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Differential Privacy [DMNS 2006]

• A strong mathematical definition of individual
privacy.

• Controls the excess risk to an individual from
participating in an analysis.

I How: Hides the effect of every individual on the
analysis outcome by injection of carefully
designed random noise.

• Rich theoretical foundation; in prime time for
testing and application.

• Receives interest from many communities.
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Differential Privacy [DMNS 2006]

Formally,

A randomized mechanism M : Xn → T is (pure)
ε-differentially private if for all neighboring datasets
x, x′ ∈ Xn and subset S of the outcome set T ,

Pr[M(X) ∈ S] ≤ eε · Pr[M(X ′) ∈ S].

+δ

Relaxation: approximate differential privacy also allows a
(negligible) additive difference, δ.
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What can be computed with DP?
A huge variety of computational tasks:
• Basic statistics.

I Histograms, contingency tables, CDFs, . . .
• Inferential statistics.

I Regression, . . .
• Machine learning.

I Classification, clustering, SVD, convex
optimization, . . .

• Graph/social network analysis.
• Streaming algorithms.

Broader applications: Where privacy is not necessarily the goal

• Mechanism design, games.
• Preventing false detection.
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Differential Privacy in Dataverse

• Our goal: Facilitate sharing of privacy sensitive
data.

• How: Differential privacy at least as a tool for
deciding on applying for access.

I Depositors choose basic stats that best
represent their data to be computed with DP.

I DP stats integrate with TwoRavens, a data
exploration GUI.

I Data users explore basic stats in TwoRavens and
make further queries to determine interest in
dataset.

I Try to support analyses most useful in social
science (causal inference and regression)



Differential Privacy in Dataverse

• Our goal: Facilitate sharing of privacy sensitive
data.

• How: Differential privacy at least as a tool for
deciding on applying for access.

I Depositors choose basic stats that best
represent their data to be computed with DP.

I DP stats integrate with TwoRavens, a data
exploration GUI.

I Data users explore basic stats in TwoRavens and
make further queries to determine interest in
dataset.

I Try to support analyses most useful in social
science (causal inference and regression)



Differential Privacy in Dataverse

• Our goal: Facilitate sharing of privacy sensitive
data.

• How: Differential privacy at least as a tool for
deciding on applying for access.

I Depositors choose basic stats that best
represent their data to be computed with DP.

I DP stats integrate with TwoRavens, a data
exploration GUI.

I Data users explore basic stats in TwoRavens and
make further queries to determine interest in
dataset.

I Try to support analyses most useful in social
science (causal inference and regression)



Differential Privacy in Dataverse

• Our goal: Facilitate sharing of privacy sensitive
data.

• How: Differential privacy at least as a tool for
deciding on applying for access.

I Depositors choose basic stats that best
represent their data to be computed with DP.

I DP stats integrate with TwoRavens, a data
exploration GUI.

I Data users explore basic stats in TwoRavens and
make further queries to determine interest in
dataset.

I Try to support analyses most useful in social
science (causal inference and regression)



Differential Privacy in Dataverse

• Our goal: Facilitate sharing of privacy sensitive
data.

• How: Differential privacy at least as a tool for
deciding on applying for access.

I Depositors choose basic stats that best
represent their data to be computed with DP.

I DP stats integrate with TwoRavens, a data
exploration GUI.

I Data users explore basic stats in TwoRavens and
make further queries to determine interest in
dataset.

I Try to support analyses most useful in social
science (causal inference and regression)



Differential Privacy in Dataverse

• Our goal: Facilitate sharing of privacy sensitive
data.

• How: Differential privacy at least as a tool for
deciding on applying for access.

I Depositors choose basic stats that best
represent their data to be computed with DP.

I DP stats integrate with TwoRavens, a data
exploration GUI.

I Data users explore basic stats in TwoRavens and
make further queries to determine interest in
dataset.

I Try to support analyses most useful in social
science (causal inference and regression)



Prototype Tool for
Differentially Private
Data Exploration
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Figure: The curator architecture for data privacy.



workflow for private data

https://beta.dataverse.org/custom/
DifferentialPrivacyPrototype/

https://beta.dataverse.org/custom/DifferentialPrivacyPrototype/
https://beta.dataverse.org/custom/DifferentialPrivacyPrototype/


Summer 2015 Efforts

Social Science Computer Science Statistics
Problem Mentor Intern Intern Mentor Mentor
Regression Honaker Antuca Wang Sheffet Karwa
Utility Honaker Gooden Sheffet Karwa
Two-way Tables Lim Rogers Gaboardi Karwa
Visualiztn of Uncert. Honaker Bu
Density and Trees Muise Bun & Nissim
Security Architecture (Durand) Merrill Chong
Interactive Queries Kaminsky Vadhan & Murtagh
Datalog Logic Engine Bembenek Chong
Attacks on Agg. Data Jiang Steinke & Ullman
Verification of DP Farina Gaboardi & Chong



Figure: Example screen from the interactive privacy
budget allocation tool for data depositors.



The TwoRavens Interface
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Integration with Zelig
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Differential Privacy
Theoretical Research



Main Focus Areas

• DP and statistics [D’Orazio, Gaboardi, Honaker, Karwa, King, Lim, Rogers, Sheffet,

Vadhan, Zheng].
• Private machine learning [Bun, Nissim].
• Bounds on DP [Bun, Nissim, Vadhan].
• DP and false discovery [Nissim, Smith, Steinke, Ullman].
• Programming languages techniques for DP [Gaboardi].
• Composition of DP mechanisms [Murtagh, Vadhan].
• A new real-life application [Kantarcioglu, Sweeney].
• Estimating privacy risk [Dwork, Jiang, Smith, Steinke, Ullman, Vadhan].
• DP as an equilibrium of economic games [Chen, Nissim,

Sheffet, Vadhan].



DP and Statistics

• Linear Regression & Casual Inference:
I [Sheffet]: New DP algorithms for 2nd moment
matrix of a dataset and least-squares
regression for statistical inference.

I [D’Orazio, Honaker, King] and [Karwa, Vadhan]:
Work in progress.

• [Gaboardi, Lim, Rogers]: New results on
goodness-of-fit testing and independence
testing with DP.

I In particular, how to calculate “significance level”
of χ2 test, taking into account noise added for DP.

• [Vadhan, Zheng]: Traditional synthetic data
generation methods achieve differential privacy
in many cases.

I Zheng’s thesis won the Hoopes Prize for
outstanding undergraduate work.

* Karwa is a post-doc researcher with Airoldi & Vadhan. Airoldi & Nissim were readers on Zheng’s Thesis.
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New Real-Life Applications of DP

• In first site visit Sweeney introduced a
re-identification of bicycle routs in Hubway
contest.

• [Kantarcioglu, Sweeney]: Compared DP
techniques to create DP synthetic data set.

I showed that DP would have sufficed for most
entries in Hubway data contest with ε = 0.9.

• Over the next year, they will test the actual
utility of these methods actual against contest
entries.

I Goal: provide software to contest organizers
worldwide to use.



New Real-Life Applications of DP

• In first site visit Sweeney introduced a
re-identification of bicycle routs in Hubway
contest.

• [Kantarcioglu, Sweeney]: Compared DP
techniques to create DP synthetic data set.

I showed that DP would have sufficed for most
entries in Hubway data contest with ε = 0.9.

• Over the next year, they will test the actual
utility of these methods actual against contest
entries.

I Goal: provide software to contest organizers
worldwide to use.



New Real-Life Applications of DP

• In first site visit Sweeney introduced a
re-identification of bicycle routs in Hubway
contest.

• [Kantarcioglu, Sweeney]: Compared DP
techniques to create DP synthetic data set.

I showed that DP would have sufficed for most
entries in Hubway data contest with ε = 0.9.

• Over the next year, they will test the actual
utility of these methods actual against contest
entries.

I Goal: provide software to contest organizers
worldwide to use.



DP and False Discovery

• A new surprising line of research shows that DP
can be used as a tool for preventing false
discovery with adaptively used data.

• [Steinke, Ullman COLT15]: extend lowerbound
techniques for DP to give tight bounds on
computational hardness of preventing false
discovery.

• [Nissim, Smith, Steinke, Ullman+]: Give improved
upperbounds for false discovery and a tight
characterization of the generalization of DP.
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Bounds on DP

• Part of our long-term research on
understanding what can be computed with DP,
and with what costs.

• [Bun, Nissim, Vadhan+ FOCS15]: Estimating basic
statistics such as quantiles, learning distributions
wrt Komogorov distance on domain D.

I Requires between log∗ |D| and 2log
∗ |D| samples.

I Impossible when information is taken from a
continuous domain.



Private Machine Learning

• Part of our long-term research of possibility and
limitations of DP machine learning.

• [Nissim+ SODA15]: Semi-supervised learning
(where some examples are unlabeled) for
mitigating the higher sample complexity of DP
learning.

I Number of labeled examples matches
non-private learning.

• [Bun, Nissim+]: Upper- and lower-bounds on the
cost of simultaneously learning k concepts.



PL techniques for DP

• Part of our long-term research into PL tools for
ensuring differential privacy.

• [Gaboardi+ POPL15]: Semi-automated techniques
for verifying a program is DP.

I based on a type system able to express
properties of two runs of a program

• [Gaboardi+ SNAPL15]: Formal program logic
techniques for reasoning about randomized
algs.

I Useful, in particular, for expressing and verifying
accuracy properties of DP mechanisms.



Composition of DP mechanisms

• Part of our long-term goal of understanding and
using composition of DP mechanisms.

I Composition is one of the properties making DP
programmable.

• [Murtagh, Vadhan] Optimal composition
theorems for DP.

I Hardness of exactly computing the optimal
composition.

I Poly-time approximation of optimal composition.



Estimating Privacy Risk

• [Dwork, Smith, Steinke, Ullman, Vadhan FOCS15]:
New attacks on releases of aggregate stats.

I Require less auxiliary information than previous
similar attacks.

I Use very simple stats (column sums).
I Robust to choice of perturbation technique.

• [Jiang, Steinke] perform experimental evaluation
of the attacks.



DP as an equilibrium of economic games

• Does DP appear naturally in games?
• [Chen, Sheffet, Vadhan WINE14]: Analyzed a
simple game-theoretic model where an agent
balances benefits and risks of revealing
sensitive information.

• Research in this vein continues (+Nissim).



DP - New papers (since Jan 2015)
• Mark Bun, Jonathan Ullman, Salil Vadhan. Fingerprinting Codes and the Price of Approximate

Differential Privacy. SICOMP.
• Amos Beimel, Kobbi Nissim, Uri Stemmer. Learning Privately with Labeled and Unlabeled Examples.

SODA.
• Mark Bun, Kobbi Nissim, Uri Stemmer, Salil Vadhan. Differentially Private Release and Learning of

Threshold Functions. FOCS.
• Or Sheffet. Private Approximations of the 2nd-Moment Matrix Using Existing Techniques in Linear

Regression.
• Or Sheffet. Differentially Private Least Squares: Estimation, Confidence and Rejecting the Null

Hypothesis.
• Jack Murtagh, Salil Vadhan. The Complexity of Computing the Optimal Composition of Differential

Privacy.
• Mark Bun, Mark Zhandry. Order-Revealing Encryption and the Hardness of Private Learning.
• Thomas Steinke, Jonathan Ullman. Interactive Fingerprinting Codes and the Hardness of

Preventing False Discovery. COLT.
• Thomas Steinke, Jonathan Ullman. Between Pure and Approximate Differential Privacy.
• Raef Bassily, Adam Smith, Thomas Steinke, Jonathan Ullman. More General Queries and Less

Generalization Error in Adaptive Data Analysis.
• Kobbi Nissim, Uri Stemmer. On the Generalization Properties of Differential Privacy.
• Kobbi Nissim, Uri Stemmer, Salil Vadhan. Locating a Small Cluster Privately.
• Mark Bun, Kobbi Nissim, Uri Stemmer. Simultaneous Private Learning of Multiple Concepts.
• Kobbi Nissim, David Xiao. Mechanism Design and Differential Privacy. Encyclopedia of Algorithms.
• Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, Salil Vadhan. Robust Traceability

from Trace Amounts. FOCS.
• Xianrui Meng, Seny Kamara, Kobbi Nissim, George Kollios. GRECS: Graph Encryption for

Approximate Shortest Distance Queries. ACM CCS.



DP - Selected Presentations

• Privacy Tools participates in TPDP Workshop as program chair, committee, and invited speaker.
• Kobbi Nissim: Privacy: How theory can influence reality. UCSD Distinguished Lecturer Series.
• Salil Vadhan: Keynote talk. Big Data/Social Informatics 2015.
• Vito D’Orazio, James Honaker, Garry King: Differentially private methods. Annual Meetings of the

American Political Science Association and Meetings of the Midwest Political Science Association.
• Thomas Steinke: Differential Privacy. China Theory Week.
• Kobbi Nissim: The Theory of Bringing Privacy into Practice. Caltech.
• Kobbi Nissim: private learning. Charles River Crypto Day
• Mark Bun: Differentially Private Release and Learning of Threshold Functions. FOCS.
• Thomas Steinke: Robust Traceability from Trace Amounts. FOCS.
• Vito D’Orazio, James Honaker, Gary King and co-PI King presented on differentially private

methods at the Meetings of the Midwest Political Science Association.



Some future research directions

• Linear regression and causal inference.
• Improvements on S&A – a basic DP construction
technique.

• Open problems w.r.t. private learning in approx.
DP: Characterization of sample complexity,
improper learning, . . .

• Adaptive choice of parameters.
• Data-based choice of DP mechanism.
• Controlling false discovery in adaptive data
analysis.

• DP where privacy is not the goal.
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Conclusion
• We advocate differential privacy as part of our
approach to privacy.

• We are building an open library of differentially
private tools in R, the most commonly used
language in applied quantitative analysis.

• We have designed and implemented an
architecture for social science researchers to
use our tools.

• The use of differentially private tools requires
new ways of thinking about our statistical
estimators.

• Our theoretical work has helped establish and
advance the rich theory that makes differential
privacy a strong privacy concept.
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