PSI Ψ: (PRIVATE DATA SHARING INTERFACE)

BUDGET TOOL

Privacy Tools for Sharing Research Data Project

Research Intern

Fanny Chow1 | Nabib Ahmed2

Mentored by

Jack Murtagh3 | James Honaker4

Summer 2016
Harvard School of Engineering & Applied Sciences (SEAS)

OVERVIEW

1 University of California, Davis - fchow@ucdavis.edu
2 Harvard University - nahmed8098@gmail.com
3 Harvard University - murtagh.jack@gmail.com
4 Harvard Institute for Quantitative Social Sciences (IQSS) - james@hona.kr
This project involves the design and implementation of a “privacy budget” user interface for the differentially private algorithms developed by the Privacy Tools Research Group. The Budget Tool will allow researchers to allocate a privacy budget to sensitive datasets by selecting statistics and variables for differentially private releases. The UI (user interface) should be intuitive, user-friendly, well-integrated with the existing components of the system, and easily extensible as the tool continues to expand.

INTRODUCTION

Data provides evidence for the basis of scientific knowledge. Open data improves both the transparency and reproducibility of research. However releasing research data must be made with considerations for protecting the privacy of individuals. Traditional approaches to privacy protection, such as de-anonymization, have shown to be unsuccessful. There have been many examples that these “re-identification” attacks are often quite easy to carry out in by using publicly available datasets as sources of auxiliary information (Vadhan 2016). Differential privacy aims to ameliorate some of the privacy risks of sharing sensitive data.

WHAT IS DIFFERENTIAL PRIVACY?

Differential privacy is a mathematical framework for enabling statistical analysis of sensitive datasets while ensuring that individual-level information cannot be leaked. A differentially private data release algorithm allows researchers to ask practically any question about a database of sensitive information and provides answers with added noise, so that they reveal virtually nothing about any individual’s data — not even whether the individual was in the database in the first place (Klarreich 2012).

The project website (http://privacytools.seas.harvard.edu/courses-educational-materials) contains resources for learning more about differential privacy.
PSI (PRIVATE DATA SHARING INTERFACE)

The Privacy Tools for Sharing Research Group is developing a prototype system that will allow researchers to:

1. upload private data to a secured Dataverse archive
2. budget - decide what statistics they would like to release about that data
3. release privacy preserving versions of those statistics to the repository
4. that can be explored through a curator interface without releasing the raw data, including
5. interactive queries.

PSI BUDGET TOOL

The PSI Budget Tool will allow researchers with privacy sensitive datasets upload their data to a repository and select statistics to be released to the public under the guarantees of differential privacy. Data depositors are guided through the fundamentals of differential privacy and appropriate choices of privacy parameters, i.e. their “privacy budget”. The tool then guides the depositors through distributing their privacy budget among the statistics they wish to release about the dataset. Once the depositor is finished, all of the statistics she selected are computed using differentially private algorithms and released for other researchers to see.

Eventually, the system will allow data depositors to optionally reserve some of the budget for future users to ask further questions about the data. This reserved budget will either be shared among all future users and once it is exhausted, nobody else may ask further interactive queries or each user will get a personal budget.

Once differentially private statistics are released and the interactive query interface is finished and integrated, other data analysts will be able to go to Dataverse, a data repository, and “explore” the uploaded dataset through an interface called TwoRavens. TwoRavens allows people to run statistical models on a dataset without ever touching the data - only using metadata and statistics about the data. If these statistics and metadata satisfy differential privacy, then so will any of the statistics run by TwoRavens (by the post-processing property of differential privacy). The interactive query interface will eventually be integrated with TwoRavens.
At the beginning of the Summer, we began with Budget Tool 1.0, a prototype user interface, and a command line tool for the interactive queries. We redesigned and implemented a new budgeting interface called Budget Tool 2.2.

HIGH LEVEL GOALS

<table>
<thead>
<tr>
<th>UX (USER EXPERIENCE) GOALS</th>
<th>DESIGN GOALS</th>
<th>DATA ARCHITECTURE GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>User should be able to choose what statistics they want to release & the value of global parameters</td>
<td>Scale for univariate statistics (ie. Mode, Box and Whisker Plots, Frequency Polygons)</td>
<td>“stateless” (store as little information as possible about the history of the interaction with the user)</td>
</tr>
<tr>
<td>Should be simple and intuitive and only require a conceptual understanding of differential privacy</td>
<td>Scale for multivariate statistics added later (ie. multivariate regression, PCA, covariance matrix)</td>
<td>Integrating code bases that underlie these systems (Dataverse, the budgeting interface, TwoRavens, interactive queries)</td>
</tr>
<tr>
<td>Should minimize work of data depositor & check against erroneous data entry</td>
<td>Should be versatile enough to scale for additional types of datasets or privacy features</td>
<td></td>
</tr>
</tbody>
</table>

Should minimize work of data depositor & check against erroneous data entry

Should be simple and intuitive and only require a conceptual understanding of differential privacy

Should be able to choose what statistics they want to release & the value of global parameters

Scale for univariate statistics (ie. Mode, Box and Whisker Plots, Frequency Polygons)

“stateless” (store as little information as possible about the history of the interaction with the user)

Integrating code bases that underlie these systems (Dataverse, the budgeting interface, TwoRavens, interactive queries)

Should be versatile enough to scale for additional types of datasets or privacy features
The Budget Tool is comprised of a data pipeline corresponding to the user workflow:

1. Dataverse
 a. Upload raw data set
 b. We parse metadata XML file for:
 i. Variable names
 ii. Sample size
 iii. Name of data set
2. Generate variables list in left sidebar of Budget Tool
 a. User selects or deselects variables of interest
3. Budget Dashboard
 a. User can adjust global parameters
BUDGET TOOL 1.0

Census_PUMS5_California_Subsample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Statistic</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
<th>Granularity</th>
<th>Number of bins</th>
<th>Epsilon</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>age</td>
<td>Mean</td>
<td>100</td>
<td>0</td>
<td>ra</td>
<td>na</td>
<td>0.0316</td>
<td>0.0474</td>
</tr>
<tr>
<td>x</td>
<td>educ</td>
<td>Histogram</td>
<td>na</td>
<td>na</td>
<td>ra</td>
<td>20</td>
<td>0.0316</td>
<td>0.0489</td>
</tr>
<tr>
<td>x</td>
<td>sex</td>
<td>Categorical</td>
<td>Histogram</td>
<td>na</td>
<td>na</td>
<td>ra</td>
<td>2</td>
<td>0.0316</td>
</tr>
<tr>
<td>x</td>
<td>income</td>
<td>Numeric</td>
<td>Quartile</td>
<td>10000000</td>
<td>0</td>
<td>1000</td>
<td>na</td>
<td>0.0321</td>
</tr>
<tr>
<td>x</td>
<td>name</td>
<td>Numeric</td>
<td>Quartile</td>
<td>10000000</td>
<td>0</td>
<td>na</td>
<td>2</td>
<td>0.0316</td>
</tr>
<tr>
<td>x</td>
<td>birthno</td>
<td>Boolean</td>
<td>Histogram</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2</td>
<td>0.0316</td>
</tr>
<tr>
<td>x</td>
<td>black</td>
<td>Boolean</td>
<td>Histogram</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2</td>
<td>0.0316</td>
</tr>
</tbody>
</table>

Advanced Options:
- Epsilon: 3
- Data: 80000000
- Bin: 80

BUDGET TOOL 2.0 (STATIC WIREFRAME)

Budgeting Tool

California Census (PUMS) Data

Epsilon Budget

Variable: Income
- Variable Name: Income
- Variable Type: Numerical
- Statistic: Mean
- Upper Bound: 100
- Lower Bound: 1
- Granularity: 10
- Epsilon: 0.0316
- Accuracy: 0.0474

Variable: Sex
- Variable Name: Sex
- Statistic: Histogram
- Bins: 10
- Epsilon: 0.0246
- Accuracy: 0.0312
BUDGET TOOL 2.1 (IMPLEMENTATION)

Video Demo: https://youtu.be/4GwX5Br7OWs | Github Repo: https://github.com/Nashmed28/REU

BUDGET TOOL 2.2 (IMPLEMENTATION)

RESULTS

Some main accomplishments:

1. Designed a working prototype (version 2.2) that is suitable enough to replace the old implementation (version 1.0).
2. Build modularly so that features, such as multivariate statistics, could easily added
 a. Avoid “hard-coding”
 b. JSON file with list of available statistics to populate and generate the web app
3. Begin connecting frontend to back-end R server processes
 a. design mock-up → working prototype

CONCERNS ABOUT DIFFERENTIAL PRIVACY: THEORY VS PRACTICE

1. Is the current implementation considered a “stateless” process (as little information as possible about the history of the interaction with the user is stored)?
2. Is the user interface a truthful interpretation of differential privacy?
3. Will allowing an analyst to save budget tool and work it on it later allow data dependent decisions?

FUTURE WORK

Here are some future steps in the development of the Budget Tool:

1. UX (User Experience) Testing
 a. Jack Landry (2016 Summer REU Intern) and Caper Gooden (2015 Summer REU Intern) have developed a series of educational documents and user experience questions to assess understanding and effectiveness of the budget tool for social scientists and researchers with minimal understanding of differential privacy

2. Formal Documentation
 a. Many aspects of the current implementation are auto-generated, including the statistics and types available. In order to meet our goal of scalability, the tool is designed such that the information regarding what statistics and types are available only need to be passed in once. Currently they are passed through as a JSON object. This JSON object must meet a certain format in order for the tool to be executed properly. This means that future researchers who wish to create additional R-servers for more statistics and types must add information to the JSON object in order for the site to properly reflect the additions. Thus formal documentation needs to be created where researchers can learn the correct method of adding this vital information.

3. Other Univariate Statistics
 a. Currently the tool only allows the release of three statistics when in fact there is a myriad of univariate statistics that can be used, so one goal is to develop R-libraries that can apply differentially private methods for these statistics such that researchers can release more on their
data.

4. Multivariate Statistics
 a. Researchers would like to release statistics that show the relationship between two or more variables. Currently the tool is designed to release statistics about one variable at a time and so the above becomes very tricky to do with our current tools. Thus, one goal is to create a design that allow researchers to release both univariate and multivariate statistics with ease and simplicity.

CONCLUSION

Ultimately the Budget Tool will allow researchers to work with the guarantee of privacy while sacrificing minimal data utility. With this working tool, data depositors can begin experimenting with differential privacy releases without having to learn the specifics of differentially private algorithms. Developing the privacy budget tool is one step towards developing the entire suite of PSI tools that will make privacy-protective data-sharing easier for researchers.

REFERENCES

