


State of the Presentation

This version of the presentation has been made available 

for general commentary and review, and should not be 

regarded as an absolute final product.





Differential Privacy in CDFs

The ultimate aim of this presentation is to familiarize 

social scientists with the errors introduced by differential 

privacy (DP), and to explain how to manage DP’s 

random noise. 

In this document, we explain the effect of random noise 

introduced in DP-computations by making analogies to 

sampling error. We focus on the case of cumulative 

density functions (CDFs) and histograms.

Other supporting documents can be found at the 

project’s webpage: http://privacytools.seas.harvard.edu

http://privacytools.seas.harvard.edu/
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Section 1

WHAT IS DIFFERENTIAL PRIVACY? A 

BRIEF INTRODUCTION.



Differential Privacy

Differential Privacy allows us to look at  data 

through a clouded lens: it allows us to see 

trends in data while hiding the specifics of 

individual records.

Our aim: Research data presently hidden from 

the public (due to sensitivity and participants’ 

privacy concerns) can be made safely 

available in an ‘obscured’ form.



Differential Privacy

This ‘obscuring’ of data is done with the 

addition of random noise in a controllable, 

mathematical way so as to satisfy a 

precise privacy goal.



Differential Privacy
The following slides convey how using 

differentially private statistics can be intuitive, 

as the introduction of random noise is in many 

ways similar to the inherent randomness of 

sampling error.

Just as inferences from sample data provide 

useful insight into population properties, 

inferences from differentially private data can 

suffice for many purposes.



Sampling Error

• In general, sampling error occurs when small 

datasets are used to make inferences about 

the populations they are drawn from.

• The accuracy of a sample-based estimate 

depends on the sample size and 

representativeness. Absolute precision would 

require sampling an entire population, but 

past a certain sample size the diminishing 

gains in precision become negligible. 



Differential Privacy & Sampling Error

Similarities:

• Both may adversely influence conclusions drawn 

from data.

• In both, errors are more severe with smaller sample 

size n.

• Magnitude of errors can be estimated.



Section 2.1

SAMPLING ERROR AND INFERENCE 

IN SOCIAL SCIENCE

Means Histograms CDFs



Statistics as Approximation

To broach the subject of differential privacy, and why 

addition of random noise is not so strange, we must first 

become aware of two things:

Statistics is a method of estimation,

and

Statistical estimation copes with the inherent randomness of 

sampling error.



Statistics as Approximation

When used correctly, statistics is effective despite these two 

facts. Statistics have predicted important events, trends, 

and catastrophes. Statisticians are paid millions by stock 

brokers who then make millions themselves. We base our 

economy and national future on statistical data. 

These are basic examples of how statistical computations 

are often accurate and useful despite being 

approximations.



Case Example

The following slides will provide a simple example of 

sampling error as a product of randomness. 

They will explain how and why it arises, and how the same 

methodology can produce different results, due to 

randomness.



Case example:  Mean 

Number of Social Groups
Consider a political scientist, Neil. Neil is interested in civil 

society, so he’s studying the relationship between citizens’ 

social engagement and the outcome of local elections.

For his current work, he needs to find the average number 

of social groups that each person identifies with in each 

district.

To find that exact average, Neil would need to track down 

and survey everybody in the district, and ask them about 

their social life. Neil cannot do this, as it would cost too 

much time and money. Thus, Neil must use statistics to 

estimate that average.



Sampling error
Currently, Neil is studying District X. For simplicity’s sake, let’s say District X 

has 90 people in it. In the chart below, each box represents a person.

3 5 3 5 3 3 4 5 4 5 3 5 5 5 3 0 8 6 8 6 9 6 4 0 4 7 6 8 7 2

1 0 5 5 3 3 5 7 0 3 2 3 1 3 0 1 5 7 2 4 6 9 7 0 9 9 4 5 9 1

4 4 2 6 7 9 3 0 9 3 5 6 3 2 9 5 8 6 7 5 3 4 3 9 5 0 3 3 2 0

Number of Social Groups each Person Identifies with in District X

Here we see the average number of social groups is 4.4, 

found by summing the observations and dividing by n (90).

As we said, Neil doesn’t have the time and money to survey 

all 90 people. He can only survey 18. Randomly selecting 18, 

he estimates an average of 2.3 groups per person!

0 0 2

1 0 3 1 4 9

2 0 3 6 3 5 0 2 0



Sampling error

3 5 3 5 3 3 4 5 4 5 3 5 5 5 3 0 8 6 8 6 9 6 4 0 4 7 6 8 7 2

1 0 5 5 3 3 5 7 0 3 2 3 1 2 0 1 5 7 2 4 6 9 7 0 9 9 4 5 9 1

4 4 2 6 7 9 3 0 9 3 5 6 3 3 9 5 8 6 7 5 3 4 3 9 5 0 3 3 2 0

Number of Social Groups each Person Identifies with in District X

Neil’s three colleagues don’t trust his answer, and so they each do 

their own random sampling of District X.

0 4 6 2

1 5 0 3 2 9 0

7 5 9 3 0 2 0

3 5 5 9 6 7 7

7 3 5 9 9

4 7 3 9 5 0

3 3 5 8 8

7 3 5 0 9

0 9 5 3 4 0 3 3

Means:

5.72

4.33

3.22



Sampling error
Here we see each of the researchers’ results. 

Researcher Sample

Size

Mean number of groups that each 

person identifies with in District X

Error from 

Sampling

Estimated True

Neil 18 2.30 4.4 -2.10

Colleague 1 18 5.72 4.4 1.32

Colleague 2 18 4.33 4.4 -0.07

Colleague 3 18 3.22 4.4 -1.18

Their different results are a testament to the randomness of selecting 

which 18 people in District X to survey. None of the colleagues knew 
better or worse which sample of 18 would be more representative of 

the whole district, and so in their eyes all answers are equally 
possible.



Sampling error

As the example demonstrates, sampling error occurs 

when we estimate properties of data we can’t fully 

access. 

Randomness is key here. We don’t know for sure how 

representative our sample is. Neil couldn’t choose which 

observations he would collect, and doesn’t know how 

well his observations align with the rest of District X. 

Estimation techniques and norms in social science have 

developed to accommodate sampling error.



Random Sampling

It’s important to note that randomness is used as a tool in 

statistics, to avoid overrepresentation of certain values, and 

thus minimize sampling error. Neil and his colleagues were 

right to sample randomly, instead of only surveying wealthy 

neighborhoods, or elderly citizens, for example. However, 

sampling error is present regardless, even if random

sampling helps ensure that it stays low.

3 4 5 6 9 6 4

0 4 9 9 1

4 9 3 9 5 3

4 7 6 8 7 2

9 9 4 5 9 1

5 0 3 3 2 0

Random sample

Non-random 
sample



Sampling error
The findings of Neil and his colleagues clearly showed the 

effects of sampling, but the district size of 90 is unrealistically 

small, and the relative sample size, 20%, is unrealistically high. 

Both were exaggerated for demonstration. 

In the following pages, we’ll work with larger datasets, ones 

that can only be visualized with graphs and histograms.

When looking at the following pages, keep in mind that 

we’re only showing one possible sample at each sample 

size. Due to the randomness of sampling, for any large 

dataset, there can be thousands, or even millions and 

billions, of possible samples. 



Sampling error
We will use the next example to show that better results can 

be gained by altering our sample size. We like to think of 

sample size as a knob we can turn. With a larger n, we can 

get more accurate results. To see it a different way, turning 

the “knob” of n lowers the influence of randomness.

Later on, we will see that differential privacy also has this 

“n knob.” It also has a special knob to itself, ε (epsilon).

larger

randomness 

influence

larger 

sample 

size

larger

randomness 

influence

larger 

sample 

size

more 

random 

noise, more 

privacy

Less 

random 

noise, less 

privacy



Section 2.2

SAMPLING ERROR AND INFERENCE 

IN SOCIAL SCIENCE
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Sampling error in practice
Gertrude is an economist, and she needs to know the mean 

income in District Y, which has 40,000 people. District Y’s income 

distribution is plotted below, with the mean being $26,000.

As with Neil, Gertrude 

doesn’t have the 

resources to survey all 

40,000 people in the 

district, so she’ll never 

know this true mean or 

distribution. Instead, she 

takes a random sample of 

citizens, and estimates as 

best she can.

Histogram of the Dataset 
Using the Full Population

$0               $25k          $50k            $75k          $100k

Income in District Y



Sampling error in a histogram

Given her time and funding constraints, Gertrude manages to 

survey 500 people.

Since Gertrude is using this 

sample to estimate 

properties of the whole 

District Y population, each 

observation represents 80 

people in the population. 

Using this basic method, this 

graph summarizes our 

prediction for the 

population, based on the 

sample.

Population Estimation Using 
a 500-person sample

$0               $25k          $50k            $75k          $100k

Income in District Y



Overlaying the graph based 

on Gertrude’s sample 

( ) with the graph of the 

real population ( ), we can 

use this resulting ( ) 

graph to see small differences 

arising. In bins with red tops, 

the sampling underestimated 

the frequency of that bin’s 

value, while the opposite is 

true of bins with yellow tops.

Sampling error in a 

histogram

…with the true population 
overlaid

$0               $25k          $50k            $75k          $100k

Income in District Y



One of Gertrude’s colleagues has some more time than Gertrude 

did, and independently surveys 2,000 people. She uses the 

properties of this 2,000 person sample to estimate population 

properties.

…with the true population 
overlaid

Sampling error in a histogram

$0               $25k          $50k            $75k          $100k

Population Estimation Using 
a 2000-person sample

$0               $25k          $50k            $75k          $100k

Income in District Y Income in District Y



Lastly, another colleague surveys 10,000 people, and the 

estimate from this sample proves to be the most accurate.

Sampling error in a histogram

Population Estimation Using 
a 10,000-person sample

…with the true population 
overlaid

$0               $25k          $50k            $75k          $100k

Income in District Y

$0               $25k          $50k            $75k          $100k

Income in District Y



The chart below shows the different means we get from each 

representation of the population. 

Sampling error in a histogram

$0               $25k          $50k            $75k          $100k
Income in District Y

$0               $25k          $50k            $75k          $100k
Income in District Y

$0               $25k          $50k            $75k          $100k
Income in District Y

$0               $25k          $50k            $75k          $100k
Income in District Y

Researcher Gertrude Colleague 1 Colleague 2

Sample Size (40,000) 500 2000 10,000

Average in USD 26,000 23,134 27,487 25,567

Difference* (0) -2866 +1487 -433

*the empirical 
mean found by 
each researcher 
minus the true 
mean, 50,000.

Histogram of the Dataset Using the 
Full Population

$0               $25k          $50k            $75k          $100k

Income in District Y

Population Estimation Using a 500-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y

Population Estimation Using a 10,000-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y

Population Estimation Using a 2000-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y



Keep in mind that so far we’ve only taken one sample at each 

sample size, and that there are many other possible random 

samples.

The chart below shows some other possible averages that each 

researcher could’ve found through the same methods used so 

far.

Sampling error in a histogram

Researcher Gertrude Colleague 1 Colleague 2

Sample Size (40,000) 500 2000 10,000

Average in USD 26,000 23,134 27,487 25,567

Error (0) -2866 +1487 -433

Average in USD 26,000 29,965 28,201 26,019

Error (0) +3965 +2201 +19

Average in USD 26,000 27,178 27,203 25,887

Error (0) +1178 +1203 -113



Despite these errors, these averages would be suitable for 

conventional use in research and analysis, and offer nearly the 

same information as if they’d all returned the true population 

mean.

We know this because of the significance test, a very common 

practice. That measurement is calculated using the standard error 

of the sample, and determining if the returned mean is ‘too far’ 

from the mean we expect ($50k). 

Sampling error in a histogram



95% confidence 
Social scientists and statisticians are often satisfied with a 

95% confidence level in measurements.

“Confidence level” refers to the statistically-computed 

likelihood that a sample statistic accurately represents the 

population statistic it estimates. 

Based on that measure, and the standard deviation of 

Gertrude’s team’s samples, none of the results are 

significantly different from their respective population mean, 

and would all be treated as essentially the same answer.
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Thus far, we’ve covered the behavior of sampling error in 

histograms and the averages they return. Something slightly more 

complicated is the behavior of sampling error in accumulation, as 

it is added together. 

This situation occurs in cumulative histograms and their more 

common counterpart, cumulative density functions, or CDFs. CDFs 

are used mainly to compute the medians and other quantiles of 

datasets. In the following slides we’ll explain the construction of 

CDFs with an eye on how the randomness of sampling error 

affects their accuracy and utility.

Sampling error in CDFs



Cumulative Histograms
First, sequentially adding the bars of a histogram gets us a 

cumulative histogram. The final bin of a cumulative histogram 

will always equal the size of the original dataset.

Cumulative HistogramHistogram

n



Cumulative Density Functions
Dividing the cumulative histogram’s bin-counts by the total 

number of data points, we normalize to [0,1] and 

approximate a cumulative density function (CDF).

Cumulative Histogram CDF (overlaid on C.H.)



Cumulative Density Functions

Removing the underlying bars used to compute CDFs, we see 

the more commonly-used curve-form of a CDF. We’ll 

continue with curves like this.

CDF (overlaid on C.H.) CDF



Formally, CDFs are  integrations of a random variable’s 

probability density function*. Their main use is in how they 

represent proportions of datasets.

75th Quantile

50th Quantile

25th Quantile

Thanks to normalization, 

they can be easily used 

to find 

quantiles/percentiles of 

a random variable’s 

values, as seen here.

Cumulative Density Functions



Here, we note a technical point.

There is a difference between CDFs generated from sample 

histograms and CDFs generated strictly as integrations of PDFs, the 

latter of which is truly a CDF. 

That is, a true CDF is the underlying function dictating how the 

graphical curve appears, whereas an empirically-derived “CDF” 

created from a histogram is actually a set of points following a 

pattern dictated by an unknown underlying function. 

For most applied empirical usage, social scientists are actually 

using empirically derived CDFs, and we continue that tradition in 

work on applied differential privacy. That is, we are not 

considering underlying mathematical functions.

*Note on Empirical CDFs



As a final point, CDFs can show general trends in data as well. 

For example, we see that this distribution is roughly Gaussian.

There are fewer 

observations with high 

and low values (small 

slope).

There’s a large, uniform 

amount of observations 

with medium values 

(smooth, steep slope)

Cumulative Density Functions



1   2  3   4   5   6  7  8  9 

40

30

20

10

Histogram

Sampling Error in CDFs
CDFs contain the same amount of sampling error as the 

histograms and PDFs that they are created from.
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Sampling error in a CDF
In the following example, we’ll present a few CDFs constructed 

with random sampling noise. For reference, we’ll sometimes 

overlay these errored-CDFs on top of a their true CDF (of the 

entire population), which will most often take the form below.

In each image, the 

horizontal gridlines 

represent the 25th, 50th, 

and 75th percentiles, and 

the corresponding 

vertical gridlines trace 

the corresponding values 

in the true dataset. This 

helps to visualize manifest 

error.



Population Estimation Using a 500-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y

Sampling error in a CDF
Gertrude, our researcher from earlier, needs to find the median

income of District Y, and expects she’ll need to find other 

quantiles later. 

Using the histogram she 

made earlier from her 500 

person survey in District Y, 

Gertrude uses statistical 

software to build a CDF. Her 

CDF is an estimation of the 

true CDF of District Y’s entire 

income distribution.

$0             $20k          $40k           $60k         $80k       $100k



$0             $20k          $40k           $60k         $80k       $100k

Population Estimation Using a 10,000-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y

Gertrude’s two colleagues want to check her answer. They each 

use the histograms constructed earlier to make a CDF and find 

estimate the median income of district Y. 

Sampling error in a CDF

$0             $20k          $40k           $60k         $80k       $100k

Population Estimation Using a 2000-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y



The chart below shows the different medians we get from each 

sample. 

Sampling error in a CDF

Researcher Gertrude Colleague 1 Colleague 2

Sample Size (40,000) 500 2000 10,000

Median in USD 23,500 26,000 24,700 23,800

Difference* (0) +2500 +1200 +300

$0                $20k            $40k           $60k            $80k         $100k $0                $20k            $40k           $60k            $80k         $100k $0                $20k            $40k           $60k            $80k         $100k $0                $20k            $40k           $60k            $80k         $100k

*the empirical 
median found by 
each researcher 
minus the true 
mean, 23,500.



Keep in mind that so far we’ve only taken one sample at each 

sample size, and that there are countless other possible random 

samples.

The chart below shows some other possible medians that each 

researcher could’ve found through the same methods used so 

far, with differences being due to sampling error.

Sampling error in a CDF

Researcher Gertrude Colleague 1 Colleague 2

Sample Size (40,000) 500 2000 10,000

Median in USD 23,500 26,000 22,300 23,900

Error (0) +2500 -1200 +400

Median in USD 23,500 22,300 24,100 23,000

Error (0) -1200 +600 -500

Median in USD 23,500 25,100 24,600 23,200

Error (0) +1600 +1100 -300

Sample 1

Sample 2

Sample 3



Managing Random Noise in 

Modern Social Science

As a final note, it’s worth noting 

that the United States Census 

typically only surveys less than 

one percent of the U.S. 

population. This is what our 

arguably strongest socio-

economic data comes from.

With that, we hope that randomness and random noise are 

recognized as an immutable and constant part of statistical 

work. We now move on to explaining differential privacy, a 
method of using randomness and uncertainty to the 

advantage of privacy.



Section 3

DIFFERENTIAL PRIVACY: INTUITION



Why Data Privacy?

Before explaining what differential privacy does, it’s important 

to understand the motivation behind it.

First, we must see that there is a vast amount of personally 

identifiable and sensitive information online. Things like names, 

addresses, medical records, and financial information are 

collected by firms, banks, hospitals, schools, and even the 

government.



Why Data Privacy?

Data’s Value
Large datasets that include sensitive information can be highly 

valuable to researchers. Consider an epidemiologist seeking 

trends in citizens’ health, or an economist studying the 

ownership of volatile financial assets. We’ll continue to think 

about these “good guys”, the researchers. 

Accessing Data
Researchers who want to access sensitive data must go 

through long, time-consuming, and potentially expensive 

processes to confirm that the data will be safe in their hands. 

Some data is simply inaccessible to even the best-intentioned 

researchers.



Why Data Privacy?

Data’s Danger (to the public)

For reasons of profit, personal gain, or general malign 

motivation, criminals or predatory organizations can use this 

personal data as a tool. These individuals and organizations are 

often referred to as “adversaries.”

For example, medical information can be used by adversaries 

for blackmail, harassment or persecution. Financial data can 

be used by adversarial firms for discriminatory pricing or 

advertisement. 



Why Data Privacy?

Data’s Danger (to the researcher)

At the same time, these risks can make data a liability for the 

researchers themselves, and their institutions. Holding and 

sharing sensitive data opens researchers to the risks associated 

with failing to uphold related legal and ethical requirements.

Poorly handled sensitive information can also jeopardize the 

reputation of researchers, institutions, and the research 

community at large.



Why Data Privacy?

What is wrong with current data privacy standards?

At present, standards for protecting the privacy of 

data are often weak. For example, removing names 

and addresses from datasets may at first seem 

sufficient to protect individuals, but this has been 

disproven by powerful examples.

The same can be said of many other typical 

privacy-preservation techniques. For more, see 

related publications here. 

http://privacytools.seas.harvard.edu/publications?page=1


Why Differential Privacy?

Conflation of privacy goals and methods

Part of the weakness in typical privacy-preservation 

techniques comes from conflating the goal of privacy 

with the methods of privacy preservation.

For example, a researcher removing names from a 

dataset may think that the removal of names itself is the 

privacy goal, when reality, it’s the method. The goal in this 

case might be that no individual in the dataset can be re-

identified, or that no one would experience harm from the 

dataset.



Why Differential Privacy?

Separation of privacy goals and methods

Differential privacy is founded on a purely mathematical 

privacy goal, and methods are developed to meet that 

standard.

For more on the mathematical foundation of differential 

privacy, you can find related documents and 

explanations here.

http://privacytools.seas.harvard.edu/differential-privacy


What is Differential Privacy?

The Methodology of Differential Privacy

At the most basic level, differential privacy refers to methods 
that introduce random noise into statistical analyses.

Differential privacy requires that for an given dataset, if a single 

person’s data is added to or removed from that dataset, 

statistics computed from that dataset with differential privacy 

should be statistically indistinguishable before and after that 

change.

Furthermore, the combination of several statistical analyses that 
each satisfy the requirement of differentially privacy results in a 

(compound) analysis that satisfied differential privacy (albeit, 

with weaker guarantees). This is known as composition.



Why Differential Privacy?

Accessing Sensitive Data with Differential Privacy

Differential privacy can help remove the barrier 

between researchers and sensitive data while 

providing a strong protection for the privacy of 

individual data contributors.  



Why Differential Privacy?

Accessing Sensitive Data with Differential Privacy

By properly utilizing differential privacy, researchers are able 

to investigate sensitive datasets before going through the 

long process of seeking full access. 

Through the platform we develop, researchers may ask for 

statistical information regarding a sensitive dataset, such as 

means, histograms, or regressions. With differential privacy, 

the resulting statistics are slightly obscured through a 

mathematically precise method. 

These results can be highly valuable to researchers deciding 

whether or not to access a dataset, but negligibly useful to 

adversaries seeking personal information.



What is Differential Privacy?

Other documents from this group provide mathematical 

definitions for the inner-workings of differential privacy. This 

document will simply cover the intuition of differential 

privacy as far as is useful for statistical work.

Slightly more in-depth explanations can be found in the 

appendix at the end of this document.



Section 4.1

DIFFERENTIAL PRIVACY: 
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Using Differential Privacy
We’ll now offer a simple example. We return to Neil, a 

social scientist previously concerned with sampling error.

Remember that Neil was seeking to find the mean 

number of social groups that individuals in District X 

identify with. 

3 5 3 5 3 3 4 5 4 5 3 5 5 5 3 0 8 6 8 6 9 6 4 0 4 7 6 8 7 2

1 0 5 5 3 3 5 7 0 3 2 3 1 3 0 1 5 7 2 4 6 9 7 0 9 9 4 5 9 1

4 4 2 6 7 9 3 0 9 3 5 6 3 2 9 5 8 6 7 5 3 4 3 9 5 0 3 3 2 0

Number of Social Groups each Person Identifies with in District X

0 0 2

1 0 3 1 4 9

2 0 3 6 3 5 0 2 0

Above is the full population of District X (mean 4.4)

And here is Neil’s random sample (mean 2.3)



Recap: Sampling error

Number of Social Groups each Person Identifies with in District X

To reiterate, here are the random samples of Neil’s three colleagues, 

and their respective sample means.

0 4 6 2

1 5 0 3 2 9 0

7 5 9 3 0 2 0

3 5 5 9 6 7 7

7 3 5 9 9

4 7 3 9 5 0

3 3 5 8 8

7 3 5 0 9

0 9 5 3 4 0 3 3

Sample mean: 5.72

Sample mean: 4.33

Sample mean: 3.22



Using Differential Privacy

Now, suppose Neil learns that a university has already 

conducted an identical survey in a nearby area, District Z.

Neil believes that District X and District Z have similar 

populations, so he wants to access the university’s data 

for his research.

However, the university labels that dataset sensitive, and 

will not release the data without a year-long legal process 

to verify Neil’s credentials.

Neil wants to make sure that going through the process is 

worthwhile. If District Z is actually quite different from 

District X, he isn’t interested. He decides to investigate the 

data using differential privacy.



Using Differential Privacy

3 5 3 2 3 3 5 5 4 5 1 2 3 3 6 5 8 0 7 3 6 4 4 2 4 5

1 0 5 5 3 3 5 7 0 3 2 2 4 3 1 5 4 1 3 3 1 9 7 0 9 9

4 4 6 1 7 9 3 0 9 3 5 6 3 2 9 5 8 6 5 5 2 1 1 9 1 3

Number of Social Groups each Person Identifies with in District Z

Below, we see the university’s data. This is the data that 

Neil does not currently have direct access to, due to legal 

and privacy concerns.

Since we see the exact data, we can compute the exact 

mean: 4.01



Using Differential Privacy

The university directs Neil to their 

differential privacy platform.

Neil does not see the data directly. He 

specifies two things: the statistic he is 

interested in, and the ε value, which 

we’ll return to.

He receives an output of “likely 

between 3.61 and 4.03”, which is a 

differentially private approximation of 

the mean. So how did we arrive at 

this?

user:     Neil

dataset: “District Z”

Query:

ε value:

Mean

0.25

Output

4.03

3.61

DP INTERFACE

Upper Bound:

Lower Bound:



Using Differential Privacy

3 5 3 2 3 3 5 5 4 5 1 2 3 3 6 5 8 0 7 3 6 4 4 2 4 5

1 0 5 5 3 3 5 7 0 3 2 2 4 3 1 5 4 1 3 3 1 9 7 0 9 9

4 4 6 1 7 9 3 0 9 3 5 6 3 2 9 5 8 6 5 5 2 1 1 9 1 3

Number of Social Groups each Person Identifies with in District Z

Behind the scenes, Neil’s query was sent through the “DP 

Interface” to the true data. 

The interface calculated its answer by computing the 

mean and then adding proportional random noise. That is:

DP mean =
σ(𝑥𝑖)

𝑛
+ noise(ε)

=
313

78
+ noise(0.25)

= 4.01 + (-0.19) = 3.82



Using Differential Privacy

DP mean =
σ(𝑥𝑖)

𝑛
+ noise(ε)

=
313

78
+ noise(0.25)

= 4.01 + (-0.19) = 3.82

This initial estimate of the mean, 

3.82, is not very informative 

without its confidence intervals, 

or range or possible values. 

Using 95% confidence bounds 

based the ε parameter of 

differential privacy, the 

interface adds and subtract 

0.21 from this answer, giving us 

out upper and lower bounds of  

3.61 and 4.03

3.82   - 0.21  = 3.61

+ 0.21 = 4.03



ε, the “Knob” of DP

Users like Neil have some control over the level of random 

noise introduced by differentially private computations. As 

mentioned earlier, we can think of ε (pronounced “epsilon”) 

as a knob we can turn to tune our differentially private results. 

Just as we can turn the “knob of sample size” up or down to 

increase or decrease the precision of our statistics, we can 

increase or decrease the scale of DP random noise by 

increasing or decreasing ε. Further, they can be turned 

simultaneously.

larger

randomness 

influence

larger 

sample 

size

more 

random 

noise, more 

privacy

Less 

random 

noise, less 

privacy



ε, and request limits

In the next slides, we’ll look at what could have happened if 

Neil had chosen different levels of ε.

It’s important to understand that the following examples are 

only hypothetical.

Neil, like all DP-users, cannot request the DP-statistic from a 

dataset more than once. Multiple requests could compromise 

the privacy of the data.



ε, the “Knob” of DP

user:     Neil

dataset: District Z

Query:

ε:

Mean

0.25

DP INTERFACE

Output:

Here is the mean from above (4.01) approximated with different levels of ε. 

With lower ε (left), we’re more likely to receive larger noise levels. This is only 

for educational purposes; Neil can only see one answer. 

user: Neilhypothetical

dataset: District Z

Query:

ε:

Mean

0.5

DP INTERFACE

user: Neilhypothetical

dataset: District Z

Query:

ε:

Mean

0.1

Output:

DP INTERFACE

4.85

4.15

Upper Bound:

Lower Bound:

4.03

3.61

Upper Bound:

Lower Bound:

4.09

3.93

Upper Bound:

Lower Bound:

Output:



Randomness in Differential Privacy

This leads us to another key point. Since the methodology of 

differential privacy relies on random noise addition, 

differentially private approximations can produce various 

results, even under identical conditions.

On the next slide, we’ll examine this property of differential 

privacy.



user: Neilhypothetical

dataset: District Z

Query:

ε:

Mean

0.25

DP INTERFACE

user: Neilhypothetical

dataset: District Z

Query:

ε:

Mean

0.25

DP INTERFACE

ε, the “Knob” of DP

user:     Neil

dataset: District Z

Query:

ε:

Mean

0.25

DP INTERFACE

First, Neil knows that the added noise is random, repeating the same computation 

(even if it’s with the exact same value of ε) can produce different answers. These 

answers would have the same size confidence interval.

Output:

4.03

3.61

Upper Bound:

Lower Bound:

4.11

3.79

Upper Bound:

Lower Bound:

Output:

4.42

4.00

Upper Bound:

Lower Bound:

Output:



District Y

ε value

Mean value

ε, the “Knob” of DP: Why?
At this point, a user may wonder why anyone would use a low 

ε value, since higher epsilon values generally get more useful 

answers.

The reason is that differential privacy systems have a limit on 

how high you can set ε. This limit includes the cumulative ε

used across computations. Thus, we often refer to a “privacy 

budget” that corresponds to the maximum “accumulated ε” 
allowed for statistical queries into a dataset or DP-interface. 

Users want to conserve some of their ε budget for future use, 

and thus might want to use low ε values. 

Hypothetical Answers (from previous slides)

ε = 0.1 ε = 0.25 ε = 0.25 ε = 0.5

4.45 4.21 3.90 4.05

Neil’s Result

ε = 0.25

3.82

Actual

ε = N/A

4.01



ε, and “alpha” choices

As a side note, many Differential Privacy interfaces automate 

the selection of ε. Instead of asking users to enter an ε value, 

they might ask users for “alpha” value. Alpha represents 

the accuracy of an outputted DP statistic. When a user 

inputs an alpha value, the system automatically uses it to 

select the epsilon value required.

However, ε is at the root of all DP calculations, and alpha 

is merely a tool used to help determine its value. 

Therefore, we’ll continue using ε in our examples.



Differential Privacy: means

Returning to Neil’s situation, Neil has now seen his differentially 

private approximation of the mean, “most likely between 3.61 

and 4.03”. 

From that, he safely assumes that the true mean number of 

social groups that residents of District Z belong to is similar to 

that of District X. He decides that this data would be helpful to 

his research, and he decides to file for full access to the 

university’s dataset. 



Differential Privacy: means

Later, Neil learns of District W, a third nearby area that the 

university has information about. Neil asks for one differentially 

private mean for District W. He sets ε = 0.25, and his answer is 

5.21. Neil knows that the true answer is probably roughly 

between 4 and 6, and so he asks for District W’s data as well.

Lastly, Neil learns of District L, a fourth nearby area that the 

university has information about. Neil asks for one differentially 

private mean for District L. He sets ε = 0.25, and his answer is 

1.13. Neil knows that the true answer is probably roughly 

between 0 and 3, and so he does not ask for District L’s data.



Section 4.2

DIFFERENTIAL PRIVACY: 

APPLICATION

Means Histograms CDFs



Differential Privacy: Histograms

As we’ve seen, it was fairly straightforward for Neil to make 

sense of differentially private means and to incorporate them 

into his research process.

As we move onto more complex statistics, applying differential 

privacy becomes slightly more involved.

We’ll now begin discussing more complex statistics by returning 

to Gertrude, who makes use of histograms to study income 

distribution.



First, recall how sampling error affected the research of 

Gertrude and her colleagues in District Y. We see the “knob” 

of sample size in action here, with low sample sizes returning 

less accurate histograms.

Recap: Sampling error in a histogram

$0               $25k          $50k            $75k          $100k
Income in District Y

$0               $25k          $50k            $75k          $100k
Income in District Y

$0               $25k          $50k            $75k          $100k
Income in District Y

$0               $25k          $50k            $75k          $100k
Income in District Y

Researcher Gertrude Colleague 1 Colleague 2

Sample Size (40,000) 500 2000 10,000

Average in USD 26,000 23,134 27,487 25,567

Difference* (0) -2866 +1487 -433

*the empirical 
mean found by 
each researcher 
minus the true 
mean, 50,000.

Histogram of the Dataset Using the 
Full Population

$0               $25k          $50k            $75k          $100k

Income in District Y

Population Estimation Using a 500-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y

Population Estimation Using a 10,000-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y

Population Estimation Using a 2000-
person sample

$0               $25k          $50k            $75k          $100k

Income in District Y



Differential Privacy: Histograms

Like Neil, Gertrude recently learned that a nearby university 

already conducted a survey on nearly all of the residents of a 

similar nearby area, District Q. She’s curious about their findings, 

specifically about the income distribution in District Q. If the 

income distribution of District Q is comparable to that of District Y, 

then Gertrude is interested in investigating District Q deeply.

The university’s reasonable privacy policy prevents them from 

sharing income information without institutional review, but allows 

researchers to view statistics, including histograms, with 

differential privacy. Gertrude decides to peek at District Q’s 

income distribution through a differential privacy interface.



Differential Privacy: Histograms
In red is the income distribution of District Q as surveyed by the 

university. Gertrude doesn’t have access to this histogram. Keep 

this in mind as we follow Gertrude through her research.

What we learn from this 

histogram is that the large 

majority of District Q’s 

residents earn less than $35k 

per year, that the highest 

earner makes about $100k per 

year, and that there is a 

smooth transition between the 

lowest and highest earners.

True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          $100k

Income in District Q



Gertrude asks the university’s DP-interface for a differentially 

private approximation of District Q’s income distribution, and sets 

ε = 0.01. 

Much like the true histogram 

in red, this approximation 

suggests that District Q 

mainly earns less than $35k. 

Gertrude notices that there 

is apparently a spike in the 

number of people earning 

about $75k. Gertrude knows 

that this may just be a result 

of random noise addition.

Differential Privacy: Histograms

Histogram Approximation 
with ε = 0.01



For educational purposes, we can look at what may have 

happened if Gertrude had used higher values for ε. 

Differential Privacy: Histograms

*Remember that Gertrude, and other DP-users, would not 

actually be able to request more than one histogram per dataset.

Histogram Approximation 
with ε = 0.1

(hypothetical)(hypothetical)

Histogram Approximation 
with ε = 0.05
(hypothetical)

Histogram Approximation 
with ε = 0.05
(hypothetical)



Differential Privacy: Histograms
We can again view this progression in terms of the “ε-knob”. Keep in mind that 

each of these three histograms Is the true histogram with just one instance of 

differentially private noise added to it. If Gertrude generated three more DP-

histograms at these ε levels, she would almost certainly see different images.

(hypothetical)

Histogram Approximation 
with ε = 0.01

Histogram Approximation 
with ε = 0.05

Histogram Approximation 
with ε = 0.1

Histogram Approximation 
with ε = 0.05

(hypothetical)

Histogram Approximation 
with ε = 0.1

(hypothetical)(hypothetical)

Histogram Approximation 
with ε = 0.05

Histogram Approximation 
with ε = 0.1

(hypothetical)(hypothetical)

Histogram Approximation 
with ε = 0.1

Histogram Approximation 
with ε = 0.1

Histogram Approximation 
with ε = 0.1



Differential Privacy: Histograms

From this, we can learn something about interpreting differentially 

private histograms. The key is to recognize which patterns represent 

the underlying data, and which patterns may just be the result of the 
random noise addition.

On the next slides, we’ll offer an example to clarify this point.

(hypothetical)

Histogram Approximation 
with ε = 0.01

Histogram Approximation 
with ε = 0.05
(hypothetical)

Histogram Approximation 
with ε = 0.05

(hypothetical)(hypothetical)

Histogram Approximation 
with ε = 0.1

Histogram Approximation 
with ε = 0.1

Histogram Approximation 
with ε = 0.1



True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          
$100k Income in District Q

Consider the DP-histogram that Gertrude actually generated, in yellow. Keep 

in mind that Gertrude doesn’t have access to the red (true) income 

distribution, and neither would any differential-privacy user. 

Differential Privacy: Histograms

$0               $25k          $50k            $75k          $100k

Income in District Q

Histogram Approximation 
with ε = 0.01



True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          
$100k Income in District Q

$0               $25k          $50k            $75k          $100k

Income in District Q

Looking at the yellow approximation, Gertrude would correctly deduce that 

District Q has a large proportion of residents with income between about 

$0K/year and $35k/year. She would also correctly assume that almost all of 

those surveyed earn between $0/year and $100k/year. She would also 

correctly assume that the income distribution has a long tail in one direction.

Differential Privacy: Histograms

Most

≈All

Histogram Approximation 
with ε = 0.01



Gertrude is quite smart, and so she knows that smaller details of this histogram 

shouldn’t be over analyzed, because they may be the effect of random noise 

addition. We call these effects “artificial artifacts” because they’re a product 

of the DP-approximation process, not the underlying data. We’ll now look at a 

few of these artificial artifacts.

Differential Privacy: Histograms

True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          
$100k Income in District Q

$0               $25k          $50k            $75k          $100k

Income in District Q

Histogram Approximation 
with ε = 0.01



True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          
$100k Income in District Q

$0               $25k          $50k            $75k          $100k

Income in District Q

First, Gertrude knows that she does not know the exact mode of this data with 

certainly. Histogram bars similar in height can surpass each other when 

random noise is introduced, seemingly switching what the mode is. We see a 

similar common situation here, with apparent local modes introduced. 

However, Gertrude can feel confident that the actual mode lies in one of the 

few tallest bins.

Differential Privacy: Histograms

Only one 
distinct 
mode

apparent 
local 
modes

Histogram Approximation 
with ε = 0.01



True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          
$100k Income in District Q

Knowing that random noise can cause similar bins to become taller or shorter 

than their neighbors, Gertrude knows to interpret the DP-histogram as though 

the tops of the bins may fall within an enveloping sleeve, as pictured below. 

Small skips and jumps within the sleeve may be the effect of DP-noise, artificial 

artifacts, but the sleeve itself shows us the trends we want to see. 

$0               $25k          $50k            $75k          $100k

Income in District Q

Differential Privacy: Histograms

Histogram Approximation 
with ε = 0.01



True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          
$100k Income in District Q

In a way, this sleeve represents the privacy that DP provides. It is 

mathematically calculated such that the midpoint of the top of each bin of 

the actual (non-DP) histogram falls within the yellow sleeve. Said another way, 

the blurry sleeve represents a 95% confidence interval on each bin. Certain 

DP interfaces provide this blurry confidence-interval sleeve to users.

$0               $25k          $50k            $75k          $100k

Income in District Q

Differential Privacy: Histograms

Histogram Approximation 
with ε = 0.01



By using the outline of the true histogram, we can see that it fits neatly within 

the sleeve, though it clearly does not match the yellow DP-Histogram 

beneath. In the next slide, we’ll refine this sleeve for more detail.

Differential Privacy: Histograms

True Histogram of the 
Dataset Using the Full 

Population

$0               $25k          $50k            $75k          
$100k Income in District Q

$0               $25k          $50k            $75k          $100k

Income in District Q

Histogram Approximation 
with ε = 0.01



Differential Privacy: Histograms

With higher ε values, we can imagine this sleeve getting thinner, revealing 

more detail. Notice that the confidence intervals on the green histogram are 

especially thin, reflecting the higher accuracy gained with higher ε values.

(hypothetical) (hypothetical)

Histogram Approximation 
with ε = 0.01

Histogram Approximation 
with ε = 0.05

Histogram Approximation 
with ε = 0.1



Differential Privacy: Histograms

Lastly, by adding in the outline of the true histogram, we can see how the 

shrinking sleeves contain the true underlying distribution, and how 

approximations made with higher ε generally resemble the true histogram 

more closely.

(hypothetical) (hypothetical)

Histogram Approximation 
with ε = 0.01

Histogram Approximation 
with ε = 0.05

Histogram Approximation 
with ε = 0.1



ε is not the only important parameter when 

constructing DP-histograms.  In DP-histograms, we 

can also consider dataset size. The larger the set, 

the lower the effect of random noise. Below we 

have two examples of this effect.

ε & n in DP-histograms

Dataset size = 5k observations Dataset size = 20k observations

ε = 0.02 

ε = 0.1 



Differential Privacy: Histograms
Finally, after viewing a DP-histogram Gertrude decides she wants 

to access the university’s District Q income survey data for her 

research. 

The university also surveyed District D. Gertrude wants to 

determine if she should seek full access to that data as well. She 

runs a DP-approximation with ε = 0.25 and gets the result below. 

District D seems similar, so she decides to seek access.

Histogram Approximation 
with ε = 0.01

Histogram Approximation 
with ε = 0.01



Section 4.3

DIFFERENTIAL PRIVACY: 

APPLICATION

Means Histograms CDFs



Differential Privacy: CDF

With this proper understanding of differentially private 

histograms, we can now move on to reading differentially 

private Cumulative Distribution Functions, or CDFs. 

Interpreting differentially private CDFs is very similar to 

interpreting differentially private histograms. 



Recall that CDFs are made by first adding the bars of a 

histogram gets us a cumulative histogram... 

Cumulative HistogramHistogram

n

Recap: Cumulative Density 

Functions



Recap: Cumulative Density 

Functions
…and then by dividing by the number of observations in the 

data….

Cumulative Histogram CDF (overlaid on C.H.)



… and then by removing the underlying bars used to 

compute CDFs.

CDF (overlaid on C.H.) CDF

Recap: Cumulative Density 
Functions



Also recall that CDFs can show us distributions and quantiles, as 

shown below.

75th Quantile

50th Quantile

25th Quantile

Recap: Cumulative Density 

Functions



Lastly, here are the earlier results from examining sampling error in 

CDFs. As we saw, the sampled-approximation of the true CDFs 

caused the curve to separate form the true CDF, and caused the 

apparent median to shift. As we’ll see, differential privacy can 

have a very similar effect.

Recap: Sampling error in a CDF

Researcher Gertrude Colleague 1 Colleague 2

Sample Size (40,000) 500 2000 10,000

Median in USD 23,500 26,034 22,309 23,870

Difference* (0) +2534 -1191 +370

$0                $20k            $40k           $60k            $80k         $100k $0                $20k            $40k           $60k            $80k         $100k $0                $20k            $40k           $60k            $80k         $100k $0                $20k            $40k           $60k            $80k         $100k

*the empirical 
median found by 
each researcher 
minus the true 
median, 23,500.



Differential Privacy in CDFs

$0                 $25k              $50k           $75k         $100k

Income in District Q

First, we’ll look at this CDF. This CDF is made from the university’s 

data on income distribution in District Q. Researchers using the 

differential privacy interface cannot see this CDF. 

As we saw in the histogram, 

the income is smoothly 

distributed. Here, we see that 

the median is $50k, and the 

25th and 75th percentiles are 

$35k and $65k respectively.

We’ll continue with Gertrude, 

and observe how she 

analyzes a few differentially 

private approximations of 

this CDF.



Differential Privacy in CDFs
In the graph below, we see Gertrude’s differentially private 

approximation of a CDF. This blue CDF was made with ε = 0.01. 

Gertrude first notices that the income distribution is fairly equal 

overall. She also notices that this CDF is very jagged.

The clearest effect of 

differential privacy’s  

random noise is that many 

parts of this CDF show 

negative probability by 

dipping downward. This is a 

clue that the jaggedness 

we see is from random 

noise, and not the 

underlying distribution.

Income in District Q

$0                 $25k              $50k           $75k         $100k



Differential Privacy in CDFs
CDFs are commonly used to locate medians and quantiles. We 

can see here that differential privacy has shifted our median 

and key quantiles slightly. 

Income in District Q

$0                 $25k              $50k           $75k         $100k

Percentile

CDF from 

Actual

Data

DP-CDF

25th $11k $14k

50th $21k $23k

75th $32.5k $37.5K



Differential Privacy in CDFs
As with the histograms, it’s helpful to envision a sleeve or cloud 

around the CDF. This sleeve depicts the 95% confidence 

interval of each point. We can see that most of the apparent 

jaggedness of the CDF is contained within the sleeve.

Income in District Q

$0                 $25k              $50k           $75k         $100k



Differential Privacy in CDFs
When we overlay the true CDF, we can see that roughly 95% of 

it fits within this sleeve, as expected. Using this true CDF for 

reference, we can also see more clearly how differentially 

private noise affected the result.

Income in District Q

$0                 $25k              $50k           $75k         $100k



Differential Privacy in CDFs
Now let’s return to the ε knob. Below we see the DP-CDF that 

Gertrude was given, as well as two hypothetical DP-CDFs with 

different values for ε.

ε = 0.25 ε = 0.025 ε = 0.01 



Differential Privacy in CDFs
Per usual, Gertrude knows better than to interpret DP-CDFs as 

exact CDFs. For example, notice that if we incorrectly treat 

these DP-CDFs as if they are exact, our apparent 25th

percentile may be read as exactly $14K, $10k, or $11k.

ε = 0.25 ε = 0.025 ε = 0.01 



Differential Privacy in CDFs
Instead, Gertrude smartly thinks about sleeves around these 

DP-CDFs. This way, she correctly interprets that the 25th

percentile is likely to be within these windows: The apparent 

25th percentile, plus or minus a margin related to the ε value.

ε = 0.25 ε = 0.025 ε = 0.01 



Differential Privacy in CDFs
For reference, here are the same DP-CDFs with the true CDF 

overlaid. We can see that the true CDF fits well within these 

sleeves.

ε = 0.25 ε = 0.025 ε = 0.01 



ε is not the only important parameter when 

constructing DP-CDFs.  In DP-CDFs, we can also 

consider dataset size. The larger the set, the lower 

the effect of random noise. Below we have two 

examples of this effect.

Controlling Diff. Privacy in CDFs

Dataset size = 5k observations Dataset size = 50k observations

ε = 0.01 

ε = 0.1 



Thus, we have just three guidelines for interpreting DP-CDFS:

Controlling Diff. Privacy in CDFs

ε nutility utility
Think with sleeves

Dataset size = 5k observations Dataset size = 50k observations

ε = 0.01 

ε = 0.1 



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

Interpreting CDFs

ε = .2, n = 50000

Income in District F

$0 $20k $40k $60k $80k

First, we have this DP-CDF 

with high ε and a large 

dataset. Because both key 

parameters are very high, 

we can assume that this 

approximation is fairly 

accurate. 



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .2, n = 50000

Income in District F

$0 $20k $40k $60k $80k

We can interpret that 

District F has a somewhat 

smooth income distribution 

with very few people 

earning more than $70k. 

We see two modes around 

$20k and $55k. 

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .2, n = 50000

Income in District F

$0 $20k $40k $60k $80k

Lastly, here we’ve overlaid 

the true CDF, and we can 

predictably see that we 

have a near-perfect 

match. We’ll now move 

onto less clear DP-CDFs.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .003, n = 10000

Income in District G

$0 $20k $40k $60k $80k

In this new CDF, our ε is very 

low. At a glance, we can 

infer that this income 

distribution is similar to the 

one we just saw. If we’re 

interested in a median, we 

must keep in mind that 

there’s a wide margin.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .003, n = 100000

Income in District G

$0 $20k $40k $60k $80k

We’re given a 95% 

confidence interval sleeve, 

and from that we can 

construct a 95% confidence 

interval for the median 

value, as shown in red

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .003, n = 100000

Income in District G

$0 $20k $40k $60k $80k

Overlaying the true CDF, we 

see that the median was 

$38k. This illustrates that while 

it is tempting to interpret DP-

CDFs as exact 

measurements, we must 

maintain that true exact 

points could be anywhere in 

the “sleeve”.

Interpreting CDFs

$0 $20k $40k $60k $80k



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .05, n = 50000

Income in District M

$0 $30k $60k $90k $120k

Here we see another 

income distribution from a 

wealthier neighborhood. 

We see sharp jumps in the 

curve, but it’s not clear if 

they’re from random noise 

or the underlying data. 

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .05, n = 50000

Income in District M

$0 $30k $60k $90k $120k

Considering our somewhat 

high parameter values, the 

95% confidence interval is 

very thin. While the small 

jaggedness at each step 

could be from random 

noise, the step-like 

distribution appears to 

reflect the underlying data.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .05, n = 50000

Income in District M

$0 $30k $60k $90k $120k

In reality, this DP-CDF 

closely resembled the 

original data. Separating 

the effects of noise from 

the effects of distribution is 

not always immediately 

clear.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .05, n = 50000

Income in District M

$0 $30k $60k $90k $120k

Here we have the true CDF 

overlaid in black. In reality, 

this DP-CDF closely 

resembled the original 

data.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .025, n = 50000

Ages in District P

0 20 40 60 80

We now turn to another 

variable, age. This DP-CDF 

seems to shows a very 

uniform distribution of ages, 

but with a low ε it’s not 

immediately clear. We are 

not given a confidence 

interval sleeve, but our best 

assumption is uniformity.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .025, n = 50000

Ages in District P (years)

0 20 40 60 80

Indeed, true data was 

shaped perfectly uniformly. 

We now look at one more 

dataset.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .05, n = 50000

Ages in District R (years)

0 20 40 60 80

This DP-CDF is shaped 

abnormally. It appears to 

depict underlying data that 

is sparsely distributed. We 

could infer that almost 

nobody is aged between 30 

and 50 years, but very many 

are aged 20 and 60 years.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .05, n = 50000

Ages in District R (years)

0 20 40 60 80

Visualizing the sleeve helps 

to show which features are 

the effect of random noise 

and which come from the 

underlying data. The most 

reasonable assumption is 

that this data is indeed 

sparse.

Interpreting CDFs



Lastly, as an exercise here are some DP-CDFs shown 

without their underlying non-private CDFs. We can 

attempt to interpret these as we would in reality. 

ε = .05, n = 50000

Ages in District R (years)

0 20 40 60 80

Here we see that sparse 

data is truly what’s being 

represented.

Interpreting CDFs



Section 5

DIFFERENTIAL PRIVACY NOTES:

POST-PROCESSING



Many applications of differential privacy incorporate an 

additional step known as post-processing, or manipulation 

to our DP-approximations that improve their utility.

Post-processing

User 
request

(e.g., what 
is the CDF 

of this 
data?)

DP
Interface

DP-approximations retain the same level of privacy no 

matter how much post-processing they undergo.

DP
approximation
(e.g., DP-CDF)

Post-
processing

Final result



The “sleeves” we’ve placed around histograms and CDFs 

throughout this presentation are a very basic form of post-

processing. They help us to interpret the DP-approximation.

Post-processing

User 
request DP- approx. Post-pr. Final result

Ages in District J (years)

0 20 40 60 80 0 20 40 60 80

Ages in District J (years)

CDF of Age 
in District P

ε = 0.5



Another typical form of post-processing for CDFs is referred 

to as “monotonization”. As the name suggests, this is the 

enforcement of monotonicity, or ensuring that no part of the 

CDF dips downward. 

Post-processing:
Monotonization

Ages in District P

0 20 40 60 80

Ages in District P

0 20 40 60 80

DP-approx

Monotonization

DP-approx
Monotone



Since a CDF represents cumulative probability, negative 

slope implies negative probability, which is not possible. Any 

negative slope in a CDF is the product of the random noise 

of differential privacy. Monotonization resolves this.

However, monotonization also introduces vertical spikes and 

horizontal plateaus where they may not have been 

previously. These visual effects of differential privacy are 

known as “artificial artifacts”.

Post-processing:
Monotonization

0 20 40 60 80

Ages in District P

Post-pr.

0 20 40 60 80

Ages in District P

DP-approx
MonotoneDP-approx



For that reason, researchers utilizing monotonization post-

processing should be aware that vertical lines in the CDF do 

not necessarily mean that the data is tightly clustered at 

those values, nor do horizontal lines always suggest no data.

Post-processing:
Monotonization

Ages in District P

0 20 40 60 80

Consider that the ages in 

District P are actually 

uniformly distributed. Reading 

a monotonized CDF too 

literally would be a mistake. 

Here, visualizing the “sleeve” 

is most useful.
DP-approx

Monotone with sleeve



In cases where the real CDF is sparse: it has vertical and 

horizontal jumps, monotonization is not the only source 

for this jagged lines.

Post-processing:
Monotonization

Ages in District P

0 20 40 60 80

Ages in District P

0 20 40 60 80

DP-approx
DP-approx
Monotone



By using a visual sleeve on our monotonized CDF, we 

can imagine that jagged corners within the sleeve are 

somewhat likely to be the result of noise, while larger 

directional changes represent the underlying CDF. 

Post-processing:
Monotonization

Ages in District P

0 20 40 60 80

Ages in District P

0 20 40 60 80

DP-approx with sleeve
DP-approx,

Monotone with sleeve



Indeed, by overlaying the true CDF, we see that the smaller 

jagged lines and spikes are not present, but larger vertical 

and horizontal segments and corners are. Either way, the 95% 

confidence interval sleeves appear to hold. 

Post-processing:
Monotonization

Ages in District P

0 20 40 60 80

Ages in District P

0 20 40 60 80

DP-approx with sleeve
DP-approx,

Monotone with sleeve



Differential Privacy in CDFs

For documents on theory, law, and other DP-statistics 

usage, see:

http://privacytools.seas.harvard.edu/

http://privacytools.seas.harvard.edu/


Section 6

APPENDIX:

UNDEVELOPED



[Different Algorithms]



Differential Privacy: Noise
Other documents from this group provide mathematical 

definitions for the inner-workings of differential privacy. This 

document will simply cover the intuition of differential privacy 

as far as is useful for statistical work.

Differential privacy is based 

on the introduction of 

random noise, which relies 

on the usage of a random 

variable. Random variables 

can follow several 

distributions, as depicted to 

the left.
0

Exponential

Laplace

Gaussian



Differential Privacy: Noise
Below are three representations of Laplace distributions, which 

are a common choice of distribution in DP mechanisms. These 

three curves depict the likelihood of a random variable 

(following each distribution) to take on a given value. 

The tightness of each 

distribution around its mean 

(0 here) is controlled by the 

variance parameter  “b = 
1

ε
”.

The Gaussian and 

exponential families of 

distributions are controllable 

by epsilon in a similar way. 



Differential Privacy: Noise
To generate “random noise”, differentially private Laplace 

mechanisms randomly select from a certain Laplace 

distribution. This random selection is added onto the desired 

data point or statistic, thereby masking that point or statistic’s 

true value. In most computations, μ = 0, and b is varied.

Notice that as “b” 

changes, the density of the 

distribution around 0 

changes. It is up the user to 

define b, thus defining the 

likelihood of greater 

absolute values of noise.



Differential Privacy: ε

In formal definitions and in practice, differentially privacy 

manages b through a parameter called ε (epsilon), which is 
equal to the inverse of b. 

With smaller ε, the possible 

values for random noise are 

more spread out away 

from zero. Thus, a small ε 

masks data better, and we 

say that data masked by 

Laplace (D.P.) mechanisms 

using smaller ε values are 

“more private” than those 

using larger ε values.

ε =
1

𝑏
=
1

2
= 0.5

ε =
1

𝑏
=
1

1
= 1

ε =
1

𝑏
=
1

4
= 0.25
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Histogram

Differential Privacy: Histograms

Consider the histogram. The simplest way to create a 

differentially private histogram is to generate the histogram 

and treat the height of each bin as a single data point. Add 

random noise to those bin-heights to mask their true values.
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Differential Privacy: Histograms

With differential privacy noise, we are in control of when and 

how random noise is introduced to our statistics. We can use 

this to our advantage by inspecting precisely what random 

noise has done to our histogram.
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Differential Privacy: Histograms
Looking closer, this transformation has strong implications. 

Differential privacy has the potential to change which value is 

shown as the mode. While looking at this DP Histogram,  we 

can know the distribution of possible heights for each bin. 

However, if our goal is to find the mode, we need to keep in 

mind that it may be 3,4, or 5 (or any other value, but with 

somewhat negligible probability.)



Differential Privacy: CDFs
Unlike with sampling error, DP-noise accumulates as DP-histogram bins are 

added. In practice, the final bin of a DP-CDF is manually set to 1, but here we 

can see the result of compiled variance. MOVE THIS STUFF TO THE NEXT SECTION, 

BE GENTLER ABOUT IT. ALSO MENTION THAT THIS IS A SIMPLE WAY FOR EXAMPLE. 

OUR ALGORITHMS ARE MORE SOPHISTICATED  TO TRY AND REDUCE THE NOISE
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Differential Privacy: CDFs
We’ll finish by pointing out that DP (like most statistics) is mainly 

used on sampled datasets, so DP and sampling error will be 

simultaneously present.
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Controlling Diff. Privacy in CDFs

When we change our ε values to something lower (more private) 

we find that our dp-CDFs do a better job of masking the true 

data, and a worse job of conveying accurate information. 

Small ε, (0.005), very privateLarge ε, 0.300, less private



Consider the dp-CDFs below. While the CDFs on the left are very 

accurate and useful, they cost 0.3 ε each. Meanwhile, one user 

can “afford” many more of the less useful, more private dp-CDFs 

on the right. 

Small ε, (0.005), very privateLarge ε, 0.300, less private

Controlling Diff. Privacy in CDFs



Under those conditions, it’s clearer why we’d like more 

“efficient” dp-CDFs at the lowest ε price. Consider the 

graphs below for an example of how different methods can 

be more (or less) cost-effective than others. RESEARCHERS 

CAN A COLLECTION OF CDF ALGS. NOT ALL ARE EQUAL. 

EVEN WITH THE SAME EPS, SOME WILL DO BETTER OR WORSE, 

SOMETIMES DEPENDS ON OTHER PARAMS. HERE ARE 2 ALGS.

Controlling Diff. Privacy in CDFs

ε = 0.01 ε = 0.1



In this case, the blue curves are processed versions of the 

red curves, providing more useful dp-CDFs for the exact 

same ε price. YO SLOW DOWN. WE’RE NOT TALKING ABOUT 

COMPOSITION OR POST-PROCESS. APPENDIXS IF DESIRED

Ongoing improvements like this suggest that dp-stats may 

become yet more cost-effective in the future. 
ε = 0.01 ε = 0.1

Controlling Diff. Privacy in CDFs



Dataset Size in Diff. Privacy

n=2000

n=10,000

The intuition for this lies in the way differential privacy operates.

Statistics normally draw on

each observation in a dataset

only once. Thus, each

individual's contribution to the

statistic is 1/n. Differential

privacy requires that enough

random noise be added to

obscure the contribution of any

individual, so privately releasing

this statistic requires noise on

the order of 1/n. As n increases,

the magnitude of the noise you

need to add decreases.

Large ε, 0.300



Differential Privacy in CDFs

Now let’s return to the ε knob. Gertrude is given 3 DP-CDFs, 

each with different levels of ε. ADD: tighter and looser DP-CDF

Income in District Q

$0                 $25k              $50k           $75k         $100k
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Now let’s return to the ε knob. Gertrude is given 3 DP-CDFs, 

each with different levels of ε. ADD: tighter and looser DP-CDF

Income in District Q

$0                 $25k              $50k           $75k         $100k



Differential Privacy in CDFs

Now let’s return to the ε knob. Gertrude is given 3 DP-CDFs, 

each with different levels of ε. ADD: tighter and looser DP-CDF

Income in District Q

$0                 $25k              $50k           $75k         $100k


