζ with ORt(f, . . . , f). By our choice ofΨ, we are able to show thatζ has correlation with
ORt(f, . . . , f) that isexponentiallyclose to1, yielding a lower bound even on the degree of approximations
with very high error.

2.2 Lower Bounds For AC0

2.2.1 A New One-Sided Approximate Degree Lower Bound for AC0

Our ultimate goal is to use Theorem 1 to construct a functionF in AC0 that is hard to approximate by
low-degree polynomials even with error exponentially close to 1. However, in order to apply Theorem 1, we
must first identify an AC0 functionf such that̃odeg1/2(f) is large.

To this end, we identify fairly general conditions guaranteeing that the one-sided approximate degree
of a function isequal to its approximate degree, up to a logarithmic factor. To express our result, let
[N ] = {1, . . . , N}, and letm,N,R be a triple of positive integers such thatR ≥ N , andm = N · log2R.
In most cases, we will takeR = N . We specifically consider Boolean functionsf on{−1, 1}m that interpret
their inputx as the values of a functiongx mapping[N ] → [R]. That is, we breakx up intoN blocks each
of length log2R, and regard each blockxi as the binary representation ofgx(i). Hence, we think off as
computing somepropertyφf of functionsgx : [N ] → [R]. We say that a propertyφ is symmetricif for all
g : [N ] → [R], all permutationsσ on [R], and all permutationsπ on [N ], it holds thatφ(g) = φ(σ ◦ g ◦ π).
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Theorem 2. Letf : {−1, 1}m → {−1, 1} be a Boolean function corresponding to a symmetric propertyφf
of functionsgx : [N ] → [R]. Suppose that for every pairx, y ∈ f−1(−1), there is a pair of permutationsσ

on [R] andπ on [N ] such thatgx = σ ◦ gy ◦ π. Thenõdegε(f) ≥ 1
log2R

· d̃egε(f) for all ε > 0.

Proof Idea. It is enough to show that any one-sidedε-approximationp to f can be transformed into an
actualε-approximationr to f in a manner that does not increase the degree by too much (i.e., in a manner
guaranteeing thatdeg(r) ≤ (log2R) deg(p)).

Our transformation fromp to r consists of two steps. In the first step, we turnp into a “symmetric”
polynomialpsym(x) := Ey∼x[p(y)] wherey ∼ x if gy = σ ◦ gx ◦ π for some permutationsσ on [R] andπ
on [N ]. It follows from work of Ambainis [4] (see Lemma 23) that the mapp 7→ psym increases the degree
of p by a factor of at mostlog2R. In the second step, we argue that there is an affine transformation r of
psym that is an actualε-approximation tof , completing the construction.

The existence of the affine transformationr of psym follows from two observations: (1) ifp is a one-sided
approximation forf , then so ispsym (this holds becauseφf is symmetric), and (2)psym takes on a constant
valuev on f−1(−1), i.e., psym(x) = v for all x ∈ f−1(−1) (this holds becausex ∼ y for every pair of
inputsx, y ∈ f−1(−1)). These observations imply that even ifpsym is a very poor approximation tof on
f−1(−1), we can still obtain a good pointwise approximationr by applying an affine transformation to the
range ofpsym that mapsv to −1 and moves all values closer to1. Section 5.1 contains the details.

In our primary application of Theorem 2, we letf : {−1, 1}m → {−1, 1} be the ELEMENT DIS-
TINCTNESS function (defined in Section 3). Aaronson and Shi [2] showed that the approximate degree
of ELEMENT DISTINCTNESS is Ω((m/ logm)2/3). ELEMENT DISTINCTNESS is computed by a CNF of
polynomial size, and Aaronson and Shi’s result remains essentially the best-known lower bound for the
approximate degree of a function in AC0. Theorem 2 applies to ELEMENT DISTINCTNESS, yielding the
following corollary.

Corollary 3. Letf : {−1, 1}m → {−1, 1} denote theELEMENT DISTINCTNESSfunction. Theñodeg(f) =
Ω̃(m2/3).

The best known lower bound on the one-sided approximate degree of an AC0 function that followed
from prior work wasΩ(m1/2) (which holds for theAND function [19, 39], cf. Fact 16 in Section 3).
Section 2.5 describes some further implications of Theorem2.

Remark: In an earlier version of this work, we gave a differentdual proof of Corollary 3. Specifically
we showed (cf. Appendix C) that any dual witness for the high approximate degree of ELEMENT DIS-
TINCTNESS can be transformed into a dual witness with one-sided error.This proof in fact shows that
õdeg(f) = d̃eg(f) (i.e. without incurring the loss of a1/ log2R factor as in Theorem 2). However it
remains unclear how to generalize this dual argument to the more general class of properties to which Theo-
rem 2 applies (including the 2-TO-1 property discussed in Section 2.5 below). Theorem 2 therefore provides
an example of a setting in which the primal view of one-sided approximate degree introduced in this work
may be easier to reason about than the dual formulation used in prior work.

2.2.2 Accuracy-Degree Tradeoff Lower Bounds for AC0

By Corollary 3, we can apply Theorem 1 to ELEMENT DISTINCTNESSto obtain a depth-three Boolean cir-
cuitF with t ·m inputs such that̃degε(F ) = Ω̃(m2/3), for ε = 1−2−t. By choosingt andm appropriately,
we obtain a depth-three circuit onn = t ·m variables of sizepoly(n) such that any degree-d polynomial

cannot pointwise approximateF to error better than1− exp
(
−Ω̃(nd−3/2)

)
.
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Reference Discrepancy Bound Circuit Depth
Sherstov [51] exp(−Ω(n1/5)) 3

Buhrman et al. [14] exp(−Ω(n1/3)) 3
Sherstov [50] exp(−Ω(n1/3)) 3

This work exp
(
−Ω̃(n2/5)

)
4

Table 1: Comparison of our new discrepancy bound for AC0 to prior work. The circuit depth column lists
the depth of the circuit used to exhibit the bound.

Corollary 4. For everyd > 0, there is a depth-3 Boolean circuitF : {−1, 1}n → {−1, 1} of size
poly(n) such that any degree-d polynomial cannot pointwise approximateF to error better than1 −
exp

(
−Ω̃(nd−3/2)

)
. In particular, there is a depth-3 circuitF such that any polynomial of degree at most

n2/5 cannot pointwise approximateF to error better than1− exp
(
−Ω̃(n2/5)

)
.

2.2.3 Discrepancy Upper Bound

Discrepancy, defined formally in Section 5.4, is a central quantity in communication complexity and cir-
cuit complexity. For instance, upper bounds on the discrepancy of a functionf immediately yield lower
bounds on the cost of small-bias communication protocols for computingf (Section 8 has details). The first
exponentially small discrepancy upper bounds for AC0 were proved by Burhman et al. [14] and Sherstov
[50, 51], who exhibited constant-depth circuits with discrepancyexp(−Ω(n1/3)). Our results improve the

best-known upper bound toexp
(
−Ω̃(n2/5)

)
.

Our result relies on a powerful technique developed by Sherstov [50], known as the pattern-matrix
method (stated as Theorem 26 in Section 5.4). This techniqueallows one to automatically translate lower
bounds on theε-approximate degree of a Boolean functionF into lower bounds on thediscrepancyof a
related functionF ′ as long asε is exponentially close to one. By applying the pattern-matrix method to
Corollary 4, we obtain the following result.

Corollary 5. There is a depth-4 Boolean circuitF ′ : {−1, 1}n → {−1, 1} with discrepancyexp
(
−Ω̃(n2/5)

)
.

2.2.4 Threshold Weight Lower Bound

A polynomial threshold function(PTF) for a Boolean functionf is a multilinear polynomialp with integer
coefficients that agrees in sign withf on all Boolean inputs. Theweight of an n-variate polynomialp
is the sum of the absolute value of its coefficients. Thedegree-d threshold weightof a Boolean function
f : {−1, 1}n → {−1, 1}, denotedW (f, d), refers to the least weight of a degree-d PTF forf . We letW (f)
denote the quantityW (f, n), i.e., the least weight of any threshold function forf regardless of its degree.
As discussed in Section 8, threshold weight has important applications in learning theory.

Threshold weight is closely related toε-approximate degree whenε is very close to1 (see Lemma 20 in
Section 3.2). This allows us to translate Corollary 4 into a lower bound on the degree-d threshold weight of
AC0.

Corollary 6. For everyd > 0, there is a depth-3 Boolean circuitF : {−1, 1}n → {−1, 1} of sizepoly(n)

such thatW (F, d) ≥ exp
(
Ω̃(nd−3/2)

)
. In particular,W (F, n2/5) = exp

(
Ω̃(n2/5)

)
.

A result of Krause [32] (see Lemma 27 in Section 5.5) allows usto extend our new degree-d threshold
weight lower bound forF into a degree independentthreshold weight lower bound for a related function
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F ′ (we also provide a new and simple proof of Krause’s result based on LP duality, cf. Appendix D). The
previous best lower bound on the threshold weight of AC0 wasexp

(
Ω(n1/3)

)
, due to Krause and Pudlák

[33].

Corollary 7. There is a depth-4 Boolean circuitF ′ : {−1, 1}n → {−1, 1} satisfyingW (F ′) = exp
(
Ω̃(n2/5)

)
.

Moreover, while the threshold weight bound of Corollary 7 isstated for polynomial threshold functions
over{−1, 1}n, we show that the same threshold weight lower bound also holds for polynomials over{0, 1}n.

2.3 Approximate Degree Lower Bounds for AND-OR Trees

Thed-level AND-OR tree onn variables is a function described by a read-once circuit of depthd consisting
of alternating layers of AND gates and OR gates. We assume forsimplicity that all gates have fan-inn1/d.
For example, the two-level AND-OR tree is a read-once CNF in which all gates have fan-inn1/2.

Until recently, the approximate degree of AND-OR trees of depth two or greater had resisted charac-
terization, despite 19 years of attention [4, 15, 22, 39, 45,55, 57]. The case of of depth two was reposed as
a challenge problem by Aaronson in 2008 [1], as it captured the limitations of existing lower bound tech-
niques. This case was resolved last year by the current authors [15], and independently by Sherstov [45],
who proved a lower bound ofΩ(

√
n), matching an upper bound of Høyer, Mosca, and de Wolf [22]. How-

ever, the case of depth three or greater remained open. To ourknowledge, the best known lower bound for
d ≥ 3 wasΩ(n1/4+1/2d), which follows by combining the depth-two lower bound [15, 45] with an earlier
direct-sum theorem of Sherstov [55, Theorem 3.1].

By combining the techniques of our earlier work [15] with ourhardness amplification result (Theorem

1), we improve this lower bound toΩ
(
n1/2/ log(d−2)/2(n)

)
for any constantd ≥ 2. A line of work on

quantum query algorithms [6,22,43] established an upper bound ofO(n1/2) for AND-OR trees of any depth,
demonstrating that our result is optimal up to polylogarithmic factors (see Section 6 for details).

Theorem 8. LetAND-ORd,n denote thed-level AND-OR tree onn variables. Theñdeg(AND-ORd,n) =

Ω
(
n1/2/ log(d−2)/2 n

)
for any constantd > 0.

Proof Idea. To introduce our proof technique, we first describe the method used in [15] to construct an
optimal dual polynomial in the cased = 2, and we identify why this method breaks down when trying to
extend to the cased = 3. We then explain how to use our hardness amplification result(Theorem 1) to
construct a different dual polynomial that does extend to the cased = 3.

LetM denote the fan-in of all gates inOR-AND2,M2. In our earlier work [15], we constructed a dual
polynomial forOR-AND2,M2 as follows.2 By Fact 16 there is a dual polynomialγ1 witnessing the fact that

õdeg(ANDM ) = Ω
(
M1/2

)
, and a dual polynomialγ2 witnessing the fact that̃deg(ORM ) = Ω

(
M1/2

)
.

We then combined the dual witnessesγ1 andγ2, using the same “combining” technique as in the proof of
Theorem 1, to obtain a dual witnessγ3 : {−1, 1}M2 → R for the high approximate degree ofOR-AND2,M2.

Recall that we say a dual witness haspure high degreed if it has zero correlation with every polynomial
of degree at mostd. It followed from earlier work [55] thatγ3 has pure high degree equal to the product of
the pure high degree ofγ1 and the pure high degree ofγ2, yielding anΩ(M) lower bound on the pure high
degree ofγ3. The new ingredient of the analysis in [15] was to use the one-sided error of the “inner” dual
witnessγ1 to argue thatγ3 also had good correlation withOR-AND2,M2.

2We actually constructed a dual polynomial forAND-OR2,M2 , but the analysis for the case ofOR-AND2,M2 is entirely
analogous.
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Extending to Depth Three. Let M = n1/3 denote the fan-in of all gates inAND-OR3,n. In construct-
ing a dual witness forAND-OR3,n = ANDM (OR-AND2,M2 , . . . ,OR-AND2,M2), it is natural to try
the following approach. Letγ4 be a dual polynomial witnessing the fact that the approximate degree of
ANDM = Ω(

√
M). Then we can combineγ3 andγ4 in the same manner as above to obtain a dual function

γ5.
The difficulty in establishing thatγ5 is a dual witness to the high approximate degree ofAND-OR3,n

is in showing thatγ5 has good correlation withAND-OR3. In our earlier work, we showedγ3 has large
correlation withOR-AND2,n by exploiting the fact that the inner dual witnessγ1 had one-sided error, i.e.,
γ1(y) agrees in sign withANDM whenevery ∈ AND−1M (−1) . However,γ3 itself does not satisfy an
analogous property: there are inputsxi ∈ OR-AND−1

2,M2(−1) such thatγ3(xi) > 0, and there are inputs

xi ∈ OR-AND−1
2,M2(1) such thatγ3(xi) < 0.

To circumvent this issue, we use a different inner dual witnessγ′3 in place ofγ3. Our construction of
γ′3 utilizes our hardness amplification analysis to achieve thefollowing: while γ′3 has error “on both sides”,
the error from the “wrong side” is very small. The hardness amplification step causesγ′3 to have pure
high degree that is lower than that of the dual witnessγ3 constructed in [15] by a

√
log n factor. However,

the hardness amplification step permits us to prove the desired lower bound on the correlation ofγ5 with
AND-OR3,n. The proof for the general case, which is quite technical, can be found in Section 6.

2.4 Lower Bounds for Read-Once DNFs and CNFs

Our techniques also yield new lower bounds on the approximate degree and degree-d threshold weight of
read-once DNF and CNF formulas. Before stating our results,we discuss relevant prior work.

In their seminal work on perceptrons, Minsky and Papert exhibited a read-once DNFf : {−1, 1}n →
{−1, 1} with threshold degreeΩ(n1/3) [37]. That is, a real polynomial requires degreeΩ(n1/3) just to agree
with f in sign. However, to our knowledge no non-trivial lower bound on the degree-d thresholdweightof
read-once DNFs was known for anyd = ω(n1/3).

In an influential result, Beigel [11] exhibited a polynomial-size (read-many) DNF called ODD-MAX-
BIT satisfying the following: there is some constantδ > 0 such that̃deg

1−2−δn/d2 (ODD-MAX-BIT ) > d,

and hence alsoW (ODD-MAX-BIT , d) = exp
(
Ω(n/d2)

)
(see Section 3.2). Motivated by applications in

computational learning theory (see Section 8), Klivans andServedio showed that Beigel’s lower bound is
essentially tight ford < n1/3 [30]. Very recently, Servedio, Tan, and Thaler showed an alternative lower
bound on the degree-d threshold weight of ODD-MAX-BIT. Specifically, they showedthatW (ODD-

MAX-BIT , d) = exp
(
Ω
(√

n/d
))

[44]. The lower bound of Servedio et al. improves over Beigel’s for

anyd > n1/3, and is essentially tight in this regime (i.e., whend > n1/3).
While ODD-MAX-BIT is a relatively simple DNF (in fact, it is adecision list), it is not a read-once

DNF. Our results extend the lower bounds of Servedio et al. and Beigel from decision lists to read-once
DNFs and CNFs. In the statement of the results below, we restrict ourselves to DNFs, as the case of CNFs
is entirely analogous.

2.4.1 Extending the Lower Bound of Servedio et al. to Read-Once DNFs

In order to extend the lower bound of Servedio et al. to read-once DNFs and CNFs, we extend our hardness
amplification techniques from one-sided approximate degree to a new quantity we calldegree-d one-sided
non-constant approximate weight. This quantity captures the leastL1 weight(excluding the constant term)
of a polynomial of degree at mostd that is a one-sided approximation off . We denote the degree-d one-
sided approximate weight of a Boolean functionf byW ∗ε (f, d), whereε is an error parameter.

We prove the following analog of Theorem 1.
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Theorem 9. Fix d > 0. Let f : {−1, 1}m → {−1, 1}, and suppose thatW ∗3/4(f, d) > w. Let F :

{−1, 1}m·t → {−1, 1} denote the functionORt(f, . . . , f). Then any degree-d polynomial that approxi-
matesF to within error 1− 2−t requires weight2−5tw.

Adapting a proof of Servedio et al., we can show thatW ∗3/4(ANDm, d) ≥ 2Ω(m/d). By applying The-
orem 9 withf = ANDm, along with standard manipulations, we are able to extend the lower bound of
Servedio et al. to read-once CNFs and DNFs.

Corollary 10. For eachd = o(n/ log4 n), there is a read-once DNFF satisfyingW (F, d) = exp
(
Ω
(√

n/d
))

.

In particular, there is a read-once DNF that cannot be computed by any PTF ofpoly(n) weight, unless
the degree is̃Ω(n).

2.4.2 Extending Beigel’s Lower Bound to Read-Once DNFs

It is known thatõdeg(ANDm) = Ω(m1/2) (cf. Fact 16). By applying Theorem 1 withf = ANDm, we
obtain the following result.

Corollary 11. There is an (explicit) read-once DNFF : {−1, 1}n → {−1, 1} with d̃eg
1−2−n/d2 (F ) =

Ω(d).

We remark that ford < n1/3, Corollary 11 is subsumed by Minsky and Papert’s seminal result that
exhibited a read-once DNFF with threshold degreeΩ(n1/3) [37]. However, ford > n1/3, it is not subsumed
by Minsky and Papert’s result, nor by Corollary 10. Indeed, Corollary 10 yields a lower bound on the degree-
d threshold weight of read-once DNFs, but not a lower bound on theapproximate-degreeof read-once DNFs
(see Section 3.2 for further discussion on the separation between these quantities).

2.5 Discussion

2.5.1 Subsequent Work by Sherstov

In 1969, Minsky and Papert gave a lower bound ofΩ(n1/3) on the threshold degree of an explicit read-once
DNF formula. Klivans and Servedio [29] proved their lower bound to be tight within a logarithmic factor
for DNFs of polynomial size, but it remained a well-known open question to give a threshold degree lower
bound ofΩ(n1/3+δ) for a function in AC0; the only progress prior to our work was due to O’Donnell and
Servedio [40], who established anΩ(n1/3 logk n) lower bound for any constantk > 0.

Let f denote the ELEMENT DISTINCTNESS function onn3/5 variables. In an earlier version of this
work, we conjectured that the functionF = ORn2/5(f, . . . , f) appearing in Corollary 4 in fact satisfies
deg±(f) = Ω̃(n2/5), and observed that this would yield the first polynomial improvement on Minsky and
Papert’s lower bound. Sherstov [46, Theorem 7.1] has recently proved our conjecture. His proof, short and
elegant, extends our dual witness construction in the proofof Theorem 1 to establish a different form of
hardness amplification, from one-sided approximate degreeto threshold degree. Specifically, he shows that
if a Boolean functionf has one-sided approximate degreed, then the block-wise compositionORt(f, . . . , f)
has threshold degree at leastmin{ct, d} for some constantc. This result is incomparable to our Theorem 1
whent ≤ d, but whent≫ d, Sherstov’s result is a substantial strengthening of Theorem 1.

In the same work, Sherstov has also proven a much stronger andmore difficult result: for anyk > 2, he
gives a read-once formula of depthk with threshold degreeΩ

(
n(k−1)/(2k−1)

)
. Notice that for any constant

δ > 0, this yields an AC0 function with threshold degreeΩ(n1/2−δ). This in turn yields an improvement
of our discrepancy upper bound (Corollary 5) for AC0 to exp(−Ω(n1/2−δ)), and of our threshold weight
lower bound (Corollary 7) toexp(Ω(n1/2−δ)).
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2.5.2 Subsequent Work by Kanade and Thaler

Existing applications of one-sided approximate degree [15, 19, 45, 46] have all been of a negative nature
(proving communication and circuit lower bounds, establishing limitations on existing PAC learning algo-
rithms, etc.). Kanade and Thaler [25] have recently identified a positive (algorithmic) application of one-
sided approximate degree. Specifically, they show that one-sided approximate degree upper bounds imply
fast algorithms in the reliable agnostic learning framework of Kalai et al. [23]. This framework captures
learning tasks in which one type of error (such as false negative errors) is costlier than other types. Kanade
and Thaler use this result to give the first sub-exponential time algorithms for distribution-independent reli-
able learning of several fundamental concept classes.

In light of these developments, we are optimistic that the notion of one-sided approximate degree will
continue to enable progress on questions within the analysis of Boolean functions and computational com-
plexity theory.

2.5.3 Future Directions

Beame and Machmouchi [9] established anΩ(n/ log n) lower bound on the quantum query complexity of
a specific functionf : {−1, 1}n → {−1, 1} in AC0. The previous best lower bound wasΩ((n/ log n)2/3),
which held for the ELEMENT DISTINCTNESSfunction [2].

Beame and Machmouchi’s lower bound applies to the 2-TO-1 function, which is computed by depth-
three circuit of polynomial size. This function interpretsits input as a list ofN numbers from a range of
sizeR ≥ N , and evaluates to−1 if and only if exactlyN/2 numbers appear in the list, each with frequency
exactly 2. They pose as an open question the problem of resolving the approximate degree of 2-TO-13 (recall
that the approximate degree off is a lower bound on the quantum query complexity off , but polynomial
separations between approximate degree and quantum query complexity are known [5]).

For simplicity, we focus on the case whereR = N . We observe that Theorem 2 applies to the 2-TO-1
function, revealing that its one-sided approximate degreeis almost equal to its approximate degree.

Corollary 12. Let f : {−1, 1}m → {−1, 1} denote the2-TO-1 function onm variables. For anyε > 0,

õdegε(f) ≥ d̃egε(f)/ logm.

Combining Corollary 12 and the recent result [46, Theorem 7.1] allows us to transform anyapproximate
degreelower bound for the 2-TO-1 function into athreshold degreelower bound for a related depth-four
circuit.

Corollary 13. Let f : {−1, 1}m → {−1, 1} denote the2-TO-1 function onm variables, and letd =

õdeg(f) ≥ d̃eg(f)/ logm. Letn = m · d, and defineF : {−1, 1}n → {−1, 1} via F = ORd(f, . . . , f).
Thendeg±(F ) = Ω(d). In particular, if d̃eg(f) = Ω(m/ logm), thendeg±(F ) = Ω

(
n1/2/ log n

)
.

Thus, establishing a quasilinear lower bound on the approximate degree of 2-TO-1 would immediately
yield a functionF computable by a depth-four circuit of polynomial size with threshold degreẽΩ(n1/2), a
polynomial improvement over Sherstov’sΩ(n(k−1)/(2k−1)) bound for any constant depthk. Even a lower
bound ofΩ(m3/4+δ) for some positive constantδ on the approximate degree of the 2-TO-1 function would
yield a depth four circuit with threshold degreeΩ(n3/7+δ

′
) for someδ′ > 0. This would constitute a

polynomial improvement over the current best lower bound ofΩ(n3/7) for depth 4, and would additionally
imply improved lower bounds on the threshold weight and discrepancy of depth five circuits.

3Technically speaking, they ask about the 2-TO-1-VS-ALMOST-2-TO-1 function, which is a promise variant of the 2-TO-1
function.
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While the best known lower bound on the approximate degree ofthe 2-TO-1 function onm variables is
currentlyΩ((m/ logm)2/3) (this can be derived by reduction to ELEMENT DISTINCTNESS), we conjecture
that its approximate degree is in factΩ(m/ logm), and interpret Beame and Machmouchi’s quantum query
lower bound as providing mild evidence in favor of this conjecture.

2.6 Paper Roadmap

Section 3 establishes terminology, introduces our main technique based on LP-duality, and proves essential
technical lemmas. Section 4 establishes our central hardness amplification result for one-sided approximate
degree (Theorem 1). Section 5 establishes our new one-sidedapproximate degree lower bound for AC0

(Theorem 2, Corollary 3), and combines this with Theorem 1 toobtain our new lower bounds on “accuracy
vs. degree” tradeoffs for pointwise approximating AC0 by polynomials (Corollary 4). It then proves our
new discrepancy upper bound for an AC0 function (Corollary 5) and our new threshold weight lower bound
for AC0 (Corollaries 6 and 7). Section 6 proves our new approximate degree lower bound for AND-OR
trees (Theorem 8). Section 7 proves our new lower bounds for read-once DNFs (Theorem 9, Corollary 10,
and Corollary 11). Section 8 highlights several applications of these results to communication complexity,
circuit lower bounds, and learning theory.

3 Preliminaries

We work with Boolean functionsf : {−1, 1}n → {−1, 1} under the standard convention that 1 corresponds
to logical false, and−1 corresponds to logical true. For a real-valued functionr : {−1, 1}n → R, we let
‖r‖∞ = maxx∈{−1,1}n |r(x)| denote theℓ∞ norm of r. We let ORn and ANDn denote the OR function
and AND function onn variables respectively. Definẽsgn(t) = −1 if t ≤ 0 and 1 otherwise. For a set
S ⊆ [n] = {1, . . . , n}, letχS(x) :=

∏
i∈S xi denote the parity function over variables indexed byS.

We now define the notions of approximate degree, approximateweight, threshold degree, threshold
weight, and their one-sided variants.

3.1 Polynomial Approximations and their Dual Characterizations

3.1.1 Approximate Degree

Theε-approximate degree of a functionf : {−1, 1}n → {−1, 1}, denoted̃degε(f), is the minimum (total)
degree of any real polynomialp such that‖p − f‖∞ ≤ ε, i.e., |p(x) − f(x)| ≤ ε for all x ∈ {−1, 1}n.
We used̃eg(f) to denotẽdeg1/3(f), and use this to refer to theapproximate degreeof a function without

qualification. The choice of1/3 is arbitrary, as̃deg(f) is related tõdegε(f) by a constant factor for any
constantε ∈ (0, 1).

Given a Boolean functionf , let p be a real polynomial that minimizes‖p− f‖∞ among all polynomials
of degree at mostd. Since we work overx ∈ {−1, 1}n, we may assume without loss of generality thatp
is multilinear with the representationp(x) =

∑
|S|≤d cSχS(x) where the coefficientscS are real numbers.

Thenp is an optimum of the following linear program.

min ε

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for eachx ∈ {−1, 1}n
cS ∈ R for each|S| ≤ d
ε ≥ 0
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The dual LP is as follows.

max
∑

x∈{−1,1}n φ(x)f(x)
such that

∑
x∈{−1,1}n |φ(x)| = 1∑
x∈{−1,1}n φ(x)χS(x) = 0 for each|S| ≤ d

φ(x) ∈ R for eachx ∈ {−1, 1}n

Strong LP-duality thus yields the following well-known dual characterization of approximate degree (cf.
[50]).

Theorem 14. Letf : {−1, 1}n → {−1, 1} be a Boolean function. Theñdegε(f) > d if and only if there is
a polynomialφ : {−1, 1}n → R such that

∑

x∈{−1,1}n
f(x)φ(x) > ε, (1)

∑

x∈{−1,1}n
|φ(x)| = 1, (2)

and ∑

x∈{−1,1}n
φ(x)χS(x) = 0 for each|S| ≤ d. (3)

If φ satisfies Eq. (3), we sayφ haspure high degreed. We refer to any feasible solutionφ to the dual LP
as adual polynomialfor f .

3.1.2 One-Sided Approximate Degree

We introduce a relaxed notion of the approximate degree off which we call the one-sidedε-approximate
degree, denoted bỹodegε(f). This is the least degree of a real polynomialp with that is anε-one-sided
approximationto f , meaning

1. |p(x)− 1| ≤ ε for all x ∈ f−1(1).

2. p(x) ≤ −1 + ε for all x ∈ f−1(−1).

That is, we requirep to be very accurate on inputs inf−1(1), but only require “one-sided accuracy” on

inputs inf−1(−1). We useõdeg(f) to denoteõdeg1/3(f), and refer to this quantity without qualification
as theone-sided approximate degreeof f .

The primal and dual LPs change in a simple but crucial way if welook at one-sided approximate degree
rather than approximate degree. Letp(x) =

∑
|S|≤d cSχS(x) be a polynomial of degreed for which the

ε-one-sided approximate degree off is attained. Thenp is an optimum of the following linear program.

min ε

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for eachx ∈ f−1(1)
∑
|S|≤d cSχS(x) ≤ −1 + ε for eachx ∈ f−1(−1)

cS ∈ R for each|S| ≤ d
ε ≥ 0

The dual LP is as follows.
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max
∑

x∈{−1,1}n φ(x)f(x)
such that

∑
x∈{−1,1}n |φ(x)| = 1∑
x∈{−1,1}n φ(x)χS(x) = 0 for each|S| ≤ d

φ(x) ≤ 0 for eachx ∈ f−1(−1)
φ(x) ∈ R for eachx ∈ {−1, 1}n

We again appeal to strong LP-duality for the following dual characterization of one-sided approximate
degree.

Theorem 15. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Theñodegε(f) > d if and only if there
is a polynomialφ : {−1, 1}n → R such that

∑

x∈{−1,1}n
f(x)φ(x) > ε, (4)

∑

x∈{−1,1}n
|φ(x)| = 1, (5)

∑

x∈{−1,1}n
φ(x)χS(x) = 0 for each|S| ≤ d, (6)

and
φ(x) ≤ 0 for eachx ∈ f−1(−1). (7)

Observe that a feasible solutionφ to this dual LP is a feasible solution to the dual LP for approximate
degree, with the additional constraint thatφ(x) agrees in sign withf(x) wheneverx ∈ f−1(−1). We refer
to any such feasible solutionφ as a dual polynomial forf with one-sided error. Dual polynomials with one-
sided error have recently played an important role in resolving open problems in communication complexity
[19] and resolving the approximate degree of the two-level AND-OR tree [15,45]. They will play a critical
role in our proof of Theorem 1 as well.

Prior work using the dual formulation of one-sided approximate degree exploited the fact that the AND
function has one-sided approximate degree equal to its ordinary approximate degree [15, 19, 45]. This fact
also plays an important role in the applications of our hardness amplification technique to AND-OR trees
(Section 6) and to read-once DNF formulas (Section 7).

Fact 16.
õdeg(ANDm) = d̃eg(ANDm) = Ω(

√
m).

Fact 16 can be seen by observing that Nisan and Szegedy’s proof that d̃eg(ANDm) = Ω(
√
m) in

fact extends to one-sided approximate degree [39]. Alternatively, it can be directly shown that any dual
witness (as defined in Theorem 14) for the fact that̃deg(ANDm) = Ω(

√
m) must have one-sided error (cf.

[19, Theorem 5.1]).

3.1.3 Approximate Weight

We define thedegree-d ε-approximate weightof f , Wε(f, d), to be the minimum weight of a degree-d
polynomial that approximatesf pointwise to errorε. Recall that the weight of a polynomialp is theL1

norm of its coefficients. If̃degε(f) > d, we defineWε(f, d) = ∞.
For a fixed error parameterε and degreed, the degree-d ε-approximate weight of a functionf is captured

by the following optimization problem.
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min
∑
|S|≤d |cS |

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for eachx ∈ {−1, 1}n
cS ∈ R for each|S| ≤ d

A standard substitution of each term|cS | in the objective with an auxiliary non-negative variablec′S , as
well as the addition of the constraintscS ≤ c′S and−cS ≤ c′S shows that this is in fact a linear program.
The dual LP is as follows.

max
∑

x∈{−1,1}n φ(x)f(x)− ε
∑

x∈{−1,1}n |φ(x)|
such that

∣∣∣
∑

x∈{−1,1}n φ(x)χS(x)
∣∣∣ ≤ 1 for each|S| ≤ d

φ(x) ∈ R for eachx ∈ {−1, 1}n

We thus obtain the following duality theorem.

Theorem 17. Let f : {−1, 1}n → {−1, 1} be a Boolean function. ThenWε(f, d) > w if and only if there
is a polynomialφ : {−1, 1}n → R such that

∑

x∈{−1,1}n
f(x)φ(x)− ε

∑

x∈{−1,1}n
|φ(x)| > w, (8)

∣∣∣∣∣∣

∑

x∈{−1,1}n
φ(x)χS(x)

∣∣∣∣∣∣
≤ 1 for each|S| ≤ d. (9)

3.1.4 One-Sided Non-Constant Approximate Weight

To derive our new lower bound on the degree-d threshold weight of read-once DNFs (Corollary 10), we
need the following technical variation on approximate weight. Given a polynomialp(x) =

∑
S cSχS(x),

define thenon-constant weightof p to be theL1 norm of its coefficients excluding the constant term, i.e.,∑
S 6=∅ |cS |. We then define thedegree-d one-sided non-constantε-approximate weightof f , denoted by

W ∗ε (f, d) to be the minimum non-constant weight of anε-one-sided approximation tof . Linear program-
ming duality yields the following characterization ofW ∗ε (f, d).

Theorem 18. Let f : {−1, 1}n → {−1, 1} be a Boolean function. ThenW ∗ε (f, d) > w if and only if there
is a polynomialφ : {−1, 1}n → R such that

∑

x∈{−1,1}n
f(x)φ(x)− ε

∑

x∈{−1,1}n
|φ(x)| > w, (10)

∣∣∣∣∣∣

∑

x∈{−1,1}n
φ(x)χS(x)

∣∣∣∣∣∣
≤ 1 for each0 < |S| ≤ d, (11)

∑

x∈{−1,1}n
φ(x) = 0, (12)

φ(x) ≤ 0 for eachx ∈ f−1(−1). (13)
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3.1.5 Threshold Degree and Threshold Weight

We say a polynomialp(x) =
∑

S cSχS(x) with integer coefficients is a polynomial threshold function
(PTF) for a Boolean functionf if p sign-representsf at all Boolean inputs, i.e., iff(x)p(x) > 0 for all
x ∈ {−1, 1}n. Thethreshold degreeof f , deg±(f), is the minimum degree of a PTF forf .

Thethreshold weightW (f) is the minimum weight of any PTF forf . Observe that this definition is only
meaningful because the coefficients of any PTF forf are required to be integers, as any positive constant
multiple of a PTF forf also sign-representsf . More generally, it is of interest to study the tradeoff between
the weight and degree necessary for PTF representations. Tothis end, we define thedegree-d threshold
weightW (f, d) to be the minimum weight of a degree-d PTF forf . If deg±(f) > d, defineW (f, d) = ∞.

While threshold weight is naturally captured by anintegerprogram rather than a linear program, it still
admits an important dual characterization, obtained by combining results of Freund [18] and Hajnal et al.
[21] (see also [20,50]).

Theorem 19. Let f : {−1, 1}n → {−1, 1} and fix an integerd ≥ deg±(f). Then for every probability
distributionµ on{−1, 1}n,

|Ex∼µ[f(x)χS(x)]| ≥
1

W (f, d)
for each|S| ≤ d. (14)

Moreover, there exists a distributionµ for which

|Ex∼µ[f(x)χS(x)]| ≤
(

2n

W (f, d)

)1/2

for each|S| ≤ d. (15)

3.2 Relating Degree-d Threshold Weight to High-Error Approximations

In this paper, we will often need to translate lower bounds oñdegε(f) for some functionf with ε very
close to 1 into lower bounds on the degree-d threshold weight off . This is possible because degree-d PTFs
of weightw are closely related to degree-d pointwise approximations with error1 − 1/w. In fact, these
notions are essentially equivalent whenw ≥

(
n
d

)
[50]. The relationships we will need are formalized in the

following lemma.

Lemma 20. Letf : {−1, 1}n → {−1, 1} be a Boolean function, and letw > 0. Then (1)⇒ (2) ⇒ (3).

(1) d̃eg1− 1

w
(f) > d.

(2) W1− 1

w
(f, d) > 1.

(3) W (f, d) > w.

Lemma 20 implies that a PTF of degreed and weightw can be transformed into(1−1/w)-approximation
of degreed. Indeed, the proof will go by way of such a transformation.

Proof. Clearly (1) implies (2), sinceW1− 1

w
(f, d) = ∞ whend̃eg1− 1

w
(f) > d. To show that (2) implies (3),

suppose there is a PTFp for f having weightw and degreed. Sincep has integer coefficients and is nonzero
on Boolean inputs,|p(x)| ≥ 1 on{−1, 1}n. Moreover,|p(x)| ≤ w by the weight bound, so the polynomial
1
wp(x) is a(1− 1

w )-approximation tof with weight1.

Remark: We stress that the converse of Lemma 20 fails badly whenw ≪
(
n
d

)
. For example, we show in

Corollary 10 that for anyd > 0 there exists a read-once DNFF satisfyingW (F, d) ≥ exp
(√

n/d
)

. In

particular, this yields an exponential lower bound on the degree-d threshold weight ofF for anyd = n1−δ,
with δ > 0 a constant. Yet it follows from a result of Sherstov [48] that̃deg1/3(F ) = O(n1/2) for any
read-once DNFF .
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4 Hardness Amplification for Approximate Degree

In this section, we show how to generically transform a circuit f with one-sided approximate degreed into
a circuitF with ε-approximate degreed for ε = 1− 2−t. That is, whilef cannot be approximated to error
1/2 by degreed polynomials,F cannot even be approximated to error1 − 2−t by polynomials of the same
degree.

Theorem 1. Let f : {−1, 1}m → {−1, 1} be a function withõdeg1/2(f) > d. Let F : {−1, 1}mt →
{−1, 1} denote the functionORt(f, . . . , f). Thend̃eg1−2−t(F ) > d.

We remark that it is necessary that theone-sidedapproximated degree off is large, rather than that
just the approximate degree off is large. Theorem 1 is easily seen to be false with one-sided approximate
degree replaced by approximate degree. Consider for example the case wheref = ORm. ThenF =
ORt(ORm, . . . ,ORm) = ORmt. Sinced̃eg(ORm) = Ω(

√
m), applying Theorem 1 with̃deg in place of

õdeg would say that̃deg1−2−t(ORmt) = Ω(
√
mt). Yet the polynomialq(y) = 1

mt(1/2 −
∑t

i=1

∑m
j=1 yij)

demonstrates that̃deg1− 1

2mt
(ORmt) = 1 for all values oft. However, Theorem 1 does not apply because

the one-sided approximate degree off = ORm is constant.

Proof. Letψ be a dual polynomial forf with one-sided error whose existence is guaranteed by the assump-
tion thatõdeg1/2(f) > d. By Theorem 15,ψ satisfies:

∑

x∈{−1,1}m
ψ(x)f(x) > 1/2, (16)

∑

x∈{−1,1}m
|ψ(x)| = 1, (17)

∑

x∈{−1,1}m
ψ(x)χS(x) = 0 for each|S| ≤ d and (18)

ψ(x) ≤ 0 for eachx ∈ f−1(−1). (19)

We will construct a dual solutionζ that witnesses the fact that̃deg1−2−t(F ) > d. Specifically,ζ must
satisfy the three conditions of Theorem 14:

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt) > 1− 2−t. (20)

∑

(x1,...,xt)∈({−1,1}m)t

|ζ(x1, . . . , xt)| = 1. (21)

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt) = 0 for each|S| ≤ d. (22)

The construction ofζ is as follows. Let1 denote the all-ones vector. LetΨ : {−1, 1}t → {−1, 1} be
defined such thatΨ(1) = 1/2, Ψ(−1) = −1/2, andΨ(x) = 0 for all otherx. Notice that

∑

(x1,...,xt)∈{−1,1}t
Ψ(x1, . . . , xt) = 0 (23)
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We defineζ : ({−1, 1}m)t → R by

ζ(x1, . . . , xt) := 2tΨ(. . . , s̃gn(ψ(xi)), . . . )
t∏

i=1

|ψ(xi)|, (24)

wherexi = (xi,1, . . . , xi,m).
Eq. (24) combines dual functionsΨ andψ to obtain a dual witnessζ in exactly the same manner as in the

works of Sherstov [55, Theorem 3.3] and Lee [34]. The analysis in these works implies without modification
thatζ satisfies Equations Eq. (21) and Eq. (22). That is, these works show

Claim 21. ∑

(x1,...,xt)∈({−1,1}m)t

|ζ(x1, . . . , xt)| = 1.

Claim 22. ∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt) = 0 for each|S| ≤ d.

We provide this analysis in Appendix A for completeness, andhere focus on arguing that (20) holds. As
we remarked earlier, the properties we exploit to show this are (1) thatψ has one-sided error and (2) that the
the vector−1 has Hamming distancet from the (unique) input inOR−1t (1).

We now prove that (20) holds. Letµ be the distribution on({−1, 1}m)t given byµ(x1, . . . , xt) =∏t
i=1 |ψ(xi)|. Sinceψ is orthogonal to the constant polynomial, it has expected value 0, and hence the

string(. . . , s̃gn(ψ(xi)), . . . ) is distributed uniformly in{−1, 1}t when one samples(x1, . . . , xt) according
to µ. Observe that ∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt)

= 2tEµ[Ψ(. . . , s̃gn(ψ(xi)), . . . )ORt (. . . , f(xi), . . . )]

=
∑

z∈{−1,1}t
Ψ(z)


 ∑

(x1,...,xt)∈({−1,1}m)t

ORt (. . . , f(xi), . . . )µ(x1, . . . , xt|z)


 , (25)

whereµ(x|z) denotes the probability ofx underµ, conditioned on(. . . , s̃gn(ψ(xi)), . . . ) = z.
Let A1 = {x ∈ {−1, 1}m : ψ(x) > 0, f(x) = −1} andA−1 = {x ∈ {−1, 1}m : ψ(x) <

0, f(x) = 1}, soA1 ∪ A−1 is the set of all inputsx where the sign ofψ(x) disagrees withf(x). No-
tice that

∑
x∈A1∪A−1

|ψ(x)| < 1/4 becauseψ has correlation1/2 with f .
Let λ be the distribution on{−1, 1}m defined byλ(x) = |ψ(x)|. Then for any bitb,

Pr
x∼λ

[f(x) 6= s̃gn(ψ(x))|s̃gn(ψ(x)) = b] = 2
∑

x∈Ab

|ψ(x)|.

Therefore, as noted in [55], for any givenz ∈ {−1, 1}t, the following two random variables are identically
distributed:

• The string(. . . , f(xi), . . . ) when one chooses(. . . , xi, . . . ) from the conditional distributionµ(·|z).

• The string(. . . , yizi, . . . ), wherey ∈ {−1, 1}t is a random string whoseith bit independently takes
on value−1 with probability2

∑
x∈Azi

|ψ(x)| < 1/2.
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Thus, Expression (25) equals

∑

z∈{−1,1}t
Ψ(z) · E[ORt(. . . , yizi, . . . )], (26)

wherey ∈ {−1, 1}t is a random string whoseith bit independently takes on value−1 with probability
2
∑

x∈Azi
|ψ(x)| < 1/2. We first argue that the term corresponding toz = 1 contributesΨ(z) = 1/2

to Expression (26). By Eq. (19), iff(x) = −1, thenψ(x) ≤ 0. This implies thatA1 is empty; that is,
if s̃gn(ψ(x)) = 1, then it must be the case thatf(x) = 1. Therefore, forz = 1, theyi’s are all1 with
probability 1, and henceEy[ORt (. . . , yizi, . . . )] = ORt (1) = 1. Thus the term corresponding toz = 1

contributesΨ(z)ORt(z) = 1/2 to Expression (26) as claimed.
All z 6∈ {1,−1} are given zero weight byΨ and hence contribute nothing to the sum. All that remains is

to show that the contribution of the termz = −1 to the sum is12(1− 2−t). Since eachyi = 1 independently
with probability at least1/2, andORt(. . . ,−yi, . . . ) = −1 as long as there is at least oneyi 6= −1, we
conclude thatE[ORt(. . . , yizi, . . . )] ≥ 1 − 2−t+1. It follows that the term corresponding toz = −1

contributes at least12(1− 2−t+1) to the sum. Thus,

∑

z∈{−1,1}t
Ψ(z) · E[ORt(. . . , yizi, . . . )] ≥

1

2
+

1

2
(1− 2−t+1) = 1− 2−t.

This completes the proof.

Remark: Since the setA1 within the proof of Theorem 1 is empty, the “combined” dual witnessζ con-
structed in the proof in fact has one-sided error. Thus, the proof establishes that̃odeg1−2−t(F ) > d, which

is a stronger conclusion than thẽdeg1−2−t(F ) > d bound appearing in the theorem statement. We chose
to state Theorem 1 as an approximate degree lower bound, rather than as a one-sided approximate degree
lower bound, for easier comparison with prior work on approximate degree.

5 Lower Bounds for AC0

In this section, we establish a new lower bound on the one-sided approximate degree of AC0. Combining
this lower bound with Theorem 1, we establish new lower bounds on accuracy vs. degree tradeoffs for AC0.
This in turn yields a new upper bound on the discrepancy, and anew lower bound on the threshold weight
of AC0.

5.1 The One-Sided Approximate Degree of Symmetric Properties

We identify a fairly general criterion under which the one-sided approximate degree of a Boolean function is
equal to its approximate degree. This criterion applies to many functions previously studied in the literature,
including theAND function, the ELEMENT DISTINCTNESSand COLLISION functions [2,4], and the 2-TO-
1 function [9]. Our result applies to Boolean functions corresponding tosymmetric properties; we refer the
reader to Section 2.2.1 for the relevant notation and definitions.

Theorem 2. Letf : {−1, 1}m → {−1, 1} be a Boolean function corresponding to a symmetric propertyφf
of functionsgx : [N ] → [R]. Suppose that for every pairx, y ∈ f−1(−1), there is a pair of permutationsσ

on [R] andπ on [N ] such thatgx = σ ◦ gy ◦ π. Thenõdegε(f) ≥ 1
log2R

· d̃egε(f) for all ε > 0.
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Proof. Supposẽodegε(f) = d. Let p be any degree-d one-sided approximation tof with error ε. As
described in the proof overview in Section 2.2.1, we show howto transformp into an actualε-approximation
r for f such thatdeg r ≤ (log2R) deg p. Our transformation fromp to r consists of two steps.

In the first step, we turnp into a “symmetric” polynomialpsym(x) defined below. The following sym-
metrization lemma shows that the mapp 7→ psym increases the degree ofp by at most a factor oflog2R.

Lemma 23. Letm = N · log2R. For x, y ∈ {−1, 1}m, write y ∼ x if there is a pair of permutationsσ on
[R] andπ on [N ] such thatgy = σ ◦ gx ◦ π. Letp : {−1, 1}m → R be a real polynomial. Define

psym(x) = Ey∼x[p(y)].

Thendeg(psym) ≤ (log2R) deg(p).

The proof of Lemma 23 exploits a result of Ambainis [4] and appears in Appendix B.

We now turn to the second step of our transformation, in whichwe identify an affine transformationr
of psym that is an actualε-approximation tof . To this end, we make two further observations about the
polynomialpsym.

Claim 24. If φf is a symmetric property andp is anε-one-sided approximation tof , thenpsym is also an
ε-one-sided approximation tof .

Claim 25. LetS ⊆ {−1, 1}m. If x ∼ y for every pairx, y ∈ S, thenpsym is constant onS.

We first show how these claims together imply the theorem. By Claim 24, psym is an ε-one-sided
approximation tof . By Claim 25,psym is constant on the set of inputsf−1(−1), where it takes some value
v ≤ −1 + ε. If v ≥ −1− ε, thenpsym is itself anε-approximation tof and we are done. Otherwise, define
the polynomial

r(x) = 1 +
2(psym(x)− 1)

|v − 1| .

Thenr(x) = −1 for all x ∈ f−1(−1). Moreover, since|v − 1| ≥ 2, we haver(x) ∈ [1 − ε, 1 + ε] for all
x ∈ f−1(1). Thusr is aε-approximation tof .

We now proceed to prove Claims 24 and 25.

Proof of Claim 24.Suppose thatφf is a symmetric property and thatp is anε-one-sided approximation to
f . Thenp(x) ∈ [1 − ε, 1 + ε] for all x ∈ f−1(1), andp(x) ≤ −1 + ε for all x ∈ f−1(−1). We focus on
some fixedx ∈ f−1(1); handling inputs inf−1(−1) is entirely analogous. Sinceφf is symmetric, we have
y ∈ f−1(1) whenevery ∼ x. Therefore,p(y) ∈ [1− ε, 1 + ε] whenevery ∼ x, so

psym(x) = Ey∼x[p(y)] ∈ [1− ε, 1 + ε].

A similar argument holds forx ∈ f−1(−1), sopsym is anε-one-sided approximation tof .

Proof of Claim 25.Fix a setS ⊆ {−1, 1}m, and supposex ∼ y for everyx, y ∈ S. Fix somex∗ ∈ S, and
let x ∈ S be arbitrary. It suffices to show thatpsym(x) = psym(x∗). Writeσ · x · π for the valuey for which
gy = σ ◦ gx ◦ π. Letσx, πx be a pair of permutations wherex = σx · x∗ · πx. Note that the mapσ 7→ σ ◦ σx
is a bijection from the symmetric group over[R] to itself; similarly the mapπ 7→ πx ◦ π is a bijection from
the symmetric group over[N ] to itself. Hence, it holds that

Ey∼x[p(y)] = Eσ,π[p(σ · x · π)]
= Eσ,π[p((σ ◦ σx) · x∗ · (πx ◦ π))]
= Eσ,π[p(σ · x∗ · π)]
= Ey∼x∗ [p(y)].
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Thus we havepsym(x) = psym(x∗), showing thatpsym is constant onS.

The proof of these claims concludes the proof of Theorem 2.

5.2 The One-Sided Approximate Degree of AC0

Prior to our work, the best lower bound on the one-sided approximate degree of an AC0 function onm
variables wasΩ(

√
m) attained by theANDm function (Fact 16). However, to obtain stronger lower bounds

for AC0 via our hardness amplification technique, we need a constant-depth circuit with polynomially larger
one-sided approximate degree. We now exhibit a depth-two circuit having one-sided approximate degree
Ω̃(m2/3). Let N andR be positive integers such thatN ≥ R andR is a power of 2. We define the
ELEMENT DISTINCTNESS function with rangeR as follows. The function takesm = N log2R bits as
input, and interprets its input asN blocks (x1, . . . , xN ) with each block consisting oflog2R bits. Each
block is interpreted as a number in the range[R], and the function evaluates to TRUE if and only if allN
numbers are distinct.

It is straightforward to check that forR = poly(N), the ELEMENT DISTINCTNESSfunction with range
R is computed by a CNF formula of polynomial size. Indeed, the function evaluates to TRUE if and only if
there is no numberK ∈ [R] for which there is a pair of distinct indicesi, j ∈ [N ] such thatxi = xj = K.
Thus, the following natural CNF computes ELEMENT DISTINCTNESS (noting that for any fixedK, the
inner formula is computed by a bitwise OR):

f(x1, . . . , xN ) =

R∧

K=1

∧

i 6=j
(xi 6= K) ∨ (xj 6= K).

Aaronson and Shi [2] showed that whenR > 3N/2, the approximate degree of ELEMENT DISTINCT-
NESSisΩ(N2/3). Ambainis [4] extended the lower bound to the “small-range”case whereR = N . For the
remainder of the paper, we will use the term ELEMENT DISTINCTNESSwithout qualification to refer to the
small-range case.

In the language of properties of functions, the propertyφED determines whether a function is one-to-one.
That is,φED(g) = 1 if and only if the functiong : [N ] → [R] is injective. Note thatφED is a symmetric
property, since injectivity is preserved under permutations of a function’s domain and range. Furthermore,
it is straightforward to verify that ELEMENT DISTINCTNESSsatisfies the hypothesis of Theorem 2: for any
two inputsx, y corresponding to one-to-one functionsgx, gy : [N ] → [R], there exist permutationsσ, π
such thatgy = σ ◦ gx ◦ π. Thus, Theorem 2 implies that the one-sided approximate degree of ELEMENT

DISTINCTNESS isΩ(N2/3/ logR).
In a prior version of this work, we gave a different proof of this fact for the small-range caseN = R

by manipulating a dual witness for the high approximate degree of ELEMENT DISTINCTNESS. We provide
this alternative argument in Appendix C. In fact, in the small-range case, the fact the propertyφED holds
for exactly one input function up to permutationof the domain onlyallows us to prove a stronger one-
sided approximate degree lower bound ofΩ(N2/3) (i.e, without the loss of alogR factor that arises from
symmetrizing over the range in the proof of Theorem 2).

Corollary 3. Letf : {−1, 1}m → {−1, 1} denote theELEMENT DISTINCTNESSfunction. Theñodeg(f) =
Ω̃(m2/3).

5.3 Accuracy vs. Degree Tradeoffs for AC0

We are now in a position to prove our new lower bound on “accuracy vs. degree” tradeoffs for pointwise
approximating AC0 functions by polynomials.
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Corollary 4. For everyd > 0, there is a depth-3 Boolean circuitF : {−1, 1}n → {−1, 1} of size
poly(n) such that any degree-d polynomial cannot pointwise approximateF to error better than1 −
exp

(
−Ω̃(nd−3/2)

)
. In particular, there is a depth-3 circuitF such that any polynomial of degree at most

n2/5 cannot pointwise approximateF to error better than1− exp
(
−Ω̃(n2/5)

)
.

Proof. Let t = n/d3/2, andm = d3/2. DefineF = ORt(f, . . . , f) wheref : {−1, 1}m → {−1, 1}
computes the ELEMENT DISTINCTNESSproblem. The discussion in Section 5.2 implies thatf is computed
by a depth-2 circuit, and thatf has one-sided approximate degreeΩ̃(m2/3). The claim now follows by
Theorem 1.

5.3.1 On the Tightness of Theorem 1 and Corollary 4

We now argue that the approximate degree lower bound proved in Theorem 1 is essentially tight. In particu-
lar, we show that the functionF for which Corollary 4 yields a(1− exp(−Ω̃(n2/5))-error lower bound for
approximating polynomials of degreen2/5 actually admits a(1 − exp(−Õ(n2/5))-approximating polyno-
mial of degreeÕ(n2/5).

Our nearly-matching upper bound makes use of a well-known paradigm for constructing low-weight
PTFs (and hence, by Lemma 20, low-accuracy pointwise approximations) for composed functions by way
of rational approximations(see e.g. [12,49]). Supposef : {−1, 1}m → {−1, 1} is pointwise approximated
by a rational function in the sense that for everyx ∈ {−1, 1}m,

∣∣∣∣f(x)−
p(x)

q(x)

∣∣∣∣ <
1

t
,

wherep, q are polynomials of degreed and weightw andq(x) > 0 on {−1, 1}m. Then observe that the
block composition

ORt(f(x1), . . . , f(xt)) = sgn(1− t+ f(x1) + · · ·+ f(xt)) = sgn

(
1− t+

p(x1)

q(x1)
+ . . .

p(xt)

q(xt)

)
.

Multiplying
(
1− t+ p(x1)

q(x1)
+ . . . p(xt)q(xt)

)
by the positive quantityq(x1)·· · · ·q(xt) and clearing denominators

yields a PTF for the composed function of degreetd and weight at mostwt(m+ tw).
We now construct a rational approximation forf = ELEMENT DISTINCTNESSwith the desired prop-

erties. Recall from Section 5.2 that ELEMENT DISTINCTNESS onm variables has a CNF representation
where the topAND gate has fan-ins := O(m3) and eachOR gate has fan-inO(logm). It is easy to check
thatANDs : {−1, 1}s → {−1, 1} admits the rational approximation

ts− 1 + t
∑s

i=1 xi
ts+ 1 + t

∑s
i=1 xi

with error 1/t, degreed = 1, and weightw = O(st). Moreover, each bottomOR gate in the CNF can
be computed exactly by a degreeO(logm) polynomial with weightO(1). Composing these constructions
yields a rational approximation for ELEMENT DISTINCTNESS with error 1/t, degreed = O(logm) =
O(log t) and weightO(st) = poly(t). Therefore,F has a PTF of degreẽO(t) and weightexp(Õ(t)).
By the construction of Lemma 20,F also has a(1 − exp(−Õ(t)))-approximation of degreẽO(t). When
t = n2/5, we obtain a(1− exp(−Õ(n2/5))-approximating polynomial of degreẽO(n2/5) for F as claimed.
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5.3.2 A Sharp Threshold in Accuracy-Degree Tradeoffs

The rational approximations developed in the previous section, combined with the lower bound of Theo-
rem 1 and Corollary 4, reveal a “sharp threshold” in the degree required to approximate a particular func-
tion F within a given error parameter. Recall that Theorem 1 and Corollary 4 yield a lower bound of
d = Ω(m2/3/ logm) on theε-approximate degree ofF = ORt(f, . . . , f), wheref is the ELEMENT DIS-
TINCTNESSfunction onm variables andε = 1−2−t. In the following discussion, consider anyt = d1−Ω(1).

If our goal is to approximateF to within error (1 − exp(−Õ(t))), then the rational approximation
techniques described in the preceding section yield an approximating polynomial of degreẽO(t). On the
other hand, if we desire even slightly better error of1− 2−t, then our accuracy-degree tradeoff lower bound
of Theorem 1 shows that we require degreed = ω(t). That is, if we demand error that is slightly better than
1− exp(−Õ(t)), there is an asymptotic jump from̃O(t) toΩ(d) in the required degree.

5.4 Discrepancy of AC0

In this section we prove our new exponentially small upper bound on the discrepancy of a function in
AC0. Consider a Boolean functionf : X × Y → {−1, 1}, and letM (f) be its communication matrix
M (f) = [f(x, y)]x∈X,y∈Y . A combinatorial rectangle ofX × Y is a set of the formA × B with A ⊆ X
andB ⊆ Y . For a distributionµ overX × Y , the discrepancy off with respect toµ is defined to be the
maximum over all rectanglesR of thebiasof f onR. That is:

discµ(f) = max
R

∣∣∣∣∣∣

∑

(x,y)∈R
µ(x, y)f(x, y)

∣∣∣∣∣∣
.

The discrepancy off , disc(f) is defined to beminµ discµ(f).

Sherstov’s pattern matrix method [50] shows how to generically transform an AC0 function with high
threshold degree or high threshold weight into another AC0 function with low discrepancy.

Theorem 26([50], adapted from Corollary 1.2 and Theorem 7.3). LetF : {−1, 1}n → {−1, 1} be given,
and define the communication problemF ′ : {−1, 1}4n × {−1, 1}4n → {−1, 1} by

F ′(x, y) = F (. . . ,∨4
j=1(xi,j ∧ yi,j), . . . ).

Then for every integerd ≥ 0,

disc(F ′)2 ≤ max

{
2n

W (F, d− 1)
, 2−d

}
.

We apply this theorem to the functionF : {−1, 1}n → {−1, 1} of Corollary 4. This function has
ε-approximate degreen2/5 for ε = 1 − 2−Ω̃(n2/5), and hence by by Lemma 20 it holds thatW (f, n2/5) =

2Ω̃(n2/5). We thus obtain our new discrepancy upper bound for AC0 as stated in Corollary 5, restated here
for the reader’s convenience.

Corollary 5. There is a depth-4 Boolean circuitF ′ : {−1, 1}n → {−1, 1} with discrepancyexp
(
−Ω̃(n2/5)

)
.

5.5 Threshold Weight of AC0

Combing Lemma 20 with Corollary 4 yields Corollary 6, restated here for the reader’s convenience.
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Corollary 6. For everyd > 0, there is a depth-3 Boolean circuitF : {−1, 1}n → {−1, 1} of sizepoly(n)

such thatW (F, d) ≥ exp
(
Ω̃(nd−3/2)

)
. In particular,W (F, n2/5) = exp

(
Ω̃(n2/5)

)
.

A result of Krause [32] allows us to extend our new degree-d threshold weight lower bound for AC0

into an exp
(
Ω̃
(
n2/5

))
degree independentthreshold weight lower bound for a related functionF ′. In

Lemma 27 below, we give a slight modification of Krause’s original result that is cleaner to apply, and
asymptotically recovers Krause’s result when the weights under consideration are superpolynomially large.
Our restatement admits a new and simple proof based on LP duality that we present in Appendix D.

Lemma 27. LetF : {−1, 1}n → {−1, 1} be a Boolean function, and defineF ′ : {−1, 1}3n → {−1, 1} by

F ′(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) := F (. . . , (z̄i ∧ xi) ∨ (zi ∧ yi), . . . ).

Then for every integerd ≥ 0,

W (F ′)2 ≥ min

{
W (F, d)

2n
, 2d

}
.

Combining Corollary 6 and Lemma 27 yields Corollary 7. This improves over the previous best thresh-
old weight lower bound for AC0, which wasexp

(
Ω(n1/3)

)
[33].

Corollary 7. There is a depth-4 Boolean circuitF ′ : {−1, 1}n → {−1, 1} satisfyingW (F ′) = exp
(
Ω̃(n2/5)

)
.

Proof. LetF be the circuit of Corollary 4 and letF ′ be the depth-four circuit obtained by applying Lemma
27 toF . Let d = n2/5/ logc n for a sufficiently large constantc. Then Corollary 6 implies thatW (F, d) ≥
2n2d, and henceW (F ′) ≥ 2d/2 = 2Ω̃(n2/5) by Lemma 27.

Remark: While the threshold weight bound of Corollary 7 is stated forpolynomial threshold functions over
{−1, 1}n (i.e., for polynomials that are integer linear combinations of parities), the same threshold weight
lower bound also holds for polynomials over{0, 1}n, or equivalently, for integer linear combinations of
conjunctions. This can be seen as follows.

Given a setS ⊆ [n], letANDS : {−1, 1}n → {−1, 1} denote the AND function restricted to variables
in S. Given a sign-representationp =

∑
S cS ANDS for F of weightw, let

∑
S p̂(S)χS denote the Fourier

representation ofp. It is easy to check that theL1-norm of the Fourier coefficients of each conjunction
ANDS is at most3, so the weight of the Fourier expansion ofp is w′ :=

∑
S |p̂(S)| ≤ 3w. However, we

cannot simply conclude thatw/3 ≥ w′ ≥W (f) because the coefficientŝp(S) are not necessarily integers.
Nonetheless, note that|p(x)| ≥ 1 for all x ∈ {−1, 1}n, sincep has integer coefficients. That is,p is a

sign-representation forf over{−1, 1}n of weightw′ and with margin at least 1. It follows by Theorem 19

thatexp
(
Ω̃(n2/5)

)
=W (f) ≤ 2n(w′)2 = poly(n,w). We conclude thatw = exp

(
Ω̃(n2/5)

)
as desired.

The same argument shows that all of our lower bounds on degree-d threshold weight proved in this paper
hold for PTFs over{0, 1}n, in addition to PTFs over{−1, 1}n.

6 Lower Bounds for AND-OR Trees

Thed-level AND-OR tree (respectively, OR-AND tree) onn variables is a function described by a read-once
circuit of depthd consisting of alternating layers of AND gates and OR gates, with the root gate being an
AND gate (respectively, an OR gate). We assume throughout this section that all gates have fan-inn1/d;
for example, the two-level AND-OR tree is a read-once CNF in which all gates have fan-inn1/2. The
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assumption on the fan-in is not essential to our analysis in this section, which in fact applies to any read-
once Boolean circuit such that all gates at any given layer have the same fan-in. We will letAND-ORd,n
(respectively,OR-ANDd,n) denote thed-level AND-OR tree (respectively, OR-AND tree) onn variables.

The current authors [15], and independently Sherstov [45],resolved the approximate degree ofAND-OR2,n

by proving an optimalΩ(n1/2) lower bound in this case. However, the techniques of [15, 45]break down
for the case of depth three or greater; to the best of our knowledge, the best lower bound that follows from
prior work isΩ(n1/4+1/2d), which can be derived by combining the depth-two lower bound[15,45] with an
earlier direct-sum theorem of Sherstov [55, Theorem 3.1].

In this section, we extend the methods of our prior work [15] to prove anΩ
(
n1/2/ log(d−2)/2 n

)
lower

bound on the approximate degree ofAND-ORd,n for any constantd > 0.
Up to alog(d−2)/2 n factor, this matches an upper bound ofO(n1/2) which was established for AND-OR

trees of any depth via a line of work on quantum query algorithms [6, 22, 43]. Specifically, Høyer, Mosca,
and De Wolf [22] proved an upper bound ofO(cd−1n1/2) for some constantc on the approximate degree of
any depth-d AND-OR tree in which all gates at any given layer have the samefan-in. Subsequent work by

Ambainis et al. [6] established an upper bound ofn1/22O(
√
logn) for any depth, and further refinements by

Reichardt culminated in anO(n1/2) upper bound for any depth [43]. A remarkable result of Sherstov [48],
on making polynomials robust to noisy inputs, yields a very different proof of Høyer, Mosca, and De Wolf’s
O(cd−1n1/2) upper bound.

Theorem 8. LetAND-ORd,n denote thed-level AND-OR tree onn variables. Theñdeg(AND-ORd,n) =

Ω
(
n1/2/ log(d−2)/2 n

)
for any constantd > 0.

Proof. We begin by proving the claimed lower bound forAND-OR3,n before explaining how to extend the
argument toAND-ORd,n for an arbitrary depthd > 0.

Notation. There will be a total of seven intermediate dual witnesses that arise in our construction of a
dual witnessψ7 for AND-OR3,n. We will denote these seven dual witnesses asψ1, . . . , ψ7. LetM = n1/3

denote the fan-in of all gates inAND-OR3,n. Our goal is to construct a dual witnessψ7 to demonstrate that

d̃eg(AND-OR3,n) = Ω
(
n1/2/ log1/2 n

)
.

To this end, letψ6 be a dual polynomial witnessing the fact that̃odeg.99(ANDM ) = Ω(
√
M). By

Theorem 14, there is somed6 = Ω(
√
M ) such thatψ6 satisfies:

∑

a∈{−1,1}M
ψ6(a)ANDM (a) > .99, (27)

∑

a∈{−1,1}M
|ψ6(a)| = 1, (28)

∑

a∈{−1,1}M
ψ6(a)χS(a) = 0 for each|S| ≤ d6 and (29)

ψ6(−1) ≤ 0. (30)

As stated in the proof outline (Section 2.3), we are ultimately going to construct a functionψ5 :
{−1, 1}M2 → R that serves as a dual witness to the high approximate degree of OR-AND2,M2 while
having “almost no error on the wrong side”. More formally, wewill show
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Claim 28. There exists a dual witnessψ5 for the fact that the0.98-approximate degree ofOR-AND2,M2 is at

leastΩ(M/
√
log n) with the following property. IfA−1 = {z ∈ {−1, 1}M2

: ψ5(z) < 0 and OR-AND2,M2(z) =
1}, then ∑

z∈A−1

|ψ5(z)| ≤ n−2.

We will then define our final dual witnessψ7 via

ψ7(x1, . . . , xM ) := 2Mψ6(. . . , s̃gn(ψ5(xi)), . . . )

M∏

i=1

|ψ5(xi)|, (31)

wherexi = (xi,1, . . . , xi,M2).
We now prove the existence ofψ5 (Claim 28) before returning to the analysis of the combined dual

witnessψ7.

Proof of Claim 28.As discussed in the introduction, the construction ofψ5 combines our hardness amplifi-
cation technique (Theorem 1) with the technique of combining dual witnesses in our earlier work [15].

Construction of ψ5. Consider the functionOR-AND2,M2. Let t = 2 log n. We view the root OR gate as an
OR of ORs, where the top OR has fan-inM/t and the bottom OR gates each have fan-int. Thus, we are now
thinking of the two-level OR-AND tree as a three-level circuit, where the top two levels consist of OR gates,
and the bottom level consists of AND gates. Consider the function F = ORt(ANDM , . . . ,ANDM ), which
allows us to writeOR-AND2,M2 = ORM/t(F, . . . , F ). By our hardness amplification technique, there is
a dual witnessψ3 for the high one-sided approximate degree ofF , even with error inverse polynomially
close to1. We will constructψ5 by combiningψ3 with a dual witnessψ4 for the high approximate degree
of ORM/t.

In more detail, applying Theorem 1 to theANDM function (see Fact 16) yields a dual witnessψ3

demonstrating that there is somed3 = Ω(
√
M) such that̃odeg1−2−t(F ) ≥ d3 (see the Remark following

the proof of Theorem 1). For the case of depthd = 3, we may useψ3 as a black box. However, to enable
induction in the case of generald, we recall that the dual witnessψ3 was defined via:

ψ3(b1, . . . , bt) := 2tψ2(. . . , s̃gn(ψ1(bi)), . . . )
M∏

i=1

|ψ1(bi)|,

wherebi = (bi,1, . . . , bi,M ), ψ1 was a dual witness to the high one-sided approximate degree of ANDM ,
andψ2 was defined such thatψ2(1) = 1/2, ψ2(−1) = −1/2, andψ2 evaluates to 0 for all other inputs in
{−1, 1}t.

By Theorem 15 the dual witnessψ3 satisfies:

∑

b∈{−1,1}t·M
ψ3(b)F (b) > 1− 2−t = 1− n−2, (32)

∑

b∈{−1,1}t·M
|ψ3(b)| = 1, (33)

∑

b∈{−1,1}t·M
ψ3(b)χS(b) = 0 for each|S| ≤ d3 and (34)

ψ3(b) ≤ 0 for eachb ∈ F−1(−1). (35)

25



Now letψ4 denote a dual witness to the fact that̃deg.99(ORM/t) = Ω(
√
M/t). By Fact 16, this dual

witness has one-sided error, but on the side opposite from the one we used to definẽodeg. Thus there is
somed4 = Ω(

√
M/t) such that the following equations hold:

∑

w∈{−1,1}M/t

ψ4(w)ORM/t(w) > .99, (36)

∑

w∈{−1,1}M/t

|ψ4(w)| = 1, (37)

∑

w∈{−1,1}M/t

ψ4(w)χS(w) = 0 for each|S| ≤ d4 and (38)

ψ4(1) ≥ 0. (39)

Finally, we combine the dual witnessesψ4 andψ3 to obtain the desired functionψ5:

ψ5(z1, . . . , zM/t) := 2M/tψ4(. . . , s̃gn(ψ3(zi)), . . . )

M/t∏

i=1

|ψ3(zi)|, (40)

wherezi = (zi,1, . . . , zi,t·M ).

Analysis ofψ5. The analysis in [15] immediately implies thatψ5 hasL1-norm equal to 1, has pure high
degree at leastd3 · d4 = Ω

(
M/

√
t
)
= Ω

(
M/

√
log n

)
, and that the correlation ofψ5 with OR-AND2,M2

is at least.99− 2−t ≥ .98. What remains is to show thatψ5 has “almost no error on the wrong side”. Recall
thatA−1 = {z ∈ {−1, 1}M2

: ψ5(z) < 0,OR-AND2,M2(z) = 1}. We will show that:

∑

z∈A−1

|ψ5(z)| ≤ n−2. (41)

To establish Eq. (41), we first collect some observations. Let B−1 = {zi ∈ {−1, 1}M ·t : ψ3(zi) <
0, F (zi) = 1}.

• Observation 1: For everyz = (z1, . . . , zM/t) ∈
(
{−1, 1}t·M

)M/t
in A−1, the following property

must hold: zi ∈ B−1 for every i such thatψ3(zi) < 0. This holds becauseF (zi) = 1 for all
i ∈ {1, . . . ,M/t}, sinceOR-AND2,M2(z) = 1.

• Observation 2: For everyz = (z1, . . . , zM/t) ∈
(
{−1, 1}t·M

)M/t ∈ A−1, there must exist azi such
thatψ3(zi) < 0. This is because, ifψ3(zi) ≥ 0 for all i ∈ {1, . . . ,M/t}, thenψ5(z) agrees in sign
with ψ4(1) > 0 (see Eq. (39)), contradicting the assumption thatz ∈ A−1.

• Observation 3: Letµ be the distribution on{−1, 1}M2

defined via:µ(z1, . . . , zM/t) =
∏M/t
i=1 |ψ3(zi)|.

Sinceψ3 is balanced, the string(. . . , s̃gn(ψ3(zi)), . . . ) is distributed uniformly in{−1, 1}M/t when
one samplesz = (z1, . . . , zM/t) according toµ.

• Observation 4: Becauseψ3 has correlation1 − n−2 with F (see Eq. (32)), the following equation
holds: ∑

zi∈B−1

|ψ3(zi)| ≤
1

2
n−2.
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• Observation 5: As in the proof of Theorem 1, letµ(z|w) denote the probability ofz underµ, condi-
tioned on(. . . , s̃gn(ψ3(zi)), . . . ) = w. If z ∼ µ(·|w) for some stringw wherewi = −1, then the
probability thatF (zi) = 1 whens̃gn(ψ3(zi)) = wi is 2

∑
zi∈B−1

|ψ3(zi)|.

Thus, we may write:

∑

z∈A−1

|ψ5(z)| =
∑

z∈A−1

2M/t|ψ4(. . . , s̃gn(ψ3(zi)), . . . )|
∏

i

|ψ3(zi)|

≤
∑

w∈{−1,1}M/t,w 6=1

|ψ4(w)| · Pr
z∼µ(·|w)

[zi ∈ B−1 ∀i : wi = −1]

≤
∑

w∈{−1,1}M/t

|ψ4(w)| · n−2 ≤ n−2.

Here, the equality holds by definition ofψ5 (see Eq. (40)), the first inequality holds by Observations 1,
2 and 3, the second inequality holds by Observations 4 and 5, and the fourth inequality holds because the
L1 norm ofψ4 is 1 (see Eq. (37)).

Recall that we defined the combined dual witness

ψ7(x1, . . . , xM ) := 2Mψ6(. . . , s̃gn(ψ5(xi)), . . . )
M∏

i=1

|ψ5(xi)|,

whereψ6 is a dual polynomial for the high one-sided approximate degree of the topANDM function. In the
remainder of the proof, we show thatψ7 is a dual witness forAND-OR3,n.

Bounding the Correlation of ψ7 with AND-OR3,n. Using Equation Eq. (41), it is possible to adapt the
analysis of [15] to show

Claim 29. ∑

x

ψ7(x)AND-OR3,n(x) > .97.

Proof of Claim 29.The idea is to show that
∑

x

ψ7(x)AND-OR3,n(x) ≈
∑

a∈{−1,1}M
ψ6(a)ANDM (a) > .99. (42)

To this end, letA−1 = {z ∈ {−1, 1}M2

: ψ5(z) < 0,OR-AND2,M2(z) = 1} as above, and letA1 = {z ∈
{−1, 1}2,M2

: ψ5(z) ≥ 0,OR-AND2,M2(z) = −1}. Notice thatA1 ∪ A−1 is the set of all inputsz where
the sign ofψ5(z) disagrees withOR-AND2,M2(z). Notice that

∑
z∈A1∪A−1

|ψ5(z)| ≤ .01 becauseψ5 has
correlation at least.98 with OR-AND2,M2 .

Let ν be the distribution on
(
{−1, 1}M2

)M
given byν(x1, . . . , xM ) =

∏M
i=1 |ν(xi)|. Sinceν is or-

thogonal to the constant polynomial, it has expected value 0, and hence the string(. . . , s̃gn(ψ5(xi)), . . . ) is
distributed uniformly in{−1, 1}M when one samples(x1, . . . , xM ) according toν. Let ν(xi|a) denote the
probability ofxi underν, conditioned on(. . . , s̃gn(ψ5(xi)), . . . ) = a.

For any givena ∈ {−1, 1}M , the following two random variables are identically distributed:
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• The string(. . . ,OR-AND2,M2(xi), . . . ) when one chooses(. . . , xi, . . . ) from the conditional distri-
butionν(·|a).

• The string(. . . , yiai, . . . ), wherey ∈ {−1, 1}M is a random string whoseith bit independently takes
on value−1 with probability2

∑
xi∈Aai

|ν(xi)| ≤ .02.

Thus, the left hand side of Expression (42) equals

∑

a∈{−1,1}M
ψ6(a) · E[ANDM (. . . , yiai, . . . )], (43)

wherey ∈ {−1, 1}M is a random string whoseith bit independently takes on value−1 with probability
2
∑

xi∈Aai
|ψ(xi)| ≤ .02.

All a 6= −1M can be handled exactly as in [15] and [55] to argue that they contribute at least(1 −
.02)ψ6(a) to the sum. The key property exploited here is thatANDM has lowblock-sensitivityon these
points, allowing us to apply the following proposition.

Proposition 30 ([55]). Let f : {−1, 1}M → {−1, 1} be a given Boolean function. Lety ∈ {−1, 1}M
be a random string whoseith bit is set to−1 with probability at mostγ ∈ [0, 1], and to+1 otherwise,
independently for eachi. Then for everya ∈ {−1, 1}M ,

Py[f(a1, . . . , aM ) 6= f(a1y1, . . . , aMaM )] ≤ 2γ bsa(f).

In particular, since bsa(ANDM ) = 1 for all a 6= −1M , Proposition 30 implies that for alla 6= −1M ,
anda = ANDM , Py[f(a1, . . . , aM ) = f(a1y1, . . . , aMyM)] ≥ 1− .02.

We next argue that the term corresponding toa = −1M contributes at least(1 − 2Mn−2)ψ6(a) to
Expression (43). By Eq. (41) and a union bound, fora = −1M , theyi’s areall 1with probability1−2Mn−2,
and henceEy[ANDM (. . . , yiai, . . . )] ≤ (1 − 2Mn−2)ANDM (−1M ) = −(1 − 2Mn−2). By Eq. (30),
s̃gn(ψ6(−1M )) = −1, and thus the term corresponding toa = −1M contributes at least(1−2Mn−2)ψ6(a)
to Expression (26) as claimed. We conclude that

∑
x ψ7(x)AND-OR3,n ≥ .97.

Completing the proof for d = 3. The proof thatψ7 hasL1-norm 1 and has pure high degree at least

d5 · d6 = Ω
(
n1/2/ log1/2(n)

)
is identical to prior work [55] (see also Appendix A). Combined with Claim

29 showing that
∑

x ψ7(x)AND-OR3,n ≥ .97, we conclude thatψ7 is a dual witness to the fact that

d̃eg.97(AND-OR3,n) = Ω
(
n1/2/ log1/2(n)

)
.

Extending to generald. For ease of exposition, we focus on the case whered is odd; the case of evend is
similar. To enable a proof by induction, we will show that

Claim 31. For d odd, there exists a dual witnessψ5 showing that the.99-approximate degree ofAND-ORd,n
isΩ(n1/2/ log(d−1)/2(n)). Moreover, ∑

y∈A1

|ψ5(y)| ≤ 2n−2, (44)

whereA1 = {y : ψ5(y) > 0,AND-ORd,n(y) = −1}.
For d even, the same statement holds for the approximate degree ofOR-ANDd,n where we replace

Eq. (44) with the corresponding bound on
∑

y∈A−1
|ψ5(y)|, whereA−1 = {y : ψ5(y) < 0,OR-ANDd,n(y) =

1}.

Eq. (44) intuitively captures the property thatψ′1 has “almost no error on the wrong side”.
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Proof of Claim 31.As a base case of the induction, the dual witnessψ1 that we used in the cased = 3
clearly satisfies the above properties (in fact,ψ1 had one-sided error, and therefore satisfied an even stronger
condition than Eq. (44)).

As suggested by our choice ofψ5 as the name of the function we want to construct, the inductive case
mimics the proof of Claim 28. To emphasize the similarity between this argument and the proof of Claim
28, we will show that assuming the induction hypothesis at level d − 2 implies the induction hypothesis at
leveld− 1, for d odd. The case ofd even is similar.

To construct a dual witnessψ5 proving thatd̃eg(OR-ANDd−1,n1−1/d) = Ω(n(1−1/d)/2/ log(d−2)/2(n))
with “almost no error on the wrong side,” we inductively assume that there exists a dual witnessψ′1 for the
high approximate degree of the functionG = AND-ORd−2,n1−2/d with almost no error on the wrong side.

That is, there exists aψ′1 and ad′1 = Ω(n(1−2/d)/2/ log(d−3)/2(n)) such that

∑

y∈{−1,1}n1−2/d

ψ′1(y)G(y) > .99, (45)

∑

y∈{−1,1}n1−2/d

|ψ′1(y)| = 1, and (46)

∑

y∈{−1,1}n1−2/d

ψ′1(y)χS(y) = 0 for each|S| ≤ d′1, (47)

in addition to having “almost no error on the wrong side.”
Now we setM = n1/d, and defineψ2, ψ3, . . . , ψ5 exactly as in the cased = 3, but with the dual witness

ψ′1 in place of the dual witnessψ1. That is, we letψ2 : {−1, 1}t → R be defined viaψ2(1) = 1/2,
ψ2(−1) = −1/2, andψ2(bi) = 0 for all otherbi ∈ {−1, 1}t. We define

ψ3(b1, . . . , bt) := 2tψ2(. . . , s̃gn(ψ
′
1(bi)), . . . )

M∏

i=1

|ψ′1(bi)|,

wherebi = (bi,1, . . . , xi,M ). We defineψ4 to be a dual witness to the fact that̃deg.99(ORM/t) = Ω(
√
M/t)

for t = 2 log n. We defineψ5 exactly as in Eq. (40).
The analysis ofψ5 proceeds as in the proof of Claim 28, with one modification. Inthe case ofd = 3, ψ1

had one-sided error, so we could directly invoke our hardness amplification result (Theorem 1) to conclude
thatψ3 also had one-sided error, as well as correlation1 − 2−t with the target functionORt(G, . . . , G).
In the case of generald, ψ′1 does not have one-sided error. However,ψ′1 “almost” has one-sided error, as
formalized by Eq. (44). It is straightforward to modify the proof of Theorem 1 to show thoughψ′1 satisfies
a weaker condition than didψ1, the dual witnessψ3 nonetheless satisfies the following properties.

Let B−1 = {zi ∈ {−1, 1}n1−2/d ·t : ψ3(zi) < 0,ORt(G, . . . , G)(zi) = 1}, and letB1 = {zi ∈
{−1, 1}n1−2/d ·t : ψ3(zi) > 0,ORt(G, . . . , G)(zi) = −1}. Then:

• ∑
zi∈B−1

|ψ3(zi)| ≤ 2−t.

• ∑
zi∈B1

|ψ3(zi)| ≤ t · 2n1−2/d/n2.

That is,ψ3 has error exponentially small int on one side, and the error on the other side blows up by at
most a factor oft relative toψ1. This permits us to obtain a variant of Eq. (41), namely:

∑

z∈A−1

|ψ5(z)| ≤ 2tM/n2, (48)
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where as aboveA−1 is defined via:

A−1 = {z ∈ {−1, 1}n1−1/d
: ψ5(z) < 0,OR-ANDd−1,n1−1/d(z) = 1}.

This completes the induction and the proof.

With Claim 31 in hand, we can constructψ7 as in the proof of thed = 3 case to obtain Theorem 8. That
is, we defineψ6 to be a dual witness to the high one-sided approximate degreeof ANDM , and we defineψ7

exactly as in Eq. (31).

As before,ψ7 hasL1-norm 1 and pure high degree at leastd5 · d6 = Ω
(
n1/2/ log(d−2)/2(n)

)
. Here,

d5 = Ω
(
n(1−1/d)/2/ log(d−2)/2(n)

)
denotes the pure high degree ofψ5 andd6 = Ω

(
M1/2

)
denotes the

pure high degree ofψ6. Finally, the analysis establishing thatψ7 has high correlation withAND-ORd,n is
the same as in the case ofd = 3.

7 Lower Bounds for Read-Once DNFs

In this section we derive new approximate degree and degree-d threshold weight lower bounds for read-
once DNF formulas. The lower bounds we prove are essentiallyidentical to those proved by Beigel [10] and
Servedio et al. [44] for thedecision listODD-MAX-BIT, which is not computable by a read-once DNF.

Our first construction (Corollary 10) yields a degree-d threshold weight lower bound of2Ω(
√
n/d), matching

the lower bound proved by Servedio et al. for the decision list ODD-MAX-BIT. In Section 7.3, we show
that this is essentially optimal in the “high-degree” regime whered = Ω(n1/3).

Our second lower bound (Corollary 11) exhibits a DNF with(1 − 2−n/d
2

)-approximate degreeΩ(d),
matching Beigel’s lower bound for ODD-MAX-BIT. As we remarked in Section 2.4, ford < n1/3, Corol-
lary 11 is subsumed by Minsky and Papert’s seminal result exhibiting a read-once DNFF with threshold
degreeΩ(n1/3). However, ford > n1/3, it is not subsumed by Minsky and Papert’s result, nor by Corollary
10. While Corollary 10 yields a lower bound on the degree-d threshold weight of read-once DNFs, it does
not yield a lower bound on theapproximate-degreeof read-once DNFs. As described in Section 3.2, while
d̃eg1− 1

w
(F ) > d implies thatW (F, d) > w, the reverse implication doesnot hold whenw ≪

(n
d

)
(and in

fact the read-once DNF considered in Corollary 10 is an explicit example of the reverse implication failing
badly).

7.1 Extending the Lower Bound of Servedio et al. to Read-OnceDNFs

7.1.1 Hardness Amplification for Approximate Weight

We now extend our hardness amplification techniques from approximate degree to approximate weight. This
extension forms the technical heart of our proof that the lower bound of Servedio et al. applies to read-once
DNFs.

Theorem 9. Let f : {−1, 1}m → {−1, 1} be a function with one-sided non-constant approximate weight
W ∗3/4(f, d) > w. LetF : {−1, 1}mt → {−1, 1} denote the functionORt(f, . . . , f). ThenF has degree-d

(1− 2−t)-approximate weightW1−2−t(F, d) > 2−5tw.

Proof. Letψ be a dual polynomial forf with one-sided error whose existence is guaranteed by the assump-
tion thatW ∗3/4(f, d) > w. Then by Theorem 18,ψ satisfies:
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∑

x∈{−1,1}m
ψ(x)f(x)− 3

4

∑

x∈{−1,1}m
|ψ(x)| > w, (49)

∣∣∣∣∣∣

∑

x∈{−1,1}m
ψ(x)χS(x)

∣∣∣∣∣∣
≤ 1 for each0 < |S| ≤ d, (50)

∑

x∈{−1,1}m
ψ(x) = 0, and (51)

ψ(x) ≤ 0 for eachx ∈ f−1(−1). (52)

We will construct a dual solutionζ that witnesses the fact thatW1−2−t(F, d) > 2−5tw. Specifically, by
Theorem 17,ζ must satisfy the following conditions:

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt)− (1− 2−t)|ζ(x1, . . . , xt)| > 2−5tw. (53)

∣∣∣∣∣∣

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

∣∣∣∣∣∣
≤ 1 for each|S| ≤ d. (54)

As before, letΨ : {−1, 1}t → {−1, 1} be defined such thatΨ(1) = 1/2, Ψ(−1) = −1/2, and
Ψ(x) = 0 for all otherx, where1 denotes the all-ones vector. We defineζ : ({−1, 1}m)t → R by

ζ(x1, . . . , xt) :=MtΨ(. . . , s̃gn(ψ(xi)), . . . )

t∏

i=1

|ψ(xi)|, (55)

wherexi = (xi,1, . . . , xi,m) andMt is a normalization term to be determined later.
We start with Eq. (54) to determine an appropriate choice ofMt. Notice that sinceΨ is orthogonal on

{−1, 1}t to constant functions, its expected value is 0. Thus, we may write the Fourier representation forΨ
as

Ψ(z) =
∑

T⊆{1,...,t}
T 6=∅

Ψ̂(T )χT (z)

for some real numberŝΨ(T ). We can thus write

ζ(x1, . . . , xt) =Mt

∑

T 6=∅
Ψ̂(T )

∏

i∈T
ψ(xi)

∏

i/∈T
|ψ(xi)|.

Given a subsetS ⊆ {1, . . . , t} × {1, . . . ,m} with |S| ≤ d, partitionS = ({1} × S1) ∪ · · · ∪ ({t} × St)
where eachSi ⊆ {1, . . . ,m}. Then

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

=Mt

∑

T 6=∅
Ψ̂(T )

∏

i∈T


 ∑

xi∈{−1,1}m
ψ(xi)χSi(xi)




︸ ︷︷ ︸

∏

i/∈T


 ∑

xi∈{−1,1}m
|ψ(xi)|χSi(xi)


 .
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Since|S| ≤ d, we have that|Si| ≤ d for every indexi ∈ {1, . . . , t}. For each setT , each of the underbraced
factors is bounded in absolute value by1 by (50). Writing

‖ψ‖1 :=
∑

x∈{−1,1}m
|ψ(x)|

for notational convenience, we see that
∣∣∣∣∣∣

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

∣∣∣∣∣∣
≤Mt

∑

T 6=∅
Ψ̂(T )‖ψ‖t−|T |1 ≤Mt · t2t−1‖ψ‖t−11 .

TakingMt = 2−2t‖ψ‖1−t1 gives (54).
We now proceed to verify (53). Letµ be the distribution on({−1, 1}m)t given byµ(x1, . . . , xt) =

‖ψ‖−t1

∏t
i=1 |ψ(xi)|. Sinceψ is orthogonal to the constant polynomial, it has expected value 0, and hence the

string(. . . , s̃gn(ψ(xi)), . . . ) is distributed uniformly in{−1, 1}t when one samples(x1, . . . , xt) according
to µ. Observe that ∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt)

=Mt‖ψ‖t1Eµ[Ψ(. . . , s̃gn(ψ(xi)), . . . )ORt (. . . , f(xi), . . . )]

= 2−3t‖ψ‖1
∑

z∈{−1,1}t
Ψ(z)


 ∑

(x1,...,xt)∈({−1,1}m)t

ORt (. . . , f(xi), . . . )µ(x1, . . . , xt|z)


 , (56)

whereµ(x|z) denotes the probability ofx underµ, conditioned on(. . . , s̃gn(ψ(xi)), . . . ) = z.
Let A1 = {x ∈ {−1, 1}m : ψ(x) > 0, f(x) = −1} andA−1 = {x ∈ {−1, 1}m : ψ(x) < 0, f(x) =

1}. Then2
∑

x∈A1∪A−1
|ψ(x)| < 1

4‖ψ‖1 − w becauseψ has correlation at leastw + 3
4‖ψ‖1 with f .

As before, for anyz ∈ {−1, 1}t, the following two random variables are identically distributed:

• The string(. . . , f(xi), . . . ) when one chooses(. . . , xi, . . . ) from the conditional distributionµ(·|z).

• The string(. . . , yizi, . . . ), wherey ∈ {−1, 1}t is a random string whoseith bit independently takes
on value−1 with probability 2

‖ψ‖1
∑

x∈Azi
|ψ(x)| < 1/4− w/‖ψ‖1.

Thus, the correlation is

2−3t‖ψ‖1
∑

z∈{−1,1}t
Ψ(z) · E[ORt(. . . , yizi, . . . )], (57)

wherey ∈ {−1, 1}t is a random string whoseith bit independently takes on value−1 with probability
2
∑

x∈Azi
|ψ(x)| < 1/4 − w/‖ψ‖1. As in the proof of Theorem 1, the one-sided error (52) of the dual

witnessψ implies that the inputz = 1 contributesΨ(z) = 1/2 to Expression (57). Allz 6∈ {1,−1}
are given zero weight byΨ and hence contribute nothing to the sum. All that remains is to show that the
contribution of the termz = −1 to the sum is12(1 − 2−2t+1). Since eachyi = 1 independently with
probability at least3/4 + w/‖ψ‖1, andORt(. . . ,−yi, . . . ) = −1 as long as there is at least oneyi 6= −1,
we conclude thatE[ORt(. . . , yizi, . . . )] ≥ 1 − 2−2t+1. It follows that the term corresponding toz = −1

contributes at least12(1− 2−2t+1) to the sum. Thus,

2−3t‖ψ‖1
∑

z∈{−1,1}t
Ψ(z)·E[ORt(. . . , yizi, . . . )] ≥ 2−3t‖ψ‖1

(
1

2
+

1

2
(1− 2−2t+1)

)
= 2−3t(1−2−2t)‖ψ‖1.
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Sinceψ is orthogonal to the constant polynomial by Eq. (51), it has expected value 0, and hence the
string(. . . , s̃gn(ψ(xi)), . . . ) is distributed uniformly in{−1, 1}t when one samples(x1, . . . , xt) according
to µ. Thus,

∑

(x1,...,xt)∈({−1,1}m)t

|ζ(x1, . . . , xt)| = 2−3t‖ψ‖1
∑

z∈{−1,1}t
|Ψ(z)| = 2−3t‖ψ‖1,

.
Now the left-hand side of Expression (53) is at least

2−3t(1− 2−2t)‖ψ‖1 − (1− 2−t) · 2−3t‖ψ‖1 > 2−5t‖ψ‖1 > 2−5tw,

where the last inequality follows from condition (49). Thiscompletes the proof.

7.1.2 Completing the Proof of Corollary 10

We adapt an argument of Servedio et al. to prove the followingone-sided approximate weight lower bound
for the functionANDn.

Lemma 32. Let d = o(n/ log2 n). Then the functionANDn has one-sided non-constant approximate
weightW ∗3/4(ANDn, d) = 2Ω(n/d).

Our proof of Lemma 32 follows a symmetrization argument due to Servedio et al. [44]. The key in
their proof is the following Markov-type inequality that gives a sharp bound on the derivative of a bounded
polynomial in terms of both its degree and weight.

Lemma 33([44], Lemma 1). LetP : R → R be a degree-d polynomial such that

1. The coefficients ofP each have absolute value at mostw, and

2. 1/2 ≤ maxx∈[−1,1] |p(x)| ≤ R.

Thenmaxx∈[−1,1] |p′(x)| = O(d · R ·max{logW, log d}).

Proof of Lemma 32.Let p : Rn → R be a real polynomial with degreed and non-constant weightw that
has one-sided distance at most3/4 from ANDn. Specifically,p(−1) ≤ −1/4 and1/4 ≤ p(x) ≤ 7/4 at
all other Boolean inputs. We will show thatw = 2Ω(n/d). First observe that ifp(−1) ≤ −7/4, then the
polynomial

q(x) =
2(p(x)− 1)

|p(−1)− 1| + 1

is a true(3/4)-approximation toANDn with weight smaller thanw + 1, so we can assume without loss of
generality thatp is in fact a(3/4)-approximation toANDn.

Define the univariate polynomial
P (t) := Ex←µt [p(x)]

whereµt is the product distribution over{−1, 1}n where each coordinatexj is independently set to1 with
probability (1 + t)/2. Notice thatP (t) is obtained from the multivariate expansion ofp(x1, . . . , xn) by
replacing each variablexi with t. It is readily verified thatP satisfies the following properties.

1. P (−1) = p(−1) andP (1) = p(1),

2. |P (t)| ≤ 7
4 for all t ∈ [−1, 1], and

33



3. degP ≤ deg p = d.

4. P has non-constant weight at mostw.

By combining properties (1) and (4), we additionally see that the constant termP (0) has absolute value at
mostw + 7

4 . We can then verify thatP satisfies the conditions of Lemma 33.

1. The coefficients ofP each have absolute value at mostw + 7
4 and

2. 1/2 ≤ maxx∈[−1,1] |P (t)| ≤ 7
4 .

Thus we conclude that|P ′(t)| = O(dmax{logw, log d}) for t ∈ [−1, 1]. On the other hand, att0 = −1 +
2/n, we havePrx←µt0 [x = −1n] = (1− 1

n)
n < 1/e, soP (t0) ≥ 1− 2

e . SinceP (−1) = p(−1) ≤ −1
4 , by

the mean value theorem, there is somet ∈ [−1, t0] whereP ′(t) ≥ n
4 . Thus we havedmax{logw, log d} =

Ω(n), and hencew = 2Ω(n/d) as long asd = o(n/ log2 n).

Finally, we are in a position to prove Corollary 10, restatedhere for the reader’s convenience.

Corollary 10. For eachd = o(n/ log4 n), there is a read-once DNFF satisfyingW (F, d) = exp
(
Ω
(√

n/d
))

.

Proof. Setm = α
√
nd whereα is a constant to be determined later, and lett = n/m = Ω(

√
n/d). Let

F = ORt(ANDm, . . . ,ANDm). By Lemma 32, the inner functionANDm has degree-d one-sided non-
constant approximate weightW ∗3/4(ANDm, d) = 2βm/d for some constantβ. Sinced = o(m/ log2m), by
Theorem 9 the composed functionF has degree-d approximate weight

W1−2−t(F, d) = 2−5t+βm/d = 2(−5/α+β)
√
n/d.

Settingα > 5/β, we get that this approximate weight is greater than1. By Lemma 20, we have that

W (F, d) > 2−t = 2Ω(
√
n/d).

7.2 Extending Beigel’s Lower Bound to Read-Once DNFs

Corollary 11. There is an (explicit) read-once DNFF : {−1, 1}n → {−1, 1} with d̃eg
1−2−n/d2 (F ) =

Ω(d).

Proof. Letm = d2, t = n/d2, andf = ANDm. Then Theorem 1 guarantees that

d̃eg1−2−t (ORt(ANDm, . . . ,ANDm)) > õdeg(f).

By Fact 16, the one-sided approximate degree off is Ω(
√
m). This completes the proof.

7.3 On the Tightness of Corollaries 10 and 11

In Section 5.3.1, we showed that Corollary 4 is essentially tight by exhibiting a nearly-matching upper
bound based on rational approximations. A similar construction shows that any DNF of top fan-int is

computed by a PTF of degreẽO(t) and weightexp
(
Õ(t)

)
. This construction immediately shows that

Corollary 10 is tight (up to logarithmic factors) for alld > n1/3. Indeed, the DNFF for which Corollary 10
demonstratesW (F, d) ≥ exp(Ω(

√
n/d)) has top fan-int =

√
n/d, which is less thand for all d > n1/3.

This construction also reveals a sharp thresholding phenomenon for the read-once DNFs considered in
Corollaries 10 and 11 that is similar to the one observed for the depth-three circuit considered in Section
5.3.2.
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However, we can provide an alternative construction that demonstrates the tightness of both Corollaries
10 and 11. Specifically, rather than utilizing rational approximation techniques, we can construct a PTF for a
read-once DNF by composing a PTF for the topOR gate with low-degree (polynomial, rather than rational)
pointwise approximations to each of the individual terms. We provide this construction because of its power
to explain why the lower bounds of Corollaries 10 and 11 take their particular forms.

Fix any functionf : {−1, 1}m → {−1, 1}, and letp : {−1, 1}m → {−1, 1} be a polynomial of
degreed and weightw such that|p(x) − f(x)| < 1/t for all x ∈ {−1, 1}m. Let F (x1, . . . , xt) =
ORt(f(x1), . . . , f(xt)). Then for(x1, . . . , xt) ∈ {−1, 1}m·t, the identityF (x1, . . . xt) = sgn(1 − t +∑t

i=1 p(xi)) yields a PTF forF of degree at mostd and weight at mosttw + t+ 1.

Recall that Corollary 10 yields a lower bound ofW (F, d) = exp
(
Ω(

√
n/d)

)
, whereF is the read-

once DNF with top fan-in roughlyt =
√
n/d and bottom fan-in roughlym =

√
nd. Servedio et al. [44]

showed that for anyd > m1/2, there is a polynomialp of degreeÕ(d) and weightexp
(
Õ(m/d+ log t)

)
=

exp
(
Õ
(√

n/d
))

that approximates the functionANDm to error1/t2. Hence, as long asd > n1/3, the

polynomial1− t+
∑t

i=1 p(xi) is a PTF forF of degreeÕ(d) and weightexp
(
Õ(

√
n/d)

)
, showing that

Corollary 10 is tight up to logarithmic factors.
Similarly, recall that Corollary 11 yields a lower bound of̃deg

1−2n/d2 (F ) = Ω(d), whereF is the read-
once DNF with top fant = n/d2 and bottom fan-inm = d2. It is well-known that a transformation of the

Chebyshev polynomials yields a polynomialp of degreeÕ(m1/2) and weightexp
(
Õ(m1/2 + log t)

)
that

approximatesANDm to error better than1/t2 (see e.g. [30]). Hence,1 − t +
∑t

i=1 p(xi) is a PTF forF
of degreeÕ(d) and weightexp(Õ(d + log t)) = exp(Õ(n/d2)) whend < n1/3. The transformation of
Lemma 20 then shows that Corollary 11 is tight up to logarithmic factors in this parameter range.

8 Applications

In this section, we detail applications of the results described above to communication complexity, circuit
complexity, and computational learning theory.

8.1 Communication Complexity

Let f : X × Y → {−1, 1}, whereX andY are finite sets. Consider a two-party communication problem
in which Alice is given an inputx ∈ X, Bob is given an inputy ∈ Y , and their goal is to computef(x, y)
with probability 1/2 + β for some biasβ > 0. Alice and Bob each have access to an arbitrarily long
sequence of private random bits, and the costC(P ) of a protocolP is the worst-case number of bits they
must exchange over all inputs(x, y) ∈ X × Y . Babai et al. [7] defined thePP communicationmodel to
capture the complexity of computingf with small bias. The PP communication complexity off , denoted
byPP(f), is the minimum value ofC(P )+ log(1/β(P )) over all protocolsP that computef with positive
bias.

It is well known [27] that PP communication is essentially characterized by discrepancy: Iff : {−1, 1}n×
{−1, 1}n → {−1, 1}, thenPP(f) = Θ (log (1/disc(f)) + log n). It follows immediately that ourexp

(
−Ω̃(n2/5)

)

upper bound on the discrepancy of an AC0 functionf implies anΩ̃(n2/5) lower bound on PP(f). The pre-
vious best lower bound on PP(f) for an AC0 functionf wasΩ(n1/3) [14,50].
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8.2 Circuit Complexity

Constant-depth circuits of majority gates are known to be surprisingly powerful. Most strikingly, Allender
[3] showed that any function in AC0 can be computed by a depth three circuit of majority gates of quasipoly-
nomial size. This prompted Krause and Pudlák [33] to ask whether every AC0 function could be computed
by depthtwo majority gates of polynomial size. This question was resolved in the negative by Sherstov
[51], who exhibited an AC0 function that cannot be computed even by majority-of-threshold circuits of
sizeexp(n1/5) (later sharpened toexp(n1/3) [50]), and independently by Buhrman, Vereshchagin, and de
Wolf [14], who obtained anexp(n1/3) lower bound on the size of majority-of-threshold circuits computing
a different AC0 function.

It is well-known that a discrepancy upper bound forF yields a lower bound on the size of majority-of-
threshold circuits computingF [20, 21, 38, 51], and indeed, the circuit lower bounds of [14,50, 51] are all
proved using discrepancy. Through this connection, our discrepancy upper bound of Corollary 5 sharpens
the previous lower bounds by yielding a depth-four Boolean circuit F of polynomial size such that any

majority-of-threshold circuit computingF requires sizeexp
(
Ω̃(n2/5)

)
.

Corollary 34. There is a depth-four Boolean circuitF : {−1, 1}n → {−1, 1} of sizepoly(n) such that

every majority-of-threshold circuit computingF has sizeexp
(
Ω̃(n2/5)

)
.

8.3 Learning Theory

Our results have a number of consequences in computational learning theory. We discuss them below.

Technical Background: The Generalized Winnow Algorithm. The Generalized Winnow algorithm is
one of the most powerful known algorithms for online learning [30,36,44]. Suppose we are given a concept
classC of functions mappingn-bit inputs to{−1, 1}, as well as a collection of polynomial-time computable
“feature” functionsF . The Generalized Winnow algorithm learns a concept inC by maintaining as a hy-
pothesis a low-weight linear threshold function of features inF .

Suppose that eachf ∈ C has a low-weight linear threshold representation

f(x) = sgn


∑

hi∈F
wihi(x)


 ,

where eachwi is an integer, and
∑

i |wi| ≤W . A remarkable property of the Generalized Winnow algorithm
is that its mistake bound depends onlylogarithmicallyon the size of the feature setF , and polynomially on
the weight boundW (here the mistake bound refers to the worst-case number of mistakes an online learning
algorithm makes over any sequence of examples). Meanwhile,its running time per example is polynomial
in the size of the feature set. Standard techniques can be used to transform any online learning algorithm
into a PAC learning algorithm whose sample complexity is proportional to the mistake bound.

PAC Learning AC0 via Generalized Winnow. Valiant famously posed the problem of PAC learning DNF
formulas in his original paper [60] introducing the PAC model. The fastest known algorithm for this prob-

lem is due to Klivans and Servedio. It is based on linear programming, and takes timeexp
(
Õ(n1/3)

)
[29].

At the core of this algorithm is a fundamental structural result for DNFs: Klivans and Servedio showed that
every DNF of sizes can be computed by a polynomial threshold function of degreeO(n1/3 log s). However,
the weight of the PTF arising in this construction can grow doubly-exponentially withn. Klivans and Serve-
dio asked whether it is possible that every polynomial-sizeDNF has a PTF of degreẽO(n1/3), and weight
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exp
(
Õ(n1/3)

)
– an affirmative answer to this question would imply that the Generalized Winnow Algo-

rithm (run over the feature set of all low-degree parities) can also PAC learn DNFs in timeexp
(
Õ(n1/3)

)
.

Such a result would be attractive, as the Generalized Winnowalgorithm is substantially simpler than the
linear programming algorithm of Klivans and Servedio.

While we do not resolve the question of Klivans and Servedio for DNFs, we do resolve it in the negative
for depth-three circuits. In fact, we rule out the possibility of the Generalized Winnow algorithm PAC

learning depth-three Boolean circuits in timeexp
(
Õ(n2/5)

)
regardlessof the underlying feature set. That

is, our lower bound holds even on feature sets that are not low-degree parities.
Specifically, Corollary 6 implies the following result. Theproof is identical to [51, Theorem 8.1] and is

omitted for brevity.

Corollary 35. Let C denote the concept class of polynomial-size depth-three Boolean circuits. LetF =
{h1, . . . , hm : {−1, 1}n → {−1, 1}} be arbitrary Boolean functions such that everyf ∈ C can be expressed
asf(x) = sgn (

∑m
i=1wihi(x)) for some integersw1, . . . , wm with |w1|+ · · ·+ |wm| ≤W . Thenm ·W >

exp
(
Ω̃(n2/5)

)
.

PAC Learning AC0 via Boosting. While anexp
(
Ω̃(n1/3)

)
-time algorithm is known for PAC learning

polynomial-size DNF formulas, noexp (o(n))-time algorithm is known even for learning polynomial-size
depth-three Boolean circuits. A natural approach to this problem is as follows. Suppose that every function
f in a concept classC can be computed by a PTF (of arbitrary degree) over{0, 1}n with weight at most
W . The well-knowndiscriminator lemmaof Hajnal et al. [21] implies that underanydistribution, there is
some conjunction (possibly of widthΩ(n)) that has correlation at least1/W with f . One can then apply an

agnostic learning algorithm for conjunctions (such as theexp
(
Õ(n1/2)

)
-time polynomial regression algo-

rithm of Kalai et al. [24]), combined with standard boostingtechniques, to PAC-learnC in time polynomial

in max
(
exp

(
Õ(n1/2)

)
,W

)
.

Thus, if one could prove anexp(Õ(n1/2)) upper bound (for PTFs over{0, 1}n) on the threshold weight
of AC0, one would obtain anexp(Õ(n1/2))-time algorithm for PAC learning AC0. While ourexp(Ω̃(n2/5))
threshold weight lower bound for AC0 does not rule out this possibility, it does establish new limitations
for this technique. In particular, our threshold weight lower bound implies that even if faster algorithms for
agnostically learning conjunctions are discovered, this boosting-based approach to learning AC0 cannot run

in time better thanexp
(
Ω̃(n2/5)

)
.

Attribute-Efficient Learning. Attribute-efficient learning is a clean framework that captures the challeng-
ing and important problem of learning in the presence of irrelevant information [13]. A classC of Boolean
functions over{−1, 1}n is said to be attribute-efficiently learnable if there is apoly(n)-time online algo-
rithm that learns anyf ∈ C with mistake bound polynomial in the representation size off . For example,
the concept class of read-once DNFs that depend onk ≪ n of their input variables is attribute-efficiently
learnable if there is an online learning algorithm for this class that runs in timepoly(n) per example and
achieves mistake boundpoly(k, log n).

Attribute-efficient learning is a challenging problem, andmany simple concept classes are not known to
be attribute-efficiently learnable, including decision lists and read-once DNFs. The Generalized Winnow al-
gorithm, run over the feature-space of low-degree parities, marks the best progress toward attribute-efficient
learning of these concept classes (see e.g. [30, 44]). Priorto our work, it was unknown whether this ap-

proach could learn read-once DNFs depending onk variables in timeexp
(
Õ(n1/3)

)
per example and with
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mistake boundpoly(k, log n), as such a guarantee would hold if every read-once DNF onn variables were
computed by a polynomial threshold function of degreeÕ(n1/3) and weightpoly(n). Corollary 10 rules
out this possibility in a very strong sense, as it implies theexistence of a read-once DNF that cannot be
computed by any PTF ofpoly(n) weight, unless the degree is̃Ω(n). Similarly, Corollary 4 establishes
new limitations on the efficiency of the Generalized Winnow algorithm in the context of attribute-efficient
learning of depth-three Boolean circuits.
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A Final Details of the Proof of Theorem 1

A.1 Proof of Claim 21

Let µ be the distribution on({−1, 1}m)t given byµ(x1, . . . , xt) =
∏t
i=1 |ψ(xi)|. Sinceψ is orthogonal to

the constant polynomial, it has expected value 0, and hence the string(. . . , s̃gn(ψ(xi)), . . . ) is distributed
uniformly in {−1, 1}t when one samples(x1, . . . , xt) according toµ. Thus,

∑

(x1,...,xt)∈({−1,1}m)t

|ζ(x1, . . . , xt)| =
∑

z∈{−1,1}t
|Ψ(z)| = |Ψ(1)| + |Ψ(−1)| = 1,

proving Eq. (21).

A.2 Proof of Claim 22

We prove that the polynomialζ defined in Eq. (24) satisfies Eq. (22), reproduced here for convenience.

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt) = 0 for each|S| ≤ d. (22)

To prove Eq. (22), notice that sinceΨ is orthogonal on{−1, 1}t to constant functions, we have the
Fourier representation

Ψ(z) =
∑

T⊆{1,...,t}
T 6=∅

Ψ̂(T )χT (z)

for some realŝΨ(T ). We can thus write

ζ(x1, . . . , xt) = 2t
∑

T 6=∅
Ψ̂(T )

∏

i∈T
ψ(xi)

∏

i/∈T
|ψ(xi)|.
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Given a subsetS ⊆ {1, . . . , t} × {1, . . . ,m} with |S| ≤ d, partitionS = ({1} × S1) ∪ · · · ∪ ({t} × St)
where eachSi ⊆ {1, . . . ,m}. Then

∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

= 2t
∑

T 6=∅
Ψ̂(T )

∏

i∈T


 ∑

xi∈{−1,1}m
ψ(xi)χSi(xi)




︸ ︷︷ ︸

∏

i/∈T


 ∑

xi∈{−1,1}m
|ψ(xi)|χSi(xi)


 .

Since|S| ≤ d, we have that|Si| ≤ d for every indexi ∈ {1, . . . , t}. Thus for each setT , at least one of the
underbraced factors is zero, asχSi is orthogonal toψ whenever|Si| ≤ d.

B Proof of Symmetrization Lemma 23

We now give a proof of Lemma 23, which roughly shows that the symmetrization mapp 7→ psym does not
increase the degree ofp by too much. The notation in the lemma and proof is defined in Section 2.2.1. We
also use the shorthandσ · x · π to denote the boolean vectory for which gy = σ ◦ gx ◦ π.

Lemma 23. Letm = N · log2R. For x, y ∈ {−1, 1}m, write y ∼ x if there is a pair of permutationsσ on
[R] andπ on [N ] such thatgy = σ ◦ gx ◦ π. Letp : {−1, 1}m → R be a real polynomial. Define

psym(x) = Ey∼x[p(y)].

Thendeg(psym) ≤ (log2R) deg(p).

The proof proceeds in three steps. In the first step, we perform a change of variables showing that
p(x) can be written as another polynomialq(t), wheredeg q ≤ deg p. An input t ∈ {0, 1}N ·R to the new
polynomialq offers a different representation of a functiongt : [N ] → [R] as follows: the variabletij = 1
if gt(i) = j, andtij = 0 otherwise.

In the second step, we apply a lemma of Ambainis [4], which shows thatq can be partially symmetrized
to yield a polynomialQ over yet a different set of variables, again without increasing its degree. This
symmetrization yields a polynomialQ whose input now represents a function in a manner invariant under
permutations of the function’s domain. Specifically, the inputs to the polynomialQ are now variableszj ,
wherezj counts the number ofi ∈ [N ] for which some functiongz(i) = j. Notice that ifgw = gz ◦ π for a
permutationπ, thenw = z and henceQ(w) = Q(z).

The third and final step is to symmetrize the polynomialQ once again (without increasing its degree) so
that it is invariant under permutations of its input variableszj . Again interpreting eachzj as the number of
i for which some functiongz(i) = j, the resulting polynomialQsym is now invariant under permutations of
both the domainandcodomain of the functiongz .

However, in terms of the original variablesx, the new variableszj are each polynomials of degree
log2R. Therefore, converting the fully symmetrized polynomialQsym back into a polynomialpsym overx
potentially incurs alog2R factor blow-up in degree.

Proof. Let p : {−1, 1}m → R be a polynomial of degreed. Recall that our proof proceeds in three stages.
In the first, we define a new polynomialq over a different set of variablest ∈ {0, 1}N ·R, and show that
deg q ≤ deg p. To this end, define a mapT : {−1, 1}m → {0, 1}N ·R by Tij(x) = 1 if gx(i) = j, and
Tij(x) = 0 otherwise. We claim that there is a polynomialq : {0, 1}N ·R → R of degreed such that
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q(T (x)) = p(x) for all x ∈ {−1, 1}m. To see this, writex as a list of blocksx = (x1, . . . , xN ) where each
block has lengthlog2R, and letxik denote thek’th bit of block xi. Then

xik = 1− 2
∑

j:jk=−1
Tij(x),

wherejk is thek’th bit of the binary representation ofj ∈ [N ]. Hence we can set

q(. . . , tij , . . . ) = p


. . . , 1− 2

∑

j:jk=−1
tij, . . .




and haveq(T (x)) = p(x), wheredeg q ≤ deg p = d.
Recall that we can think of the variablestij themselves as representing functionsg : [N ] → [R] when-

evert is the image of a boolean vector under the mapT . That is, ift = T (x) for somex ∈ {−1, 1}m, then
we can define the functiongt : [N ] → [R] by gt ≡ gx. Specifically,gt(i) is the uniquej wheretij = 1.

In the second step, we apply a lemma of Ambainis [4] shows thatwe can symmetrize the polynomialq,
again without increasing its degree.

Lemma 36 ([4], Lemma 3.4). Let q : {0, 1}N ·R → R be a polynomial of degreed . Then there is a
polynomialQ : {0, 1, . . . , N}R → R of degreed such that

Q(. . . ,
n∑

i=1

tij, . . . ) = Eπ[q(t · π)]

whenevert = T (x) for somex ∈ {−1, 1}m. Here,t · π is shorthand for thes for whichgs = gt ◦ π.

Applying the lemma yields a polynomialQ such that

Q(. . . ,
n∑

i=1

Tij(x), . . . ) = Eπ[q(T (x) · π)] = Eπ[p(x · π)].

For eachj = 1, . . . , R, let Zj(x) =
∑n

i=1 Tij(x). Notice thatZj(x) counts the number of inputsi ∈ [N ]
for whichgx(i) = j. This implies that for any permutationσ on the range[R], we also have thatZσ−1(j)(x)
counts the number ofi ∈ N for which (σ ◦ gx)(i) = j. Hence for any fixedσ,

Q(Zσ−1(1)(x), . . . , Zσ−1(R)(x)) = Eπ[p(σ · x · π)].

This observation allows us to complete the third step of the proof, which is symmetrization of the
polynomialQ. That is, if we let

Qsym(z) = Eσ[Q(zσ(1), . . . , zσ(R))],

then
Qsym(Z1(x), . . . , ZR(x)) = Eσ,π[p(σ · x · π)] = psym(x).

Notice that sinceQ is a polynomial of degreed, the symmetrizationQsym clearly also has degreed. To
complete the argument, we need to show that each functionZj(x) is a polynomial of degreelog2R. To see
this, recall thatZj is a linear combination of the functionsTij, so it suffices to show thatTij has degree
log2R. The functionTij(x) evaluates to1 if the blockxi equals to binary representation ofj, and evaluates
to 0 otherwise. Thus we can write

Tij(x) = R

log2 R∏

k=1

(jkxik + 1),
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wherexik is thek’th bit of block xi, andjk is thek’th bit of the binary representation ofj. This expression
shows thatTij has degreelog2R, so the polynomialpsym has degreed log2R.

C One-Sided Approximate Degree ofELEMENT DISTINCTNESS: Alternative
Proof of Corollary 3

Improving on results of Aaronson and Shi [2], Ambainis [4] showed that the ELEMENT DISTINCTNESS

problem with small range has approximate degreeΩ̃(m2/3). Recall that the ELEMENT DISTINCTNESS

problem on input sizem = N log2N , whereN is a power of2, takes as inputN blocks of lengthlog2N
and evaluates to−1 if and only if the blocks are distinct. We will show that thereis a dual witnessΨ for
the high approximate degree of ELEMENT DISTINCTNESShaving one-sided error. Hence, this dual witness
actually demonstrates that ELEMENT DISTINCTNESShas highone-sidedapproximate degree.

The idea is that any dual witness for ELEMENT DISTINCTNESS can be “symmetrized” to produce a
new dual witnessΨ that is constant on inputsx ∈ T , whereT is the set of inputs for which ELEMENT

DISTINCTNESSevaluates to true. We then use the fact thatΨ is balanced to argue that thetotal correlation
of Ψ with ELEMENT DISTINCTNESSis a constant multiple of the correlation restricted to inputs inT . Since
Ψ has positive correlation with ELEMENT DISTINCTNESS, it follows thatΨ must have the correct sign on
all inputs inT , as desired.

Formally, letψ be a dual witness for the fact thatf = ELEMENT DISTINCTNESS hasε-approximate
degreed = Ω̃(m2/3) for some constantε. By Theorem 14,

∑

x∈{−1,1}m
f(x)ψ(x) > ε, (58)

∑

x∈{−1,1}m
|ψ(x)| = 1, (59)

and ∑

x∈{−1,1}m
ψ(x)χS(x) = 0 for each|S| ≤ d. (60)

For any permutationσ ∈ SN , andx = (x1, . . . , xN ) ∈ {−1, 1}m, define

σ(x) = (xσ(1), . . . , xσ(N)).

That is,σ acts on{−1, 1}m by permuting theN blocks of lengthlogN . Observe that for every permutation
σ and everyx ∈ {−1, 1}m,

f(σ(x)) = f(x). (61)

Now define the symmetrized dual witness

Ψ(x) = Eσ∈SN [ψ(σ(x))].

We will show thatΨ is a dual witness forf with one-sided error by checking the conditions of Theorem 15.
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First,

∑

x∈{−1,1}m
Ψ(x)f(x) = Eσ∈SN

[
∑

x

ψ(σ(x))f(x)

]

= Eσ∈SN

[
∑

x

ψ(x)f(x)

]
by Eq. (61)

> ǫ by (58),

verifying (4). Condition (5) is immediate from (59). Condition (6) follows because

∑

x∈{−1,1}m
Ψ(x)χS(x) = Eσ∈SN

[
∑

x

ψ(x)χσ(S)(x)

]

whereσ(S) = {σ(i) : i ∈ S} and from (60).
Finally, we check the one-sided error condition (7). We willfirst show thatΨ is constant onf−1(−1).

Let x∗ = (x∗1, . . . , x
∗
N ) wherex∗i is the binary encoding ofi. Since there are onlyN distinct strings of

lengthlogN , f(x) = −1 if and only if x = σx(x
∗) for someσx ∈ SN . Therefore, iff(x) = −1, then

Ψ(x) = Eσ∈SN [ψ(σ(x))] = Eσ∈SN [ψ((σ ◦ σx)(x∗))] = Ψ(x∗),

soΨ is constant onf−1(−1).
By condition (4) it holds that

∑

x∈f−1(1)

Ψ(x)−
∑

x∈f−1(−1)
Ψ(x) > ε,

and by condition (5) applied toχS for S = ∅ it holds that
∑

x∈f−1(1)

Ψ(x) +
∑

x∈f−1(−1)
Ψ(x) = 0.

Subtracting the second equation from the first, we conclude that

−2
∑

x∈f−1(−1)
Ψ(x) > ε.

SinceΨ is constant onf−1(−1), this implies thatΨ(x) < 0 wheneverx ∈ f−1(−1), proving (7).

D Degree Independent Threshold Weight Bounds via Duality

In this section, we use the dual characterization of threshold weight to give a new proof of a version of
Krause’s result translating degree-d threshold weight lower bounds for a functionF into degree independent
threshold weight lower bounds for a related functionF ′. Specifically, we prove the lemma

Lemma 27. LetF : {−1, 1}n → {−1, 1} be a Boolean function, and defineF ′ : {−1, 1}3n → {−1, 1} by

F ′(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) := F (. . . , (z̄i ∧ xi) ∨ (zi ∧ yi), . . . ).

Then for every integerd ≥ 0,

W (F ′)2 ≥ min

{
W (F, d)

2n
, 2d

}
.
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Proof. By Theorem 19 (condition (14)), it suffices to exhibit a distributionµ′ over{−1, 1}3n for which

|E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)]| ≤ max

{(
2n

W (F, d)

)1/2

, 2−d/2
}

for all S ⊆ {1, . . . , 3n}.

We construct the distributionµ′ as follows. By condition (15) of Theorem 19, there is a probability
distributionµ over{−1, 1}n such that

|Ew∼µ[F (w)χS(w)]| ≤
(

2n

W (F, d)

)1/2

for each|S| ≤ d. (62)

Defineµ′(x, y, z) = 2−2nµ(Selz(x, y)), whereSelz(x, y) = (. . . , (z̄i ∧ xi)∨ (zi ∧ yi), . . . ) selects for each
index in[n] a bit from eitherx or y according toz. The distributionµ′ has a natural interpretation as follows:
it first selects the stringz uniformly at random from{−1, 1}n. Next, it sets the values of the variables in
(x, y) that are selected byz so that they are distributed according to the distributionµ. Finally, it sets the
values of the unselected variables in(x, y) uniformly at random.

Note thatµ′ is indeed a probability distribution, as for every stringw ∈ {−1, 1}n, there are exactly22n

strings(x, y, z) for whichSelz(x, y) = w. Moreover, this observation allows us to write

E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)] = 2−2n

∑

w∈{−1,1}n
F (w)µ(w)

∑

(x,y,z):Selz(x,y)=w

χS(x, y, z).

Write S as the disjoint union({1} × S1)∪ ({2} ×S2)∪ ({3} ×S3) whereS1, S2, S3 correspond to indices
in x, y, z respectively. Then the expectation becomes

2−2n
∑

z∈{−1,1}n
χS3

(z)
∑

w∈{−1,1}n
F (w)µ(w)

∑

(x,y):Selz(x,y)=w

χS1
(x)χS2

(y)

︸ ︷︷ ︸

LetG(z) denote the underbraced sum.
Suppose there is an indexi ∈ S3 that is not contained inS1 ∪ S2. Then for everyz ∈ {−1, 1}n,

the stringzi obtained fromz by flipping the bit at indexi satisfiesχS3
(zi) = −χS3

(z). On the other
hand, for any(x, y) ∈ {−1, 1}2n, if we setx′ = (x1, . . . , xi−1, yi, xi+1, . . . , xn) and analogously set
y′ = (y1, . . . , yi−1, xi, yi+1, . . . , yn), thenSelz(x, y) = Selzi(x

′, y′). Moreover, becausei 6∈ S1 ∪ S2,
it holds thatχS1

(x′)χS2
(y′) = χS1

(x)χS2
(y). It follows thatG(z) = G(zi), as each term(x, y) in the

underbraced sum definingG(z) is “matched” by term(x′, y′) in the underbraced sum definingG(zi). When
combined with the fact thatχS3

(zi) = −χS3
(z), we see that the terms corresponding toz andzi in the outer

sum cancel out, and hence the entire outer sum evaluates to zero. We conclude that for the expectation to be
nonzero, we must haveS3 ⊆ S1 ∪ S2, and we assume this holds for the remainder of the proof.

Consider anyi ∈ S1. Then we claim thatG(z) = 0 wheneverzi selectsyi, i.e., for anyz such
that zi = −1. This can be seen by another pairing argument: IfSelz(x, y) = w but zi selectsyi, then
Selz(x

i, y) = w as well. However,χS1
(x) = −χS1

(xi) becausei ∈ S1. This ensures that the innermost
sum is zero and henceG(z) = 0. The analogous statement holds also for anyi ∈ S2, so forG(z) to be
nonzero, it must hold thatzi = 1 for all i ∈ S1 andzi = −1 for all i ∈ S2. Below, we refer to such az as
a “contributing”z, and all other values ofz as “non-contributing”. In particular, we must haveS1 ∩ S2 = ∅
for z to be contributing.

For any fixed contributingz, it holds that
∑

(x,y):Selz(x,y)=w

χS1
(x)χS2

(y) = 2nχS1∪S2
(w).
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Therefore, it holds that

|E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)]| = 2−2n

∣∣∣∣∣∣

∑

z∈{−1,1}n
χS3

(z)G(z)

∣∣∣∣∣∣

≤ 2−n
∑

z:G(z)6=0

∣∣∣∣∣∣

∑

w∈{−1,1}n
F (w)µ(w)χS1∪S2

(w)

∣∣∣∣∣∣

≤ 2−|S1|−|S2|

∣∣∣∣∣∣

∑

w∈{−1,1}n
F (w)µ(w)χS1∪S2

(w)

∣∣∣∣∣∣
, (63)

where inequality (63) used the fact thatG(z) = 0 for any non-contributingz.
Now we consider two cases for the size ofS. First suppose|S| ≤ d, so in particular,|S1 ∪ S2| ≤ d.

Then Eq. (62) and inequality (63) implies that

|E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)]| ≤

(
2n

W (f, d)

)1/2

.

Second, suppose that|S| > d. We have argued that ifE(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)] 6= 0, thenS3 ⊆

S1 ∪ S2. Hence, it must be the case that|S1|+ |S2| ≥ |S|/2 > d/2. Therefore, inequality (63) implies that
E(x,y,z)∼µ′ [F ′(x, y, z)χS(x, y, z)] ≤ 2−d/2. This completes the proof.
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